Processing math: 100%
Research article Special Issues

Stability analysis of solutions of certain May's host-parasitoid model by using KAM theory

  • We use the Kolmogorov-Arnold-Moser (KAM) theory to investigate the stability of solutions of a system of difference equations, a certain class of a generalized May's host-parasitoid model. We show the existence of the extinction, interior, and boundary equilibrium points and examine their stability. When the rate of increase of hosts is less than one, the zero equilibrium is globally asymptotically stable, which means that both populations are extinct. We thoroughly describe the dynamics of 1:1 non-isolated resonance fixed points and have used the KAM theory to determine the stability of interior equilibrium point. Also, we have conducted several numerical simulations to support our findings by using the software package Mathematica.

    Citation: Mirela Garić-Demirović, Dragana Kovačević, Mehmed Nurkanović. Stability analysis of solutions of certain May's host-parasitoid model by using KAM theory[J]. AIMS Mathematics, 2024, 9(6): 15584-15609. doi: 10.3934/math.2024753

    Related Papers:

    [1] Zongcheng Li, Jin Li . Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations. AIMS Mathematics, 2023, 8(8): 18141-18162. doi: 10.3934/math.2023921
    [2] Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439
    [3] Jin Li . Barycentric rational collocation method for fractional reaction-diffusion equation. AIMS Mathematics, 2023, 8(4): 9009-9026. doi: 10.3934/math.2023451
    [4] Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng . A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017
    [5] Kareem T. Elgindy, Hareth M. Refat . A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps. AIMS Mathematics, 2023, 8(2): 3561-3605. doi: 10.3934/math.2023181
    [6] Qasem M. Tawhari . Mathematical analysis of time-fractional nonlinear Kuramoto-Sivashinsky equation. AIMS Mathematics, 2025, 10(4): 9237-9255. doi: 10.3934/math.2025424
    [7] Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264
    [8] Yangfang Deng, Zhifeng Weng . Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation. AIMS Mathematics, 2021, 6(4): 3857-3873. doi: 10.3934/math.2021229
    [9] M. Mossa Al-Sawalha, Safyan Mukhtar, Albandari W. Alrowaily, Saleh Alshammari, Sherif. M. E. Ismaeel, S. A. El-Tantawy . Analytical solutions to time-space fractional Kuramoto-Sivashinsky Model using the integrated Bäcklund transformation and Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(5): 12357-12374. doi: 10.3934/math.2024604
    [10] Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048
  • We use the Kolmogorov-Arnold-Moser (KAM) theory to investigate the stability of solutions of a system of difference equations, a certain class of a generalized May's host-parasitoid model. We show the existence of the extinction, interior, and boundary equilibrium points and examine their stability. When the rate of increase of hosts is less than one, the zero equilibrium is globally asymptotically stable, which means that both populations are extinct. We thoroughly describe the dynamics of 1:1 non-isolated resonance fixed points and have used the KAM theory to determine the stability of interior equilibrium point. Also, we have conducted several numerical simulations to support our findings by using the software package Mathematica.



    The mathematical study of q-calculus has been a subject of top importance for researchers due to its huge applications in unique fields. Few recognized work at the application of q-calculus firstly added through Jackson [4]. Later, q-analysis with geometrical interpretation become diagnosed. Currently, q-calculus has attained the attention researchers due to its massive applications in mathematics and physics. The in-intensity evaluation of q-calculus changed into first of all noted with the aid of Jackson [4,5], wherein he defined q-derivative and q-integral in a totally systematic way. Recently, authors are utilizing the q-integral and q-derivative to study some new sub-families of univalent functions and obtain certain new results, see for example Nadeem et al. [8], Obad et al. [11] and reference therein.

    Assume that fC. Furthermore, f is normalized analytic, if f along f(0)=0,f(0)=1 and characterized as

    f(z)=z+j=2ajzj. (1.1)

    We denote by A, the family of all such functions. Let fA be presented as (1.1). Furthermore,

    fisunivalentξ1ξ2f(ξ1)f(ξ2),  ξ1,ξ2E.

    We present by S the family of all univalent functions. Let ˜pC be analytic. Furthermore, ˜pP, iff R(˜p(z))>0, along ˜p(0)=1 and presented as follows:

    ˜p(z)=1+j=1cjzj. (1.2)

    Broadening the idea of P, the family P(α0), 0α0<1 defined by

    (1α0)p1+α0=p(z)pP(α0),p1P,

    for further details one can see [2].

    Assume that C, K and S signify the common sub-classes of A, which contains convex, close-to-convex and star-like functions in E. Furthermore, by S(α0), we meant the class of starlike functions of order α0, 0α0<1, for details, see [1,2] and references therein. Main motivation behind this research work is to extend the concept of Kurki and Owa [6] into q-calculus.

    The structure of this paper is organized as follows. For convenience, Section 2 give some material which will be used in upcoming sections along side some recent developments in q-calculus. In Section 3, we will introduce our main classes Cq(α0,β0) and Sq(α0,β0). In Section 4, we will discuss our main result which include, inclusion relations, q-limits on real parts and integral invariant properties. At the end, we conclude our work.

    The concept of Hadamard product (convolution) is critical in GFT and it emerged from

    Φ(r2eiθ)=(gf)(r2eiθ)=12π2π0g(rei(θt))f(reit)dt, r<1,

    and

    H(z)=z0ξ1h(ξ)dξ, |ξ|<1

    is integral convolution. Let f be presented as in (1.1), the convolution (fg) is characterize as

    (fg)(ζ)=ζ+j=2ajbjζj,  ζE,

    where

    g(ζ)=ζ+b2ζ2+=ζ+j=2bjζj, (2.1)

    for details, see [2].

    Let h1 and h2 be two functions. Then, h1h2, ϖ analytic such that ϖ(0)=0,  |ϖ(z)|<1, with h1(z)=(h2ϖ)(z). It can be found in [1] that, if h2S, then

    h1(0)=h2(0) and h1(E)h2(E)h1h2,

    for more information, see [7].

    Assume that q(0,1). Furthermore, q-number is characterized as follows:

    [υ]q={1qυ1q,ifυC,j1k=0qk=1+q+q2+...+qj1,ifυ=jN. (2.2)

    Utilizing the q-number defined by (2.2), we define the shifted q-factorial as the following:

    Assume that q(0,1). Furthermore, the shifted q-factorial is denoted and given by

    [j]q!={1ifj=0,jk=1[k]qifjN.

    Let fC. Then, utilizing (2.2), the q-derivative of the function f is denoted and defined in [4] as

    (Dqf)(ζ)={f(ζ)f(qζ)(1q)ζ,ifζ0,f(0),ifζ=0, (2.3)

    provided that f(0) exists.

    That is

    limq1f(ζ)f(qζ)(1q)ζ=limq1(Dqf)(ζ)=f(ζ).

    If fA defined by (1.1), then,

    (Dqf)(ζ)=1+j=2[j]qajζj,ζE. (2.4)

    Also, the q-integral of fC is defined by

    ζ0f(t)dqt=ζ(1q)i=0qif(qiζ), (2.5)

    provided that the series converges, see [5].

    The q-gamma function is defined by the following recurrence relation:

    Γq(ζ+1)=[ζ]qΓq(ζ) and Γq(1)=1.

    In recent years, researcher are utilizing the q-derivative defined by (2.3), in various branches of mathematics very effectively, especially in Geometric Function Theory (GFT). For further developments and discussion about q-derivative defined by (2.3), we can obtain excellent articles produced by famous mathematician like [3,8,9,10,12,13,14] and many more.

    Ismail et al. [3] investigated and study the class Cq as

    Cq={fA:R[Dq(zDqf(z))Dqf(z)]>0,0<q<1,zE}.

    If q1, then Cq=C.

    Later, Ramachandran et al. [12] discussed the class Cq(α0), 0α0<1, given by

    Cq(α0)={fA:R(Dq(zDqf(z))Dqf(z))>α0,0<q<1,zE}.

    For α0=0, Cq(α0)=Cq.

    Now, extending the idea of [13] and by utilizing the q-derivative defined by (2.3), we define the families Cq(α0,β0) and Sq(α0,β0) as follows:

    Definition 2.1. Let fA and α0,β0R such that 0α0<1<β0. Then,

    fCq(α0,β0)α0<R(Dq(zDqf(z))Dqf(z))<β0,zE. (2.6)

    It is obvious that if q1, then Cq(α0,β0)C(α0,β0), see [13]. This means that

    Cq(α0,β0)C(α0,β0)C.

    Definition 2.2. Let α0,β0R such that 0α0<1<β0 and fA defined by (1.1). Then,

    fSq(α0,β0)α0<R(zDqf(z)f(z))<β0,zE. (2.7)

    Or equivalently, we can write

    fCq(α0,β0)zDqfSq(α0,β0),zE. (2.8)

    Remark 2.1. From Definitions 2.1 and 2.2, it follows that fCq(α0,β0) or fSq(α0,β0) iff f fulfills

    1+zD2qf(z)Dqf(z)1(2α01)z1qz,1+zD2qf(z)Dqf(z)1(2β01)z1qz,

    or

    zDqf(z)f(z)1(2α01)z1qz,zDqf(z)f(z)1(2β01)z1qz,

    for all zE.

    We now consider q-analogue of the function p defined by [13] as

    pq(z)=1+β0α0πilog(1qe2πi(1α0β0α0)z1qz). (2.9)

    Firstly, we fined the series form of (2.9).

    Consider

    pq(z)=1+β0α0πilog(1qe2πi(1α0β0α0)z1qz) (2.10)
    =1+β0α0πi[log(1qe2πi(1α0β0α0)z)log(1qz)]. (2.11)

    If we let w=qe2πi(1α0β0α0)z, then,

    log(1qe2πi(1α0β0α0)z)=log(1w)=wj=2wjj.

    This implies that

    log(1qe2πi(1α0β0α0)z)=(qe2πi(1α0β0α0)z)j=2(qe2πi(1α0β0α0)z)jj,

    and

    log(1qz)=qz+j=2(qz)jj.

    Utilizing these, Eq (2.11) can be written as

    pq(z)=1+j=1β0α0jπiqj(1e2nπi(1α0β0α0))zj. (2.12)

    This shows that the pqP.

    Motivated by this work and other aforementioned articles, the aim in this paper is to keep with the research of a few interesting properties of Cq(α0,β0) and Sq(α0,β0).

    Utilizing the meaning of subordination, we can acquire the accompanying Lemma, which sum up the known results in [6].

    Lemma 3.1. Let fA be defined by (1.1), 0α0<1<β0 and 0<q<1. Then,

    fSq(α0,β0)(zDqf(z)f(z))1+β0α0πilog(1qe2πi(1α0β0α0)z1qz),zE. (3.1)

    Proof. Assume that ϝ be characterized as

    ϝ(z)=1+β0α0πilog(1qe2πi(1α0β0α0)z1qz),0α0<1<β0.

    At that point it can without much of a stretch seen that function ϝ ia simple and analytic along ϝ(0)=1 in E. Furthermore, note

    ϝ(z)=1+β0α0πilog(1qe2πi(1α0β0α0)z1qz)=1+β0α0πilog[eπi(1α0β0α0)i(ieπi(1α0β0α0)qieπi(1α0β0α0)z1qz)].

    Therefore,

    ϝ(z)=1+β0α0πi[log(eπi(1α0β0α0))logi]+β0α0πilog[ieπi(1α0β0α0)qieπi(1α0β0α0)z1qz]=1+β0α0πi[πi(1α0β0α0)(πi2)]+β0α0πilog[ieπi(1α0β0α0)qieπi(1α0β0α0)z1qz]=α0+β02+β0α0πilog[ieπi(1α0β0α0)qieπi(1α0β0α0)z1qz].

    A simple calculation leads us to conclude that ϝ maps E onto the domain Ω defined by

    Ω={w:α0<R(w)<β0}. (3.2)

    Therefore, it follows from the definition of subordination that the inequalities (2.7) and (3.1) are equivalent. This proves the assertion of Lemma 3.1.

    Lemma 3.2. Let fA and 0α0<1<β0. Then,

    fCq(α0,β0)(Dq(zDqf(z))Dqf(z))1+β0α0πilog(1qe2πi(1α0β0α0)z1qz),

    and if p presented as in (2.9) has the structure

    pq(z)=1+j=1Bj(q)zj, (3.3)

    then,

    Bj(q)=β0α0jπiqj(1e2jπi(1α0β0α0)),jN. (3.4)

    Proof. Proof directly follows by utilizing (2.8), (2.12) and Lemma 3.1.

    Example 3.1. Let f be defined as

    f(z)=zexp{β0α0πiz01tlog(1qe2πi(1α0β0α0)t1qt)dqt}. (3.5)

    This implies that

    zDqf(z)f(z)=1+β0α0πilog(1qe2πi(1α0β0α0)z1qz),zE.

    According to the proof of Lemma 3.1, it can be observed that f given by (3.5) satisfies (2.7), which means that fSq(α0,β0). Similarly, it can be seen by utilizing Lemma 3.2 that

    f(z)=z0zexp{β0α0πiu01tlog(1qe2πi(1α0β0α0)t1qt)dqt}dqu, (3.6)

    belongs to the class Cq(α0,β0).

    Inclusion relations:

    In this segment, we study some inclusion relations and furthermore acquire some proved results as special cases. For this, we need below mentioned lemma which is the q-analogue of known result in [7].

    Lemma 3.3. Let u,vC, such that u0 and what's more, H such that R[u(z)+v]>0. Assume that P, fulfill

    (z)+zDqp(z)u(z)+v(z)(z)(z),zE.

    Theorem 3.1. For 0α0<1<β0 and 0<q<1,

    Cq(α0,β0)Sq(α0,β0),zE.

    Proof. Let fCq(α0,β0). Consider

    p(z)=zDqf(z)f(z),pP.

    Differentiating q-logarithamically furthermore, after some simplifications, we get

    p(z)+zDqp(z)p(z)=Dq(zDqf(z))Dqf(z)1+β0α0πilog(1qe2πi(1α0β0α0)z1qz),zE.

    Note that by utilizing Lemma 3.3 with u=1 and v=0, we have

    p(z)1+β0α0πilog(1qe2πi(1α0β0α0)z1qz),zE.

    Consequently,

    fSq(α0,β0),zE.

    This completes the proof.

    Note for distinct values of parameters in Theorem 3.1, we obtain some notable results, see [2,6,13].

    Corollary 3.1. For q1, 0α0<1<β0, we have

    C(α0,β0)S(α0,β0),zE.

    Corollary 3.2. For q1, α0=0 and β0>1, we have

    C(β0)S(β1),zE,

    where

    β1=14[(2β01)+4β204β0+9].

    q-limits on real parts:

    In this section, we discuss some q-bounds on real parts for the function f in Cq(α0,β0) and following lemma will be utilize which is the q-analogue of known result of [7].

    Lemma 3.4. Let UC×C and let cC along R(b)>0. Assume that :C2×EC fulfills

    (iρ,σ;z)U, ρ,σR,σ|biρ|2(2R(b)).

    If p(z)=c+c1z+c2z2+... is in P along

    (p(z),zDqp(z);z)UR(p(z))>0,zE.

    Lemma 3.5. Let p(z)=j=1Cjzj and assume that p(E) is a convex domain. Furthermore, let q(z)=j=1Ajzj is analytic and if qp in E. Then,

    |Aj||C1|,j=1,2,.

    Theorem 3.2. Suppose fA, 0α0<1 and

    R(Dq(zDqf(z))Dqf(z))>α0,zE. (3.7)

    Then,

    R(Dqf(z))>12α0,zE. (3.8)

    Proof. Let γ=12α0 and for 0α0<1 implies 12γ<1. Let

    Dqf(z)=(1γ)p(z)+γ,pP.

    Differentiating q-logrithmically, we obtain

    Dq(zDqf(z))Dqf(z)=1+2(1γ)zDqp(z)(1γ)p(z)+γ.

    Let us construct the functional such that

    (r,s;z)=1+2(1γ)s(1γ)rγ,r=p(z),s=zDqp(z).

    Utilizing (3.7), we can write

    {(p(z),zDqp(z);zE)}{wC:R(w)>α0}=Ωα0.

    Now, ρ,δR with δ(1+ρ2)2, we have

    R((iρ,δ))=1+2(1γ)δ(1γ)(iρ)+r.

    This implies that

    R((iρ,δ;z))=R(1+2(1γ)δ(1γ)2ρ2+γ2).

    Utilizing δ(1+ρ2)2, we can write

    R((iρ,δ;z))1γ(1γ)(1+ρ2)(1γ)2ρ2+γ2. (3.9)

    Let

    g(ρ)=1+ρ2(1γ)2ρ2+γ2.

    Then, g(ρ)=g(ρ), which shows that g is even continuous function. Thus,

    Dq(g(ρ))=[2]q(2γ1)ρ[(1γ)2ρ2+γ2][(1γ)2q2ρ2+γ2],

    and Dq(g(0))=0. Also, it can be seen that g is increasing function on (0,). Since 12γ<1, therefore,

    1γ2g(ρ)<1(1γ)2,ρR. (3.10)

    Now by utilizing (3.9) and (3.10), we have

    R((iρ,δ;z))1γ(1γ)g(ρ)21γ=α0.

    This means that R((iρ,δ;z))Ωα0 for all ρ,δR with δ(1+ρ2)2. Thus, by utilizing Lemma 3.4, we conclude that Rp(z)>0, zE.

    Theorem 3.3. Suppose fA be defined by (1.1) and 1<β0<2,

    R(Dq(zDqf(z))Dqf(z))<β0,zE.

    Then,

    R(Dqf(z))>12β0,zE.

    Proof. Continuing as in Theorem 3.2, we have the result.

    Combining Theorems 3.2 and 3.3, we obtain the following result.

    Theorem 3.4. Suppose fA, 0α0<1<β0<2 and

    α0<R(Dq(zDqf(z))Dqf(z))<β0,zE.
    12α0<R{Dqf(z)}<12β0,zE.

    Theorem 3.5. Let fA be defined by (1.1) and α0,β0R such that 0α0<1<β0. If fCq(α0,β0), then,

    |aj|{|B1|[2]q,ifj=2,|B1|[j]q[j1]qj2k=1(1+|B1|[k]q),ifj=3,4,5,,

    where |B1| is given by

    |B1(q)|=2q(β0α0)πsinπ(1α0)β0α0. (3.11)

    Proof. Assume that

    q(z)=(Dq(zDqf(z))Dqf(z)),qP,zE. (3.12)

    Then, by definition of Cq(α0,β0), we obtain

    q(z)pq(z),zE. (3.13)

    Let pq be defined by (3.3) and Bn(q) is given as in (3.4). If

    q(z)=1+j=2Aj(q)zj, (3.14)

    by (3.12), we have

    Dq(zDqf(z))=q(z)Dq(f(z)).

    Note that by utilizing (1.1), (2.4) and (3.14), one can obtain

    1+j=2[j]q[j1]qajzj1=(1+j=1Aj(q)zj)(1+j=2[j]qajzj1).

    Comparing the coefficient of of zj1 on both sides, we have

    [j]q[j1]qaj=Aj1(q)+[j]qaj+j1k=2[k]qakAjk(q)=Aj1(q)+[j]qaq+[2]qa2Aj2(q)+[3]qa3Aj3(q)++[j1]qaj1A1(q). (3.15)

    This implies that by utilizing Lemma 3.5 with (3.13), we can write

    |Aj(q)||B1(q)|, for j=1,2,3, (3.16)

    Now by utilizing (3.16) in (3.15) and after some simplifications, we have

    |aj||B1(q)|[j]q[j1]qj1k=2[k1]q|ak1|,|B1|[j]q[j1]qj2k=1(1+|B1|[k]q).

    Furthermore, for j=2,3,4,

    |a2||B1(q)|[2]q,|a3||B1(q)|[3]q[2]q[1+|B1|],|a4||B1(q)|[4]q[3]q[(1+|B1(q)|)(1+|B1(q)|[2]q)].

    By utilizing mathematical induction for q-calculus, it can be observed that

    |aj||B1(q)|[j]q[j1]qj2k=1(1+|B1(q)|[k]q),

    which is required.

    Remark 3.1. Note that by taking q1 in Theorems 3.2–3.4, we attain remarkable results in ordinary calculus discussed in [6].

    Integral invariant properties:

    In this portion, we show that the family Cq(α0,β0) is invariant under the q-Bernardi integral operator defined and discussed in [9] is given by

    Bq(f(z))=Fc,q(z)=[1+c]qzcz0tc1f(t)dqt,  0<q<1,  cN. (3.17)

    Making use of (1.1) and (2.5), we can write

    Fc,q(z)=Bq(f(z))=[1+c]qzcz(1q)i=0qi(zqi)c1f(zqi)=[1+c]q(1q)i=0qicj=1qijajzj=j=1[1+c]q[j=0(1q)qi(j+c)]ajzj=j=1[1+c]q(1q1qj+c)ajzj.

    Finally, we obtain

    Fc,q(z)=Bq(f(z))=z+j=2([1+c]q[j+c]q)ajzj. (3.18)

    For c=1, we obtain

    F1,q(z)=[2]qzz0f(t)dqt,0<q<1,=z+j=2([2]q[j+1]q)ajzj.

    It is well known [9] that the radius of convergence R of

    j=1([1+c]q[j+c]q)ajzjandj=1([2]q[j+1]q)ajzj

    is q and the function given by

    ϕq(z)=j=1([1+c]q[j+c]q)zj, (3.19)

    belong to the class Cq of q-convex function introduced by [3].

    Theorem 3.6. Let fA. If fCq(α0,β0), then Fc,qCq(α0,β0), where Fc,q is defined by (3.17).

    Proof. Let fCq(α0,β0) and set

    p(z)=Dq(zDqFc,q(z)DqFc,q(z),pP. (3.20)

    q-differentiation of (3.17) yields

    zDqFc,q(z)+cFc,q(z)=[1+c]qf(z).

    Again q-differentiating and utilizing (3.20), we obtain

    [1+c]qDqf(z)=DqFc,q(z)(c+p(z)).

    Now, logarithmic q-differentiation of this yields

    p(z)+zDqp(z)c+p(z)=Dq(zDqf(z))Dqf(z),zE.

    By utilizing the definition of the class Cq(α0,β0), we have

    p(z)+zDqp(z)c+p(z)=Dq(zDqf(z))Dqf(z)pq(z).

    Therefore,

    p(z)+zDqp(z)c+p(z)pq(z),zE.

    Consequently, utilizing Lemma 3.3, we have

    p(z)pq(z),zE.

    The proof is complete.

    Remark 3.2. Letting q1, in Theorem 3.6, we obtain a known result from [13].

    Corollary 3.3. Let fA. If fC(α0,β0), then FcC(α0,β0), where Fc is Bernardi integral operator defined in [1].

    Also, for q1, α0=0 and β0=0, we obtain the well known result proved by [1]. It is well known [9] that for 0α0<1<β0, 0<q<1 and cN, the function (3.19) belong to the class Cq. Utilizing this, we can prove

    fCq(α0,β0),  ϕqCq(fϕq)Cq(α0,β0),fSq(α0,β0),  ϕqCq(fϕq)Sq(α0,β0).

    Remark 3.3. As an example consider the function fCq(α0,β0) defined by (3.6) and ϕqCq given by (3.19), implies (fϕq)Cq(α0,β0).

    In this article, we mainly focused on q-calculus and utilized this is to study new generalized sub-classes Cq(α0,β0) and Sq(α0,β0) of q-convex and q-star-like functions. We discussed and study some fundamental properties, for example, inclusion relation, q-coefficient limits on real part, integral preserving properties. We have utilized traditional strategies alongside convolution and differential subordination to demonstrate main results. This work can be extended in post quantum calculus. The path is open for researchers to investigate more on this discipline and associated regions.

    The work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R52), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

    The authors declare that they have no conflicts of interest.



    [1] M. Tabor, Chaos and integrability in nonlinear dynamics. An Introduction, Wiley, 1989.
    [2] A. J. Nicholson, V. A. Bailey, The balance of animal populations: Part Ⅰ, Proc. Zool. Soc. Lond., 105 (1935), 551–598. https://doi.org/10.1111/j.1096-3642.1935.tb01680.x doi: 10.1111/j.1096-3642.1935.tb01680.x
    [3] R. M. May, Host-parasitoid systems in patchy environments: A phenomenological model, J. Anim. Ecol., 47 (1978), 833–843.
    [4] S. Kalabušić, E. Pilav, Stability of May's Host-Parasitoid model with variable stocking upon parasitoids, Int. J. Biomath., 15 (2021), 2150072. https://doi.org/10.1142/S1793524521500728 doi: 10.1142/S1793524521500728
    [5] G. Ladas, G. Tzanetopoulos, A. Tovbis, On May's host parasitoid model, J. Differ. Equ. Appl., 2 (1996), 195–204. https://doi.org/10.1080/10236199608808054 doi: 10.1080/10236199608808054
    [6] W. T. Jamieson, On the global behaviour of May's host-parasitoid model, J. Differ. Equ. Appl., 25 (2019), 583–596. https://doi.org/10.1080/10236198.2019.1613387 doi: 10.1080/10236198.2019.1613387
    [7] S. Jašarević Hrustić, Z. Nurkanović, M. R. S. Kulenović, E. Pilav, Birkhoff normal forms, KAM Theory and symmetries for certain second order rational difference equation with quadratic term, Int. J. Differ. Equ., 10 (2015), 181–199. Available from: https://campus.mst.edu/ijde/contents/v10n2p4.pdf.
    [8] M. Garić-Demirović, M. Nurkanović, Z. Nurkanović, Stability, periodicity and symmetries of certain second-order fractional difference equation with quadratic terms via KAM theory, Math. Meth. Appl. Sci., 40 (2017), 306–318. https://doi.org/10.1002/mma.4000 doi: 10.1002/mma.4000
    [9] M. R. S. Kulenović, Z. Nurkanović, E. Pilav, Birkhoff normal forms and KAM theory for Gumowski-Mira equation, The Scientific World J., 2014 (2014), 819290. https://doi.org/10.1155/2014/819290 doi: 10.1155/2014/819290
    [10] M. Nurkanović, Z. Nurkanović, Birkhoff normal forms, KAM theory, periodicity and symmetries for certain rational difference equation with cubic terms, Sarajevo J. Math., 12 (2016), 217–231. https://doi.org/10.5644/SJM.12.2.08 doi: 10.5644/SJM.12.2.08
    [11] S. R. J. Jang, Discrete-time host-parasitoid models with Allee effects: Density dependence versus parastism, J. Differ. Equ. Appl., 2 (1996), 195–204.
    [12] L. G. Ginzburg, D. E. Tanehill, Population cycles of forest Lepidoptera: A maternal effect hypothesis, J. Anim. Ecol., 63 (1994), 79–92.
    [13] M. Gidea, J. D. Meiss, I. Ugarcovici, H. Weiss, Applications of KAM theory to population dynamics, J. Biol. Dyn., 5 (2011), 44–63. https://doi.org/10.1080/17513758.2010.488301 doi: 10.1080/17513758.2010.488301
    [14] J. K. Hale, H. Kocak, Dynamics and bifurcation, Springer, New York, 1991.
    [15] J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Gött., 2 (1962), 1–20. https://doi.org/10.1080/17513758.2010.488301 doi: 10.1080/17513758.2010.488301
    [16] C. L. Siegel, J. K. Moser, Lectures on celestial mechanics, Springer, New York, 1971.
    [17] W. T. Jamieson, O. Merino, Local dynamics of planar maps with a non-isolated fixed point exhibiting 1–1 resonance, Adv. Differ. Equ., 2018 (2018). https://doi.org/10.1186/s13662-018-1595-x doi: 10.1186/s13662-018-1595-x
    [18] M. R. S. Kulenović, O. Merino, Discrete dynamical systems and difference equations with mathematica, Chapman & HALL/CRC, Boca Raton-New York, 2000.
  • This article has been cited by:

    1. Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation, 2024, 304, 00219045, 106106, 10.1016/j.jat.2024.106106
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1017) PDF downloads(50) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog