Processing math: 100%
Research article Special Issues

Commensalism and syntrophy in the chemostat: a unifying graphical approach

  • The aim of this paper is to show that Tilman's graphical method for the study of competition between two species for two resources can be advantageously used for the study of commensalism or syntrophy models, where a first species produces the substrate necessary for the growth of the second species. The growth functions of the species considered are general and include both inhibition by the other substrate and inhibition by the species' limiting substrate, when it is at a high concentration. Because of their importance in microbial ecology, models of commensalism and syntrophy, with or without self-inhibition, have been the subject of numerous studies in the literature. We obtain a unified presentation of a large number of these results from the literature. The mathematical model considered is a differential system in four dimensions. We give a new result of local stability of the positive equilibrium, which has only been obtained in the literature in the case where the removal rates of the species are identical to the dilution rate and the study of stability can be reduced to that of a system in two dimensions. We describe the operating diagram of the system: this is the bifurcation diagram which gives the asymptotic behavior of the system when the operating parameters are varied, i.e., the dilution rate and the substrate inlet concentrations.

    Citation: Tewfik Sari. Commensalism and syntrophy in the chemostat: a unifying graphical approach[J]. AIMS Mathematics, 2024, 9(7): 18625-18669. doi: 10.3934/math.2024907

    Related Papers:

    [1] Kamaraj Dhurai, Nak Eun Cho, Srikandan Sivasubramanian . On a class of analytic functions closely related to starlike functions with respect to a boundary point. AIMS Mathematics, 2023, 8(10): 23146-23163. doi: 10.3934/math.20231177
    [2] Lina Ma, Shuhai Li, Huo Tang . Geometric properties of harmonic functions associated with the symmetric conjecture points and exponential function. AIMS Mathematics, 2020, 5(6): 6800-6816. doi: 10.3934/math.2020437
    [3] Georgia Irina Oros, Gheorghe Oros, Daniela Andrada Bardac-Vlada . Certain geometric properties of the fractional integral of the Bessel function of the first kind. AIMS Mathematics, 2024, 9(3): 7095-7110. doi: 10.3934/math.2024346
    [4] Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by q-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493
    [5] Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073
    [6] Ekram E. Ali, Rabha M. El-Ashwah, Wafaa Y. Kota, Abeer M. Albalahi, Teodor Bulboacă . A study of generalized distribution series and their mapping properties in univalent function theory. AIMS Mathematics, 2025, 10(6): 13296-13318. doi: 10.3934/math.2025596
    [7] K. Saritha, K. Thilagavathi . Differential subordination, superordination results associated with Pascal distribution. AIMS Mathematics, 2023, 8(4): 7856-7864. doi: 10.3934/math.2023395
    [8] Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395
    [9] Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423
    [10] Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551
  • The aim of this paper is to show that Tilman's graphical method for the study of competition between two species for two resources can be advantageously used for the study of commensalism or syntrophy models, where a first species produces the substrate necessary for the growth of the second species. The growth functions of the species considered are general and include both inhibition by the other substrate and inhibition by the species' limiting substrate, when it is at a high concentration. Because of their importance in microbial ecology, models of commensalism and syntrophy, with or without self-inhibition, have been the subject of numerous studies in the literature. We obtain a unified presentation of a large number of these results from the literature. The mathematical model considered is a differential system in four dimensions. We give a new result of local stability of the positive equilibrium, which has only been obtained in the literature in the case where the removal rates of the species are identical to the dilution rate and the study of stability can be reduced to that of a system in two dimensions. We describe the operating diagram of the system: this is the bifurcation diagram which gives the asymptotic behavior of the system when the operating parameters are varied, i.e., the dilution rate and the substrate inlet concentrations.



    In the literature, special functions have a great importance in a variety of fields of mathematics, such as mathematical physics, mathematical biology, fluid mechanics, geometry, combinatory and statistics. Due of the essential position of special functions in mathematics, they continue to play an essential role in the subject as well as in the geometric function theory. For geometric behavior of some other special functions, one can refer to [1,2,3,4,5,6,7,8,9,10,11,12]. An interesting way to discuss the geometric properties of special functions is by the means of some criteria due to Ozaki, Fejér and MacGregor. One of the important special functions is the Mathieu series that appeared in the nineteenth century in the monograph [13] defined on R by

    S(r)=n12n(n2+r2)2. (1.1)

    Surprisingly, the Mathieu series is considered in a variety of fields of mathematical physics, namely, in the elasticity of solid bodies [13]. For more applications regarding the Mathieu series, we refer the interested reader to [14, p. 258, Eq (54)]. The functions bear the name of the mathematician Émile Leonard Mathieu (1835–1890). Recently, a more general family of the Mathieu series was studied by Diananda [15] in the following form:

    Sμ(r)=n12n(n2+r2)μ+1(μ>0,rR). (1.2)

    In 2020, Gerhold et al. [16], considered a new Mathieu type power series, defined by

    Sα,β,μ(r;z)=k=0(k!)αzk((k!)β+r2)μ+1, (1.3)

    where α,μ0,β,r>0 and |z|1, such that α<β(μ+1).

    In [17], Bansal and Sokól have determined sufficient conditions imposed on the parameters such that the normalized form of the function S(r,z) belong to a certain class of univalent functions, such as starlike and close-to-convex. In [18], the authors presented some generalizations of the results of Bansal and Sokól by using the same technique. In addition, Gerhold et al. [18, Theorems 5 and 6] has established some sufficient conditions imposed on the parameter of the normalized form of the function S1,2,μ(r;z) defined by

    Qμ(r;z):=z+n=2n!(r2+1)μ+1((n!)2+r2)μ+1zn, (1.4)

    to be starlike and close-to-convex in the open unit disk. The main focus of the present paper is to extend and improve some results from [18] by using a completely different method. More precisely, in this paper we present some sufficient conditions, such as the normalized form of the function S1,β,μ(r;z) defined by

    Qμ,β(r;z)=z+n=2n!(r2+1)μ+1zn((n!)β+r2)μ+1, (1.5)

    satisfying several geometric properties such as starlikeness, convexity and close-to-convexity.

    We denoted by H the class of all analytic functions inside the unit disk

    D={z:zCand|z|<1}.

    Assume that A denoted the collection of all functions fH, satisfying the normalization f(0)=f(0)1=0 such that

    f(z)=z+k=2akzk,(zD).

    A function fA is said to be a starlike function (with respect to the origin zero) in D, if f is univalent in D and f(D) is a starlike domain with respect to zero in C. This class of starlike functions is denoted by S. The analytic characterization of S is given [19] below:

    (zf(z)f(z))>0(zD).

    If f(z) is a univalent function in D and f(D) is a convex domain in C, then fA is said to be a convex function in D. We denote this class of convex functions by K, which can also be described as follows:

    (1+zf(z)f(z))>0(zD).

    An analytic function f in A is called close-to-convex in the open unit disk D if there exists a function g(z), which is starlike in D such that

    (zf(z)g(z))>0,zD.

    It can be noted that every close-to-convex function in D is also univalent in D (see, for details, [19,20]).

    In order to show the main results, the following preliminary lemmas will be helpful. The first result is due to Ozaki (see also [21, Lemma 2.1]).

    Lemma 1.1. [22] Let

    f(z)=z+n=2anzn,

    be analytic in D. If

    12a2(n+1)an+10,

    or if

    12a2(n+1)an+12,

    then f is close-to-convex with respect to the function log(1z).

    Remark 1.2. We note that, as Ponnusamy and Vuorinen pointed out in [21], proceeding exactly as in the proof of Lemma 1.1, one can verify directly that if a function f:DC satisfies the hypothesis of the above lemma, then it is close-to-convex with respect to the convex function

    z1z.

    The next two lemmas are due to Fejér [23].

    Lemma 1.3. Suppose that a function f(z)=1+k=2akzk1, with ak0(k2) as analytic in D. If (ak)k1 is a convex decreasing sequence, i.e., ak2ak+1+ak+20 and akak+10 for all k1, then

    (f(z))>12(zD).

    Lemma 1.4. Suppose that a f(z)=z+k=2akzk, with ak0(k2) as analytic in D. If (kak)k1 and (kak(k+1)ak+1)k1 both are decreasing, then f is starlike in D.

    Lemma 1.5 ([24]). Assume that fA. If the following inequality

    |f(z)z1|<1,

    holds for all zD, then f is starlike in

    D12:={zCand|z|<12}.

    Lemma 1.6 ([25]). Assume that fA and satisfies

    |f(z)1|<1,

    for each zD, then f is convex in D12.

    Theorem 2.1. Let μ,β>0 and 0<r1 such that β1+2μ+1. In addition, if the following condition holds:

    H:(2β+12)μ+14,

    then the function Qμ,β(r;z) is close-to-convex in D with respect to the function log(1z).

    Proof. For the function Qμ,β(r;z), we have

    a1=1andak=k!(r2+1)μ+1((k!)β+r2)μ+1(k2).

    To prove the result, we need to show that the sequence {kak}k1 is decreasing under the given conditions. For k2 we have

    kak(k+1)ak+1=(r2+1)μ+1[kk!((k!)β+r2)μ+1(k+1)(k+1)!(((k+1)!)β+r2)μ+1]=k!(r2+1)μ+1[k((k!)β+r2)μ+1(k+1)2(((k+1)!)β+r2)μ+1]=k!(r2+1)μ+1Ak(β,μ,r)[((k!)β+r2)(((k+1)!)β+r2)]μ+1, (2.1)

    where

    Ak(β,μ,r)=k(((k+1)!)β+r2)μ+1(k+1)2((k!)β+r2)μ+1,k2.

    However, we have

    Ak(β,μ,r)=(k1μ+1((k+1)!)β+k1μ+1r2)μ+1((k+1)2μ+1(k!)β+(k+1)2μ+1r2)μ+1=exp((μ+1)log[k1μ+1((k+1)!)β+k1μ+1r2])exp((μ+1)log[(k+1)2μ+1(k!)β+(k+1)2μ+1r2])=j=0[logj(k1μ+1((k+1)!)β+k1μ+1r2)logj((k+1)2μ+1(k!)β+(k+1)2μ+1r2)](μ+1)jj!. (2.2)

    In addition, for all k2, we have

    k1μ+1((k+1)!)β+k1μ+1r2(k+1)2μ+1(k!)β+(k+1)2μ+1r2=r2(k1μ+1(k+1)2μ+1)+k1μ+1((k+1)!)β(k+1)2μ+1(k!)β[k1μ+1(k+1)2μ+1+k1μ+1((k+1)!)β2]+[k1μ+1((k+1)!)β2(k+1)2μ+1(k!)β]=k1μ+1(1+((k+1)!)β2((k+1)2k)1μ+1)+(k!)β(k1μ+1(k+1)β2(k+1)2μ+1)k1μ+1(k+1)2μ+1(1+(k!)β(k+1)21k1μ+1)+(k!)β(k+1)2μ+1(k1μ+1(k+1)21)k1μ+1(k+1)2μ+1(1+(k!)βk1μ+11k1μ+1)+(k!)β(k+1)2μ+1(k1μ+11), (2.3)

    which is positive by our assumption. Having (2.1)–(2.3), we conclude that the sequence (kak)k2 is decreasing. Finally, we see that the condition (H) implies that a12a2, then the function Qμ,β(r;z) is close-to-convex in D with respect to the function log(1z) by Lemma 1.1.

    If we set β=32 in Theorem 2.1, we derive the following result as follows:

    Corollary 2.2. Let 0<r1. If μ3, then the function Qμ,32(r;z) is close-to-convex in D with respect to the function log(1z).

    Upon setting μ=2 in Theorem 2.1, we get the following result:

    Corollary 2.3. Let 0<r1. If β53, then the function Q2,β(r;z) is close-to-convex in D with respect to the function log(1z).

    Remark 2.4. In [18], it is established that the function Qμ,2(r;z)=:Qμ(r;z) is close-to-convex in D with respect to the function z1z for all 0<rμ. Moreover, in view of Remark 1.2, we conclude that the function Qμ,2(r;z) is close-to-convex in D with respect to the function log(1z) for all 0<rμ. However, in view of Corollaries 2.2 and 2.3, we deduce that Theorem 2.1 improves the corresponding result available in [18, Theorem 5] for 0<r1.

    Theorem 2.5. Assume that μ,β>0,0<r1 such that β1+1μ+1. In addition, if the condition (H) holds, then

    (Qμ,β(r;z)z)>12,

    for all zD.

    Proof. For k1, we get

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(akak+1)(r2+1)μ+1=k!(((k+1)!)β+r2)μ+1(k+1)!((k!)β+r2)μ+1=[(k!)1μ+1((k+1)!)β+r2)]μ+1[((k+1)!)1μ+1((k!)β+r2)]μ+1. (2.4)

    Further, for all k1, we have

    (k!)1μ+1((k+1)!)β+r2)((k+1)!)1μ+1((k!)β+r2)=r2[(k!)1μ+1((k+1)!)1μ+1]+(k!)1μ+1((k+1)!)β((k+1)!)1μ+1(k!)β(k!)1μ+1((k+1)!)1μ+1+(k!)1μ+1((k+1)!)β((k+1)!)1μ+1(k!)β=(k!)1μ+1[1+(k!)β(k+1)β2(k+1)1μ+1]+(k!)β+1μ+1[(k+1)β2(k+1)1μ+1](k!)1μ+1[1+(k+1)1+1μ+12(k+1)1μ+1]+(k!)β+1μ+1[(k+1)1+1μ+12(k+1)1μ+1]=(k!)1μ+1[1+(k+1)1μ+1((k+1)21)]+(k!)β+1μ+1(k+1)1μ+1((k+1)21)>0. (2.5)

    Hence, in view of (2.4) and (2.5), we deduce that the sequence (ak)k1 is decreasing. Next, we prove that (ak)k1 is a convex decreasing sequence, then, for k2 we obtain

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(ak2ak+1)(r2+1)μ+1=k!(((k+1)!)β+r2)μ+12(k+1)!((k!)β+r2)μ+1=[(k!)1μ+1((k+1)!)β+r2)]μ+1[(2(k+1)!)1μ+1((k!)β+r2)]μ+1. (2.6)

    Moreover, we get

    (k!)1μ+1(((k+1)!)β+r2)(2(k+1)!)1μ+1((k!)β+r2)=r2[(k!)1μ+1(2(k+1)!)1μ+1]+(k!)1μ+1((k+1)!)β(2(k+1)!)1μ+1(k!)β>[(k!)1μ+1(2(k+1)!)1μ+1]+(k!)1μ+1((k+1)!)β3+2(k!)β+1μ+13[(k+1)β3.2μμ+1(k+1)1μ+1](k!)1μ+1[1+((k+1)!)1+1μ+13(2(k+1))1μ+1]+2(k!)β+1μ+13[(k+1)1+1μ+13.2μμ+1(k+1)1μ+1]=(k!)1μ+1[1+(k+1)1μ+1{(k+1)(k!)1+1μ+1321μ+1}]+2(k!)β+1μ+1(k+1)1μ+13[(k+1)3.2μμ+1]>2[12μμ+1](k!)β+1μ+1(k+1)1μ+1>0. (2.7)

    Keeping (2.6) and (2.7) in mind, we have ak2ak+1>0 for all k2. In addition, the condition (H) implies a12a20. This in turn implies that the sequence (ak)k1 is convex. Finally, by Lemma 1.3, we obtain the desired result.

    Taking β=32 in Theorem 2.5, we derive the following result:

    Corollary 2.6. Assume that r(0,1]. If μlog(4)log(232+1)log(2)11.14, then

    (Qμ,32(r;z)z)>12(zD).

    Setting μ=1 in Theorem 2.5, we established the following result which reads as follows:

    Corollary 2.7. Let 0<r1. If βlog(3)log(2), then

    (Q1,β(r;z)z)>12(zD).

    Remark 2.8. The result obtained in the above theorem has been derived from [18, Theorem 6] for β=2,μ>0 and 0<r<μ. Hence, in view of Corollaries 2.2 and 2.6, we deduce that Theorem 2.5 improves the corresponding result given in [18, Theorem 6] for 0<r1.

    Theorem 2.9. Assume that min(μ,β)>0,0<r1 such that β1+3μ+1, then the function Qμ,β(r;z) is starlike in D.

    Proof. We see in the proof of Theorem 2.1 that the sequence (kak)k1 is decreasing. Hence, with the aid of Lemma 1.4 to show that the function Qμ,β(r;z) is starlike in D, it suffices to prove that the sequence (kak(k+1)ak+1)k1 is decreasing. We have

    kak2(k+1)ak+1=k!(r2+1)μ+1Bk(β,μ,r)[((k!)β+r2)((k+1)!)β+r2)]μ+1, (2.8)

    where

    Bk(β,μ,r)=k(((k+1)!)β+r2)μ+12(k+1)2((k!)β+r2)μ+1,k1.

    For k2, we have

    k1μ+1(((k+1)!)β+r2)(2(k+1)2)1μ+1((k!)β+r2)k1μ+1(2(k+1)2)1μ+1+k1μ+1((k+1)!)β2+[k1μ+1((k+1)!)β2(2(k+1)2)1μ+1(k!)β]=k1μ+1+k1μ+1((k+1)!)β2(2(k+1)2)1μ+1+(k!)β(k1μ+1(k+1)β2(2(k+1)2)1μ+1)k1μ+1+(k+1)2μ+1(k1μ+1(k!)β(k+1)221μ+1)+(k!)β(k+1)2μ+1(k1μ+1(k+1)221μ+1)k1μ+1+(k+1)2μ+1(k1μ+1(k!)β21μ+1)+(k!)β(k+1)2μ+1(k1μ+121μ+1)>0, (2.9)

    which in turn implies that

    Bk(β,μ,r)>0,

    for all k2, and consequently, the sequence (kak(k+1)ak+1)k2 is decreasing. Further, a simple computation gives

    a14a2+3a3(1+r2)μ+1=1(1+r2)μ+18(2β+r2)μ+1+18(6β+r2)μ+112μ+182β(μ+1)+18(6β+r2)μ+1=2β(μ+1)2μ+42(β+1)(μ+1)+18(6β+r2)μ+12μ+42μ+42(β+1)(μ+1)+18(6β+r2)μ+1>0.

    Therefore, (kak(k+1)ak+1)k1 is decreasing, which leads us to the asserted result.

    In the next Theorem we present another set of sufficient conditions to be imposed on the parameters so that the function Qμ,β(r;z) is starlike in D.

    Theorem 2.10. Let the parameters be the same as in Theorem 2.1. In addition, if the following conditions

    H:(2β+12)μ+18(e2),

    hold true, then the function Qμ,β(r;z) is starlike in D.

    Proof. First of all, we need to prove that the sequences (uk)k2 and (vk)k2 defined by

    uk=(k!)2(r2+1)μ+1((k!)β+r2)μ+1andvk=(k1)(k!)2(r2+1)μ+1((k!)β+r2)μ+1,

    are decreasing. Indeed, we have

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(ukuk+1)(k!)2(r2+1)μ+1=(((k+1)!)β+r2)μ+1(k+1)2((k!)β+r2)μ+1. (2.10)

    In addition, for any k2, we have

    ((k+1)!)β+r2(k+1)2μ+1((k!)β+r2)=r2(1(k+1)2μ+1)+((k+1)!)β(k+1)2μ+1(k!)β1(k+1)2μ+1+((k+1)!)β(k+1)2μ+1(k!)β=1+(((k+1)!)β2(k+1)2μ+1)+(((k+1)!)β2(k+1)2μ+1(k!)β)1+((k!)β(k+1)1+2μ+12(k+1)2μ+1)+(k!)β((k+1)1+2μ+12(k+1)2μ+1)=1+(k+1)2μ+1((k!)β(k+1)21)+(k!)β(k+1)2μ+1(k+121)>0. (2.11)

    According to (2.10) and (2.11) we conclude that the sequence (uk)k2 is decreasing. Also, for k2, we have

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(vkvk+1)(k!)2(r2+1)μ+1=(k1)(((k+1)!)β+r2)μ+1k(k+1)2((k!)β+r2)μ+1. (2.12)

    Moreover, for all k2, we find

    (k1)1μ+1(((k+1)!)β+r2)(k(k+1)2)1μ+1((k!)β+r2)=r2((k1)1μ+1(k(k+1)2)1μ+1)+(k1)1μ+1((k+1)!)β(k(k+1)2)1μ+1(k!)β(k1)1μ+1(k(k+1)2)1μ+1+(k1)1μ+1((k+1)!)β3+2(k1)1μ+1((k+1)!)β3(k(k+1)2)1μ+1(k!)β(k1)1μ+1+(k+1)2μ+1((k1)1μ+1(k!)1+2μ+1(k+1)3k1μ+1)+(k!)β(k+1)2μ+1(2(k1)1μ+1(k+1)3k1μ+1)(k1)1μ+1+(k+1)2μ+1((k1)1μ+1(k!)1+2μ+1k1μ+1)+(k!)β(k+1)2μ+1(2(k1)1μ+1k1μ+1). (2.13)

    Since the sequence (k/(k1))n2 is decreasing, we deduce that kk12 for all k2 and consequently,

    (kk1)1μ+121μ+12(k2,μ>0).

    Hence, in view of the above inequality combined with (2.13) and (2.12), we conclude that the sequence (vk)k2 is decreasing. Now, we set

    ˜Qμ,β(r;z):=z[Qμ,β(r;z)]Qμ,β(r;z),zD.

    We see that the function ˜Qμ,β(r;z) is analytic in D and satisfies ˜Qμ,β(r;0)=1. Hence, to derive the desired result, it suffices to prove that, for any zD, we have

    (˜Qμ,β(r;z))>0.

    For this goal in view, it suffices to show that

    |˜Qμ,β(r;z)1|<1(zD).

    For all zD, we get

    |[Qμ,β(r;z)]Qμ,β(r;z)z|<k=2(k1)k!(r2+1)μ+1((k!)β+r2)μ+1=k=2vkk!v2(e2). (2.14)

    In addition, in view of the inequality:

    |a+b|||a||b||,

    we obtain

    |Qμ,β(r;z)z|>1k=2(k!)(r2+1)μ+1((k!)β+r2)μ+1=1k=2ukk!1u2(e2). (2.15)

    By using (2.14) and (2.15), for zD, we get

    |˜Qμ,β(r;z)1|=|[Qμ,β(r;z)]Qμ,β(r;z)z||Qμ,β(r;z)z|<v2(e2)1u2(e2). (2.16)

    Furthermore, by using the fact that the function rχμ,β(r)=(r2+1r2+2β)μ+1 is strictly increasing on (0,1], and with the aid of condition (H), we obtain

    (v2+u2)(e2)=8(e2)(r2+1)μ+1(2β+r2)μ+1<8(e2)(22β+1)μ+11. (2.17)

    Finally, by combining (2.16) and (2.17), we derived the desired results.

    By setting β=2 in Theorem 2.10, we obtain the following corollary:

    Corollary 2.11. If 0<r1 and μ1, then the function Qμ(r;z) defined in (1.4) is starlike in D.

    Taking β=32 in Theorem 2.10, we obtain:

    Corollary 2.12. Under the assumptions of Corollary 2.2, the function Qμ,32(r;z) is starlike in D.

    Setting in Theorem 2.10 the values μ=2, we compute the following corollary:

    Corollary 2.13. Suppose that all hypotheses of Corollary 2.3 hold, then the function Q2,β(r;z) is starlike in D.

    Example 2.14. The functions Q3,32(1/2;z) and Q2,53(1/2;z) are starlike in D.

    Figure 1 illustrates the mappings of the above examples in D.

    Figure 1.  Mappings of Qμ,β(r;z) over D.

    Theorem 2.15. Let μ,β>0 and 0<r1 such that β1+3μ+1. If the following condition

    H:(2β+12)μ+116(e2),

    holds true, then the function Qμ,β(r;z) is convex in D.

    Proof. We define the sequences (xk)k2 and (yk)k2 by

    xk=k(k!)2(r2+1)μ+1((k!)β+r2)μ+1andyk=k(k1)(k!)2(r2+1)μ+1((k!)β+r2)μ+1.

    Let k2, then

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(xkxk+1)(k!)2(r2+1)μ+1=k(((k+1)!)β+r2)μ+1(k+1)3((k!)β+r2)μ+1. (2.18)

    However, we have

    k1μ+1(((k+1)!)β+r2)(k+1)3μ+1((k!)β+r2)k1μ+1(k+1)3μ+1+k1μ+1((k+1)!)β(k+1)3μ+1(k!)β=k1μ+1+(k1μ+1(k!)β(k+1)β2(k+1)3μ+1)+(k1μ+1(k!)β(k+1)β2(k+1)3μ+1(k!)β)k1μ+1+(k+1)3μ+1(k1μ+1(k!)β(k+1)21)+(k!)β(k+1)3μ+1(k1μ+1(k+1)21)>0. (2.19)

    Hence, in view of (2.18) and (2.19), we get that (xk)k2 is decreasing. Also, we have

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(ykyk+1)k(k!)2(r2+1)μ+1=(k1)(((k+1)!)β+r2)μ+1(k+1)3((k!)β+r2)μ+1. (2.20)

    Moreover, for k2, we find that

    (k1)1μ+1(((k+1)!)β+r2)(k+1)3μ+1((k!)β+r2)(k1)1μ+1+((k1)1μ+1(k!)β(k+1)β2(k+1)3μ+1)+(k!)β((k1)1μ+1(n+1)β2(n+1)3μ+1)(k1)1μ+1+(k+1)3μ+1((k1)1μ+1(k!)β(k+1)21)+(k!)β(k+1)3μ+1((k1)1μ+1(k+1)21)>0. (2.21)

    Having (2.20) and (2.21) in mind, we deduce that the sequence (yk)k2 is decreasing. To show that the function Qμ,β(r;z) is convex in D, it suffices to establish that the function

    ˆQμ,β(r;z):=z[Qμ,β(r;z)],

    is starlike in D. For this objective in view, it suffices to find that

    |z[ˆQμ,β(r;z)]ˆQμ,β(r;z)1|<1(zD).

    For all zD and since (yk)k2 is decreasing, we get

    |[ˆQμ,β(r;z)]ˆQμ,β(r;z)z|<k=2k(k1)k!(r2+1)μ+1((k!)β+r2)μ+1=k=2ykk!y2(e2). (2.22)

    Further, for any zD, we obtain

    |ˆQμ,β(r;z)z|>1k=2k(k!)(r2+1)μ+1((k!)β+r2)μ+1=1k=2xkk!1x2(e2). (2.23)

    Keeping (2.22) and (2.23) in mind, for zD, we get

    |z[ˆQμ,β(r;z)]ˆQμ,β(r;z)1|=|[ˆQμ,β(r;z)]ˆQμ,β(r;z)z||ˆQμ,β(r;z)z|<y2(e2)1x2(e2)=8(e2)(r2+1)μ+1(2β+r2)μ+18(e2)(r2+1)μ+1. (2.24)

    Again, by using the fact that the function rχμ,β(r) is increasing on (0,1] and with the aid of hypothesis (H) we obtain that

    8(e2)(r2+1)μ+1(2β+r2)μ+18(e2)(r2+1)μ+1<1. (2.25)

    Finally, by combining the above inequality and (2.24), we obtain the desired result asserted by Theorem 2.15.

    Taking β=2 in Theorem 2.15, in view of (1.4), the following result holds true:

    Corollary 2.16. Let 0<r1. If μ2, then the function Qμ(r;z) is convex in D.

    If we set μ=1 in Theorem 2.15, in view of (1.5), we derive the following result:

    Corollary 2.17. Let 0<r1. If βlog(8e21)log(2), then the function Q1,β(r;z) is convex in D.

    Example 2.18. The functions Q2(r;z) and Q1,83(r;z) are convex in D.

    Figure 2 gives the mappings of the above presented examples in D.

    Figure 2.  Mappings of Qμ,β(r;z) over D.

    Theorem 2.19. Let the parameters be the same as in Theorem 2.1, then the function Qμ,β(r;z) is starlike in D12.

    Proof. For any zD we get

    |Qμ,β(r;z)z1|<k=2k!(r2+1)μ+1(k!)β+r2)μ+1=k=2ckk!, (2.26)

    where

    ck:=(k!)2(r2+1)μ+1((k!)β+r2)μ+1,k2.

    Straightforward calculation gives

    [((k!)β+r2)(((k+1)!)β+r2)]μ+1(ckck+1)(k!)2(r2+1)μ+1=(((k+1)!)β+r2)μ+1((k+1)2μ+1((k!)β+r2))μ+1. (2.27)

    Furthermore, for k2, we get

    ((k+1)!)β+r2(n+1)2μ+1((k!)β+r2)=r2(1(k+1)2μ+1)+((k+1)!)β(k!)β(k+1)2μ+1(1+((k+1)!)β2(k+1)2μ+1)+(k!)β((k+1)β2(k+1)2μ+1)(1+(k!)β(k+1)1+2μ+12(k+1)2μ+1)+(k!)β(k+1)2μ+1(k1)2(1+(k+1)2μ+1((k!)β(k+1)2)2)+(k!)β(k+1)2μ+1(k1)2>0. (2.28)

    Thus, the sequence (ck)k2 is decreasing. However, in view of (2.26), for zD we obtain

    |Qμ,β(r;z)z1|<k=2k!(r2+1)μ+1((k!)β+r2)μ+1=k=2c2k!=c2(e2)=4(e2)(r2+1)μ+1(2β+r2)μ+1. (2.29)

    According to the monotony property of the function rχβ,μ(r) on (0,1) we get

    χβ,μ(r)<14. (2.30)

    Hence, in view (2.29) and (2.30) we find for all zD that

    |Qμ,β(r;z)z1|<(e2)<1.

    With the help of Lemma 1.5, we deduce that the function Qμ,β(r;z) is starlike in D12.

    Corollary 2.20. Assume that all conditions of Corollary 2.2 are satisfied, then the function Qμ,32(r;z) is starlike in D12.

    Corollary 2.21. Suppose that all hypotheses of Corollary 2.3 hold, then the function Q2,β(r;z) is starlike in D12.

    If we set β=2 in the above Theorem, in view of (1.4), the following result is true:

    Corollary 2.22. Let 0<r1 If μ1, then the function Qμ(r;z) is starlike in D12.

    Example 2.23. The functions Q3,32(1/2;z),Q1(1;z) and Q2,53(1/2;z) are starlike in D12.

    In Figure 3, we give the mappings of the above presented examples in D.

    Figure 3.  Mappings of Qμ,β(r;z) over D12.

    Theorem 2.24. Let β,μ>0 and 0<r<1. If β1+3μ+1, then the function Qμ,β(r;z) is convex in D12.

    Proof. For all zD, it follows that

    |Qμ,β(r;z)1|<k=2kk!(r2+1)μ+1((k!)β+r2)μ+1=k=2dkk(k1), (2.31)

    where

    dk:=k2(k1)k!(r2+1)μ+1(k!)β+r2)μ+1,k2.

    For all k2, we get

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(dkdk+1)kk!(1+r2)μ+1=((k(k1))1μ+1[((k+1)!)β+r2])μ+1(((k+1))3μ+1[(k!)β+r2])μ+1. (2.32)

    However, for all k2 and under the conditions imposed on the parameters, we have

    (k(k1))1μ+1[((k+1)!)β+r2]((k+1))3μ+1[(k!)β+r2](k(k1))1μ+1((k+1))3μ+1+(k(k1))1μ+1((k+1)!)β(k+1)3μ+1(k!)β=(k(k1))1μ+1+((k(k1))1μ+1(k!)β(k+1)β2(k+1)3μ+1)+(k!)β((k(k1))1μ+1(k+1)β2(k+1)3μ+1)(k(k1))1μ+1+(n+1)3μ+1((k(k1))1μ+1(k!)β(k+1)21)+(k!)β(k+1)3μ+1((k(k1))1μ+1(k+1)21)(k(k1))1μ+1+(k+1)3μ+1((k(k1))1μ+1(k!)β1)+(k!)β(k+1)3μ+1((k(k1))1μ+11)>0. (2.33)

    Hence, in view of (2.32) and (2.33) we conclude that the sequence (dk)k2 is decreasing. Therefore, by (2.31), we conclude

    |Qμ,β(r;z)1|<k2d2k(k1)=d2. (2.34)

    Moreover, since β1+3μ+1 and r(0,1], we get

    (r2+1r2+2β)μ+118,

    and consequently, for all zD, we obtain

    |Qμ,β(r;z)1|<1. (2.35)

    Finally, with the means of Lemma 1.6, we conclude that the function Qμ,β(r;z) is convex in D12.

    If we take β=2 in Theorem 2.15, in view of (1.4), the following result holds true:

    Corollary 2.25. Let 0<r1. If μ2, then the function Qμ(r;z) is convex in D12.

    If we let μ=1 in Theorem 2.15, in view of (1.5), we derive the following result:

    Corollary 2.26. Let 0<r1. If β52, then the function Q1,β(r;z) is convex in D12.

    Example 2.27. The functions Q2(r;z) and Q1,52(r;z) are convex in D12.

    In Figure 4, we present the mappings of these examples in D.

    Figure 4.  Mappings of Qμ,β(r;z) over D12.

    Remark 2.28. The geometric properties of the function Qμ(r;z) derived in Corollaries 2.16, 2.22 and 2.25 are new.

    In our present paper, we have derived sufficient conditions such that a class of functions associated to the generalized Mathieu type power series are to be starlike, close-to-convex and convex in the unit disk D. The various results, which we have established in this paper, are believed to be new, and their importance is illustrated by several interesting corollaries and examples. Furthermore, we are confident that our paper will inspire further investigation in this field and pave the way for some developments in the study of geometric functions theory involving certain classes of functions related to the Mathieu type powers series.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number "NBU-FFR-2023-0093".

    The authors declare that they have no conflicts of interest.



    [1] J. Monod, La technique de culture continue: théorie et applications, In: A. Lwoff, A. Ullmann, Selected papers in molecular biology by Jacques Monod, Academic Press, 1978,184–204. http://dx.doi.org/10.1016/B978-0-12-460482-7.50023-3
    [2] S. Di, A. Yang, Analysis of productivity and stability of synthetic microbial communities, J. R. Soc. Interface, 16 (2019), 20180859. http://dx.doi.org/10.1098/rsif.2018.0859 doi: 10.1098/rsif.2018.0859
    [3] T. Großkopf, O. S. Soyer, Synthetic microbial communities, Curr. Opin. Microbiol, 18 (2014), 72–77. http://dx.doi.org/10.1016/j.mib.2014.02.002 doi: 10.1016/j.mib.2014.02.002
    [4] S. G. Hays, W. G. Patrick, M. Ziesack, N. Oxman, P. A. Silver, Better together: engineering and application of microbial symbioses, Curr. Opin. Biotechnol., 36 (2015), 40–49. http://dx.doi.org/10.1016/j.copbio.2015.08.008 doi: 10.1016/j.copbio.2015.08.008
    [5] H. Song, M. Z. Ding, X. O. Jia, Q. Ma, Y. J. Yuan, Synthetic microbial consortia: from systematic analysis to construction and applications, Chem. Soc. Rev., 43 (2014), 6954–6981. http://dx.doi.org/10.1039/C4CS00114A doi: 10.1039/C4CS00114A
    [6] P. J. Reilly, Stability of commensalistic systems, Biotechnol. Bioeng., 16 (1974), 1373–1392. http://dx.doi.org/10.1002/bit.260161006 doi: 10.1002/bit.260161006
    [7] G. Stephanopoulos, The dynamic of commensalism, Biotechnol. Bioeng., 23 (1981), 2243–2255. http://dx.doi.org/10.1002/bit.260231008 doi: 10.1002/bit.260231008
    [8] A. Burchard, Substrate degradation by a mutualistic association of two species in the chemostat, J. Math. Bio., 32 (1994), 465–489. http://dx.doi.org/10.1007/BF00160169 doi: 10.1007/BF00160169
    [9] R. Kreikenbohm, E. Bohl, A mathematical model of syntrophic cocultures in the chemostat, FEMS Microbiol. Ecol., 38 (1986), 131–140. http://dx.doi.org/10.1111/j.1574-6968.1986.tb01722.x doi: 10.1111/j.1574-6968.1986.tb01722.x
    [10] M. El Hajji, F. Mazenc, J. Harmand, A mathematical study of a syntrophic relationship of a model of anaerobic digestion process, Math. Biosci. Eng., 7 (2010), 641–656. http://dx.doi.org/10.3934/mbe.2010.7.641 doi: 10.3934/mbe.2010.7.641
    [11] T. Sari, M. El-Hajji, J. Harmand, The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat, Math. Biosci. Eng., 9 (2012), 627–645. http://dx.doi.org/10.3934/mbe.2012.9.627 doi: 10.3934/mbe.2012.9.627
    [12] T. Sari, J. Harmand, A model of a syntrophic relationship between two microbial species in a chemostat including maintenance, Math. Biosci., 275 (2016), 1–9. http://dx.doi.org/10.1016/j.mbs.2016.02.008 doi: 10.1016/j.mbs.2016.02.008
    [13] T. G. Wilkinson, H. H. Topiwala, G. Hamer, Interactions in a mixed bacterial population growing on methane in continuous culture, Biotechnol. Bioeng., 16 (1974), 41–59. http://dx.doi.org/10.1002/bit.260160105 doi: 10.1002/bit.260160105
    [14] A. Xu, J. Dolfing, T. Curtis, G. Montague, E. Martin, Maintenance affects the stability of a two-tiered microbial 'food chain', J. Theor. Biol., 276 (2011), 35–41. http://dx.doi.org/10.1016/j.jtbi.2011.01.026 doi: 10.1016/j.jtbi.2011.01.026
    [15] D. Tilman, Resources: a graphical-mechanistic approach to competition and predation, Am. Nat., 116 (1980), 362–393. http://dx.doi.org/10.1086/283633 doi: 10.1086/283633
    [16] D. Tilman, Resource competition and community structure, Vol. 17, Princeton: Princeton University Press, 1982. http://dx.doi.org/10.1515/9780691209654
    [17] M. M. Ballyk, G. S. K. Wolkowicz, Classical and resource-based competition: a unifying graphical approach, J. Math. Biol., 62 (2011), 81–109. http://dx.doi.org/10.1007/s00285-010-0328-x doi: 10.1007/s00285-010-0328-x
    [18] S. Pavlou, Computing operating diagrams of bioreactors, J. Biotechnol., 71 (1999), 7–16. http://dx.doi.org/10.1016/s0168-1656(99)00011-5 doi: 10.1016/s0168-1656(99)00011-5
    [19] H. L. Smith, P. Waltman, The theory of the chemostat: dynamics of microbial competition, Cambridge University Press, 1995.
    [20] J. Harmand, C. Lobry, A. Rapaport, T. Sari, The chemostat: mathematical theory of microorganism cultures, John Wiley & Sons, 2017.
    [21] J. Jost, J. Drake, A. Fredrickson, H. Tsuchiya, Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter Vinelandii, and glucose in a minimal medium, J. Bacteriol., 113 (1973), 834–840. http://dx.doi.org/10.1128/jb.113.2.834-840.1973 doi: 10.1128/jb.113.2.834-840.1973
    [22] R. E. Lenski, S. E. Hattingh, Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics, J. Theor. Biol., 122 (1986), 83–93. http://dx.doi.org/10.1016/S0022-5193(86)80226-0 doi: 10.1016/S0022-5193(86)80226-0
    [23] M. J. Wade, R. W. Pattinson, N. G. Parker, J. Dolfing, Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web', J. Theor. Biol., 389 (2016), 171–186. http://dx.doi.org/10.1016/j.jtbi.2015.10.032 doi: 10.1016/j.jtbi.2015.10.032
    [24] A. Bornhöft, R. Hanke-Rauschenbach, K. Sundmacher, Steady-state analysis of the anaerobic digestion model No. 1 (ADM1), Nonlinear Dyn., 73 (2013), 535–549. http://dx.doi.org/10.1007/s11071-013-0807-x doi: 10.1007/s11071-013-0807-x
    [25] Z. Khedim, B. Benyahia, B. Cherki, T. Sari, J. Harmand, Effect of control parameters on biogas production during the anaerobic digestion of protein-rich substrates, Appl. Math. Model., 61 (2018), 351–376. http://dx.doi.org/10.1016/j.apm.2018.04.020 doi: 10.1016/j.apm.2018.04.020
    [26] M. Weedermann, G. Seo, G. Wolkowics, Mathematical model of anaerobic digestion in a chemostat: effects of syntrophy and inhibition, J. Biol. Dyn., 7 (2013), 59–85. http://dx.doi.org/10.1080/17513758.2012.755573 doi: 10.1080/17513758.2012.755573
    [27] M. Weedermann, G. Wolkowicz, J. Sasara, Optimal biogas production in a model for anaerobic digestion, Nonlinear Dyn., 81 (2015), 1097–1112. http://dx.doi.org/10.1007/s11071-015-2051-z doi: 10.1007/s11071-015-2051-z
    [28] Y. Daoud, N. Abdellatif, T. Sari, J. Harmand, Steady state analysis of a syntrophic model: the effect of a new input substrate concentration, Math. Model. Nat. Phenom., 13 (2018), 31. http://dx.doi.org/10.1051/mmnp/2018037 doi: 10.1051/mmnp/2018037
    [29] R. Fekih-Salem, Y. Daoud, N. Abdellatif, T. Sari, A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates, SIAM J. Appl. Dyn. Syst., 20 (2021), 621–1654. http://dx.doi.org/10.1137/20M1376480 doi: 10.1137/20M1376480
    [30] T. Sari, Best operating conditions for biogas production in some simple anaerobic digestion models, Processes, 10 (2022), 258. http://dx.doi.org/10.3390/pr10020258 doi: 10.3390/pr10020258
    [31] T. Sari, B. Benyahia, The operating diagram for a two-step anaerobic digestion model, Nonlinear Dyn., 105 (2021), 2711–2737. http://dx.doi.org/10.1007/s11071-021-06722-7 doi: 10.1007/s11071-021-06722-7
    [32] S. Nouaoura, R. Fekih-Salem, N. Abdellatif, T. Sari, Operating diagrams for a three-tiered microbial food web in the chemostat, J. Math. Biol., 85 (2022), 44. http://dx.doi.org/10.1007/s00285-022-01812-5 doi: 10.1007/s00285-022-01812-5
    [33] M. Dellal, M. Lakrib, T. Sari, The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Math. Biosci., 302 (2018), 27–45. http://dx.doi.org/10.1016/j.mbs.2018.05.004 doi: 10.1016/j.mbs.2018.05.004
    [34] B. Bar, T. Sari, The operating diagram for a model of competition in a chemostat with an external lethal inhibitor, Discrete Contin. Dyn. Syst. B, 25 (2020), 2093–2120. http://dx.doi.org/10.3934/dcdsb.2019203 doi: 10.3934/dcdsb.2019203
    [35] M. Dali-Youcef, T. Sari, The productivity of two serial chemostats, Int. J. Biomath., 16 (2023), 2250113. http://dx.doi.org/10.1142/S1793524522501133 doi: 10.1142/S1793524522501133
    [36] N. Abdellatif, R. Fekih-Salem, T. Sari, Competition for a single resource and coexistence of several species in the chemostat, Math. Biosci. Eng., 13 (2016), 631–652.
    [37] R. Fekih-Salem, C. Lobry, T. Sari, A density-dependent model of competition for one resource in the chemostat. Math. Biosci., 286 (2017), 104–122. http://dx.doi.org/10.1016/j.mbs.2017.02.007 doi: 10.1016/j.mbs.2017.02.007
    [38] T. Mtar, R. Fekih-Salem, T. Sari, Mortality can produce limit cycles in density-dependent models with a predator-prey relationship, Discrete Contin. Dyn. Syst. B, 27 (2022), 7445–7467. http://dx.doi.org/10.3934/dcdsb.2022049 doi: 10.3934/dcdsb.2022049
    [39] B. Benyahia, T. Sari, B. Cherki, J. Harmand, Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes, J. Process Contr., 22 (2012), 1008–1019. http://dx.doi.org/10.1016/j.jprocont.2012.04.012 doi: 10.1016/j.jprocont.2012.04.012
    [40] I. Simeonov, S. Stoyanov, modeling and dynamic compensator control of the anaerobic digestion of organic wastes, Chem. Biochem. Eng. Q., 17 (2003), 285–292.
    [41] R. Kreikenbohm, E. Bohl, Bistability in the chemostat, Ecol. Model., 43 (1988), 287–301. http://dx.doi.org/10.1016/0304-3800(88)90009-9 doi: 10.1016/0304-3800(88)90009-9
    [42] M. El-Hajji, How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat, Int. J. Biomath., 11 (2018), 1850111. https://doi.org/10.1142/S1793524518501115 doi: 10.1142/S1793524518501115
    [43] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755–763. http://dx.doi.org/10.1007/BF00173267 doi: 10.1007/BF00173267
    [44] H. R. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mountain J. Math., 24 (1993), 351–380. http://dx.doi.org/10.1216/rmjm/1181072470 doi: 10.1216/rmjm/1181072470
    [45] M. J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, et al., Perspectives in mathematical modeling for microbial ecology, Ecol. Model., 321 (2016), 64–74. http://dx.doi.org/10.1016/j.ecolmodel.2015.11.002 doi: 10.1016/j.ecolmodel.2015.11.002
    [46] G. Bastin, D. Dochain, On-line estimation and adaptive control of bioreactors, Process Measurement and Control, Elsevier, 1990. http://dx.doi.org/10.1016/C2009-0-12088-3
    [47] O. Bernard, Z. Hadj-Sadock, D. Dochain, A. Genovesi, J. P. Steyer, Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnol. Bioeng., 75 (2001), 424–438. http://dx.doi.org/10.1002/bit.10036 doi: 10.1002/bit.10036
    [48] I. Simeonov, S. Diop, Stability analysis of some nonlinear anaerobic digestion models, Int. J. Bioautomation, 14 (2010) 37–48.
    [49] M. Sbarciog, M. Loccufier, E. Noldus, Determination of appropriate operating strategies for anaerobic digestion systems, Bioch. Eng. J., 51 (2010), 180–188. http://dx.doi.org/10.1016/j.bej.2010.06.016 doi: 10.1016/j.bej.2010.06.016
    [50] M. Weedermann, Analysis of a model for the effects of an external toxin on anaerobic digestion, Math. Biosci. Eng., 9 (2012), 445–459. http://dx.doi.org/10.3934/mbe.2012.9.445 doi: 10.3934/mbe.2012.9.445
    [51] T. Bayen, P. Gajardo, On the steady state optimization of the biogas production in a two-stage anaerobic digestion model, J. Math. Biol., 78 (2019), 1067–1087. http://dx.doi.org/10.1007/s00285-018-1301-3 doi: 10.1007/s00285-018-1301-3
    [52] M. J. Wade, Not just numbers: mathematical modeling and its contribution to anaerobic digestion processes, Processes, 8 (2020), 888. http://dx.doi.org/10.3390/pr8080888 doi: 10.3390/pr8080888
    [53] M. El Hajji, Mathematical modeling for anaerobic digestion under the influence of leachate recirculation, AIMS Math., 8 (2023), 30287–30312. https://doi.org/10.3934/math.20231547 doi: 10.3934/math.20231547
    [54] E. Harvey, J. Heys, T. Gedeon, Quantifying the effects of the division of labor in metabolic pathways, J. Theor. Biol., 360 (2014), 222–242. http://dx.doi.org/10.1016/j.jtbi.2014.07.011 doi: 10.1016/j.jtbi.2014.07.011
    [55] R. Fekih-Salem, N. Abdellatif, A. Yahmadi, Effect of inhibition on a syntrophic relationship model in the anaerobic digestion process, Proceedings of the 8th conference on Trends in Applied Mathematics in Tunisia, Algeria, Morocco, 2017, {391–396}.
    [56] E. I. P. Volcke, M. Sbarciog, E. J. L. Noldus, B. De Baets, M. Loccufier, Steady-state multiplicity of two-step biological conversion systems with general kinetics, Math. Biosci., 228 (2010), 160–170. http://dx.doi.org/10.1016/j.mbs.2010.09.004 doi: 10.1016/j.mbs.2010.09.004
    [57] N. Ben Ali, Analyse mathématique de la stabilité d'une communauté microbienne synthétique, MS. Thesis, École Nationale d'Ingénieurs de Tunis, Université de Tunis El Manar, 2019.
    [58] A. H. Albargi, M. El Hajji, Mathematical analysis of a two-tiered microbial food-web model for the anaerobic digestion process, Math. Biosci. Eng., 20 (2023), 6591–6611. http://dx.doi.org/10.3934/mbe.2023283 doi: 10.3934/mbe.2023283
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1111) PDF downloads(48) Cited by(1)

Figures and Tables

Figures(22)  /  Tables(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog