Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Hopf bifurcation and stability analysis of a delay differential equation model for biodegradation of a class of microcystins

  • Received: 14 March 2024 Revised: 20 April 2024 Accepted: 28 April 2024 Published: 03 June 2024
  • MSC : 34K18, 34K20, 92B05

  • In this paper, a delay differential equation model is investigated, which describes the biodegradation of microcystins (MCs) by Sphingomonas sp. and its degrading enzymes. First, the local stability of the positive equilibrium and the existence of the Hopf bifurcation are obtained. Second, the global attractivity of the positive equilibrium is obtained by constructing suitable Lyapunov functionals, which implies that the biodegradation of microcystins is sustainable under appropriate conditions. In addition, some numerical simulations of the model are carried out to illustrate the theoretical results. Finally, the parameters of the model are determined from the experimental data and fitted to the data. The results show that the trajectories of the model fit well with the trend of the experimental data.

    Citation: Luyao Zhao, Mou Li, Wanbiao Ma. Hopf bifurcation and stability analysis of a delay differential equation model for biodegradation of a class of microcystins[J]. AIMS Mathematics, 2024, 9(7): 18440-18474. doi: 10.3934/math.2024899

    Related Papers:

    [1] Xiaoyan Song, Lianfeng Lai, Shungen Xiao, Yaohong Tang, Mengmeng Song, Jie Zhang, Yong Zhang . Bionic design and multi-objective optimization of thin-walled structures inspired by conchs. Electronic Research Archive, 2023, 31(2): 575-598. doi: 10.3934/era.2023028
    [2] Dongtao Wang, Ping Xu, Chengxing Yang, Shuguang Yao, Zhen Liu . Crashworthiness performance of gradient energy-absorbing structure for subway vehicles under quasi-static loading. Electronic Research Archive, 2023, 31(6): 3568-3593. doi: 10.3934/era.2023181
    [3] Chao Ma, Hong Fu, Pengcheng Lu, Hongpeng Lu . Multi-objective crashworthiness design optimization of a rollover protective structure by an improved constraint-handling technique. Electronic Research Archive, 2023, 31(7): 4278-4302. doi: 10.3934/era.2023218
    [4] Zhiqing Li, Wenbin Zhang, Yuanfei Li . Structural stability for Forchheimer fluid in a semi-infinite pipe. Electronic Research Archive, 2023, 31(3): 1466-1484. doi: 10.3934/era.2023074
    [5] Wenjie Wang, Suzhen Wen, Shen Gao, Pengyi Lin . A multi-objective dynamic vehicle routing optimization for fresh product distribution: A case study of Shenzhen. Electronic Research Archive, 2024, 32(4): 2897-2920. doi: 10.3934/era.2024132
    [6] Ming Wei, Congxin Yang, Bo Sun, Binbin Jing . A multi-objective optimization model for green demand responsive airport shuttle scheduling with a stop location problem. Electronic Research Archive, 2023, 31(10): 6363-6383. doi: 10.3934/era.2023322
    [7] Mingtao Cui, Wennan Cui, Wang Li, Xiaobo Wang . A polygonal topology optimization method based on the alternating active-phase algorithm. Electronic Research Archive, 2024, 32(2): 1191-1226. doi: 10.3934/era.2024057
    [8] Ziqiang Wang, Chunyu Cen, Junying Cao . Topological optimization algorithm for mechanical-electrical coupling of periodic composite materials. Electronic Research Archive, 2023, 31(5): 2689-2707. doi: 10.3934/era.2023136
    [9] Furong Xie, Yunkai Gao, Ting Pan, De Gao, Lei Wang, Yanan Xu, Chi Wu . Novel lightweight connecting bracket design with multiple performance constraints based on optimization and verification process. Electronic Research Archive, 2023, 31(4): 2019-2047. doi: 10.3934/era.2023104
    [10] Donghyeon Kim, Jinsung Kim . GPU-accelerated non-dominated sorting genetic algorithm III for maximizing protein production. Electronic Research Archive, 2024, 32(4): 2514-2540. doi: 10.3934/era.2024116
  • In this paper, a delay differential equation model is investigated, which describes the biodegradation of microcystins (MCs) by Sphingomonas sp. and its degrading enzymes. First, the local stability of the positive equilibrium and the existence of the Hopf bifurcation are obtained. Second, the global attractivity of the positive equilibrium is obtained by constructing suitable Lyapunov functionals, which implies that the biodegradation of microcystins is sustainable under appropriate conditions. In addition, some numerical simulations of the model are carried out to illustrate the theoretical results. Finally, the parameters of the model are determined from the experimental data and fitted to the data. The results show that the trajectories of the model fit well with the trend of the experimental data.



    Convexities and preinvexities significantly contribute to advancing the optimization theory in both pure and applied mathematics. The increasing demand for fractional operators stems from the extensions and generalizations of fractional inequalities. Modifications applied to fractional operators enhance their kernels, and multi-dimensional series of special functions play a pivotal role in deriving new kernel versions, thereby improving the precision and applicability of fractional operators. Over the past two decades, extensive research has been conducted on extending generalized fractional operators, utilizing multi-index special functions as kernels. Researchers have diligently explored the use of these generalized operators to illustrate inequalities, garnering considerable attention in the field of fractional order analysis [1,2,3,4,5]. The interconnection between control optimization and the theory of inequalities is closely linked to the presence of (non)convex functions within their structures. This relationship has been thoroughly examined by researchers [6,7,8]. The classical theory of convexities facilitates numerous generalizations and extensions. One such essential generalization is the concept of an invex function, introduced by Hanson in [9]. This concept serves as a foundational extension of convex functions.

    Furthermore, the fundamental characteristics of preinvex mappings and their applications in the realms of optimization and variational inequalities have been extensively explored. Noor [10,11], along with the works of Weir and Mond [12], has addressed these preinvex mappings, solving a multitude of problems related to equilibria. The application of preinvex mappings has proven to be instrumental in addressing challenges within optimization and variational inequalities, contributing to the resolution of complex equilibrium-related issues.

    Diverse strategies are employed to tackle issues related to community specifications, decision-making, and optimizations, with their significance growing daily. The conventional crisp sets, which provide membership values of 0 or 1, pose a challenge when an object exhibits a property to varying degrees. To address this limitation, Zadeh introduced the concept of the fuzzy set theory, designed to handle ambiguous or uncertain information by allowing membership values in the range [0,1]. The degree of membership within this interval reflects the level of assurance or conviction associated with the corresponding output value.

    The most commonly concept of the fuzzy number theory is based on the characteristics function, but in fuzzy domain, the characteristics function is known as membership function that depends on the unit interval [0,1]. This means that each subset of R, and any real number, are exponential cases of the fuzzy number theory. In decision-making processes entailing unclear or imprecise information, fuzzy interval-valued functions prove invaluable. They enable the representation and analysis of hazy preferences or ambiguous results. Pioneering works by Moore in 1966, Kulish and Miranker [13] delved into the idea of interval analysis, uncovering its applications in arithmetic. Furthermore, a multitude of studies in [14] have explored fuzzy-set theory and system development across various fields, making noteworthy contributions to solving a wide array of problems in applied and pure mathematics. These contributions extend to disciplines such as computer science, operational research, management sciences, control optimization theory, decision sciences, and artificial intelligence.

    So far, numerous researchers have explored the diverse properties and applications of variational inequalities within a set of functions exhibiting generalized convexity [15,16]. Additionally, in the realm of studying fractional inequalities using fuzzy interval-valued functions (FIV-functions), which involve fractional integrals with the integrand as an FIV-function, several noteworthy works have been addressed by researchers. For instance, Flores et al. [17] extended the Gronwall inequality to encompass interval-valued functions (Ⅳ-functions). Furthermore, Chalco et al. [18] applied generalized Hukuhara derivatives to establish Ostrowski-type inequalities for FIV-functions and delved into their numerical applications. Zhao et al. [19,20] directed their attention to Ⅳ-functions for the modification of well-known inequalities such as Jensen's, Chebyshev, and Hermite-Hadamard type inequalities. Following this line of research, Zhang et al. [21] derived Jensen's inequalities through the utilization of fuzzy set-valued functions.

    The primary motivation of this study stems from the essential and widely applicable nature of two classes of functions characterized by convexity and preinvexity properties within the realm of optimization. In the context of fuzzy optimization, we aim to articulate optimality conditions under such functions and explore the derivation of various variational inequalities of fuzzy type. FIV-functions emerge as a pivotal fuzzy notion, offering a means to establish innovative applied fractional fuzzy inequalities through their combination with fractional operators. The incorporation of FIV-functions into these inequalities provides a unique avenue for investigating uncertainties in prediction scenarios, departing from the semantic norms of standard non-fuzzy inequalities. We delve into the utilization of FIV-functions to formulate fuzzy integral inequalities, where uncertainties manifest in the integrand rather than the measures of integration. To achieve this, we draw on a specific group of h-convex and h-preinvex FIV-functions of the Godunova-Levin type. This strategic utilization facilitates the derivation of notable fuzzy-based integral inequalities. In essence, the research endeavors to bridge the conceptual gap between convexity, preinvexity, and fuzzy optimization, offering a novel perspective on uncertainties in prediction situations through the lens of FIV-functions and fractional fuzzy inequalities.

    In the following section, certain essential concepts are revisited to serve as a reminder. Section 3 explores Prabhakar fuzzy-based Hermite-Hadamard (H-H) type inequalities utilizing h-Godunova-Levin FIV-functions endowed with convexity. The convexity property is formulated explicitly within this section. In Section 4, the focus shifts to Prabhakar fuzzy-based trapezoidal-type inequalities, this time incorporating h-Godunova-Levin FIV-functions with the preinvexity property. The study culminates in Section 5, presenting concluding remarks and insights drawn from the findings.

    In the present section, we focus on some basic definitions and properties, which are helpful to understand the contents of the paper. Throughout the paper, KR is a convex set.

    Definition 2.1. [22] The function ϰ:KR is said to be convex if

    y(tu+(1t)v)ty(u)+(1t)y(v),

    where t[0,1] and u,vK are arbitrary.

    By considering the convex function defined above, the Hermite-Hadamard (H-H) type inequality

    y(u+v2)1vuuvy(u)duy(u)+y(v)2

    was discussed many remarkable results in [23], where u,vKR and u<v.

    Definition 2.2. [24] The preinvex function y:KR, where u,vK (Here, KR is an invex set w.r.t. the bi-function ξ on K×K) and λ[0,1], is defined as

    y(v+λξ(u,v))λy(u)+(1λ)y(v).

    Definition 2.3. [25] Consider the functions h:(0,1)R and y:KR0. Then, the h-Godunova-Levin function y satisfies

    y(tu+(1t)v)y(u)h(t)+y(v)h(1t),

    for all u,vK and t(0,1).

    Definition 2.4. [25] Consider the functions h:(0,1)R and y:KR. Then the h-Godunova-Levin preinvex function y w.r.t. ξ satisfies

    y(u+tξ(v,u))y(u)h(1t)+y(v)h(t),

    so that u,vK,t(0,1) are arbitrary.

    Definition 2.5. [26] Let yL1[u,v]. The Riemann-Liouville left and right integrals Ibu+y and Ibvy of order b>0 are defined as follows

    Ibu+y(r)=1Γ(b)ru(rt)b1y(t)dt,r>u,

    and

    Ibvy(r)=1Γ(b)vr(tr)b1y(t)dt,r<v.

    By considering FR as the fuzzy interval, let 1,2F. The partial order relation is given by

    12[1]I[2],[0,1],

    where [] is called the -level set of defined by

    []={rR:(r)}.

    Proposition 2.6. [27] For 1,2F, cR and [0,1], we have

    [1˜+2]=[1]+[2],[1˜×2]=[1]×[2],[c1]=c[1],[c˜+1]=c+[1].

    Let 1=2˜+H, where HF. In this case, the Hukuhara difference (H-difference) of 1 and 2 is represented by the symbol 1˜2 and we have

    (H)()=(1˜2)()=1()2(),(H)()=(1˜2)()=1()2().

    The left fuzzy-based Riemann-Liouville integral of the function y is defined as

    [Ibu+y(x)]=1Γ(b)xu(xt)b1y(t)dt=1Γ(b)xu(xt)b1[y(t,),y(t,)]dt,x>u,

    where

    [Ibu+y(x,)]=1Γ(b)xu(xt)b1[y(t,)]dt,x>u,

    and

    [Ibu+y(x,)]=1Γ(b)xu(xt)b1[y(t,)]dt,x>u.

    We denote the family of all bounded closed fuzzy intervals of R by Kbc.

    Definition 2.7. [28] For all [0,1], the FIV-function y:KRKbc is formulated by y(x)=[y(x,),y(x,)],xK in which the left and right functions y(x,),y(x,):KR are named as the upper and lower functions of y.

    Note that the FIV-function y:KRKbc is continuous at xK if for all [0,1], both y(x,) and y(x,) are continuous at xK.

    Definition 2.8. [29] Assume that Kbc is the aforesaid class of intervals and HKbc. Then

    Λ=[Λ,Λ]={αR|ΛαΛ},(Λ,ΛR).

    If Λ=Λ, then we say that Λ is degenerate.

    In this research, we consider all the fuzzy intervals as the non-degenerate intervals. If Λ0, then [Λ,Λ] is named as a positive interval, and all of them can be specified by the symbol K+bc so that

    K+bc={[Λ,Λ]:[Λ,Λ]Kbc and Λ0}.

    Let σR. Then, we define the scalar multiplication as [29]

    σΛ={[σΛ,σΛ]ifσ0,[σΛ,σΛ]ifσ0.

    Also, the Minkowski algebraic difference and addition actions Λ1Λ2 and Λ1+Λ2, where Λ1,Λ2Kbc, are defined as

    [Λ1,Λ1][Λ2,Λ2]=[Λ1Λ2,Λ1Λ2],[Λ1,Λ1]+[Λ2,Λ2]=[Λ1+Λ2,Λ1+Λ2].

    Moreover, the inclusion "" means that Λ1Λ2 if and only if [Λ1,Λ1][Λ2,Λ2] iff Λ1Λ2,Λ1Λ2 [29].

    The fuzzy order relation 1 is defined on Kbc as

    [Λ1,Λ1]1[Λ2,Λ2]Λ1Λ2,Λ1Λ2,

    for all [Λ1,Λ1],[Λ2,Λ2]Kbc [30].

    Definition 2.9. [31] The FIV-function y:[u,v]Kbc is convex on [u,v] if

    y(tu+(1t)v)ty(u)˜+(1t)y(v),

    so that u,v[u,v],t[0,1], y(v)0 for all v[u,v].

    Definition 2.10. [32] For u,vKbc, λ[0,1], if ξ:[α,β]R is the bi-function, then the invex set KbcR is defined as follows:

    v+λξ(u,v)Kbc. (2.1)

    Definition 2.11. [32] The FIV-function y:[α,β]Kbc is preinvex w.r.t. ξ on invex interval [α,β] if

    y(v+λξ(u,v))λy(u)˜+(1λ)y(v),

    so that u,v[α,β],t[0,1], and y(u)0,v[α,β].

    Definition 2.12. [29] Let P be a partition on [α,β] as P={u=x1<x2<x3<x4<x5<<xm=v}. The subintervals including the point p, having the maximum length, are termed as the mesh of partition P given by

    Mesh(p)=max

    The collection of all possible partitions for [u, v] is denoted by P\{\delta, [\alpha, \beta]\} and for p\in P(\delta, [\alpha, \beta]) , we have \text{Mesh}(p) < \delta . For every point b_{j} belonging to the subinterval [x_{j-1}, x_{j}] , where 1 \leq j\leq m , we define the Riemann sum of the function y corresponding to p \in P\{\delta, [\alpha, \beta]\} as

    S( y, p, \delta) = \sum\limits_{j = 1}^{m} y(b_{j})(x_{j} - x_{j-1}),

    so that y:[\alpha, \beta]\rightarrow K_{bc} .

    Definition 2.13. [33] Assume y:[\alpha, \beta]\rightarrow K_{bc} . We say that y is Riemann-integrable ( \mathcal{R} -integrable) on [\alpha, \beta] if

    d(S( y, P, \delta), B) < \delta,

    where B\in\mathbb{R} and \delta > 0 . For each choice of b_{j}\in[y_{j-1}, y_{j}] , 1\leq j \leq m , B is called the \mathcal{R} -integral of y w.r.t. [\alpha, \beta] , and is denoted by B = (\mathcal{R}) \int_{u}^{v} y(t)dt .

    Definition 2.14. The integral form of gamma function is defined as given below

    \begin{equation} \Gamma(y) = \int^{\infty}_{0} k^{y-1} e^{-k}dk, \end{equation} (2.2)

    for \mathbb{R}(k) > 0

    Definition 2.15. The Pochammer's symbol is defined as follows

    \begin{eqnarray} (y)_{k} = \left\{ \begin{array}{ll} 1, & for\; \; \; \; \; k = 0,\; y\neq 0, \\ y(y+1)...(y+k-1), & for\; \; \; \; \; k \geq 1 . \end{array} \right. \end{eqnarray} (2.3)

    For k \in \mathbb{N} and y \in \mathbb{C}:

    \begin{equation} (y)_{k} = \frac{\Gamma(y+k)}{\Gamma(y)}, \end{equation} (2.4)

    where \Gamma is the gamma function.

    Theorem 2.16. [34] Let y:[\alpha, \beta]\subseteq \mathbb{R} \rightarrow K_{bc} be an FIV-function such that y(x) = [y_{*}, y^{*}] . Then y is \mathcal{R} -integrable on [\alpha, \beta] iff y_{*} and y^{*} are \mathcal{R} -integrable on [\alpha, \beta] , and

    (\mathcal{R})\int_{u}^{v} y(x)dx = \bigg[(\mathcal{R})\int_{u}^{v} y_{*}(x), (\mathcal{R})\int_{u}^{v} y^{*}(x)dx\bigg].

    Definition 2.17. [35] The Prabhakar fractional linear operator on a space L of functions by integral and employs fractional operator integration I^{\mu}:L\rightarrow L to prove results for a < x , \alpha, \beta, \rho, \lambda \in \mathbb{C} and \Re(\alpha) > 0, \Re(\rho) > 0 as follows:

    \begin{equation} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x) = \int^{x}_{a}(x-t)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(x-t)^{\alpha}f(t)dt \; \; \; \; (\Re (\beta)) > 0, \end{equation} (2.5)

    and operator for a > x

    \begin{equation} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x) = \int^{a}_{x}(t-x)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(t-x)^{\alpha}f(t)dt \; \; \; \; (\Re (\beta)) > 0, \end{equation} (2.6)

    for any real number \alpha\geq0 where the function

    \begin{equation} E^{\rho}_{\alpha, \beta}(x) = \sum\limits^{\infty}_{n = 0}\frac{(\rho)_{n}x^{n}}{\Gamma(\alpha n+\beta)n!} \; \; \; \; \; \Re(\alpha) > 0, \end{equation} (2.7)

    is an entire function of order (\Re (\alpha))^{-1} .

    Definition 2.18. The left- and right-sided Prabhakar fuzzy fractional integral operators pertaining left, right end point functions, are defined as given below

    \begin{eqnarray} \Big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x)\Big]^{l}& = &\int^{x}_{a}(x-t)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(x-t)^{\alpha}f(l, t)dt\\ & = &\int^{x}_{a}(x-t)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(x-t)^{\alpha}[f^{*}(l, t), f_{*}(l, t)]dt, \end{eqnarray} (2.8)

    where

    \begin{eqnarray} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f^{*}(x, l)& = &\int^{x}_{a}(x-t)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(x-t)^{\alpha}f^{*}(l, t)dt\; \; \; (x > a), \end{eqnarray} (2.9)
    \begin{eqnarray} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f_{*}(x, l)& = &\int^{x}_{a}(x-t)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(x-t)^{\alpha}f_{*}(l, t)dt\; \; \; (x > a). \end{eqnarray} (2.10)

    And

    \begin{eqnarray} \Big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x)\Big]^{l} = \Big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x)\Big]^{l}& = &\int^{a}_{x}(t-x)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(t-x)^{\alpha}f(l, t)dt\\ & = &\int^{a}_{x}(t-x)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(t-x)^{\alpha}[f^{*}(l, t), f_{*}(l, t)]dt. \end{eqnarray} (2.11)

    Remark 2.19. Prabhakar fuzzy fractional integral operators are represented with the difference \xi(x, a) in short notation as follows:

    \begin{eqnarray} \Big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x)\Big]^{l} = \int^{x}_{a}(x-t)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda\Big(\frac{x-t}{\xi{(x, a)}}\Big)^{\alpha}f(l, t)dt = \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, a^{+}} f(x, l), \end{eqnarray} (2.12)
    \begin{eqnarray} \Big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x)\Big]^{l} = \int^{a}_{x}(t-x)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda\Big(\frac{t-x}{\xi{(x, a)}}\Big)^{\alpha}f(l, t)dt = \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, a^{-}} f(x, l). \end{eqnarray} (2.13)

    In the present section, we introduce a novel category of Prabhakar FIV-functions characterized by the convexity property aligned with the h -Godunova-Levin type. Through the application of these Prabkakar FIV-functions, we obtain (H-H)-type inequalities and delve into their applications, illustrated through various examples and cases.

    Definition 3.1. The FIV-function y:[\alpha, \beta]\rightarrow K_{bc} is said to be the Godunova-Levin FIV-function if

    y(tu+(1-t)v)\preccurlyeq \frac{ y(u)}{t}\widetilde{+}\frac{ y(v)}{1-t},

    is satisfied for all u, v \in [u, v], t \in (0, 1) .

    Definition 3.2. Consider h:(0, 1)\rightarrow \mathbb{R} . The FIV-function y:[\alpha, \beta]\rightarrow K_{bc} is named as a convex FIV-function of the h -Godunova-Levin type if

    y(tu+(1-t)v)\preccurlyeq \frac{ y(u)}{h(t)}\widetilde{+}\frac{ y(v)}{h(1-t)},

    is satisfied for all u, v \in [u, v], t \in (0, 1) .

    Definition 3.3. Consider h:(0, 1)\rightarrow \mathbb{R} . The FIV-function y:[\alpha, \beta]\rightarrow K_{bc} is named as a preinvex FIV-function of the h -Godunova-Levin type w.r.t. \xi if

    y(u+t\xi(v, u))\preccurlyeq \frac{ y(u)}{h(1-t)}\widetilde{+}\frac{ y(v)}{h(t)},

    is satisfied for all u, v \in [u, v], t \in (0, 1) .

    Now, we are going to prove the (H-H)-type inequality for convex FIV-functions of the h -Godunova-Levin type.

    Theorem 3.4. Consider h:(0, 1)\rightarrow \mathbb{R} and y\in L_{1}[u, v] such that h(w) \neq 0 and y:[u, v] \rightarrow K_{bc} is a convex FIV-function of the h -Godunova-Levin type with 0 < u < v . Then the fuzzy fractional integral inequalities

    \begin{align} \label{ineq34} \frac{h(\frac{1}{2})}{2} y\bigg(\frac{u+v}{2}\bigg)E^{\rho}_{\alpha, \beta+1}\lambda&\preccurlyeq\frac{1}{2(v-u)^{\beta}} \big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\big]\\ &\preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw, \end{align} (3.1)

    hold.

    Proof. In view of the h -Godunova-Levin convexity for the FIV-function y on the closed interval [u, v] , for each x, y \in [u, v] , we have

    y(\delta x+(1-\delta)y)\leq \frac{ y(x)}{h(\delta)} \widetilde{+} \frac{ y(y)}{h(1-\delta)}, \; \; \; \delta \in (0, 1).

    Put x = w u+(1-w)v, y = (1-w)u+w v and \delta = \frac{1}{2} . Hence

    {h\bigg(\frac{1}{2}\bigg)} y\bigg(\frac{u+v}{2}\bigg)\leq\big[ y(w u+(1-w)v) \widetilde{+} y((1-w)u+w v)\big].

    For each \ell\in[0, 1] and for the lower FIV-function y_* , we can write

    \begin{eqnarray} {h\bigg(\frac{1}{2}\bigg)} y_{*}\bigg(\frac{u+v}{2}, \ell \bigg)\leq \big[ y_{*}\big(w u+(1-w)v, \ell \big)+ y_{*} \big((1-w)u+w v, \ell \big)\big]. \end{eqnarray} (3.2)

    Multiplying w^{\beta-1} E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} by Eq (3.2) and integrating w.r.t. w on [0, 1] , we obtain

    \begin{eqnarray} &&h\bigg(\frac{1}{2}\bigg) y_{*}\bigg(\frac{u+v}{2}, \ell\bigg)\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw\\ &\leq&\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y_{*}\big(w u+(1-w)v, \ell\big)dw +\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y_{*}((1-w)u+w v, \ell)dw. \end{eqnarray} (3.3)

    Now, by substituting r = w u+(1-w)v and t = (1-w)u+w v , it becomes

    \begin{eqnarray} &&h\bigg(\frac{1}{2}\bigg) y_{*}\bigg(\frac{u+v}{2}, \ell\bigg)E^{\rho}_{\alpha, \beta+1}\lambda\\ &\leq&\int_{u}^{v}\left(\frac{v-r}{v-u}\right)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda\left(\frac{v-r}{v-u}\right)^{\alpha} y_{*}(r, \ell)\frac{dr}{v-u}+\int_{u}^{v}\left(\frac{t-u}{v-u}\right)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda\left(\frac{t-u}{v-u}\right)^{\alpha} y_{*}(t, \ell)\frac{dt}{v-u}\\ &\leq&\frac{1}{(v-u)^{\beta}}\left[\int_{u}^{v}(v-r)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda\left(\frac{v-r}{v-u}\right)^{\alpha} y_{*}(r, \ell)dr +\int_{u}^{v}(t-u)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda\left(\frac{t-u}{v-u}\right)^{\alpha} y_{*}(t, \ell)dt\right]\\ \end{eqnarray} (3.4)

    and so,

    \begin{equation} \frac{h(\frac{1}{2})}{2} y_{*}\bigg(\frac{u+v}{2}, \ell\bigg)E^{\rho}_{\alpha, \beta+1}\lambda \leq\frac{1}{2(v-u)^{\beta}} \left[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y_{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y_{*}(u, \ell)\right]. \end{equation} (3.5)

    Similarly, we continue the calculation for upper FIV-function y^{*} , and we obtain

    \begin{eqnarray} \frac{h(\frac{1}{2})}{2} y^{*}\bigg(\frac{u+v}{2}, \ell\bigg)E^{\rho}_{\alpha, \beta+1}\lambda \leq\frac{1}{2(v-u)^{\beta}} \left[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y^{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y^{*}(u, \ell)\right]. \end{eqnarray} (3.6)

    From inequalities (3.5) and (3.6), the inequality

    \begin{align*} \label{n02} &\frac{h(\frac{1}{2})}{2}\bigg[ y_{*}\bigg(\frac{u+v}{2}, \ell\bigg), y^{*}\bigg(\frac{u+v}{2}, \ell\bigg)\bigg]E^{\rho}_{\alpha, \beta+1}\lambda\nonumber\\ \leq&\frac{1}{2(v-u)^{\beta}} \bigg[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y_{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y_{*}(u, \ell)), \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y^{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y^{*}(u, \ell)\bigg]\nonumber \end{align*}

    is derived; that is,

    \begin{eqnarray} \frac{h(\frac{1}{2})}{2} y\bigg(\frac{u+v}{2}\bigg)E^{\rho}_{\alpha, \beta+1}\lambda\preccurlyeq\frac{1}{2(v-u)^{\beta}}\bigg[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v)\widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\bigg]. \end{eqnarray} (3.7)

    Now, we again consider the h -Godunova-Levin convexity for the FIV-function y to prove the second part of the inequality (3.1). We have

    \begin{eqnarray} y\bigg(w u+(1-w)v\bigg)\leq \frac{ y(u)}{h(w)} \widetilde{+} \frac{ y(v)}{h(1-w)}, \end{eqnarray} (3.8)

    and

    \begin{eqnarray} y\bigg((1-w)u+w v\bigg)\leq \frac{ y(u)}{h(1-w)} \widetilde{+} \frac{ y(v)}{h(w)}. \end{eqnarray} (3.9)

    By adding (3.8) and (3.9), we get

    y\bigg(w u+(1-w)v\bigg)+ y\bigg((1-w)u+w v\bigg) \leq \bigg( y(u) \widetilde{+} y(v)\bigg)\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg].

    For each \ell\in[0, 1] and for the lower FIV-function y_* , we have

    \begin{eqnarray} y_{*}\bigg(w u+(1-w)v, \ell\bigg)+ y_{*}\bigg((1-w)u+w v, \ell\bigg)\leq\bigg( y_{*}(u, \ell)+ y_{*}(v), \ell\bigg)\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]. \end{eqnarray} (3.10)

    By multiplying w^{\beta-1} E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} by both sides of (3.10) and integrating on [0, 1] w.r.t. w , we get

    \begin{eqnarray} &&\int_{0}^{1}w^{\beta-1} E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y_{*}\bigg(w u+(1-w)v, \ell\bigg)dw +\int_{0}^{1}w^{\beta-1} E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y_{*}\bigg((1-w)u+w v, \ell\bigg)dw\\[0.3cm]& \leq& \bigg( y_{*}(u, \ell)+ y_{*}(v, \ell)\bigg)\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1} E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw. \end{eqnarray}

    After simplification, we obtain

    \begin{eqnarray} &&\frac{1}{(v-u)^{\beta}}\big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y_{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y_{*}(u, \ell)\big] \\& \leq& [ y_{*}(u, \ell)+ y_{*}(v, \ell)]\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw. \end{eqnarray} (3.11)

    Similarly, we continue our computation for the upper FIV-function y^{*} , and we obtain

    \begin{eqnarray} &&\frac{1}{(v-u)^{\beta}}\big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y^{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y^{*}(u, \ell)\big]\\ &\leq& [ y^{*}(u, \ell)+ y^{*}(v, \ell)]\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw. \end{eqnarray} (3.12)

    Combining inequalities (3.11) and (3.12), the inequality

    \begin{align*} &\frac{1}{(v-u)^{\beta}}\bigg[\{\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y_{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda, ^{\prime}v^{-}} y_{*}(u, \ell)\}, \{\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y^{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y^{*}(u, \ell)\}\bigg]\notag\\ \leq& \big[[ y_{*}(u, \ell)+ y_{*}(v, \ell)], [ y^{*}(u, \ell)+ y^{*}(v, \ell)]\big]\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw, \end{align*}

    is derived; that is,

    \begin{eqnarray} \frac{\big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda, u^{+}} y(v)\widetilde{+}\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda, v^{-}} y(u)\big]}{2(v-u)^{\beta}} \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw. \end{eqnarray} (3.13)

    From (3.7) and (3.13), we get

    \begin{eqnarray} \frac{h(\frac{1}{2})}{2} y\bigg(\frac{u+v}{2}\bigg)E^{\rho}_{\alpha, \beta+1}\lambda&\preccurlyeq&\frac{1}{2(v-u)^{\beta}} \big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\big]\\ &\preccurlyeq&\frac{ y(u)\widetilde{+} y(v)}{2}\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw, \end{eqnarray} (3.14)

    which is our desired result.

    Some special cases of the conclusion of the above theorem can be stated in the framework of several examples.

    Example 3.5. In Theorem 3.4, put h(w) = w^{s} . Then the (H-H)-type inequality

    \begin{align*} \frac{(\frac{1}{2})^{s}}{2} y\bigg(\frac{u+v}{2}\bigg)E^{\rho}_{\alpha, \beta+1}\lambda\preccurlyeq&\frac{1}{2(v-u)^{\beta}} \big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\big]\\ \preccurlyeq&\frac{ y(u)\widetilde{+} y(v)}{2}\int_{0}^{1}\left[\frac{1}{(w)^{s}}+\frac{1}{(1-w)^{s}}\right]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw, \end{align*}

    is derived for the FIV-function with convexity of the s -Godunova-Levin type.

    Example 3.6. In Theorem 3.4, put h(w) = 1 . Then

    \begin{eqnarray} \frac{1}{2} y\bigg(\frac{u+v}{2}\bigg)\lambda\preccurlyeq\frac{ \big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\big]}{{2(v-u)^{\beta}E^{\rho}_{\alpha, \beta+1}}} \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}. \end{eqnarray} (3.15)

    Example 3.7. In Theorem 3.4, put h(w) = \dfrac{1}{w} . Then the (H-H)-type inequality

    \begin{eqnarray} y\bigg(\frac{u+v}{2}\bigg)\preccurlyeq\frac{ \left[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\right]}{2(v-u)^{\beta}E^{\rho}_{\alpha, \beta+1}\lambda} \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}, \end{eqnarray} (3.16)

    is derived for the convex FIV-function.

    Example 3.8. In Theorem 3.4, put h(w) = w . Then the (H-H)-type inequality

    \begin{eqnarray} \frac{h(\frac{1}{4})}{2} y\bigg(\frac{u+v}{2}\bigg)E^{\rho}_{\alpha, \beta+1}\lambda\preccurlyeq\frac{1 \big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\big]}{2(v-u)^{\beta}} \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}\int_{0}^{1}\frac{w^{\beta-2}}{1-w}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw, \end{eqnarray} (3.17)

    is derived for the FIV-function with convexity of the Godunova-Levin type.

    Example 3.9. (1) By choosing the value h(w) = \dfrac{1}{w^{s}} in Theorem 3.4, the (H-H)-type inequality

    \begin{eqnarray} y\bigg(\frac{u+v}{2}\bigg)\frac{E^{\rho}_{\alpha, \beta+1}\lambda}{2^{1-s}}\preccurlyeq\frac{ \big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\big]}{2(v-u)^{\beta}} \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}\int_{0}^{1}\frac{\left[w^{s}+(1-w)^{s}\right]}{w^{1-\beta}}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw, \end{eqnarray}

    is derived for the FIV-function with s -convexity.

    (2) If we take the value \lambda = 0, h(w) = \dfrac{1}{w^{s}} in Theorem 3.4, then

    \begin{eqnarray} 2^{s-1} y\bigg(\frac{u+v}{2}\bigg)\preccurlyeq \frac{\Gamma(\beta+1)}{2(v-u)^{\beta}} \Big[\mathbb{I}_{u^{+}}^{\beta} y(v) \widetilde{+} \mathbb{I}_{v^{-}}^{\beta} y(u)\Big] \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}\beta\int_{0}^{1}\big[w^{s}+(1-w)^{s}\big]w^{\beta-1}dw, \end{eqnarray}

    is derived for the FIV-function with s -convexity.

    (3) If we take the value \lambda = 0, h(w) = \dfrac{1}{w^{s}}, \beta = 1 in Theorem 3.4, then

    \begin{eqnarray} 2^{s-1} y\bigg(\frac{u+v}{2}\bigg)\preccurlyeq \frac{1}{v-u}\int_{u}^{v} y(w)dw \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{s+1}. \end{eqnarray}

    In this context, we formulate a lemma specific to Prabhakar FIV-functions featuring h -Godunova-Levin preinvexity, providing valuable support in establishing our key findings. Indeed, within this section, we deduce fuzzy-based trapezoidal-type inequalities and explore their applications through illustrated examples and cases.

    Lemma 4.1. Let y:K = [u, u+\xi(v, u)]\rightarrow \mathbb{R} be a differentiable function, and K be an invex set w.r.t. \xi:K\times K\rightarrow \mathbb{R} so that \xi(v, u) > 0 for u, v\in K . Then

    \begin{eqnarray} \frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)} = \frac{\xi(u, v)}{2}I. \end{eqnarray}

    Proof. Consider the integral

    \begin{equation*} \label{n06} I = \int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'(u+w\xi(v, u))dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'(u+w\xi(v, u))dw. \end{equation*}

    For every \ell\in[0, 1] , we have

    \begin{align*} I = \int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'_{*}(u+w\xi(v, u), l)dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'_{*}(u+w\xi(v, u), l)dw. \end{align*}

    Now we solve the integrals of the above equation by considering it as I_{1} and I_{2} . Simply, for I_{1} , we get

    \begin{eqnarray} I_{1}& = &\frac{ y_{*}(u+\xi(v, u), \ell)}{\xi(v, u)}E^{\rho}_{\alpha, \beta} \lambda - \sum^{\infty}_{n = 0}\frac{\lambda^{n}(\rho)_{n}(\alpha n+\beta-1)}{n! \Gamma(\alpha n+\beta)\xi(v, u)}\int_{0}^{1}w^{\alpha n+\beta-2} y_{*}(u+w\xi(v, u), \ell)dw\\ & = &\frac{ y_{*}(u+\xi(v, u), \ell)}{\xi(v, u)}E^{\rho}_{\alpha, \beta} \lambda -\frac{1}{\xi(v, u)} \int^{v}_{u}\left(\frac{t-u}{\xi(v, u)}\right)^{\beta-2}E^{\rho}_{\alpha, \beta-1} \lambda \left(\frac{t-u}{\xi(v, u)}\right)^{\alpha} y_{*}(t, \ell)dt, \end{eqnarray}

    and so,

    \begin{equation*} I_{1} = \frac{ y_{*}(u+\xi(v, u), \ell)}{\xi(v, u)}E^{\rho}_{\alpha, \beta} \lambda-\frac{\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y_{*}(u, \ell)}{\xi^{\beta}(v, u)}. \end{equation*}

    Using the similar inference to that of I_{2} , we have

    \begin{equation*} I_{2} = \frac{ y_{*}(u, \ell)}{\xi(v, u)}E^{\rho}_{\alpha, \beta}\lambda-\frac{\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y_{*}(u, \ell)}{\xi^{\beta}(v, u)}.\nonumber \end{equation*}

    Consequently,

    \begin{align} \left[ \frac{ y_{*}(u+\xi(v, u), \ell)}{\xi(v, u)}+\frac{ y_{*}(u, \ell)}{\xi(v, u)}\right]E^{\rho}_{\alpha, \beta} \lambda-\frac{1}{\xi^{\beta}(v, u)}\left[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y_{*}(u, \ell)+\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y_{*}(v, \ell)\right]\\ \left[ y_{*}(u, \ell)+ y_{*}(u+\xi(v, u), \ell)\right]\frac{E^{\rho}_{\alpha, \beta}\lambda}{\xi(u, \ell)}- \frac{1}{\xi^{\beta}(v, u)}\left[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y_{*}(u, \ell)+\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y_{*}(v, \ell)\right]\\ = \int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'_{*}(u+w\xi(v, u), l)dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'_{*}(u+w\xi(v, u), l)dw. \end{align} (4.1)

    Similarly, we continue our computations for the upper FIV-function y^{'*} , and we get

    \begin{eqnarray} \left[ y^{*}(u, \ell)+ y^{*}(u+\xi(v, u), \ell)\right]\frac{E^{\rho}_{\alpha, \beta}\lambda}{\xi(u, \ell)}- \frac{1}{\xi^{\beta}(v, u)}\left[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y^{*}(u, \ell)+\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y^{*}(v, \ell)\right]\\ = \int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'^{*}(u+w\xi(v, u), l)dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'^{*}(u+w\xi(v, u), l)dw. \end{eqnarray} (4.2)

    By combining Eqs (4.1) and (4.2), then we have

    \begin{eqnarray} &&\left[ y_{*}(u, \ell)+ y_{*}(u+\xi(v, u), \ell), y^{*}(u, \ell)+ y^{*}(u+\xi(v, u), \ell)\right]\frac{E^{\rho}_{\alpha, \beta}\lambda}{\xi(u, \ell)}\\ &&- \frac{1}{\xi^{\beta}(v, u)}\left[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y_{*}(u, \ell)+\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y_{*}(v, \ell), \mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y^{*}(u, \ell)+\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y^{*}(v, \ell)\right]\\ & = &\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}( y'^{*}(u+w\xi(v, u), l), y'_{*}(u+w\xi(v, u), l))dw\\ &&-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha}( y'^{*}(u+w\xi(v, u), l), y'_{*}(u+w\xi(v, u), l))dw. \end{eqnarray} (4.3)

    That is,

    \begin{eqnarray} [ y(u)\widetilde{+} y(u+\xi(v, u))]\frac{E^{\rho}_{\alpha, \beta}\lambda}{\xi(u, \ell)} -\frac{1}{\xi^{\beta}(v, u)} \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big] = I. \end{eqnarray}

    This completes the proof.

    By Lemma 4.1, we can state the following theorem.

    Theorem 4.2. Consider the function y:K = [u, u+\xi(v, u)]\rightarrow (0, \infty) . Assume that the differentiable FIV-function | y'| has the preinvexity property of the h -Godunova-Levin type on K . Then

    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\\ &\preccurlyeq&\frac{\xi(v, u)}{2}\big[| y'(u)|\widetilde{+}| y'(v)|\big]\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\frac{1}{h(w)}dw. \end{eqnarray}

    Proof. Using Lemma 4.1, we obtain that for every \ell \in [0, 1]

    \begin{eqnarray*} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\nonumber\\& = &\bigg|\frac{\xi(u, v)}{2}\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'(u+w\xi(v, u))dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'(u+w\xi(v, u))dw\bigg|\nonumber\\& = &\left|\frac{\xi(u, v)}{2}\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'(u+w\xi(v, u))dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'(u+w\xi(v, u), l)dw\right|\nonumber\\ &\leq&\frac{\xi(u, v)}{2}\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'(u+w\xi(v, u))\right|dw-\int_{0}^{1}\left|(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'(u+w\xi(v, u), l)\right|dw\\ & = &\frac{\xi(u, v)}{2}\left|\sum^{\infty}_{n = 0}\frac{(\rho)_{n}\lambda^{n}}{\Gamma(\alpha n+\beta)n!}\right|\int_{0}^{1}\left|w^{\alpha n+\beta-1}-(1-w)^{\alpha n+\beta-1}\right|\left| y'(u+w\xi(v, u), l)\right|dw. \end{eqnarray*}

    The h -Godunova-Levin preinvexity property of the FIV-function \big| y^{'}_{*}(u+w\xi(v, u), \ell)\big| gives

    \begin{align} \text{L.H.S.} &\leq\frac{\xi(u, v)}{2}\left|\sum^{\infty}_{n = 0}\frac{(\rho)_{n}\lambda^{n}}{\Gamma(\alpha n+\beta)n!}\right|\int_{0}^{1}\left|w^{\alpha n+\beta-1}-(1-w)^{\alpha n+\beta-1}\right| \left|\frac{ y^{'}_{*}(u, \ell)}{h(w)}+\frac{ y^{'}_{*}(v, \ell)}{h(1-w)}\right|dw \\ &\leq\frac{\xi(u, v)}{2}\left|\sum^{\infty}_{n = 0}\frac{(\rho)_{n}\lambda^{n}}{\Gamma(\alpha n+\beta)n!}\right|\int_{0}^{1}\left|w^{\alpha n+\beta-1}-(1-w)^{\alpha n+\beta-1}\right|\Big[\frac{\big| y^{'}_{*}(u, \ell)\big|}{h(w)}+\frac{\big| y^{'}_{*}(v, \ell)\big|}{h(1-w)}\Big]dw. \end{align} (4.4)

    Similarly, we repeat the computations to solve it this time for the upper FIV-function y^{'*} . We have

    \begin{equation} \text{L.H.S.} \leq\frac{\xi(u, v)}{2}\left|\sum^{\infty}_{n = 0}\frac{(\rho)_{n}\lambda^{n}}{\Gamma(\alpha n+\beta)n!}\right|\int_{0}^{1}\left|w^{\alpha n+\beta-1}-(1-w)^{\alpha n+\beta-1}\right|\Big[\frac{\big| y^{'*}(u, \ell)\big|}{h(w)}+\frac{\left| y^{'*}(v, \ell)\right|}{h(1-w)}\Big]dw. \end{equation} (4.5)

    From inequalities (4.4) and (4.5), we get

    \begin{align*} &\text{L.H.S.}\\ \leqslant_{I}&\frac{\xi(v, u)}{2}\big[| y^{'}_{*}(u, \ell)+ y^{'}_{*}(v, \ell)|, | y^{'*}(u, \ell) + y^{'*}(v, \ell)|\big]\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\frac{1}{h(w)}dw \\[0.3cm] \preccurlyeq&\frac{\xi(v, u)}{2}\big[| y'(u)|\widetilde{+}| y'(v)|\big]\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\frac{1}{h(w)}dw, \end{align*}

    as required.

    Some special cases of the conclusion of the above theorem can be stated in the framework of several examples.

    Example 4.3. In Theorem 4.2, put \xi(v, u) = v-u . Then

    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(v)}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2(v-u)^{\beta-1}}\bigg|\\ &\preccurlyeq&\frac{(v-u)}{2}\big[| y'(u)|\widetilde{+}| y'(v)|\big]\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\frac{1}{h(w)}dw. \end{eqnarray}

    Theorem 4.4. Consider the function y:K = [u, u+\xi(v, u)]\rightarrow (0, \infty) . Assume that the differentiable FIV-function | y'|^{q} has the preinvexity property of the h -Godunova-Levin type on K so that q = \frac{p}{p-1} with p > 1 . Then

    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\\& \preccurlyeq&\frac{\xi(v, u)}{2}\big(| y'(u)|^{q}\widetilde{+}| y'(v)|^{q}\big)^{\frac{1}{q}} \left(\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|^{p}dw\right)^{\frac{1}{p}}\left(\int_{0}^{1}\frac{1}{h(w)}dw\right)^\frac{1}{q}. \end{eqnarray}

    Proof. Using Lemma 4.1, and Hölder's integral inequality for every \ell\in[0, 1] , we obtain

    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\\& = &\bigg|\frac{\xi(u, v)}{2}\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'(u+w\xi(v, u))dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'(u+w\xi(v, u))dw\bigg|\\ &\leq&\frac{\xi(u, v)}{2}\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right| \left| y'(u+w\xi(v, u))\right|dw\\& \leq&\frac{\xi(v, u)}{2} \bigg(\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|^{p}dw\bigg)^{\frac{1}{p}}\bigg(\int_{0}^{1}\big| y'(u+w\xi(v, u))\big|^{q}dw\bigg)^{\frac{1}{q}}\\& \leq&\frac{\xi(v, u)}{2} \bigg(\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|^{p}dw\bigg)^{\frac{1}{p}}\bigg(\int_{0}^{1}\big| y^{'}_{*}(u+w\xi(v, u)), \ell\big|^{q}dw\bigg)^{\frac{1}{q}}, \\ \end{eqnarray} (4.6)

    where \frac{1}{p}+\frac{1}{q} = 1 .

    The h -Godunova-Levin preinvexity property of the FIV-function \big| y^{'}_{*}(u+w\xi(v, u)), \ell\big|^{q} gives

    \begin{eqnarray} \int_{0}^{1}| y^{'}_{*}(u+w\xi(v, u)), \ell|^{q}dw\leq\int_{0}^{1}\bigg(\frac{| y^{'}_{*}(u), \ell|^{q}}{h(w)}+\frac{| y^{'}_{*}(v), \ell|^{q}}{h(1-w)}\bigg)dw. \end{eqnarray} (4.7)

    Similarly, we solve it for the upper FIV-function \big| y^{'*}\big|^{q} , and we get

    \begin{eqnarray} \int_{0}^{1}| y^{'*}(u+w\xi(v, u)), \ell|^{q}dw\leq\int_{0}^{1}\bigg(\frac{| y^{'*}(u), \ell|^{q}}{h(w)}+\frac{| y^{'*}(v), \ell|^{q}}{h(1-w)}\bigg)dw. \end{eqnarray} (4.8)

    By combining (4.7) and (4.8), we have

    \begin{align} \text{L.H.S.} &\leq_{I}\big(| y^{'}_{*}(u, \ell)+ y^{'}_{*}(v, \ell)|^{q}, | y^{'*}(u, \ell)+ y^{'*}(v, \ell)|^{q}\big)\int_{0}^{1}\frac{1}{h(w)}dw\\ &\preccurlyeq\big(| y^{'}(u)|^{q}\widetilde{+} y^{'}(v)|^{q}\big)\int_{0}^{1}\frac{1}{h(w)}dw. \end{align} (4.9)

    Using (4.9) in (4.6), we get the required result.

    Theorem 4.5. The H-H inequality related to the hypotheses of Theorem 4.4 is as follows

    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\\ &\preccurlyeq&\frac{\xi(v, u)}{2^{\frac{1}{q}}}(| y^{'}(u)|^{q}\widetilde{+}| y^{'}(v)|^{q})^{\frac{1}{q}} \left[E^{\rho}_{\alpha, \beta+1}\lambda-\left(\frac{1}{2}\right)^{\beta-1}E^{\rho}_{\alpha, \beta+1}\lambda \left(\frac{1}{2}\right)^{\alpha}\right]^{1-\frac{1}{q}}\\ &&\times\left(\int_{0}^{1}\frac{\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|}{h(w)}dw\right)^{\frac{1}{q}}. \end{eqnarray}

    Proof. Using Lemma 4.1, and thanks to the power-mean inequality, the last inequality becomes for every \ell\in[0, 1]

    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\\& = &\bigg|\frac{\xi(u, v)}{2}\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'(u+w\xi(v, u))dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'(u+w\xi(v, u))dw\bigg|\\ &\leq&\frac{\xi(u, v)}{2}\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right| \left| y'(u+w\xi(v, u))\right|dw, \end{eqnarray} (4.10)
    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\\ &\leq&\frac{\xi(v, u)}{2}\bigg(\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right| dw\bigg)^{1-\frac{1}{q}}\\ \nonumber &&\bigg(\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right| \big| y'(u+w\xi(v, u))\big|^{q}dw\bigg)^{\frac{1}{q}}. \end{eqnarray} (4.11)

    The h -Godunova-Levin preinvexity of the FIV-function \big| y^{'}(u+w\xi(v, u))\big|^{q} , we can obtain

    \begin{eqnarray} &&\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\big| y^{'}_{*}(u+w\xi(v, u), \ell)\big|^{q}dw\\ &\leq&\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\bigg(\frac{| y^{'}_{*}(u), \ell|^{q}}{h(w)}+\frac{| y^{'}_{*}(v, \ell)|^{q}}{h(1-w)}\bigg)dw\\ &\leq&\int_{0}^{1}\frac{\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|}{h(w)}(| y^{'}_{*}(u, \ell|^{q}+| y^{'}_{*}(v, \ell)|^{q})dw. \end{eqnarray} (4.12)

    Similarly, for the upper FIV-function | y^{'*}|^{q} , we get

    \begin{eqnarray} &&\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\big| y^{'*}(u+w\xi(v, u), \ell)\big|^{q}dw\\ &\leq&\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\bigg(\frac{| y^{'*}(u, \ell)|^{q}}{h(w)}+\frac{| y^{'*}(v, \ell)|^{q}}{h(1-w)}\bigg)dw\\ & \leq&\int_{0}^{1}\frac{\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|}{h(w)}(| y^{'*}(u, \ell)|^{q}+| y^{'*}(v, \ell)|^{q})dw. \end{eqnarray} (4.13)

    By combining (4.12) and (4.13), we have

    \begin{align} \text{L.H.S.} \preccurlyeq\int_{0}^{1}\frac{\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|}{h(w)}(| y^{'}(u)|^{q}\widetilde{+}| y^{'}(v)|^{q})dw. \end{align} (4.14)

    On the other hand, using the equation

    \int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|dw = 2\left[E^{\rho}_{\alpha, \beta+1}\lambda-\left(\frac{1}{2}\right)^{\beta-1}E^{\rho}_{\alpha, \beta+1}\lambda \left(\frac{1}{2}\right)^{\alpha}\right],

    and (4.14) and (4.12), we get the required result.

    In this research, we introduced a novel classification of convex FIV-functions and preinvex FIV-functions, employing an arbitrary auxiliary h -function of the Godunova-Levin type. Utilizing this category, we derived updated versions of Hermite-Hadamard (H-H) and trapezoidal-type inequalities by implementation of newly described fuzzy fractional operators (Prabhakar fuzzy-based operators). The application of these findings was demonstrated through various examples, highlighting diverse cases. We conclude that extending Prabhakar (H-H) and Prabhakar trapezoidal-type fractional inequalities to encompass different types of fuzzy-based convexities and preinvexities under Prabhakar FIV-functions is both feasible and applicable. Looking ahead, we plan to explore this concept further within the domain of generalized convex FIV-functions, with a focus on applications in fuzzy-interval-valued non-linear programming. We anticipate that this exploration will contribute valuable insights to the broader field of fuzzy-based optimization theory and provide a foundation for other researchers in fulfilling their roles within this realm. Moreover, we conclude that such type of fractional operators, extensions, and generalizations of inequalities and its refinments could be discussed for fuzzy interval valued functions. The validated results are expected to open new avenues for future research in this evolving area. These outcomes indicate a promising route for further exploration in the sphere of integral inequalities.

    Iqra Nayab: Conceptualization, Formal Analysis, Software, Software, Writing-Original Draft; Shahid Mubeen: Conceptualization, Formal Analysis, Writing-Review & Editing; Rana Safdar Ali: Conceptualization, Formal Analysis, Investigation, Methodology, Writing-Original Draft; Faisal Zahoor: Formal Analysis, Investigation, Software; Muath Awadalla: Investigation, Writing-Original Draft; Abd Elmotaleb A. M. A. Elamin: Investigation, Methodology, Writing-Review & Editing. All authors read and approved the final manuscript.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. A166]. This study is supported via funding from Prince Sattam bin Abdulaziz University, project number (PSAU/2024/R/1445).

    The authors declare no conflicts of interest.



    [1] C. J. Gobler, Climate change and harmful algal blooms: insights and perspective, Harmful Algae, 91 (2020), 101731. https://doi.org/10.1016/j.hal.2019.101731 doi: 10.1016/j.hal.2019.101731
    [2] R. I. Woolway, S. Sharma, J. P. Smol, Lakes in hot water: the impacts of a changing climate on aquatic ecosystems, BioScience, 72 (2022), 1050–1061. https://doi.org/10.1093/biosci/biac052 doi: 10.1093/biosci/biac052
    [3] J. C. Ho, A. M. Michalak, N. Pahlevan, Widespread global increase in intense lake phytoplankton blooms since the 1980s, Nature, 574 (2019), 667–670. https://doi.org/10.1038/s41586-019-1648-7 doi: 10.1038/s41586-019-1648-7
    [4] X. Hou, L. Feng, Y. Dai, C. Hu, L. Gibson, J. Tang, et al., Global mapping reveals increase in lacustrine algal blooms over the past decade, Nat. Geosci., 15 (2022), 130–134. https://doi.org/10.1038/s41561-021-00887-x doi: 10.1038/s41561-021-00887-x
    [5] J. Huisman, G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H. Verspagen, P. M. Visser, Cyanobacterial blooms, Nat. Rev. Microbiol., 16 (2018), 471–483. https://doi.org/10.1038/s41579-018-0040-1 doi: 10.1038/s41579-018-0040-1
    [6] R. Cavicchioli, W. J. Ripple, K. N. Timmis, F. Azam, L. R. Bakken, M. Baylis, et al., Scientists' warning to humanity: microorganisms and climate change, Nat. Rev. Microbiol., 17 (2019), 569–586. https://doi.org/10.1038/s41579-019-0222-5 doi: 10.1038/s41579-019-0222-5
    [7] W. A. Wurtsbaugh, H. W. Paerl, W. K. Dodds, Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum, WIREs Water, 6 (2019), e1373. https://doi.org/10.1002/wat2.1373 doi: 10.1002/wat2.1373
    [8] L. Chen, J. Chen, X. Zhang, P. Xie, A review of reproductive toxicity of microcystins, J. Hazard. Mater., 301 (2016), 381–399. https://doi.org/10.1016/j.jhazmat.2015.08.041 doi: 10.1016/j.jhazmat.2015.08.041
    [9] X. Wan, A. D. Steinman, Y. Gu, G. Zhu, X. Shu, Q. Xue, et al., Occurrence and risk assessment of microcystin and its relationship with environmental factors in lakes of the eastern plain ecoregion, China, Environ. Sci. Pollut. Res., 27 (2020), 45095–45107. https://doi.org/10.1007/s11356-020-10384-0 doi: 10.1007/s11356-020-10384-0
    [10] R. E. Honkanen, J. Zwiller, R. E. Moore, S. L. Daily, B. S. Khatra, M. Dukelow, et al., Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases, J. Biol. Chem., 265 (1990), 19401–19404. https://doi.org/10.1016/S0021-9258(17)45384-1 doi: 10.1016/S0021-9258(17)45384-1
    [11] D. Huo, N. Gan, R. Geng, Q. Cao, L. Song, G. Yu, et al., Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins, Harmful Algae, 109 (2021), 102106. https://doi.org/10.1016/j.hal.2021.102106 doi: 10.1016/j.hal.2021.102106
    [12] Q. Cao, A. D. Steinman, X. Wan, L. Xie, Bioaccumulation of microcystin congeners in soil-plant system and human health risk assessment: a field study from Lake Taihu region of China, Environ. Pollut., 240 (2018), 44–50. https://doi.org/10.1016/j.envpol.2018.04.067 doi: 10.1016/j.envpol.2018.04.067
    [13] E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, et al., Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil, New Engl. J. Med., 338 (1998), 873–878. https://doi.org/10.1056/NEJM199803263381304 doi: 10.1056/NEJM199803263381304
    [14] L. Díez-Quijada, M. Puerto, D. Gutiérrez-Praena, M. Liana-Ruiz-Cabello, A. Jos, A. M. Camean, Microcystin-RR: occurrence, content in water and food and toxicological studies, Environ. Res., 168 (2019), 467–489. https://doi.org/10.1016/j.envres.2018.07.019 doi: 10.1016/j.envres.2018.07.019
    [15] World Health Organization, Guidelines for drinking-water quality: first addendum to the fourth edition. World Health Organization, 2017. Available from: https://www.who.int/publications/i/item/9789241549950.
    [16] T. W. Lambert, C. F. B. Holmes, S. E. Hrudey, Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment, Water Res., 30 (1996), 1411–1422. https://doi.org/10.1016/0043-1354(96)00026-7 doi: 10.1016/0043-1354(96)00026-7
    [17] B. L. Yuan, J. H. Qu, M. L. Fu, Removal of cyanobacterial microcystin-LR by ferrate oxidation–coagulation, Toxicon, 40 (2002), 1129–1134. https://doi.org/10.1016/S0041-0101(02)00112-5 doi: 10.1016/S0041-0101(02)00112-5
    [18] A. K. Y. Lam, P. M. Fedorak, E. E. Prepas, Biotransformation of the cyanobacterial hepatotoxin microcystin-LR, as determined by HPLC and protein phosphatase bioassay, Environ. Sci. Technol., 29 (1995), 242–246. https://doi.org/10.1021/es00001a030 doi: 10.1021/es00001a030
    [19] G. J. Jones, D. G. Bourne, R. L. Blakeley, H. Doelle, Degradation of the cyanobacteria hepatotoxin microcystin by aquatic bacteria, Natural Toxins, 2 (1994), 228–235. https://doi.org/10.1002/nt.2620020412 doi: 10.1002/nt.2620020412
    [20] D. G. Bourne, G. J. Jones, R. L. Blakeley, A. Jones, A. P. Negri, P. Riddles, Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR, Appl. Environ. Microbiol., 62 (1996), 4086–4094. https://doi.org/10.1128/aem.62.11.4086-4094.1996 doi: 10.1128/aem.62.11.4086-4094.1996
    [21] S. Takenaka, M. F. Watanabe, Microcystin LR degradation by Pseudomonas aeruginosa alkaline protease, Chemosphere, 34 (1997), 749–757. https://doi.org/10.1016/S0045-6535(97)00002-7 doi: 10.1016/S0045-6535(97)00002-7
    [22] J. Rapala, K. A. Berg, C. Lyra, R. M. Niemi, W. Manz, S. Suomalainen, et al., Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin, Int. J. Syst. Evol. Microbiol., 55 (2005), 1563–1568. https://doi.org/10.1099/ijs.0.63599-0 doi: 10.1099/ijs.0.63599-0
    [23] L. A. Lawton, A. Welgamage, P. M. Manage, C. Edwards, Novel bacterial strains for the removal of microcystins from drinking water, Water Sci. Technol., 63 (2011), 1137–1142. https://doi.org/10.2166/wst.2011.352 doi: 10.2166/wst.2011.352
    [24] H. D. Park, Y. Sasaki, T. Maruyama, E. Yanagisawa, A. Hiraishi, K. Kato, Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake, Environ. Toxicol., 16 (2001), 337–343. https://doi.org/10.1002/tox.1041 doi: 10.1002/tox.1041
    [25] Q. Ding, K. Liu, K. Xu, R. Sun, J. Zhang, L. Yin, et al., Further understanding of degradation pathways of microcystin-LR by an indigenous Sphingopyxis sp. in environmentally relevant pollution concentrations, Toxins, 10 (2018), 536. https://doi.org/10.3390/toxins10120536 doi: 10.3390/toxins10120536
    [26] F. Yang, F. Huang, H. Feng, J. Wei, I. Y. Massey, G. Liang, et al., A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium, Water Res., 174 (2020), 115638. https://doi.org/10.1016/j.watres.2020.115638 doi: 10.1016/j.watres.2020.115638
    [27] H. Yan, Y. Deng, H. Zou, X. Li, C. Ye, Isolation and activity of bacteria for the biodegradation of microcystins, (Chinese), Environmental Science, 25 (2004), 49–53. https://doi.org/10.13227/j.hjkx.2004.06.010 doi: 10.13227/j.hjkx.2004.06.010
    [28] H. L. Smith, P. Waltman, The theory of the chemostat: dynamics of microbial competition, Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511530043
    [29] Y. Kuang, Delay differential equations with applications in population dynamics, New York: Academic Press, 1993.
    [30] X. Tai, W. Ma, S. Guo, H. Yan, C. Yin, A class of dynamic delayed model describing flocculation of microorganism and its theoretical analysis, (Chinese), Mathametics in Practice and Theory, 13 (2015), 198–209.
    [31] S. Guo, W. Ma, Global dynamics of a microorganism flocculation model with time delay, Commun. Pure Appl. Anal., 16 (2017), 1883–1891. https://doi.org/10.3934/cpaa.2017091 doi: 10.3934/cpaa.2017091
    [32] S. Guo, W. Ma, X. Q. Zhao, Global dynamics of a time-delayed microorganism flocculation model with saturated functional responses, J. Dyn. Diff. Equat., 30 (2018), 1247–1271. https://doi.org/10.1007/s10884-017-9605-3 doi: 10.1007/s10884-017-9605-3
    [33] K. Song, S. Guo, W. Ma, H. Yan, A class of dynamic models describing microbial flocculant with nutrient competition and metabolic products in wastewater treatment, Adv. Differ. Equ., 2018 (2018), 33. https://doi.org/10.1186/s13662-018-1473-6 doi: 10.1186/s13662-018-1473-6
    [34] K. Yang, W. Ma, Z. Jiang, H. Yan, Differential equation model describing degradation of microcystins (MCs) and its theoretical analysis, (Chinese), Mathematics in Practice and Theory, 51 (2021), 231–247.
    [35] K. Song, W. Ma, S. Guo, Global behavior of a dynamic model with biodegradation of Microcystins, J. Appl. Anal. Comput., 9 (2019), 1261–1276. https://doi.org/10.11948/2156-907X.20180215 doi: 10.11948/2156-907X.20180215
    [36] M. R. Droop, Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri, J. Mar. Biol. Assoc. UK, 48 (1968), 689–733. https://doi.org/10.1017/S0025315400019238 doi: 10.1017/S0025315400019238
    [37] J. Caperon, Time lag in population growth response of isochrysis galbana to a variable nitrate environment, Ecology, 50 (1969), 188–192. https://doi.org/10.2307/1934845 doi: 10.2307/1934845
    [38] H. I. Freedman, J. W. H. So, P. Waltman, Coexistence in a model of competition in the chemostat incorporating discrete delays, SIAM J. Appl. Math., 49 (1989), 859–870. https://doi.org/10.1137/0149050 doi: 10.1137/0149050
    [39] T. F. Thingstad, T. I. Langeland, Dynamics of chemostat culture: the effect of a delay in cell response, J. Theor. Biol., 48 (1974), 149–159. https://doi.org/10.1016/0022-5193(74)90186-6 doi: 10.1016/0022-5193(74)90186-6
    [40] K. Song, W. Ma, Z. Jiang, Bifurcation analysis of modeling biodegradation of microcystins, Int. J. Biomath., 12 (2019), 1950028. https://doi.org/10.1142/S1793524519500281 doi: 10.1142/S1793524519500281
    [41] J. Yang, S. Ding, J. Yang, Advances in process for microbial enzymes separation and purification, (Chinese), Modern Chemical Industry, 2007 (2007), 19–23. https://doi.org/10.16606/j.cnki.issn0253-4320.2007.06.005 doi: 10.16606/j.cnki.issn0253-4320.2007.06.005
    [42] H. Chen, W. Liu, Y. Du, G. Chen, B. Fang, Progress of operation of NADPH metabolism in industrial strains, (Chinese), Chemical Industry and Engineering Progress, 31 (2012), 2535–2541. https://doi.org/10.16085/j.issn.1000-6613.2012.11.035 doi: 10.16085/j.issn.1000-6613.2012.11.035
    [43] H. Yan, J. Wang, J. Chen, W. Wei, H, Wang, H. Wang, Characterization of the first step involved in enzymatic pathway for microcystin-RR biodegraded by Sphingopyxis sp. USTB-05, Chemosphere, 87 (2012), 12–18. https://doi.org/10.1016/j.chemosphere.2011.11.030 doi: 10.1016/j.chemosphere.2011.11.030
    [44] Z. Jiang, W. Ma, Y. Takeuchi, Dynamics for phytoplankton-zooplankton system with time delays, Funkcialaj Ekvacioj, 60 (2017), 279–304. https://doi.org/10.1619/fesi.60.279 doi: 10.1619/fesi.60.279
    [45] E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165. https://doi.org/10.1137/S0036141000376086 doi: 10.1137/S0036141000376086
    [46] S. Ruan, J. Wei, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, Math. Med. Biol., 18 (2001), 41–52. https://doi.org/10.1093/imammb/18.1.41 doi: 10.1093/imammb/18.1.41
    [47] K. Guo, W. Ma, Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays, Math. Biosci. Eng., 18 (2021), 643–672. https://doi.org/10.3934/mbe.2021035 doi: 10.3934/mbe.2021035
    [48] M. Li, K. Guo, W. Ma, Uniform persistence and global attractivity in a delayed virus dynamic model with apoptosis and both virus-to-cell and cell-to-cell infections, Mathematics, 10 (2022), 975. https://doi.org/10.3390/math10060975 doi: 10.3390/math10060975
    [49] I. Barbǎlat, Systèmes d'équations différentielles d'oscillations non linéaires, (French), Revue de Mathématiques Pures et Appliquées, 4 (1959), 267–270.
    [50] S. A. DeLurgio, Forecasting principles and applications, Boston: Iwin McGraw-Hill, 1998.
    [51] C. D. Lewis, Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting, Boston: Butterworth Scientific, 1982.
  • This article has been cited by:

    1. Xinyu He, Ce Yang, Mingqiu Zheng, Hanzhi Zhang, Yadong Du, A fast evaluation method for surface area, volume fraction, and hydraulic diameter of TPMS with different geometric characteristics, 2024, 0954-4062, 10.1177/09544062241277342
    2. T Dabasa, H G Lemu, Y Regassa, Literature review on thin-walled and cellular structure designs for energy absorption, 2023, 1294, 1757-8981, 012046, 10.1088/1757-899X/1294/1/012046
    3. Sheng Li, Laiyu Liang, Ping Yang, Shaoan Li, Yaozhong Wu, Bending Performance of Diamond Lattice Cylindrical Shells, 2025, 18, 1996-1944, 272, 10.3390/ma18020272
    4. Zihao Li, Shiqiang Li, Jiajing Liu, Zhifang Liu, Jianyin Lei, Zhihua Wang, Response mechanisms and energy absorption properties of hybrid sheet TPMS lattices under static and dynamic loading, 2025, 210, 02638231, 112980, 10.1016/j.tws.2025.112980
    5. Dong Wei, Shaoan Li, Laiyu Liang, Longfei Sun, Yaozhong Wu, Low-Velocity Impact Response of Sandwich Structure with Triply Periodic Minimal Surface Cores, 2025, 17, 2073-4360, 712, 10.3390/polym17060712
    6. Mingzhu Dang, Honghao Xiang, Jingjing Li, Chunsheng Ye, Chao Cai, Qingsong Wei, Mechanical Response and Superelastic Properties of Cu-11.85Al-3.2Mn-0.1Ti TPMS Structures Printed by Laser Powder Bed Fusion, 2025, 38, 2192-8258, 10.1186/s10033-024-01170-x
    7. Izzat Mat Samudin, Nabilah Afiqah Mohd Radzuan, Abu Bakar Sulong, Quanjin Ma, Abdul Hadi Azman, Wan Fathul Hakim Wan Zamri, Stress strain curve analysis of sheet based TPMS structures in quasi static compression test: A review, 2025, 36, 22387854, 5757, 10.1016/j.jmrt.2025.04.168
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1050) PDF downloads(40) Cited by(0)

Figures and Tables

Figures(13)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog