Processing math: 85%
Research article Special Issues

Characterizing edge-based doubly resolving sets within circulant networks Cn(1,2)

  • Received: 22 February 2024 Revised: 22 April 2024 Accepted: 25 April 2024 Published: 06 May 2024
  • MSC : 05C12

  • The focus of this article lies on the notion of the edge version of doubly resolving sets (EVDRSs) in circulant networks. EVDRSs refer to unique edge subsets that are necessary for identifying individual edges in a network and distinguishing them based on their edge distances to the elements of the EVDRS. The main objectives were to define the minimal size of EVDRSs for circulant networks Cn(1,2) and to investigate their basic properties. The systematic research helped to achieve a new understanding of the existence, construction, and characterization of EVDRSs in circulant networks Cn(1,2). It is established that the EVDRSs in the circulant network Cn(1,2) are finite and are bounded by the order of the network. Among the numerous implications of these findings are those that refer to the design and optimization of distributed sensor networks, improving communication and network protocols, as well as tracking the spread of infectious diseases and epidemics over social networks. The application of the identified methodology helps improve the process of network optimization which contributes to the development of more effective and robust circulant-based structures.

    Citation: Ruby Nasir, Muhammad Ahmad, Zohaib Zahid, Sanaa A. Bajri, Hamiden Abd El-Wahed Khalifa. Characterizing edge-based doubly resolving sets within circulant networks Cn(1,2)[J]. AIMS Mathematics, 2024, 9(6): 15857-15874. doi: 10.3934/math.2024766

    Related Papers:

    [1] Yuwei Cao, Bing Li . Existence and global exponential stability of compact almost automorphic solutions for Clifford-valued high-order Hopfield neutral neural networks with D operator. AIMS Mathematics, 2022, 7(4): 6182-6203. doi: 10.3934/math.2022344
    [2] Nina Huo, Bing Li, Yongkun Li . Global exponential stability and existence of almost periodic solutions in distribution for Clifford-valued stochastic high-order Hopfield neural networks with time-varying delays. AIMS Mathematics, 2022, 7(3): 3653-3679. doi: 10.3934/math.2022202
    [3] Xiaofang Meng, Yongkun Li . Pseudo almost periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays and leakage delays on time scales. AIMS Mathematics, 2021, 6(9): 10070-10091. doi: 10.3934/math.2021585
    [4] Jin Gao, Lihua Dai . Anti-periodic synchronization of quaternion-valued high-order Hopfield neural networks with delays. AIMS Mathematics, 2022, 7(8): 14051-14075. doi: 10.3934/math.2022775
    [5] Abdulaziz M. Alanazi, R. Sriraman, R. Gurusamy, S. Athithan, P. Vignesh, Zaid Bassfar, Adel R. Alharbi, Amer Aljaedi . System decomposition method-based global stability criteria for T-S fuzzy Clifford-valued delayed neural networks with impulses and leakage term. AIMS Mathematics, 2023, 8(7): 15166-15188. doi: 10.3934/math.2023774
    [6] Qian Cao, Xiaojin Guo . Anti-periodic dynamics on high-order inertial Hopfield neural networks involving time-varying delays. AIMS Mathematics, 2020, 5(6): 5402-5421. doi: 10.3934/math.2020347
    [7] Xiaojin Guo, Chuangxia Huang, Jinde Cao . Nonnegative periodicity on high-order proportional delayed cellular neural networks involving D operator. AIMS Mathematics, 2021, 6(3): 2228-2243. doi: 10.3934/math.2021135
    [8] Yongkun Li, Xiaoli Huang, Xiaohui Wang . Weyl almost periodic solutions for quaternion-valued shunting inhibitory cellular neural networks with time-varying delays. AIMS Mathematics, 2022, 7(4): 4861-4886. doi: 10.3934/math.2022271
    [9] Qi Shao, Yongkun Li . Almost periodic solutions for Clifford-valued stochastic shunting inhibitory cellular neural networks with mixed delays. AIMS Mathematics, 2024, 9(5): 13439-13461. doi: 10.3934/math.2024655
    [10] Hedi Yang . Weighted pseudo almost periodicity on neutral type CNNs involving multi-proportional delays and D operator. AIMS Mathematics, 2021, 6(2): 1865-1879. doi: 10.3934/math.2021113
  • The focus of this article lies on the notion of the edge version of doubly resolving sets (EVDRSs) in circulant networks. EVDRSs refer to unique edge subsets that are necessary for identifying individual edges in a network and distinguishing them based on their edge distances to the elements of the EVDRS. The main objectives were to define the minimal size of EVDRSs for circulant networks Cn(1,2) and to investigate their basic properties. The systematic research helped to achieve a new understanding of the existence, construction, and characterization of EVDRSs in circulant networks Cn(1,2). It is established that the EVDRSs in the circulant network Cn(1,2) are finite and are bounded by the order of the network. Among the numerous implications of these findings are those that refer to the design and optimization of distributed sensor networks, improving communication and network protocols, as well as tracking the spread of infectious diseases and epidemics over social networks. The application of the identified methodology helps improve the process of network optimization which contributes to the development of more effective and robust circulant-based structures.



    As is well known, in the practical application of neural networks (NNs), it is often necessary to use and design NN models with different dynamic characteristics for different application scenarios and purposes. Therefore, the study of the dynamic behavior of NNs has become an important issue that is widely concerned in both theoretical research and practical applications of NNs. Therefore, the dynamics of various types of NNs, especially numerous classical NNs such as recurrent NNs [1,2], bidirectional associative memory NNs [3], inertial NNs [4,5], Hopfield NNs [6], Cohen-Grossberg NNs [7], etc., have been widely studied. It should be mentioned here that due to the stronger approximation, faster convergence speed, larger storage capacity, and higher fault tolerance of high-order NNs compared to low-order NNs, the dynamics research of high-order NNs has received widespread attention [8,9,10,11,12].

    Meanwhile, owing to the fact that algebra-valued NNs, such as complex-valued [13,14], quaternion-valued [15,16,17,18], Clifford-valued [19,20,21,22,23], and octonion-valued NNs [24,25,26], are extensions of real-valued NNs and have more advantages than real-valued NNs in many application scenarios, research on the dynamics of algebra-valued NNs has gradually become a new hotspot in the field of NN research in recent years. It is worth mentioning here that the Clifford-valued high-order Hopfield fuzzy NN represents a sophisticated integration of Clifford algebra, high-order synaptic connections, and fuzzy logic, enabling it to achieve advanced applications in multidimensional data processing and complex system modeling. For example, it has applications in the fields of multidimensional signal processing, secure communication and image encryption, optimization and control systems, neuroscience, and cognitive modeling [27,28,29,30].

    On the one hand, from both theoretical and practical perspectives, NN models with time-varying connection weights and time-varying external inputs are more realistic than those with constant connection weights and constant external inputs. Meanwhile, time delay effects are inevitable. As a result, the rate of change in the state of a neuron depends not only on its current state but also on its historical state, and even more so, on the rate of change in its historical state. It is precisely for these reasons that researchers have proposed various neutral-type NN models with D operators and conducted extensive research on their dynamics [31,32,33,34]. In addition, fuzzy logic and NNs complement each other: fuzzy systems provide interpretability and handle uncertainty, while NNs offer powerful learning from data. Their integration bridges the gap between data-driven machine learning and human-like reasoning, making systems more adaptable, transparent, and robust in real-world applications. Indeed, fuzzy NNs have been successfully applied in many fields such as signal processing, pattern recognition, associative memory, and image processing [35,36,37,38,39].

    On the other hand, as is well known, almost periodic oscillation is an important dynamic of NNs with time-varying connection weights and time-varying external inputs. In the past few decades, the almost periodic oscillations of various NNs have been studied by countless scholars [23,31,33,34]. We know that besides Bohr's concept of almost periodicity, there are also Stepanov almost periodicity, Weyl almost periodicity, Besicovitch almost periodicity, and so on [40]. It should be pointed out here that Besicovitch almost periodicity is the most complex almost periodicity among Bohr almost periodicity, Stepanov almost periodicity, and Weyl almost periodicity, and that Stepanov almost periodicity, Weyl almost periodicity, and Besicovitch almost periodicity are referred to as generalized almost periodicity. Meanwhile, it should be noted that the product of two generalized almost periodic functions in the same sense may not necessarily be a generalized almost periodic function in that sense. Because of this reason, the emergence of high-order terms in high-order NNs poses difficulties for studying the generalized almost periodic oscillations of high-order NNs. As a consequence, the results of generalized almost periodic oscillations for high-order NNs are still very rare. Thereupon, it is necessary to further study the generalized almost periodic oscillation problem of high-order NNs.

    Inspired by the above observations, this paper considers a class of Clifford-valued high-order Hopfield fuzzy NNs with time-varying delays and D operators as follows:

    [xi(t)ai(t)xi(tτi(t))]=bi(t)xi(t)+nj=1cij(t)fj(xj(t))+nj=1uij(t)fj(xj(tσij(t)))+nj=1γij(t)μj(t)+vj=1nk=1θijk(t)gj(xj(tδijk(t)))gk(xk(tδijk(t)))+nj=1αij(t)fj(xj(tηij(t)))+nj=1βij(t)fj(xj(tηij(t)))+nj=1nk=1qijk(t)gj(xj(tδijk(t)))gk(xk(tδijk(t)))+nj=1nk=1νijk(t)gj(xj(tδijk(t)))gk(xk(tδijk(t)))+nj=1Tij(t)μj(t)+nj=1Sij(t)μj(t)+Ii(t), (1.1)

    where iJ:={1,2,,n}, xi(t)A indicates the state of the ith unit at time t; A is a real Clifford algebra; bi(t)A represents the self feedback coefficient at time t; αij(t),βij(t),Tij(t),Sij(t)A stand for the elements of the fuzzy feedback MIN template and fuzzy feed forward MAX template, respectively; ai(t),cij(t),uij(t) and θijk(t),qijk(t),νijk(t)A represent the first-order and second-order connection weights of the NN; γij(t) stands for the element of the feed forward template; and denote the fuzzy AND and OR operations, respectively; μj(t)A represents the input of the jth neuron; Ii(t)A corresponds to the external input to the ith unit; fj and gj:AA signify the nonlinear activation functions; and τi(t),σij(t),ηij(t),δijk(t)R+ denote the transmission delays.

    The initial value condition associated with (1.1) is given as

    xi(s)=φi(s),s[ϱ,0],iJ, (1.2)

    where φiBC([ϱ,0],A),ϱ=maxi,j,kJ{suptRτi(t),suptRσij(t),suptRηij(t),suptRδijk(t)}.

    The main purpose of this paper is to investigate the existence and stability of Besicovitch almost periodic solutions for system (1.1). The main contributions of this paper are as follows:

    1. This paper is the first one to investigate the existence of Besicovitch almost periodic solutions for system (1.1), and the results of this paper still hold true and are new in the following special cases of system (1.1).

    (ⅰ) System (1.1) is a real-valued, complex-valued, or quaternion-valued system.

    (ⅱ) System (1.1) is a real-valued, complex-valued, or quaternion-valued system without D operators, i.e. ai(t)=0.

    (ⅲ) System (1.1) is a real-valued system without D operators and fuzzy terms, i.e., ai(t)=αij(t)=qijk(t)=νijk(t)=Tij(t)=Sij(t)0.

    2. The research method proposed in the paper can be used to study the generalized almost periodic dynamics for other high-order NNs.

    Remark 1.1. The method we propose can be summarized as follows: First, we use the fixed point theorem to prove the existence of solutions for system (1.1) that are bounded and continuous with respect to the Besicovitch seminorm on a closed subset of an appropriate Banach space. Then, we apply the definition and inequality techniques to prove that this solution is Besicovitch almost periodic.

    The remaining part of the paper is arranged as follows: In the second section, we review some relevant concepts, introduce some symbols used in this article, cite a useful lemma, and state and prove the completeness of the space we will use. In the third section, we investigate the existence and stability of Besicovitch almost periodic solutions for system (1.1). In the fourth section, we provide an example to demonstrate the correctness of our results. Finally, in the fifth section, we provide a brief conclusion.

    Let A={AΩxAeAR} indicate a real Clifford algebra over Rm [41], where Ω={,1,2,,A,,12,,m}, eA=eh1eh2ehv, 1h1<h2<<hvm, and in addition, e=e0=1, and eh, h=1,2,,m are said to be Clifford generators and satisfy ep=1,p=0,1,2,,s,e2p=1,p=s+1,s+2,,m, where s<m, and epeq+eqep=0,pq,p,q=1,2,,m. For every x=AΩxAeAA and y=(y1,y2,,yn)TAn, we define |x|1=maxAΩ{|xA|} and |y|n=maxiJ{|yi|1}, respectively, and then the spaces (A,||1) and (An,||) are Banach ones.

    Since there is no order relation among Clifford numbers, as in [42], for x=AΩxAeA,y=AΩyAeA, we define xy=AΩ(min{xA,yA})eA and xy=AΩ(max{xA,yA})eA. According to this regulation, for example, regarding the 6th and 7th terms on the right-hand side of Equation (1.1), we have

    nj=1αij(t)fj(xj(tηij(t)))=AΩ(min1jn{αAij(t)fAj(xj(tηij(t)))})eA

    and

    nj=1βij(t)fj(xj(tηij(t)))=AΩ(max1jn{αAij(t)fAj(xj(tηij(t)))})eA.

    For x=AΩxAeAA, we indicate xc=xx.

    For the sake of generality in the subsequent discussion of this section, let (X,) be a Banach space and Lploc(R,X) with 1p<+ be the space consisting of measurable and locally p-integrable functions from R into X. In the next section, we will take X=R, X=A, or X=An.

    Definition 2.1. [40] A bounded continuous function φ:RX is said to be almost periodic, if for every ε>0, there exists a number (ε)>0 such that for each aR, there exists a point σ[a,a+] satisfying

    φ(t+σ)φ(t)<ε.

    The family of such functions will be signified by AP(R,X).

    For φLploc(R,X), the Besicovitch seminorm is defined as the following:

    φBp={¯liml12lllφ(t)pdt}1p.

    Definition 2.2. [43] A function φLploc(R,X) is called Bp-continuous if limh0φ(+h)φ()Bp=0 and is called Bp-bounded if φBp<.

    Henceforth, we will denote the set of all functions that are Bp-continuous and Bp-bounded by BCBp(R,X).

    Definition 2.3. [40] A function φLploc(R,X) is said to be Besicovitch almost periodic, if for every ε>0, there exists a positive number >0 such that for each aR, there exists a point σ[a,a+] satisfying

    φ(+σ)φ()Bp<ε.

    Denote by BpAP(R,X) the class of such functions and, for simplicity, call them Bp-almost periodic functions.

    Lemma 2.1. [44] If αij,βijC(R,A),gjC(A,A),i,jJ, then one has

    |ni=1αij(t)gj(x)ni=1αij(t)gj(y)|1ni=1|αij(t)gj(x)gj(y)|1,|ni=1βij(t)gj(x)ni=1βij(t)gj(y)|1ni=1βij(t)|gj(x)gj(y)|1.

    Let L(R,X) be the set of all essentially bounded measurable functions from R to X, then (L(R,X),) is a Banach space, where :=esssuptR denotes the essential supremum norm.

    Denote

    Z={x|xL(R,X)BCBp(R,X)}.

    Then we have the following lemma which is crucial for the proof of our main result of this paper.

    Lemma 2.2. The space (Z,) is a Banach space.

    Proof. Let {ϕn}Z be a Cauchy sequence, and then for every ε>0, there is a positive integer N1 such that for n,m>N1,

    ϕn()ϕm()<ε3.

    Since {ϕn}ZL(R,X) and (L(R,X),) is a Banach space, there exists ϕL(R,An) such that ϕnϕ as n with respect to the norm . To complete the proof, it suffices to prove that ϕBCBp(R,X). From limnϕn=ϕ in regard to the essential supremum norm, it follows that there exists a positive integer N2 such that for n>N2,

    ϕn()ϕ()<ε3.

    Now, take N0=max{N1,N2}, and then, due to the fact that ϕN0+1BCBp(R,X), there exists a δ=δ(ε)>0 such that for any hR with |h|<ε, it holds that

    ϕN0+1(+h)ϕN0+1()Bp<ε3.

    Consequently,

    ϕ(+h)ϕ()Bpϕ(+h)ϕN0+1(+h)Bp+ϕN0+1(+h)ϕN0+1()Bp+ϕN0+1()ϕ()Bpϕ(+h)ϕN0+1(+h)+ϕN0+1(+h)ϕN0+1()Bp+ϕN0+1()ϕ()ε3+ε3+ε3=ε,

    which implies ϕBCBp(R,X). The proof is completed.

    In this section, for xL(R,A), we denote |x|=maxAΩ{esssuptR|xA(t)|} and for z=(z1,z2,,zn)T=(AzA1eA,AzA2eA,,AzAneA)TL(R,An), we denote z=maxiJ{|zi|}. Let Z={z|zL(R,An)BCBp(R,An)}, and then, according to Lemma 2.2, (Z,) is a Banach space. For xBpAP(R,A) and zBpAP(R,An), we will use |x|Bp and zBp to represent the seminorms of x and z, respectively.

    In what follows, we will employ the following symbols:

    ˉg=suptRg(t)Yandg_=inftRg(t)Y,

    where g:RY is a bounded function and (Y,Y) is a normed space. Moreover, we will use the following assumptions:

    (A1) For i,j,kJ, functions biAP(R,R+) with b_i>0, ai,bci,μj,cij,uij,αij,βij,θijk,qijk,νijkAP(R,A),τi,σij,ηij,δijkAP(R,R)C1(R,R+) with τi(t)ˉτi<1,σij(t)ˉσij<1,ηij(t)ˉηij<1,δijk(t)ˉδijk<1, where ˉτ,ˉσ,ˉη,ˉδ are constants, and γij,Tij,Sij,IiL(R,A)BpAP(R,A).

    (A2) For all jJ, functions fj,gjC(A,A) with fj(0)=0,gj(0)=0, and there exist positive constants Lfj,Lgj,Mgj, and Mgk such that for any u,vA,

    |fj(u)fj(v)|1Lfj|uv|1,|gj(u)gj(v)|1Lgj|uv|1,|gj(u)|1Mgj,|gk(u)|1Mgk.

    (A3) For iJ, there exist positive constants ϑi such that

    ρ:=maxiJ{ˉai+1b_i[ˉbiˉai+ˉbci+ϑ1i(nj=1ˉcijLfjϑj+nj=1ˉuijLfjϑj+ni=1nk=1ˉθijkLgjMgkϑj+nj=1ˉαijLfjϑj+nj=1ˉβijLfjϑj+ni=1nk=1ˉqijkLgjMgkϑj+ni=1nk=1ˉνijkLgjMgkϑj)]}<1.

    (A4) For the constants ϑi,iJ, mentioned in (A3), and p,q>1 with 1p+1q=1, it holds that

    P:=2p1maxiJ{4p1(ˉai)p11ˉτi+70p1(1b_i)p+qq(ˉaiˉbi)peb_iˉτi1ˉτi+70p1(1b_i)p+qq(ˉbci)p+35p1ϑpi(1b_i)p+qq(nj=1(ˉcij)q)pqnj=1(Lfjϑj)p+70p1ϑpi(1b_i)p+1q(nj=1(ˉuij)q)pq×nj=1(Lfjϑj)peb_iˉσij1ˉσij+140p1ϑpi(1b_i)p+qqn2pq[nj=1nk=1(ˉθijkMgkLgjϑj)p+nj=1nk=1(ˉθijkMgjLgkϑk)p]eb_iˉδijk1ˉδijk+70p1ϑpi(1b_i)p+qq(nj=1(ˉαij)q)pq×nj=1(Lfjϑj)peb_iˉηij1ˉηij+70p1ϑpi(1b_i)p+qq(nj=1(ˉβij)q)pqnj=1(Lfjϑj)peb_iˉηij1ˉηij+140p1ϑpi(1b_i)p+qqn2pq(nj=1nk=1(ˉqijkMgkLgjϑj)p+nj=1nk=1(ˉqijkMgjLgkϑk)p)×eb_iˉδijk1ˉδijk+140p1ϑpi(1b_i)p+qqn2pq(nj=1nk=1(ˉνijkMgkLgjϑj)p+nj=1nk=1(ˉνijkMgjLgkϑk)p)epqb_iˉδijk1ˉδijk}<1.

    For iJ, let yi(t)=ϑ1ixi(t),Zi(t)=yi(t)ai(t)yi(tτi(t)), where ϑi>0 are constants, and then system (1.1) turns into

    Zi(t)=bi(t)Zi(t)bi(t)ai(t)yi(tτi(t))bci(t)yi(t)+ϑ1i[nj=1cij(t)fj(ϑjyj(t)+nj=1uij(t)fj(ϑjyj(tσij(t)))+nj=1γij(t)μj(t)+nj=1nk=1θijk(t)gj(ϑjyj(tδijk(t)))gk(ϑkyk(tγijk(t)))+nj=1αij(t)fj(ϑjyj(tηij(t)))+nj=1βij(t)fj(ϑjyj(tηij(t)))+nj=1nk=1qijk(t)gj(ϑjyj(tδijk(t)))gk(ϑkyk(tδijk(t)))+nj=1nk=1νijk(t)gj(ϑjyj(tδijk(t)))gk(ϑkyk(tδijk(t)))+nj=1Tij(t)μi(t)+nj=1Sij(t)μi(t)+Ii(t)],iJ. (3.1)

    Multiplying both sides of (3.1) with ett0bi(u)du and integrating over the interval [t0,t], then it holds that

    yi(t)=ai(t)yi(tτi(t))+[yi(t0)ai(t0)yi(t0τi(t0))]ett0bi(u)du+tt0etsbi(u)du(Ny)i(s)ds,iJ, (3.2)

    where

    (Ny)i(s)=bi(s)ai(s)yi(sτi(s))bci(s)yi(s)+ϑ1i(nj=1cij(s)fj(ϑjyj(s))+nj=1uij(s)fj(ϑjyj(sσij(s)))+nj=1γij(s)μj(s)+nj=1nk=1θijk(s)gj(ϑjyj(sδijk(s)))gk(ϑkyk(sδijk(s)))+nj=1αij(s)fj(ϑjyj(sηij(s)))+nj=1βij(s)fj(ϑjyj(sηij(s)))+nj=1nk=1qijk(s)gj(ϑjyj(sδijk(s)))gk(ϑkyk(sδijk(s)))+nj=1nk=1νijk(s)gj(ϑjyj(sδijk(s)))gk(ϑkyk(sδijk(s)))+nj=1Tij(s)μi(s)+nj=1Sij(s)μi(s)+Ii(s)).

    It is easy to verify that if y(t)=(y1(t),y2(t),,yn(t)) solves system (3.1), then x(t)=(x1(t),x2(t),,xn(t))=(ϑ11y1(t),ϑ12y2(t),,ϑ1nyn(t)) solves system (1.1).

    Definition 3.1. A function x=(x1,x2,,xn):RAn is called a solution of (1.1) provided that there exist positive numbers ϑi such that yi(t)=ϑ1ixi(t),iJ fulfill (3.2).

    Set

    ˆφ=(ˆφ1(t),ˆφ2(t),,ˆφn(t))T,

    where

    ˆφi(t)=tetsbi(u)du(nj=1γij(s)μj(s)+nj=1Tij(s)μj(s)+nj=1Sij(s)μj(s)+Ii(s))ds,iJ.

    It is easy to see that ˆφ is well defined under condition (A1). Choose a positive constant r with r>ˆφ.

    Then, we are now in a position to present and prove our existence result.

    Theorem 3.1. Assume that (A1)(A4) hold. Then, system (1.1) admits a unique Bp-almost periodic solution in Z:={φ|φZ,φˆφρr1ρ}.

    Proof. Letting t0, from (3.2), one gets

    yi(t)=ai(t)yi(tτi(t))+tetsbi(u)du(Ny)i(s)ds,iJ.

    Define a mapping T:ZZ by setting (Tφ)(t)=((Tφ)1(t),(Tφ)2(t),,(Tφ)n(t))T for φZ and tR, where (Tφ)i(t)=ai(t)φi(tτi(t))+tetsbi(u)du(Nφ)i(s)ds,iJ.

    To begin with, we show that T(Z)Z.

    Note that, for any φZ, it holds that

    φφˆφ+ˆφρr1ρ+r=r1ρ

    and Nφ<.

    For every φZ, we infer that

    Tφˆφ=maxiJ{esssuptR|ai(t)φi(tτi(t))+tetsbi(u)du[bi(s)ai(s)φi(sτi(s))bci(s)φi(s)+ϑ1i(nj=1cij(s)fj(ϑjφj(s))+nj=1uij(s)fj(ϑjφj(sσij(s)))+ni=1nk=1θijk(s)gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s)))+nj=1αij(s)fj(ϑjφj(sηij(s)))+nj=1βij(s)fj(ϑjφj(sηij(s)))+nj=1nk=1qijk(s)gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s)))+nj=1nk=1νijk(s)gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s))))]ds|1}maxiJ{ˉaiφ+teb_i(ts)[ˉbiˉai+ˉbci+ϑ1i(nj=1ˉcijLfjϑj+nj=1ˉuijLfjϑj+ni=1nk=1ˉθijkLgjMgkϑjϑk+nj=1ˉαijLfjϑj+nj=1ˉβijLfjϑj+nj=1nk=1ˉqijkLgjMgkϑjϑk+nj=1nk=1ˉνijkLgjMgkϑjϑk)]φds}maxiJ{ˉai+1b_i(ˉbiˉai+ˉbci+nj=1ˉcijLfj+nj=1ˉuijLfj+ni=1nk=1ˉθijkLgjMgk+nj=1ˉαijLfj+nj=1ˉβijLfj+ni=1nk=1ˉqijkLgjMgk+ni=1nk=1ˉνijkLgjMgk)}φ=ρφ<r1ρ,iJ.

    In addition, by condition (A1) and the fact that φZ, we have that for every ε>0, there exists a positive number δ=δ(ε)(<ε) such that for any hR with |h|<δ, it holds

    |ai(t+h)ai(t)|1<ε,|φi(+h)φi()|Bp<ε,|τi(t+h)τi(t)|<δ,iJ.

    Without loss of generality, in the sequel, we assume that h>0, then we deduce that

    Tφ(+h)Tφ()pBp2p1maxiJ{¯liml12lll|ai(t+h)φi(t+hτi(t+h))ai(t)φi(tτi(t))|p1dt}+2p1maxiJ{¯liml12lll|t+het+hsbi(u)du(Nφ)i(s)dstetsbi(u)du(Nφ)i(s)ds|p1dt}6p1maxiJ{¯liml12lll|ai(t+h)ai(t)|p1|φi(t+hτi(t+h))|p1dt}+6p1maxiJ{¯liml12lll|ai(t)|p1|φi(t+hτi(t+h))φi(tτi(t+h))|p1dt}+6p1maxiJ{¯liml12lll|ai(t)|p1|φi(tτi(t+h))φi(tτi(t))|p1dt}+4p1maxiJ{¯liml12lll|t|et+hsbi(u)duetsbi(u)du|(Nφ)i(s)ds|p1dt}+4p1maxiJ{¯liml12lll|t+htet+hsbi(u)du(Nφ)i(s)ds|p1dt}6p1maxiJ{¯liml12lll|ai(t+h)ai(t)|p1|φi(t+hτi(t+h))|p1dt}+6p1maxiJ{¯liml12lll|ai(t)|p1|φi(t+hτi(t+h))φi(tτi(t+h))|p1dt}+6p1maxiJ{¯liml12lll|ai(t)|p1|φi(tτi(t+h))φi(tτi(t))|p1dt}+4p1maxiJ{¯liml12lll|teb_i(ts)|t+hsbi(u)dutsbi(u)du|(Nφ(s))ids|p1}+4p1maxiJ{¯liml12lll|t+htet+hsbi(u)du(Nφ)i(s)ds|p1dt}maxiJ{6p1εpφp+6p1ˉapiεp+6p1ˉapiεp+4p1hp[(ˉbib_i)p+(1b_i)p]Nφp}maxiJ{6p1φp+6p1ˉai+6p1ˉai+4p1[(ˉbib_i)p+(1b_i)p]Nφp}εp,

    which implies TφBCBp(R,An). Therefore, T(Z)Z.

    Next, we will prove that T is a contraction mapping. In fact, for any φ,ψZ,iJ, we have

    TφTψesssuptR|ai(t)(φi(tτi(t))ψi(tτi(t)))|1+esssuptR|tetsbi(u)du[bi(s)ai(s)(φi(sτi(s))ψi(sτi(s)))bci(s)(φi(s)ψi(s))+ϑ1i(nj=1cij(s)(fj(ϑjφj(s))fj(ϑjψj(s)))+nj=1uij(s)(fj(ϑjφj(sσij(s)))fj(ϑjψj(sσij(s))))+ni=1nk=1θijk(s)(gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s)))gj(ϑjψj(sδijk(s))))gk(ϑkψk(sδijk(s))))+nj=1αij(s)(fj(ϑjφj(sηij(s)))fj(ϑjψj(sηij(s))))+nj=1βij(s)(fj(ϑjφj(sηij(s)))fj(ϑjψj(sηij(s))))+ni=1nk=1qijk(s)(gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s)))gj(ϑjψj(sδijk(s))))gk(ϑkψk(sδijk(s))))+ni=1nk=1νijk(s)(gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s)))gj(ϑjψj(sδijk(s))))gk(ϑkψk(sδijk(s)))]dsˉaiφψ+teb_i(ts)[ˉbiˉai+ˉbci+ϑ1i(nj=1ˉcijLfjϑj+nj=1ˉuijLfjϑj+nj=1nk=1ˉθijkLgjMgkϑj+nj=1ˉαijLfjϑj+nj=1ˉβijLfjϑj+nj=1nk=1ˉqijkLgjMgkϑj+nj=1nk=1ˉνijkLgjMgkϑj)]φψdsmaxiJ{ˉai+1b_i[ˉbiˉai+ˉbci+ϑ1i(nj=1ˉcijLfjϑj+nj=1ˉuijLfjϑj+ni=1nk=1ˉθijkLgjMgkϑj+nj=1ˉαijLfjϑj+nj=1ˉβijLfjϑj+ni=1nk=1ˉqijkLgjMgkϑj+ni=1nk=1ˉνijkLgjMgkϑj)]}φψ=ρφψ,iJ,

    which combined with condition (A3) means that T is a contraction mapping. Thereupon, T has a unique fixed point φZ.

    Finally, we will examine that φ is Bp-almost periodic.

    Since φZBCBp(R,An), for any ε>0, there exists a σ>0(σ<ε) such that, for any R with ||<σ,

    |φi(+)φi()|Bp<ε,iJ.

    Based on this and (A1), there exists such that, for all iJ,

    |ai(+)ai()|1<ε,|bi(+)bi()|<ε,|bci(+)bci()|1<ε, (3.3)
    |cij(+)cij()|1<ε,|uij(+)uij()|1<ε,|γij(+)γij()|Bp<ε, (3.4)
    |θijk(+)θijk()|1<ε,|αij(+)αij()|1<ε,|βij(+)βij()|1<ε, (3.5)
    |qijk(+)qijk()|1<ε,|νijk(+)νijk()|1<ε,|Tij(+)Tij()|Bp<ε, (3.6)
    |τi(t+)τ(t)|<ε,|σij(t+)σij(t)|<ε,|δijk(t+)δijk(t)|<ε, (3.7)
    |ηij(t+)ηij(t)|<ε,|Sij(+)Sij()|Bp<ε,|Ii(+)Ii()|Bp<ε, (3.8)
    |φi(τi(+))φi(τi())|Bp<ε,|φj(σij(+))φj(σij())|Bp<ε, (3.9)
    |φi(ηij(+))φi(ηij())|Bp<ε,|φj(δijk(+))φj(δijk())|Bp<ε, (3.10)
    |φk(δijk(+))φk(δijk())|Bp<ε. (3.11)

    Then, we deduce that

    φ(t+)φ(t)pBp2p1maxiJ{¯liml12lll|ai(t+)φi(t+τi(t+))ai(t)φi(tτi(t))|p1dt}+2p1maxiJ{¯liml12lll|t+et+sbi(u+)du(Nφ)i(s)dstetsbi(u)du(Nφ)i(s)ds|p1dt}4p1maxiJ{¯liml12lll|ai(t+)(φi(t+τi(t+))φi(tτi(t)))|p1dt}+4p1maxiJ{¯liml12lll|(ai(t+)ai(t))φi(tτi(t))|p1dt}+2p1maxiJ{¯liml12lll|tetsbi(u+)du(Nφ)i(s+)dstetsbi(u)du(Nφ)i(s)ds|p1dt}4p1maxiJ{¯liml12lll|ai(t+)(φi(t+τi(t+))φi(tτi(t)))|p1dt}+4p1maxiJ{¯liml12lll|(ai(t+)ai(t))φi(tτi(t))|p1dt}+70p1maxiJ{¯liml12lll|tetsbi(u+)duai(s+)bi(s+)×(φi(s+τi(s+))φi(sτi(s)))ds|p1dt}+70p1maxiJ{¯liml12lll|tetsbi(u+)du(ai(s+)ai(s))bi(s+)×φi(sτi(s))ds|p1dt}+70p1maxiJ{¯liml12lll|tetsbi(u+)duai(s)(bi(s+)bi(s))φi(sτi(s))ds|p1dt}+70p1maxiJ{¯liml12ll1|t|etsbi(u+)duetsbi(u)du|×ai(s)bi(s)φi(sτi(s))ds|p1dt}+70p1maxiJ{¯liml12lll|tetsbi(u+)du(bci(s+)φi(s+)bci(s)φi(s))ds|p1dt}+70p1maxiJ{¯liml12lll|t|etsbi(u+)duetsbi(u)du|bci(s)φi(s)ds|p1dt}
    +70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1cij(s+)(fj(ϑjφj(s+))fj(ϑjφi(s)))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1(cij(s+)cij(s))fj(ϑjφj(s))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|t|etsbi(u+)duetsbi(u)du|×nj=1cij(s)fj(ϑjφj(s))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1uij(s+)×(fj(ϑjφj(s+σij(s+)))fj(ϑjφj(sσij(s))))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1(uij(s+)uij(s))×fj(ϑjφj(sσij(s)))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|t|etsbi(u+)duetsbi(u)du|×nj=1uij(s)fj(ϑjφj(sσij(s)))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)du(nj=1γij(s+)μj(s+)nj=1γij(s)μj(s))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|t|etsbi(u+)duetsbi(u)du|nj=1γij(s)μj(s)ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1nk=1θijk(s+)×(gj(ϑjφj(s+δijk(s+)))gk(ϑkφk(s+δijk(s+)))gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s))))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1nk=1(θijk(s+)θijk(s))gj(ϑjφj(sδijkk(s)))gk(ϑkφk(sδijk(s)))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|t|etsbi(u+)duetsbi(u)du|×nj=1nk=1θijk(s)gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s)))ds|p1dt}
    +70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1αij(s+)×(fj(ϑjφj(s+ηij(s+)))fj(ϑjφj(sηij(s))))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1(αij(s+)αij(s))×fj(ϑjφj(sηjj(s)))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|t|etsbi(u+)duetsbi(u)du|×nj=1αij(s)fj(ϑjφj(sηjj(s)))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1βij(s+)×(fj(ϑjφj(s+ηij(s+)))fj(ϑjφj(sηij(s))))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1(βij(s+)βij(s))×fj(ϑjφj(sηjj(s)))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|t|etsbi(u+)duetsbi(u)du|×nj=1βij(s)fj(ϑjφj(sηjj(s)))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1nk=1qijk(s+)×(gj(ϑjφj(s+δijk(s+))gk(ϑkφk(s+δijk(s+)))gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s))))ds|p1dt}
    +70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1nk=1(qijk(s+)qijk(s))gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s)))ds|p1dt}+70p1ϑpimaxiJ{lim supl(2l)1ll|t|etsbi(u+)duetsbi(u)du|×nj=1nk=1qijk(s)gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s)))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1nk=1νijk(s+)×(gj(ϑjφj(s+δijk(s+))gk(ϑkφk(s+δijk(s+)))gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s))))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)dunj=1nk=1(νijk(s+)νijk(s))gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s)))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|t|etsbi(u+)duetsbi(u)du|×nj=1nk=1νijk(s)gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s)))ds|p1dt}
    +70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)du(nj=1Tij(s+)μj(s+)nj=1Tij(s)μj(s))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|t|etsbi(u+)duetsbi(u)du|nj=1Tij(s)μj(s)ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)du(nj=1Sij(s+)μj(s+)nj=1Sij(s)μj(s))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|t|etsbi(u+)duetsbi(u)du|nj=1Sij(s)μj(s)ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|tetsbi(u+)du(Ii(s+)Ii(s))ds|p1dt}+70p1ϑpimaxiJ{¯liml12lll|t|etsbi(u+)duetsbi(u)du|Ii(s)ds|p1dt}:=37i=1Ki.

    Furthermore, based on inequalities (3.3)–(3.11), the Hölder inequality, and the Fubini theorem, we can deduce that

    K18p1maxiJ{¯liml12l[ll|ai(t+)|p(|φi(t+τi(t+))φi(tτi(t+))|p1+|φi(tτi(t+))φi(tτi(t))|p1)dt}8p1maxiJ{(ˉai)p11¯τi|φi(t+)φi(t)|pBp+(ˉai)pεp},K24p1maxiJ{φpεp},K3140p1maxiJ{¯liml12lll[tetsbi(u+)duds]pqtetsbi(u+)du×|ai(s+)bi(s+)|1(|φi(s+τi(s+))φi(sτi(s+))|p1+|φi(sτi(s+))φi(sτi(s))|p1)dsdt}140p1maxiJ{(1b_i)pq(ˉaiˉbi)p[¯liml12llltτi(t+)eb_i(tsˉτi)1ˉτi×|φi(s+)φi(s)|p1dsdt]+εpb_i}140p1maxiJ{(1b_i)pq(ˉaiˉbi)p[eb_iˉτi1¯τi¯liml12lllteb_i(ts)×|φi(s+)φi(s)|p1dsdt]+εpb_i}140p1maxiJ{(1b_i)pq(ˉaiˉbi)p[eb_iˉτi1¯τi¯liml12ll(2l)1ss2leb_i(ls)×|φi(t+)φi(t)|p1dtds]+εpb_i}140p1maxiJ{(1b_i)p+qq(ˉaiˉbi)p(eb_iˉτi1¯τiφ(t+)φ(t)pBp+εp)},K470p1maxiJ{¯liml12lll(tetsbi(u+)duds)pq×tetsbi(u+)du|(ai(s+)ai(s))bi(s+)φi(sτi(s))|p1dsdt}70p1maxiJ{(1b_i)p+qq(ˉbi)pφpεp}.K570p1maxiJ{(1b_i)p+qq(ˉai)pφpεp},K670p1maxiJ{¯liml12ll1[t|etsbi(u+)duetsbi(u)du|ds]pq×t|etsbi(u+)duetsbi(u)du||ai(s)bi(s)φi(sτi(s))|p1dsdt}70p1maxiJ{(1b_i)2(p+q)q(ˉaiˉbi)pφpεp+qq},K770p1maxiJ{¯liml12lll[tetsbi(u+)duds]pq×tetsbi(u+)du|bci(s+)φi(s+)bci(s)φi(s)|p1dsdt}140p1maxiJ{(1b_i)pq¯liml12lleb_i(ls)ss2l((ˉbci)p
    ×|φi(t+)φi(t)|p1+|bci(t+)bci(t)|p1φp)dtds}140p1maxiJ{(1b_i)p+qq((ˉbci)pφ(t+)φ(t)pBp+φpεp)},K870p1maxiJ{(1b_i)2(p+q)q(ˉbi)pφpεp+qq},K970p1maxiJ{ϑpi¯liml12lll[tetsbi(u+)duds]pq×tetsbi(u+)du|nj=1cij(s+)(fj(ϑjφj(s+))fj(ϑjφi(s)))|p1dsdt}70p1maxiJ{ϑpi(1b_i)pq(nj=1(ˉcij)q)pqnj=1(Lfjϑj)p¯liml12lleb_i(ls)×ss2l|φj(t+))φi(t)|p1dtds}70p1maxiJ{ϑpi(1b_i)p+qq(nj=1(ˉcij)q)pqnj=1(Lfjϑj)pφ(t+))φ(t)pBp},K1070p1maxiJ{ϑpi(1b_i)p+qqnpqnj=1(Lfjϑj)pφpεp},K1170p1maxiJ{ϑpi(1b_i)2(p+q)q(nj=1(ˉcij)q)pqnj=1(Lfjϑj)pφpεp+qq},K12140p1maxiJ{ϑpi(1b_i)p+1q(nj=1(ˉuij)q)pqnj=1(Lfjϑj)p×[eb_iˉσij1¯σijφ(t+)φ(t)pBp+εp]},
    K1370p1maxiJ{ϑpi(1b_i)p+qqnj=1(Lfjϑj)pnpqφpεp},K1470p1ϑpimaxiJ{¯liml12lll[t|etsbi(u+)duetsbi(u)du|qpds]pq×t|etsbi(u+)duetsbi(u)du|pq|nj=1uij(s)fj(ϑjφj(sσij(s)))|p1dsdt}70p1maxiJ{ϑpi(1b_i)2(p+q)q(nj=1(ˉuij)q)pqnj=1(Lfjϑj)pφpεp+qq},K15140p1maxiJ{ϑpi(1b_i)p+qq[nj=1(ˉμj)p+nj=1|γij|p]εp},K1670p1ϑpimaxiJ{¯liml12lll[t|etsbi(u+)duetsbi(u)du|qpds]pq×t|etsbi(u+)duetsbi(u)du|pq|nj=1γij(s)μj(s)|p1dsdt}70p1maxiJ{ϑpi(1b_i)2(p+q)q(nj=1|γij|q)pqnj=1(ˉμj)pεp+qq},K1770p1maxiJ{ϑpi¯liml12lll(tetsbi(u+)duds)pqtetsbi(u+)du×(nj=1nk=1ˉθijk(Mgk|gj(ϑjφj(s+δijk(s+)))gj(ϑjφj(sδijk(s)))|1+Mgj|gk(ϑkφk(s+δijk(s+)))gk(ϑkφk(sδijk(s))))|1)dsdt)p}280p1maxiJ{ϑpi(1b_i)p+qqn2pq[nj=1nk=1(ˉθijkMgkLgjϑj)p+nj=1nk=1(ˉθijkMgjLgkϑk)p]×(eb_iˉδijk1¯δijkφ(t+)φ(t)pBp+εp)},K1870p1maxiJ{ϑpi(1b_i)p+qqn2pqnk=1nj=1(MgjMgk)pεp},K1970p1maxiJ{ϑpi(1b_i)2(p+q)pn2pqnj=1nk=1(ˉθijkMgjMgk)pεp+qq},K20140p1maxiJ{ϑpi(1b_i)p+qq(nj=1(ˉαij)q)pqnj=1(Lfjϑj)p×[eb_iˉηij1¯ηijφ(t+)φ(t)pBp+εp]},K2170p1maxiJ{ϑpi(1b_i)p+qqnpqnj=1(Lfjϑj)pφpεp},
    K2270p1maxiJ{ϑpi(1b_i)2(p+q)q(nj=1(ˉαij)q)pqnj=1(Lfjϑj)pφpεp+qq},K23140p1maxiJ{ϑpi(1b_i)p+qq(nj=1(ˉβij)q)pqnj=1(Lfjϑj)p×[eb_iˉηij1¯ηijφ(t+)φ(t)pBp+εp]},K2470p1maxiJ{ϑpi(1b_i)p+qqnpqnj=1(Lfjϑj)pφpεp},K2570p1maxiJ{ϑpi(1b_i)2(p+q)q(nj=1(ˉβij)q)pqnj=1(Lfjϑj)pφpεp+qq},K26280p1maxiJ{ϑpi(1b_i)p+qqn2pq(nj=1nk=1(ˉqijkMgkLgjϑj)p+nj=1nk=1(ˉqijkMgjLgkϑk)p)×(eb_iˉδijk1ˉδijkφ(t+)φ(t)pBp+εp)},K2770p1maxiJ{ϑpi(1b_i)p+qqn2pqnk=1nj=1(MgjMgk)pεp},K2870p1maxiJ{ϑpi(1b_i)2(p+q)pn2pqnj=1nk=1(ˉqijkMgjMgk)pεp+qq},K29280p1maxiJ{ϑpi(1b_i)p+qqn2pq(nj=1nk=1(ˉνijkMgkLgjϑj)p+nj=1nk=1(ˉνijkMgjLgkϑk)p)×(epqb_iˉδijk1¯δijkφ(t+)φ(t)pBp+εp)},K3070p1maxiJ{ϑpi(1b_i)p+qqn2pqnk=1nj=1(MgjMgk)pεp},K3170p1maxiJ{ϑpi(1b_i)2(p+q)pn2pqnj=1nk=1(ˉνijkMgjMgk)pεp+qq},K32140p1maxiJ{ϑpi(1b_i)p+qq[(nj=1(ˉμj)q)pq+(nj=1(|Tij|)q)pq]εp},K3370p1maxiJ{ϑpi(1b_i)2(p+q)qnpqnj=1(|Tij|ˉμj)pεp+qq},K34140p1maxiJ{ϑpi(1b_i)p+1q[(nj=1(ˉμj)q)pq+(nj=1(|Sij|)q)pq]εp},K3570p1maxiJ{ϑpi(1b_i)2(p+q)qnpqnj=1(|Sij|ˉμj)pεp+qq},K3670p1maxiJ{ϑpi(1b_i)p+qqεp},K3770p1maxiJ{ϑpi(1b_i)2(p+q)q|Ii|pεp+qq}.

    From the above estimates, it follows that

    φ(t+)φ(t)pBpPφ(t+)φ(t)pBp+Qεp, (3.12)

    where P is defined in condition (A4) and

    Q=2p1maxiJ{4p1(ˉai)pεp1+2p1(r1ρ)pεp1+70p1(1b_i)p+qq(ˉaiˉbi)pεp1+35p1(1b_i)p+qq(ˉbi)p(r1ρ)pεp1+35p1(1b_i)p+qq(ˉai)p(r1ρ)pεp1+35p1(1b_i)2(p+q)q(ˉaiˉbi)p(r1ρ)pεpq+70p1(1b_i)p+qq(r1ρ)pεp1+35p1(1b_i)2(p+q)q(ˉbi)p(r1ρ)pεpq+35p1ϑpi(1b_i)p+qqnpqnj=1(Lfjϑj)p×(r1ρ)pεp1+35p1ϑpi(1b_i)2(p+q)q(nj=1(ˉcij)q)pqnj=1(Lfjϑj)p(r1ρ)pεpq+70p1ϑpi(1b_i)p+1q(nj=1(ˉuij)q)pqnj=1(Lfjϑj)pεp1+35p1ϑpi(1b_i)p+qq×nj=1(Lfjϑj)pnpq(r1ρ)pεp1+35p1ϑpi(1b_i)2(p+q)q(nj=1(ˉuij)q)pqnj=1(Lfjϑj)p×(r1ρ)pεpq+70p1ϑpi(1b_i)p+qq[nj=1(ˉμj)p+nj=1|γij|p]εp1+35p1ϑpi(1b_i)2(p+q)q(nj=1|γij|q)pqnj=1(ˉμj)pεpq+140p1ϑpi(1b_i)p+qqn2pq×[nj=1nk=1(ˉθijkMgkLgjϑj)p+nj=1nk=1(ˉθijkMgjLgkϑk)p]εp1}+35p1ϑpi(1b_i)p+qq×n2pqnk=1nj=1(MgjMgk)pεp1+35p1ϑpi(1b_i)2(p+q)pn2pqnj=1nk=1(ˉθijkMgjMgk)pεpq+70p1ϑpi(1b_i)p+qq(nj=1(ˉαij)q)pqnj=1(Lfjϑj)pεp1]+35p1ϑpi(1b_i)p+qq×npqnj=1(Lfjϑj)pφpεp1+35p1ϑpi(1b_i)2(p+q)q(nj=1(ˉαij)q)pqnj=1(Lfjϑj)p×(r1ρ)pεpq+700p1ϑpi(1b_i)p+qq(nj=1(ˉβij)q)pqnj=1(Lfjϑj)pεp1
    \begin{align*} &\;\;\;\;\;\;+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\bigg(\frac{r}{1-\rho}\bigg)^{p}\varepsilon^{p-1}+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}}\\ &\;\;\;\;\;\;\times\bigg(\sum\limits_{j = 1}^{n}(\bar{\beta}_{ij})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\|\varphi^*\|_{\infty}^{p}\varepsilon^{\frac{p}{q}}+140^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{2p}{q}}\\ &\;\;\;\;\;\;\times\bigg(\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n(\bar{q}_{ijk}M_k^gL_{j}^{g}\vartheta_{j})^{p}+\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n(\bar{q}_{ijk}M_j^gL_k^g\vartheta_k)^p\bigg)\varepsilon^{p-1}+35^{p-1} \vartheta_i^{-p} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\\ &\;\;\;\;\;\;\times n^{\frac{2p}{q}} \sum\limits_{k = 1}^{n}\sum\limits_{j = 1}^{n}(M_j^gM_{k}^{g})^{p}\varepsilon^{p-1}+35^{p-1} \vartheta_i^{-p}(\frac{1}{\underline{b}_{i}^{\emptyset}})^{\frac{2(p+q)}{p}}n^{\frac{2p}{q}}\sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}(\bar{q}_{ijk}M_j^gM_k^g)^p\varepsilon^{\frac{p}{q}}\\ &\;\;\;\;\;\;+140^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{2p}{q}}\bigg(\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n( \bar{\nu}_{ijk}M_{k}^{g}L_{j}^{g}\vartheta_{j})^{p}+\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n( \bar{\nu}_{ijk}M_{j}^{g}L_{k}^{g}\vartheta_{k})^{p}\bigg)\varepsilon^{p-1}\\ &\;\;\;\;\;\;+35^{p-1}\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}} n^{\frac{2p}{q}}\sum\limits_{k = 1}^{n}\sum\limits_{j = 1}^{n}(M_j^gM_k^g )^p\varepsilon^{p-1}+35^{p-1}\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{p}}n^{\frac{2p}{q}}\\ &\;\;\;\;\;\;\times\sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}(\bar{\nu}_{ijk}M_j^gM_k^g)^p\varepsilon^{\frac{p}{q}}+70^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\bigg[\bigg(\sum\limits_{j = 1}^{n}(\bar{\mu}_{j})^{q}\bigg)^{\frac{p}{q}}\\ &\;\;\;\;\;\;+\bigg(\sum\limits_{j = 1}^{n}(|T_{ij}|_\infty)^{q}\bigg)^{\frac{p}{q}}\bigg]\varepsilon^{p-1}+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(|T_{ij}|_\infty\bar{\mu}_{j})^{p}\varepsilon^{\frac{p}{q}}\\ &\;\;\;\;\;\;+70^{p-1} \vartheta_i^{-p} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+1}{q}}\bigg[\bigg(\sum\limits_{j = 1}^{n}(\bar{\mu}_{j})^{q}\bigg)^{\frac{p}{q}} +\bigg(\sum\limits_{j = 1}^{n}(|S_{ij}|_\infty)^{q}\bigg)^{\frac{p}{q}}\bigg]\varepsilon^{p-1} \\ &\;\;\;\;\;\;+35^{p-1} \vartheta_i^{-p} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(|S_{ij}|_\infty\bar{\mu}_{j})^{p}\varepsilon^{\frac{p}{q}}+35^{p-1}\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\varepsilon^{p-1} \\ &\;\;\;\;\;\;+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}}|I_{i}|_\infty^{p}\varepsilon^{\frac{p}{q}}\bigg\}. \end{align*}

    Hence, by (3.12) and (A_4) , it holds that

    \begin{align*} \|\varphi^*(t+{\flat})-\varphi^*(t)\|_{B^{p}}^{p} \leq\frac{Q\varepsilon^{p}}{1-P}, \end{align*}

    which implies that \varphi^{*} is B^p -almost periodic. The proof is finished.

    Remark 3.1. Although we can prove that W = (L^\infty(\mathbb{R}, \mathcal{A})\cap B_{AP}^p(\mathbb{R}, \mathcal{A}), \|\cdot\|_\infty) is a Banach space, we still cannot directly use the fixed point theorem to determine the existence of almost periodic solutions for (1.1). Because there are higher-order terms in system (1.1), and W is not an algebra, we cannot prove that operator T is a self mapping.

    It is easy to prove the following stability results using the same method as the proof of Theorem 4.1 in [33] or the proof of Theorem 15 in [31].

    Theorem 3.2. Assume that (A_{1})-(A_{4}) hold. Then system (1.1) possesses a unique Besicovitch almost periodic solution, which is globally exponentially stable, i.e., if \bar{x} is the Besecovitch almost periodic solution with initial value \bar{\varphi} and x(t) is an arbitrary solution of system (1.1) with initial value \varphi , then there exist positive numbers \zeta > 0 and N > 0 satisfying

    |x(t)-\bar{x}(t)|_{1}\leq N\|\varphi-\bar{\varphi}\|_{\varrho}e^{-\zeta t}, \, \, \, t > 0,

    in which \|\varphi-\bar{\varphi}\|_{\varrho} = \max\limits_{i\in\mathcal{J}}\bigg\{\sup\limits_{t\in[- \varrho, 0]}|\varphi_{i}(t)-a_{i}(t)\varphi_{i}(t)-(\bar{\varphi}_{i}(t)-a_{i}(t)\bar{\varphi}_{i}(t))|_{1}\bigg\} .

    In this section, we provide an example to demonstrate the validity of the results obtained in this paper.

    Example 4.1. In system (1.1), let m = 3, n = 2 , and for i, j, k = 1, 2 , take the coefficients are as follows:

    \begin{align*} x_i(t) = \, &e_0x_i^0(t)+e_1x_i^1(t)+e_2x_i^2(t)+e_3x_i^3(t)+e_{12}x_i^{12}(t)+e_{13}x_i^{13}(t)+e_{23}x_i^{23}(t)+e_{123}x_i^{123}(t), \\ f_j(x) = \, &\frac{1}{100}e_{0}\sin{x_j^{12}}+\frac{3}{250}\sin(x_j^{12}+x_j^{123})e_{1}+\frac{1}{168}\sin(x_j^{1}+x_j^{13})e_{2}+\frac{1}{53}\sin(x_j^{2}+x_j^{123})e_{3}\\ &+\frac{1}{125}e_{12}\arctan{x_j^{3}}+\frac{1}{156}\sin(x_j^{3}+x_j^{123})e_{13}+\frac{1}{150}e_{23}\tanh{x_j^{12}}+\frac{1}{40}\sin(x_j^{1}+x_j^{12}\\ &+x_j^{123})e_{123}, \\ g_j(x) = \, &\frac{1}{48}e_{0}\sin{x_j^{13}}+\frac{1}{153}\sin(x_j^{12}+x_j^{23})e_{1}+\frac{1}{150}e_{2}\arctan{x_j^{13}}+\frac{1}{120}\sin(x_j^{12}+x_j^{123})e_{3}\\ &+\frac{1}{150}\sin(x_j^{12}-x_j^{23})e_{12}+\frac{1}{250}\sin(x_j^{2}+x_j^{13})e_{13}+\frac{1}{57}e_{23}\sin{x_j^{13}}+\frac{1}{60}\sin(x_j^{0}+x_j^{3}\\ &+x_j^{23})e_{123}, \\ a_1(t) = \, &(0.01+0.004\sin{t})e_0+(0.01+0.001\sin{\sqrt{6}t})e_1+(0.01+0.001\cos{\sqrt{3}t})e_2\\ &+(0.01+0.002\sin{\sqrt{5}t})e_3+(0.01+0.003\sin{t})e_{12}+(0.01+0.002\cos{t})e_{13}\\ &+(0.01+0.002\cos{\sqrt{2}t})e_{23}+(0.01+0.002\sin{\sqrt{2}t})e_{123}, \\ a_2(t) = \, &(0.01+0.002\sin{t})e_0+(0.01+0.002\cos{3t})e_1+(0.01+0.001\sin{\sqrt{2}t})e_2\\ &+(0.01+0.001\sin{\sqrt{7}t})e_3+(0.01+0.001\sin{\sqrt{5}t})e_{12}+(0.01+0.002\cos{t})e_{13}\\ &+(0.01+0.002\cos{\sqrt{5}t})e_{23}+(0.01+0.002\sin{\sqrt{3}t})e_{123}, \\ b_{1}(t) = \, & (10+0.05\sin t)e_0+(0.2+0.01\cos\sqrt{2}t)e_1+(0.2+0.02\sin t)e_2\\ &+(0.2+0.01\sin\sqrt{3}t)e_3+(0.2+0.06\sin3t)e_{12}+(0.2+0.05\sin2t)e_{13}\\ &+(0.2+0.01\sin t)e_{23}+(0.2+0.01\cos\sqrt{3}t)e_{123}, \\ b_2(t) = \, & (0.2+0.01\cos\sqrt{3}t)e_0+(0.2+0.02\sin t)e_1+(0.2+0.07\cos t)e_2\\ &+(0.2+0.05\cos\sqrt{5}t)e_3+(10+0.05\sin\sqrt{5}t)e_{12}+(0.2+0.02\cos\sqrt{5}t)e_{13}\\ &+(0.2+0.01\sin t)e_{23}+(0.2+0.01\sin7t)e_{123}, \\ c_{11}(t) = \, &0.01e_{0}\sin{2t}+0.02e_{3}\sin{2t}+0.02e_{23}\cos{\sqrt{2}t}+0.03e_{123}\cos{11t}, \\ c_{12}(t) = \, &0.01e_{0}\sin{\sqrt{5}t}+0.02e_{2}\cos^{2}{3t}+0.01e_{3}\sin{5t}+0.03e_{12}\sin{\sqrt{3}t}, \\ c_{21}(t) = \, &0.01e_{0}\sin{6t}+0.02e_{3}\cos{\sqrt{2}t}+0.03e_{23}\cos{\sqrt{3}t}+0.03e_{123}\cos^{2}{2t}, \\ c_{22}(t) = \, &0.01e_{0}\sin^{2}{7t}+0.04e_{2}\cos{6t}+0.04e_{3}\sin{\sqrt{5}t}+0.03e_{12}\cos{7t}, \\ u_{11}(t) = \, &0.02e_{0}\sin{4t}+0.01e_{3}\cos{\sqrt{2}t}+0.04e_{23}\cos{\sqrt{3}t}+0.03e_{123}\sin^{2}{2t}, \\ u_{12}(t) = \, &0.02e_{0}\cos{9t}+0.03e_{2}\cos^{2}{3t}+0.04e_{3}\sin{5t}+0.01e_{12}\sin{3t}, \\ u_{21}(t) = \, &0.02e_{0}\sin{3t}+0.03e_{3}\cos{\sqrt{3}t}+0.01e_{23}\cos{\sqrt{3}t}+0.02e_{123}\sin^{2}{7t}, \\ u_{22}(t) = \, &0.02e_{0}\cos{t}+0.03e_{2}\sin^{2}{5t}+0.03e_{3}\sin{3t}+0.04e_{12}\cos{2t}, \\ \alpha_{11}(t) = \, &0.01e_{3}\sin{3t}+0.04e_{12}\cos{5t}+0.02e_{13}\cos{\sqrt{5}t}+0.03e_{123}\sin^{2}{3t}, \\ \alpha_{12}(t) = \, &0.01e_{2}\sin{\sqrt{3}t}+0.02e_{3}\sin{4t}+0.03e_{12}\sin{7t}+0.01e_{123}\cos^{2}{5t}, \\ \alpha_{21}(t) = \, &0.03e_{3}\cos{4t}+0.01e_{12}\sin{\sqrt{5}t}+0.03e_{23}\cos{4t}+0.01e_{123}\cos^{2}{5t}, \\ \alpha_{22}(t) = \, &0.01e_{0}\cos{\sqrt{5}t}+0.04e_{3}\sin{3t}+0.03e_{12}\sin^{2}{3t}+0.02e_{123}\cos{4t}, \\ \beta_{11}(t) = \, &0.01e_{0}\cos{5t}+0.02e_{1}\sin{3t}+0.01e_{2}\sin{\sqrt{7}t}+0.03e_{123}\cos{3t}, \\ \beta_{12}(t) = \, &0.03e_{0}\sin{7t}+0.02e_{1}\sin{t}+0.03e_{2}\sin{\sqrt{3}t}+0.02e_{23}\sin{3t}, \\ \beta_{21}(t) = \, &0.03e_{0}\cos{7t}+0.02e_{1}\sin{\sqrt{5}t}+0.04e_{2}\sin{\sqrt{6}t}+0.01e_{123}\sin{5t}, \\ \beta_{22}(t) = \, &0.03e_{0}\cos{2t}+0.02e_{1}\cos{3t}+0.04e_{2}\cos{\sqrt{2}t}+0.02e_{23}\cos{3t}, \\ \theta_{111}(t) = \, &0.03e_{0}\sin{\sqrt{2}t}+0.02e_{1}\cos{\sqrt{5}t}+0.01e_{2}\sin{\sqrt{7}t}+0.02e_{12}\cos{2t}, \\ \theta_{112}(t) = \, &0.04e_{0}\cos{\sqrt{5}t}+0.02e_{1}\sin{3t}+0.03e_{2}\sin{\sqrt{3}t}+0.03e_{13}\cos{\sqrt{3}t}, \\ \theta_{121}(t) = \, &0.02e_{0}\sin{\sqrt{3}t}+0.02e_{2}\cos{3t}+0.04e_{12}\sin{\sqrt{6}t}+0.01e_{23}\cos{3t}, \\ \theta_{122}(t) = \, &0.03e_{0}\sin{\sqrt{5}t}+0.04e_{2}\cos{5t}+0.03e_{12}\sin{\sqrt{5}t}+0.02e_{23}\cos{4t}, \\ \theta_{211}(t) = \, &0.03e_{0}\sin{3t}+0.03e_{1}\cos{t}+0.01e_{2}\cos{4t}+0.01e_{12}\sin{5t}, \\ \theta_{212}(t) = \, &0.04e_{0}\cos{3t}+0.02e_{1}\sin{t}+0.01e_{2}\cos{3t}+0.01e_{13}\sin{3t}, \\ \theta_{221}(t) = \, &0.03e_{0}\sin{4t}+0.03e_{2}\cos{\sqrt{2}t}+0.02e_{12}\sin{5t}+0.03e_{23}\cos{3t}, \\ \theta_{222}(t) = \, &0.01e_{0}\sin{4t}+0.01e_{2}\cos{3t}+0.01e_{12}\sin{4t}+0.04e_{123}\cos{2t}, \\ q_{111}(t) = \, &0.06e_{0}\sin{5t}+0.04e_{1}\cos{6t}+0.03e_{12}\sin{\sqrt{3}t}+0.03e_{23}\sin^{2}{2t}, \\ q_{112}(t) = \, &0.05e_{0}\sin{2t}+0.02e_{1}\cos{\sqrt{2}t}+0.04e_{2}\sin{3t}+0.02e_{23}\cos{3t}, \\ q_{121}(t) = \, &0.02e_{0}\cos{4t}+0.02e_{1}\cos^{2}{3t}+0.05e_{2}\sin{4t}+0.03e_{23}\cos{4t}, \\ q_{122}(t) = \, &0.05e_{0}\sin{4t}+0.03e_{1}\cos{\sqrt{3}t}+0.03e_{12}\cos{2t}+0.04e_{23}\sin{3t}, \\ q_{211}(t) = \, &0.01e_{0}\cos{\sqrt{5}t}+0.02e_{1}\sin{3t}+0.04e_{12}\cos{\sqrt{3}t}+0.02e_{23}\sin{t}, \\ q_{212}(t) = \, &0.01e_{0}\cos{4t}+0.06e_{1}\cos{\sqrt{2}t}+0.03e_{12}\sin{5t}+0.04e_{23}\cos{2t}, \\ q_{221}(t) = \, &0.01e_{0}\cos{3t}+0.02e_{1}\sin{t}+0.02e_{2}\cos{\sqrt{3}t}+0.01e_{23}\sin{2t}, \\ q_{222}(t) = \, &0.01e_{0}\cos{9t}+0.05e_{1}\cos^{2}{3t}+0.03e_{12}\sin{t}+0.05e_{23}\cos{t}, \\ \nu_{111}(t) = \, &0.02e_{0}\sin{3t}+0.03e_{1}\cos{\sqrt{3}t}+0.01e_{2}\cos{5t}+0.01e_{12}\sin{4t}, \\ \nu_{112}(t) = \, &0.02e_{0}\cos{t}+0.03e_{1}\sin^{2}{5t}+0.02e_{12}\cos{3t}+0.03e_{23}\sin{2t}, \\ \nu_{121}(t) = \, &0.05e_{0}\sin{3t}+0.04e_{2}\sin{3t}+0.03e_{12}\cos{2t}+0.02e_{23}\sin{3t}, \\ \nu_{122}(t) = \, &0.03e_{0}\cos{2t}+0.04e_{2}\cos{\sqrt{3}t}+0.05e_{12}\sin{\sqrt{2}t}+0.04e_{23}\cos{\sqrt{3}t}, \\ \nu_{211}(t) = \, &0.03e_{0}\sin{7t}+0.04e_{1}\sin{3t}+0.02e_{2}\cos{\sqrt{3}t}+0.03e_{12}\sin{2t}, \\ \nu_{212}(t) = \, &0.05e_{0}\cos{5t}+0.02e_{2}\cos{4t}+0.03e_{12}\sin{7t}+0.04e_{23}\cos{t}, \\ \nu_{221}(t) = \, &0.02e_{0}\sin{3t}+0.03e_{2}\cos{2t}+0.04e_{12}\sin{t}+0.01e_{23}\cos{2t}, \\ \nu_{222}(t) = \, &0.03e_{0}\sin{6t}+0.03e_{2}\cos{t}+0.01e_{12}\sin{2t}+0.04e_{23}\cos{3t}, \\ I_1(t) = \, &0.32e_{0}(\sin{\sqrt{5}t}+\frac{1}{1+t^2})+0.5e_{1}\cos{\sqrt{2}t}+0.36e_{2}\sin{\sqrt{3}t}+0.23e_{3}\cos{\sqrt{3}t}\\ &+0.49e_{12}\sin{\sqrt{2}t}+0.25e_{13}\cos{\sqrt{5}t}+0.42e_{23}\cos{\sqrt{5}t}+0.15e_{123}(\sin{\sqrt{3}t}+e^{-|t|}), \\ I_2(t) = \, &0.25e_{0}\cos{\sqrt{3}t}+0.42e_{1}(\sin{\sqrt{2}t}+e^{-|t|})+0.28e_{2}\sin{\sqrt{3}t}+0.45e_{3}\cos{\sqrt{3}t}\\ &+0.32e_{12}(\cos{\sqrt{2}t}+\frac{1}{1+t^{2}})+0.46e_{13}\sin{\sqrt{3}t}+0.15e_{23}\sin{\sqrt{5}t}+0.26e_{123}\cos{\sqrt{3}t}, \\ \gamma_{ij}(t) = \, &0.07e_{0}\cos{2t}+0.03e_{1}\sin{2t}+0.04e_{2}(\sin{2t}+\frac{1}{1+t^{2}})+0.06e_{3}\cos{t}\\ &+0.08e_{12}(\sin{t}+e^{-|t|})+0.02e_{13}\cos{t}+0.05e_{23}\sin{2t}+0.04e_{123}\cos{t}, \\ \mu_{j}(t) = \, &0.2e_{0}\sin{\sqrt{2}t}+0.3e_{1}\sin{\sqrt{3}t}+0.4e_{2}\sin{\sqrt{2}t}+0.6e_{3}\cos{\sqrt{2}t}\\ &+0.8e_{12}\cos{\sqrt{3}t}+0.3e_{13}\cos{\sqrt{5}t}+0.4e_{23}\sin{\sqrt{3}t}+0.2e_{123}\cos{\sqrt{6}t}, \\ T_{ij}(t) = \, &0.006e_{0}\sin{t}+0.004e_{1}\sin{t}+0.003e_{2}(\sin{t}+\frac{1}{1+t^{2}})+0.001e_{3}\cos{t}\\ &+0.002e_{12}\sin{t}+0.003e_{13}(\cos{t}+e^{-|t|})+0.002e_{23}\cos{t}+0.005e_{123}\sin{t}, \\ S_{ij}(t) = \, &0.002e_{0}\cos{t}+0.003e_{1}\sin{t}+0.001e_{2}\cos{t}+0.001e_{3}(\sin{t}+\frac{1}{2+t^{2}})\\ &+0.003e_{12}(\sin{t}+e^{-|t+1|})+0.002e_{13}\cos{t}+0.001e_{23}\sin{t}+0.002e_{123}\cos{t}, \\ \sigma_{ij}(t) = \, &1-0.3\sin{t}, \quad \eta_{ij}(t) = 1-0.8\cos{3t}, \quad \delta_{ijk}(t) = 1-0.6\sin{2t}, \\ \tau_1(t) = \, &1-0.1\sin{t}, \quad \tau_2(t) = 1-0.3\cos{t} . \end{align*}

    Then, it is easy to see that conditions (A_1) and (A_2) are satisfied.

    Moreover, take \vartheta_{1} = \vartheta_{2} = 1, p = 3, q = \frac{3}{2} , then through simple calculations, we obtain

    \begin{align*} &\bar{a}_{1} = 0.014, \bar{a}_{2} = 0.012, \bar{b}_{1}^{\emptyset} = 10.05, \bar{b}_{1}^{c} = 0.26, \underline{b}_{1}^{\emptyset} = 9.95, \bar{b}_{2}^{\emptyset} = 10.05, \bar{b}_{2}^{c} = 0.27, \underline{b}_{2}^{\emptyset} = 9.95, \\ &\bar{c}_{11} = 0.03, \bar{c}_{12} = 0.03, \bar{c}_{21} = 0.03, \bar{c}_{22} = 0.04, \bar{u}_{11} = 0.04, \bar{u}_{12} = 0.04, \bar{u}_{21} = 0.03, \bar{u}_{22} = 0.04, \\ &\bar{\alpha}_{11} = 0.04, \bar{\alpha}_{12} = 0.03, \bar{\alpha}_{21} = 0.03, \bar{\alpha}_{22} = 0.04, \bar{\beta}_{11} = 0.03, \bar{\beta}_{12} = 0.03, \bar{\beta}_{21} = 0.04, \bar{\beta}_{22} = 0.04, \\ &\bar{\theta}_{111} = 0.03, \bar{\theta}_{112} = 0.04, \bar{\theta}_{121} = 0.04, \bar{\theta}_{122} = 0.04, \bar{\theta}_{211} = 0.03, \bar{\theta}_{212} = 0.04, \bar{\theta}_{221} = 0.03, \\ &\bar{\theta}_{222} = 0.04, \bar{q}_{111} = 0.06, \bar{q}_{112} = 0.05, \bar{q}_{121} = 0.05, \bar{q}_{122} = 0.05, \bar{q}_{211} = 0.04, \bar{q}_{212} = 0.06, \\ &\bar{q}_{221} = 0.02, \bar{q}_{222} = 0.05, \bar{\nu}_{111} = 0.03, \bar{\nu}_{112} = 0.03, \bar{\nu}_{121} = 0.05, \bar{\nu}_{122} = 0.05, \bar{\nu}_{211} = 0.04, \\ &\bar{\nu}_{212} = 0.05, \bar{\nu}_{221} = 0.04, \bar{\nu}_{222} = 0.04, \bar{\tau}_{i} = \bar{\tau}'_{i} = 0.1, \bar{\sigma}_{ij} = \bar{\sigma}'_{ij} = 0.3, \bar{\eta}_{ij} = \bar{\eta}'_{ij} = 0.8, \\ &\bar{\delta}_{ijk} = \bar{\delta}'_{ijk} = 0.6, L_{1}^{f} = L_{2}^{f} = \frac{1}{40}, L_{1}^{g} = L_{2}^{g} = \frac{1}{48}, M_{1}^{g} = M_{2}^{g} = \frac{1}{48} , \rho \approx0.054972 < 1, \\ &P\approx0.518973 < 1 . \end{align*}

    Hence, (A_{3}) and (A_{4}) are also satisfied. Consequently, in view of Theorem 3.2, we know that system (1.1) has a unique Besicovitch almost periodic solution that is globally exponentially stable (see Figures 14).

    Figure 1.  Curves of x_{1}^{0}(t), x_{2}^{0}(t), x_{1}^{1}(t) , and x_{2}^{1}(t) of system (1.1) with two different initial values.
    Figure 2.  Curves of x_{1}^{2}(t), x_{2}^{2}(t), x_{1}^{3}(t) , and x_{2}^{3}(t) of system (1.1) with two different initial values.
    Figure 3.  Curves of x_{1}^{12}(t), x_{2}^{12}(t), x_{1}^{13}(t) , and x_{2}^{13}(t) of system (1.1) with two different initial values.
    Figure 4.  Curves of x_{1}^{23}(t), x_{2}^{23}(t), x_{1}^{123}(t) , and x_{2}^{123}(t) of system (1.1) with two different initial values.

    Remark 4.1. Even when the system considered in Example 4.1 degenerates into a real-valued system, there are no existing results to derive the results of Example 4.1.

    This article introduces a new method to establish the existence and global exponential stability of Besicovitch almost periodic solutions for Clifford-valued high-order Hopfield fuzzy NNs with D operators. The methods and results of this article can be applied to study the generalized almost periodic and almost automorphic dynamics of high-order NNs.

    Bing Li: Methodology, Conceptualization, Writing - review and editing; Yuan Ning: Writing - original draft, Visualization; Yongkun Li: Methodology, Conceptualization, Funding acquisition, Writing - review and editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China, grant number 12261098.

    The authors declare no conflict of interest.



    [1] P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549–559.
    [2] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195.
    [3] M. Idrees, H. Ma, M. Wu, A. R. Nizami, M. Munir, S. Ali, Metric dimension of generalized Mobius ladder and its application to wsn localization, J. Adv. Comput. Intell., 24 (2020), 3–11. https://doi.org/10.20965/jaciii.2020.p0003 doi: 10.20965/jaciii.2020.p0003
    [4] S. Soderberg, H. S. Shapiro, A combinatory detection problem, Am. Math. Mon., 70 (1963), 1066–1070. https://doi.org/10.1080/00029890.1963.11992174 doi: 10.1080/00029890.1963.11992174
    [5] A. Sebo, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29 (2004), 191–406. https://doi.org/10.1287/moor.1030.0070 doi: 10.1287/moor.1030.0070
    [6] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229. https://doi.org/10.1016/0166-218X(95)00106-2 doi: 10.1016/0166-218X(95)00106-2
    [7] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0 doi: 10.1016/S0166-218X(00)00198-0
    [8] M. Ali, G. Ali, U. Ali, M. T. Rahim, On cycle related graphs with constant metric dimension, Open J. Discrete Math., 2 (2012), 21–23. https://doi.org/10.4236/ojdm.2012.21005 doi: 10.4236/ojdm.2012.21005
    [9] M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, 1990, 37–79.
    [10] D. T. Murdiansyah, Adiwijaya, Computing the metric dimension of hypercube graphs by particle swarm optimization algorithms, In: Recent advances on soft computing and data mining: The second international conference on soft computing and data mining (SCDM-2016), Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-51281-5_18
    [11] H. Fernau, P. Heggernes, P. Van't Hof, D. Meistera, R. Saei, Computing the metric dimension for chain graphs, Inform. Process. Lett., 115 (2015), 671–676. https://doi.org/10.1016/j.ipl.2015.04.006 doi: 10.1016/j.ipl.2015.04.006
    [12] M. Mulyono, W. Wulandari, The metric dimension of friendship graph Fn, lollipop graph L(m, n) and petersen graph P(n, m), Bull. Math., 8 (2016), 117–124.
    [13] F. S. Raj, A. George, On the metric dimension of silicate stars, ARPN J. Eng. Appl. Sci., 10 (2015), 2187–2192.
    [14] S. Hayat, A. Khan, Y. Zhong, On resolvability- and domination-related parameters of complete multipartite graphs, Mathematics, 10 (2022), 1815. https://doi.org/10.3390/math10111815 doi: 10.3390/math10111815
    [15] P. Manuel, B. Rajan, I. Rajasingh, C. Monica, On minimum metric dimension of honeycomb networks, J. Discret. Algorit., 6 (2008), 20–27. https://doi.org/10.1016/j.jda.2006.09.002 doi: 10.1016/j.jda.2006.09.002
    [16] S. Hayat, A. Khan, M. Y. H. Malik, M. Imran, M. K. Siddiqui, Fault-tolerant metric dimension of interconnection networks, IEEE Access, 8 (2020), 145435–145445. https://doi.org/10.1109/ACCESS.2020.3014883 doi: 10.1109/ACCESS.2020.3014883
    [17] L. Saha, K. Tiwary, K. C. Das, Y. Shang, Optimal multi-level fault-tolerant resolving sets of circulant graph C_n(1, 2), Mathematics, 11 (2023), 1896. https://doi.org/10.3390/math11081896 doi: 10.3390/math11081896
    [18] H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185. https://doi.org/10.1016/j.amc.2018.07.010 doi: 10.1016/j.amc.2018.07.010
    [19] H. M. A. Siddiqui, S. Hayat, A. Khan, M. Imran, A. Razzaq, J. B. Liu, Resolvability and fault-tolerant resolvability structures of convex polytopes, Theor. Comput. Sci., 796 (2019), 114–128. https://doi.org/10.1016/j.tcs.2019.08.032 doi: 10.1016/j.tcs.2019.08.032
    [20] L. Saha, R. Lama, K. Tiwary, K. C. Das, Y. Shang, Fault-tolerant metric dimension of circulant graphs, Mathematics, 10 (2022), 124. https://doi.org/10.3390/math10010124 doi: 10.3390/math10010124
    [21] H. Raza, S. Hayat, M. Imran, X. F. Pan, Fault-tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 78. https://doi.org/10.3390/math7010078 doi: 10.3390/math7010078
    [22] L. Saha, M. Basak, K. Tiwary, K. C. Das, Y. Shang, On the characterization of a minimal resolving set for power of paths, Mathematics, 10 (2022), 2445. https://doi.org/10.3390/math10142445 doi: 10.3390/math10142445
    [23] J. Caceres, C. Hernado, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, et al., On the metric dimension of cartesian products of graphs, SIAM J. Discrete Math., 21 (2007), 423–441. https://doi.org/10.1137/050641867 doi: 10.1137/050641867
    [24] B. Spinelli, L. E. Celis, P. Thiran, Observer placement for source localization: The effect of budgets and transmission variance, In: 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2016,743–751. https://doi.org/10.1109/ALLERTON.2016.7852307
    [25] B. Spinelli, L. E. Celis, P. Thiran, How many sensors to localize the source? The double metric dimension of random networks, In: 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2018, 1036–1043. https://doi.org/10.1109/ALLERTON.2018.8635897
    [26] J. Kratica, M. Cangalovic, V. Kovacevic-Vujcic, Computing minimal doubly resolving sets of graphs, Comput. Oper. Res., 36 (2009), 2149–2159. https://doi.org/10.1016/j.cor.2008.08.002 doi: 10.1016/j.cor.2008.08.002
    [27] M. Cangalovic, J. Kratica, V. Kovacevic-Vujcic, M. Stojanovic, Minimal doubly resolving sets of prism graphs, Optimization, 62 (2013), 1037–1043. https://doi.org/10.1080/02331934.2013.772999 doi: 10.1080/02331934.2013.772999
    [28] J. Kratica, V. Kovacevic-Vujcic, M. Cangalovic, M. Stojanovic, Minimal doubly resolving sets and the strong metric dimension of some convex polytope, Appl. Math. Comput., 218 (2012), 9790–9801. https://doi.org/10.1016/j.amc.2012.03.047 doi: 10.1016/j.amc.2012.03.047
    [29] J. Kratica, V. Kovacevic-Vujcic, M. Cangalovic, M. Stojanovic, Minimal doubly resolving sets and the strong metric dimension of Hamming graphs, Appl. Anal. Discrete Math., 6 (2012), 63–71. https://doi.org/10.2298/AADM111116023K doi: 10.2298/AADM111116023K
    [30] X. Chen, X. Hu, C. Wang, Approximation for the minimum cost doubly resolving set problem, Theor. Comput. Sci., 609 (2016), 526–543. https://doi.org/10.1016/j.tcs.2015.03.048 doi: 10.1016/j.tcs.2015.03.048
    [31] A. Ahmad, S. Sultan, On minimal doubly resolving sets of circulant graphs, Acta Mech. Slovaca, 21 (2017), 6–11. https://doi.org/10.21496/ams.2017.002 doi: 10.21496/ams.2017.002
    [32] M. Ahmad, Z. Zahid, M. Javaid, M. A. Ashebo, A study on minimal doubly resolving sets of certain families of networks, IEEE Access, 11 (2023), 56344–56352. https://doi.org/10.1109/ACCESS.2023.3282701 doi: 10.1109/ACCESS.2023.3282701
    [33] A. Ahmad, M. Baca, S. Sultan, Minimal doubly resolving sets of necklace graph, Math. Rep., 20 (2018), 123–129.
    [34] M. Jannesari, Graphs with doubly resolving number 2, Discrete Appl. Math., 339 (2023), 178–183. https://doi.org/10.1016/j.dam.2023.06.017 doi: 10.1016/j.dam.2023.06.017
    [35] M. Ahmad, Z. Zahid, M. Javaid, E. Bonyah, Studies of chordal ring networks via double metric dimensions, Math. Probl. Eng., 2022 (2022), 8303242. https://doi.org/10.1155/2022/8303242 doi: 10.1155/2022/8303242
    [36] H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of certain interconnection networks, J. Appl. Math. Comput., 60 (2019), 517–535. https://doi.org/10.1007/s12190-018-01225-y doi: 10.1007/s12190-018-01225-y
    [37] M. Ahmad, Z. Zahid, S. Zafar, On minimal edge version of doubly resolving sets of a graph, J. Comb. Math. Comb. Comput., 119 (2024), 175–184. https://doi.org/10.61091/jcmcc119-18 doi: 10.61091/jcmcc119-18
    [38] J. B. Liu, A. Zafari, Computing minimal doubly resolving sets and the strong metric dimension of the layer sun graph and the line graph of the layer sun graph, Complexity, 2020 (2020), 6267072. https://doi.org/10.1155/2020/6267072 doi: 10.1155/2020/6267072
    [39] M. Ahmad, Z. Zahid, T. Rashid, J. L. G. Guirao, Computing edge version of resolvability and double resolvability of a graph, J. Chem., 2022 (2022), 2448032. https://doi.org/10.1155/2022/2448032 doi: 10.1155/2022/2448032
    [40] J. B. Liu, A. Zafari, H. Zarei, Metric dimension, minimal doubly resolving sets, and the strong metric dimension for jellyfish graph and cocktail party graph, Complexity, 2020 (2020), 9407456. https://doi.org/10.1155/2020/9407456 doi: 10.1155/2020/9407456
    [41] J. B. Liu, Z. Zahid, R. Nasir, W. Nazeer, Edge version of metric dimension and doubly resolving sets of the necklace graphs, Mathematics, 6 (2018), 243. https://doi.org/10.3390/math6110243 doi: 10.3390/math6110243
    [42] M. Ahmad, N. Ameen, Z. Zahid, S. Zafar, Computing edge version of metric and double metric dimensions of Kayak paddle graphs, Discret. Math. Algorit., 12 (2020), 2050070. https://doi.org/10.1142/S1793830920500706 doi: 10.1142/S1793830920500706
    [43] J. Lv, X. Lv, R. Nasir, Z. Zahid, The edge version of metric dimension for the family of circulant graphs C_n(1, 2), in IEEE Access, 9 (2021), 78165–78173. https://doi.org/10.1109/ACCESS.2021.3083182
    [44] B. Spinelli, L. Brunella, E. Celis, P. Thiran, The effect of transmission variance on observer placement for source-localization, Appl. Netw. Sci., 2 (2017), 20. https://doi.org/10.1007/s41109-017-0040-5 doi: 10.1007/s41109-017-0040-5
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(939) PDF downloads(36) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog