Research article

Stability for Cauchy problem of first order linear PDEs on $ \mathbb{T}^m $ with forced frequency possessing finite uniform Diophantine exponent

  • Received: 11 January 2024 Revised: 16 April 2024 Accepted: 29 April 2024 Published: 24 May 2024
  • MSC : Primary 37J40; Secondary 34C27

  • In this paper, we studied the stability of the Cauchy problem for a class of first-order linear quasi-periodically forced PDEs on the $ m $-dimensional torus:

    $ \begin{eqnarray*} \left\{ \begin{array}{l} \partial_t u+(\xi+f(x, \omega t, \xi))\cdot \partial_x u = 0, \\ u(x, 0) = u_0(x), \ \end{array} \right. \end{eqnarray*} $

    where $ \xi\in \mathbb{R}^m, x\in \mathbb{T}^m, \omega\in\mathbb{R}^d, $ in the case of multidimensional Liouvillean forced frequency. We proved that for each compact set $ \mathcal{O}\in\mathbb{R}^m $ there exists a Cantor subset $ \mathcal{O}_\gamma $ of $ \mathcal{O} $ with positive Lebesgue measure such that if $ \xi\in\mathcal{O}_\gamma, $ then for a perturbation $ f $ being small in some analytic Sobolev norm, there exists a bounded and invertible quasi-periodic family of linear operator $ \Psi(\omega t) $, such that the above PDEs are reduced by the transformation $ v: = \Psi(\omega t)^{-1}[u] $ into the following PDE:

    $ \begin{eqnarray*} \partial_t v+ (\xi+ m_\infty(\omega t))\cdot\partial_x v = 0, \end{eqnarray*} $

    provided that the forced frequency $ \omega\in \mathbb{R}^d $ possesses finite uniform Diophantine exponent, which allows Liouvillean frequency. The reducibility can immediately cause the stability of the above Cauchy problem, that is, the analytic Sobolev norms of the Cauchy problem are controlled uniformly in time. The proof is based on a finite dimensional Kolmogorov-Arnold-Moser (KAM) theory for quasi-periodically forced linear vector fields with multidimensional Liouvillean forced frequency. As we know, the results on Liouvillean frequency existing in the literature deal with two-dimensional frequency and exploit the theory of continued fractions to control the small divisor problem. The results in this paper partially extend the analysis to higher-dimensional frequency and impose a weak nonresonance condition, i.e., the forced frequency $ \omega $ possesses finite uniform Diophantine exponent. Our result can be regarded as a generalization of analytic cases in the work [R. Feola, F. Giuliani, R. Montalto and M, Procesi, Reducibility of first order linear operators on tori via Moser's theorem, J. Funct. Anal., 2019] from Diophantine frequency to Liouvillean frequency.

    Citation: Xinyu Guan, Nan Kang. Stability for Cauchy problem of first order linear PDEs on $ \mathbb{T}^m $ with forced frequency possessing finite uniform Diophantine exponent[J]. AIMS Mathematics, 2024, 9(7): 17795-17826. doi: 10.3934/math.2024866

    Related Papers:

  • In this paper, we studied the stability of the Cauchy problem for a class of first-order linear quasi-periodically forced PDEs on the $ m $-dimensional torus:

    $ \begin{eqnarray*} \left\{ \begin{array}{l} \partial_t u+(\xi+f(x, \omega t, \xi))\cdot \partial_x u = 0, \\ u(x, 0) = u_0(x), \ \end{array} \right. \end{eqnarray*} $

    where $ \xi\in \mathbb{R}^m, x\in \mathbb{T}^m, \omega\in\mathbb{R}^d, $ in the case of multidimensional Liouvillean forced frequency. We proved that for each compact set $ \mathcal{O}\in\mathbb{R}^m $ there exists a Cantor subset $ \mathcal{O}_\gamma $ of $ \mathcal{O} $ with positive Lebesgue measure such that if $ \xi\in\mathcal{O}_\gamma, $ then for a perturbation $ f $ being small in some analytic Sobolev norm, there exists a bounded and invertible quasi-periodic family of linear operator $ \Psi(\omega t) $, such that the above PDEs are reduced by the transformation $ v: = \Psi(\omega t)^{-1}[u] $ into the following PDE:

    $ \begin{eqnarray*} \partial_t v+ (\xi+ m_\infty(\omega t))\cdot\partial_x v = 0, \end{eqnarray*} $

    provided that the forced frequency $ \omega\in \mathbb{R}^d $ possesses finite uniform Diophantine exponent, which allows Liouvillean frequency. The reducibility can immediately cause the stability of the above Cauchy problem, that is, the analytic Sobolev norms of the Cauchy problem are controlled uniformly in time. The proof is based on a finite dimensional Kolmogorov-Arnold-Moser (KAM) theory for quasi-periodically forced linear vector fields with multidimensional Liouvillean forced frequency. As we know, the results on Liouvillean frequency existing in the literature deal with two-dimensional frequency and exploit the theory of continued fractions to control the small divisor problem. The results in this paper partially extend the analysis to higher-dimensional frequency and impose a weak nonresonance condition, i.e., the forced frequency $ \omega $ possesses finite uniform Diophantine exponent. Our result can be regarded as a generalization of analytic cases in the work [R. Feola, F. Giuliani, R. Montalto and M, Procesi, Reducibility of first order linear operators on tori via Moser's theorem, J. Funct. Anal., 2019] from Diophantine frequency to Liouvillean frequency.



    加载中


    [1] V. I. Arnold, Small denominators I. On the mapping of a circle into itself, Akad. Nauk. Math., 25 (1961), 21–86.
    [2] A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1–54. https://doi.org/10.1007/s11511-015-0128-7 doi: 10.1007/s11511-015-0128-7
    [3] A. Avila, Almost reducibility and absolute continuity, arXiv preprint arXiv: 1006.0704, 2010.
    [4] A. Avila, B. Fayad, R. Krikorian, A KAM scheme for $SL(2, \mathbb{R})$ cocycles with frequencies, Geom. Funct. Anal., 21 (2011), 1001–1009. https://doi.org/10.1007/s00039-011-0135-6 doi: 10.1007/s00039-011-0135-6
    [5] A. Avila, S. Jitomirskaya, The ten martini problem, Ann. Math., 170 (2009), 303–342. https://doi.org/10.4007/annals.2009.170.303 doi: 10.4007/annals.2009.170.303
    [6] A. Avila, R. Krikorian, Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. Math., 164 (2006), 911–940. https://doi.org/10.4007/annals.2006.164.911 doi: 10.4007/annals.2006.164.911
    [7] D. Bambusi, Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, Ⅰ, Trans. Amer. Math. Soc., 370 (2018), 1823–1865. https://doi.org/10.1090/tran/7135 doi: 10.1090/tran/7135
    [8] D. Bambusi, Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, Ⅱ, Comm. Math. Phys., 353 (2017), 353–378. https://doi.org/10.1007/s00220-016-2825-2 doi: 10.1007/s00220-016-2825-2
    [9] D. Bambusi, S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Commun. Math. Phys., 219 (2001), 465–480. https://doi.org/10.1007/s002200100426 doi: 10.1007/s002200100426
    [10] D. Bambusi, B. Grébert, A. Maspero, D. Robert, Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation, Anal. PDE, 11 (2018), 775–799. https://doi.org/10.2140/apde.2018.11.775 doi: 10.2140/apde.2018.11.775
    [11] N. N. Bogoljubov, Ju. A. Mitropoliskii, A. M. Samoilenko, Methods of accelerated convergence in nonlinear mechanics, Springer, New York, 1976 (Russian original: Naukova Dumka, Kiev, 1960). https://doi.org/10.1007/978-3-642-61900-7
    [12] H. Cheng, W. Si, J. Si, Whiskered tori for forced beam equations with multi-dimensional liouvillean frequency, J. Dynam. Differential Equations, 32 (2020), 705–739. https://doi.org/10.1007/s10884-019-09754-1 doi: 10.1007/s10884-019-09754-1
    [13] M. Combescure, The quantum stability problem for time-periodic perturbations of the harmonic oscillator, Ann. Inst. H. Poincaré Phys. Théor., 47 (1987), 63–83.
    [14] E. Dinaburg, Y. Sinai, The one-dimensional Schrödinger equation with a quasi-periodic potential, Funct. Anal. Appl., 9 (1975), 279–289. https://doi.org/10.1007/BF01075873 doi: 10.1007/BF01075873
    [15] L. H. Eliasson, Floquet solutions for the one-dimensional quasiperiodic Schrödinger equation, Commun. Math. Phys., 146 (1992), 447–482. https://doi.org/10.1007/BF02097013 doi: 10.1007/BF02097013
    [16] L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, Proceedings of symposia in pure mathematics, 69 (2001), 679–706. https://doi.org/10.1090/pspum/069/1858550 doi: 10.1090/pspum/069/1858550
    [17] L. H. Eliasson, B. Fayad, R. Krikorian, Around the stability of KAM-tori, Duke Math. J., 164 (2015), 1733–1775. https://doi.org/10.1215/00127094-3120060 doi: 10.1215/00127094-3120060
    [18] L. H. Eliasson, S. B. Kuksin, On reducibility of Schrödinger equations with quasiperiodic in time potentials, Comm. Math. Phys., 286 (2009), 125–135. https://doi.org/10.1007/s00220-008-0683-2 doi: 10.1007/s00220-008-0683-2
    [19] B. Fayad, R. Krikorian, Rigidity results for quasiperiodic $SL(2, \mathbb{R})$-cocycles, J. Mod. Dyn., 3 (2009), 479–510. https://doi.org/10.3934/jmd.2009.3.479 doi: 10.3934/jmd.2009.3.479
    [20] R. Feola, F. Giuliani, R. Montalto, M. Procesi, Reducibility of first order linear operators on tori via Moser's theorem, J. Funct. Anal., 276 (2019), 932–970. https://doi.org/10.1016/j.jfa.2018.10.009 doi: 10.1016/j.jfa.2018.10.009
    [21] B. Grébert, E. Paturel, KAM for the Klein-Gordon equation on $\mathbb{S}^d$, Boll. Unione Mat Ital., 9 (2016), 237–288. https://doi.org/10.1007/s40574-016-0072-2 doi: 10.1007/s40574-016-0072-2
    [22] H. Her, J. You, Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dynam. Differential Equations, 20 (2008), 831–866. https://doi.org/10.1007/s10884-008-9113-6 doi: 10.1007/s10884-008-9113-6
    [23] M. Herman, Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2, Comment. Math. Helv., 58 (1983), 453–502. https://doi.org/10.1007/BF02564647 doi: 10.1007/BF02564647
    [24] X. Hou, J. You, Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems, Invent. Math., 190 (2012), 209–260. https://doi.org/10.1007/s00222-012-0379-2 doi: 10.1007/s00222-012-0379-2
    [25] À. Jorba, C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differential Equations, 98 (1992), 111–124. https://doi.org/10.1016/0022-0396(92)90107-X doi: 10.1016/0022-0396(92)90107-X
    [26] R. Krikorian, Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts, Astérisque, 256 SMF, 1999.
    [27] R. Krikorian, J. Wang, J. You, Q. Zhou, Linearization of quasiperiodically forced circle flows beyond brjuno condition, Commun. Math. Phys., 358 (2018), 81–100. https://doi.org/10.1007/s00220-017-3021-8 doi: 10.1007/s00220-017-3021-8
    [28] R. Kuksin, J. Pöschel, Invariant cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math., 143 (1996), 149–179. https://doi.org/10.2307/2118656 doi: 10.2307/2118656
    [29] Z. Lou, J. Geng, Quasi-periodic response solutions in forced revesible systems with Liouvillean frequencies, J. Differential Equations, 263 (2017), 3894–3927. https://doi.org/10.1016/j.jde.2017.05.007 doi: 10.1016/j.jde.2017.05.007
    [30] A. Maspero, D. Robert, On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms, J. Funct. Anal., 273 (2017), 721–781. https://doi.org/10.1016/j.jfa.2017.02.029 doi: 10.1016/j.jfa.2017.02.029
    [31] R. Montalto, A Reducibility result for a class of Linear Wave Equations on $\mathbb{T}^d$, International Mathematics Research Notices, 2019 (2017), 1788–1862.
    [32] J. Moser, Convergent series expansions for quasiperiodic motions, Math. Ann., 169 (1967), 136–176. https://doi.org/10.1007/BF01399536 doi: 10.1007/BF01399536
    [33] W. Si, J. Si, Linearization of a quasi-periodically forced flow on $\mathbb{T}^m$ under Brjuno-Rüssmann non-resonant condition, Appl. Anal, 97 (2018), 2001–2024. https://doi.org/10.1080/00036811.2017.1350847 doi: 10.1080/00036811.2017.1350847
    [34] F. Wang, H. Cheng, J. Si, Response Solution to Ill-Posed Boussinesq Equation with Quasi-Periodic Forcing of Liouvillean Frequency, J. Nonlinear Sci., 30 (2020), 657–710. https://doi.org/10.1007/s00332-019-09587-8 doi: 10.1007/s00332-019-09587-8
    [35] J. Wang, J. You, Boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequency, J. Differential Equations, 261 (2016), 1068–1098. https://doi.org/10.1016/j.jde.2016.03.038 doi: 10.1016/j.jde.2016.03.038
    [36] J. Wang, J. You, Q. Zhou, Response solutions for quasi-periodically forced harmonic oscillators, Trans. Amer. Math. Soc., 369 (2017), 4251–4274. https://doi.org/10.1090/tran/6800 doi: 10.1090/tran/6800
    [37] X. Xu, W. Si, J. Si, Stoker's Problem for Quasi-periodically Forced Reversible Systems with Multidimensional Liouvillean Frequency, SIAM. J. Appl. Dyn. Syst., 19 (2020), 2286–2321. https://doi.org/10.1137/19M1270033 doi: 10.1137/19M1270033
    [38] X. Xu, J. You, Q. Zhou, Quasi-periodic solutions of NLS with Liouvillean Frequency, Anal. PDE, 14 (2021), 2327–2362. https://doi.org/10.2140/apde.2021.14.2327 doi: 10.2140/apde.2021.14.2327
    [39] J. You, Q. Zhou, Embedding of analytic quasi-periodic cocycles into analytic quasi-periodic linear systems and its applications, Comm. Math. Phys., 323 (2013), 975–1005. https://doi.org/10.1007/s00220-013-1800-4 doi: 10.1007/s00220-013-1800-4
    [40] J. You, Q. Zhou, Phase transition and semi-global reducibility, Comm. Math. Phys., 330 (2014), 1095–1113. https://doi.org/10.1007/s00220-014-2012-2 doi: 10.1007/s00220-014-2012-2
    [41] J. You, Q. Zhou, Simple counter-examples to Kotani–Last conjecture via reducibility, Int. Math. Res. Not., 19 (2015), 9450–9455. https://doi.org/10.1093/imrn/rnu240 doi: 10.1093/imrn/rnu240
    [42] J. You, S. Zhang, Q. Zhou, Point spectrum for quasi-periodic long range operators, J. Spectr. Theory, 4 (2014), 769–781. https://doi.org/10.4171/jst/85 doi: 10.4171/jst/85
    [43] D. Zhang, J. Xu, Reducibility of a class of nonlinear quasi-periodic systems with Liouvillean basic frequencies, Ergod. Th. Dynam. Sys., 41 (2021), 1883–1920. https://doi.org/10.1017/etds.2020.23 doi: 10.1017/etds.2020.23
    [44] Q. Zhou, J. Wang, Reducibility results for quasiperiodic cocycles with Liouvillean frequency, J. Dynam. Differential Equations, 24 (2012), 61–83. https://doi.org/10.1007/s10884-011-9235-0 doi: 10.1007/s10884-011-9235-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(156) PDF downloads(20) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog