Processing math: 100%
Research article

Unveiling the dynamics of drug transmission: A fractal-fractional approach integrating criminal law perspectives

  • The excessive use of drugs has become a growing concern in the current century, with the global toll of drug-related deaths and disabilities posing a significant public health challenge in both developed and developing countries. In pursuit of continuous improvement in existing strategies, this article presented a nonlinear deterministic mathematical model that encapsulates the dynamics of drug addiction transmission while considering the legal implications imposed by criminal law within a population. The proposed model incorporated the fractal-fractional order derivative using the Atangana-Baleanu-Caputo (ABC) operator. The objectives of this research were achieved by examining the dynamics of the drug transmission model, which stratifies the population into six compartments: The susceptible class to drug addicts, the number of individuals receiving drug misuse education, the count of mild drug addicts, the population of heavy-level drug addicts, individuals subjected to criminal law, and those who have ceased drug use. The qualitative analysis of the devised model established the existence and uniqueness of solutions within the framework of fixed-point theory. Furthermore, Ulam-Hyer's stability was established through nonlinear functional analysis. To obtain numerical solutions, the fractional Adam-Bashforth iterative scheme was employed, and the results were validated through simulations conducted using MATLAB. Additionally, numerical results were plotted for various fractional orders and fractal dimensions, with comparisons made against integer orders. The findings underscored the necessity of controlling the effective transmission rate to halt drug transmission effectively. The newly proposed strategy demonstrated a competitive advantage, providing a more nuanced understanding of the complex dynamics outlined in the model.

    Citation: Yasir Nadeem Anjam, Asma Arshad, Rubayyi T. Alqahtani, Muhammad Arshad. Unveiling the dynamics of drug transmission: A fractal-fractional approach integrating criminal law perspectives[J]. AIMS Mathematics, 2024, 9(5): 13102-13128. doi: 10.3934/math.2024640

    Related Papers:

    [1] Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172
    [2] Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071
    [3] Abdelkader Moumen, Hamid Boulares, Tariq Alraqad, Hicham Saber, Ekram E. Ali . Newly existence of solutions for pantograph a semipositone in Ψ-Caputo sense. AIMS Mathematics, 2023, 8(6): 12830-12840. doi: 10.3934/math.2023646
    [4] Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574
    [5] Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055
    [6] Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
    [7] Mohamed Houas, Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence and stability results of pantograph equation with three sequential fractional derivatives. AIMS Mathematics, 2023, 8(3): 5216-5232. doi: 10.3934/math.2023262
    [8] Ahmed M. A. El-Sayed, Wagdy G. El-Sayed, Kheria M. O. Msaik, Hanaa R. Ebead . Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral equations. AIMS Mathematics, 2025, 10(3): 4970-4991. doi: 10.3934/math.2025228
    [9] Isra Al-Shbeil, Abdelkader Benali, Houari Bouzid, Najla Aloraini . Existence of solutions for multi-point nonlinear differential system equations of fractional orders with integral boundary conditions. AIMS Mathematics, 2022, 7(10): 18142-18157. doi: 10.3934/math.2022998
    [10] Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176
  • The excessive use of drugs has become a growing concern in the current century, with the global toll of drug-related deaths and disabilities posing a significant public health challenge in both developed and developing countries. In pursuit of continuous improvement in existing strategies, this article presented a nonlinear deterministic mathematical model that encapsulates the dynamics of drug addiction transmission while considering the legal implications imposed by criminal law within a population. The proposed model incorporated the fractal-fractional order derivative using the Atangana-Baleanu-Caputo (ABC) operator. The objectives of this research were achieved by examining the dynamics of the drug transmission model, which stratifies the population into six compartments: The susceptible class to drug addicts, the number of individuals receiving drug misuse education, the count of mild drug addicts, the population of heavy-level drug addicts, individuals subjected to criminal law, and those who have ceased drug use. The qualitative analysis of the devised model established the existence and uniqueness of solutions within the framework of fixed-point theory. Furthermore, Ulam-Hyer's stability was established through nonlinear functional analysis. To obtain numerical solutions, the fractional Adam-Bashforth iterative scheme was employed, and the results were validated through simulations conducted using MATLAB. Additionally, numerical results were plotted for various fractional orders and fractal dimensions, with comparisons made against integer orders. The findings underscored the necessity of controlling the effective transmission rate to halt drug transmission effectively. The newly proposed strategy demonstrated a competitive advantage, providing a more nuanced understanding of the complex dynamics outlined in the model.



    The key to solving the general quadratic congruence equation is to solve the equation of the form x2amodp, where a and p are integers, p>0 and p is not divisible by a. For relatively large p, it is impractical to use the Euler criterion to distinguish whether the integer a with (a,p)=1 is quadratic residue of modulo p. In order to study this issue, Legendre has proposed a new tool-Legendre's symbol.

    Let p be an odd prime, the quadratic character modulo p is called the Legendre's symbol, which is defined as follows:

    (ap)={1, if a is a quadratic residue modulo p;1, if a is a quadratic non-residue modulo p;0, if pa.

    The Legendre's symbol makes it easy for us to calculate the level of quadratic residues. The basic properties of Legendre's symbol can be found in any book on elementary number theory, such as [1,2,3].

    The properties of Legendre's symbol and quadratic residues play an important role in number theory. Many scholars have studied them and achieved some important results. For examples, see the [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21].

    One of the most representative properties of the Legendre's symbol is the quadratic reciprocal law:

    Let p and q be two distinct odd primes. Then, (see Theorem 9.8 in [1] or Theorems 4–6 in [3])

    (pq)(qp)=(1)(p1)(q1)4.

    For any odd prime p with p1mod4 there exist two non-zero integers α(p) and β(p) such that

    p=α2(p)+β2(p). (1)

    In fact, the integers α(p) and β(p) in the (1) can be expressed in terms of Legendre's symbol modulo p (see Theorems 4–11 in [3])

    α(p)=12p1a=1(a3+ap)andβ(p)=12p1a=1(a3+rap),

    where r is any integer, and (r,p)=1, (rp)=1, (p)=χ2 denote the Legendre's symbol modulo p.

    Noting that Legendre's symbol is a special kind of character. For research on character, Han [7] studied the sum of a special character χ(ma+ˉa), for any integer m with (m,p)=1, then

    |p1a=1χ(ma+ˉa)|2=2p+(mp)p1a=1χ(a)p1b=1(b(b1)(a2b1)p),

    which is a special case of a general polynomial character sums N+Ma=N+1χ(f(a)), where M and N are any positive integers, and f(x) is a polynomial.

    In [8], Du and Li introduced a special character sums C(χ,m,n,c;p) in the following form:

    C(χ,m,n,c;p)=p1a=0p1b=0χ(a2+nab2nb+c)e(mb2ma2p),

    and studied the asymptotic properties of it. They obtained

    p1c=1|C(χ,m,n,c;p)|2k={p2k+1+k23k22p2k+O(p2k1),ifχ is the Legendre symbol modulo p;p2k+1+k23k22p2k+O(p2k1/2),ifχ is a complex character modulo p.

    Recently, Yuan and Zhang [12] researched the question about the estimation of the mean value of high-powers for a special character sum modulo a prime, let p be an odd prime with p1mod6, then for any integer k0, they have the identity

    Sk(p)=13[dk+(d+9b2)k+(d9b2)k],

    where

    Sk(p)=1p1p1r=1Ak(r),
    A(r)=1+p1a=1(a2+rˉap),

    and for any integer r with (r,p)=1.

    More relevant research on special character sums will not be repeated. Inspired by these papers, we have the question: If we replace the special character sums with Legendre's symbol, can we get good results on p1mod4?

    We will convert β(p) to another form based on the properties of complete residues

    β(p)=12p1a=1(a+nˉap),

    where ˉa is the inverse of a modulo p. That is, ˉa satisfy the equation xa1modp for any integer a with (a,p)=1.

    For any integer k0, G(n) and Kk(p) are defined as follows:

    G(n)=1+p1a=1(a2+nˉa2p)andKk(p)=1p1p1n=1Gk(n).

    In this paper, we will use the analytic methods and properties of the classical Gauss sums and Dirichlet character sums to study the computational problem of Kk(p) for any positive integer k, and give a linear recurrence formulas for Kk(p). That is, we will prove the following result.

    Theorem 1. Let p be an odd prime with p1mod4, then we have

    Kk(p)=(4p+2)Kk2(p)8(2α2p)Kk3(p)+(16α416pα2+4p1)Kk4(p),

    for all integer k4 with

    K0(p)=1,K1(p)=0,K2(p)=2p+1,K3(p)=3(4α22p),

    where

    α=α(p)=p12a=1(a+ˉap).

    Applying the properties of the linear recurrence sequence, we may immediately deduce the following corollaries.

    Corollary 1. Let p be an odd prime with p1mod4. Then we have

    1p1p1n=111+p1a=1(a2+nˉa2p)=16α2p28α28p2+14p16α416α2p+4p1.

    Corollary 2. Let p be an odd prime with p1mod4. Then we have

    1p1p1n=1p1m=0(1+p1a=1(a2+nˉa2p))e(nm2p)=p.

    Corollary 3. Let p be an odd prime with p1mod4. Then we have

    1p1p1n=1p1m=0[1+p1a=1(a2+nˉa2p)]2e(nm2p)=(4α22p)p.

    Corollary 4. Let p be an odd prime with p1mod8. Then we have

    p1n=1(1+p1a=1(a2+nˉa2p))p1m=0e(nm4p)=p(1+B(1))p,

    where

    B(1)=p1m=0e(m4p).

    If we consider such a sequence Fk(p) as follows: Let p be a prime with p1mod8, χ4 be any fourth-order character modulo p. For any integer k0, we define the Fk(p) as

    Fk(p)=p1n=11Gk(n),

    we have

    Fk(p)=116α416α2p+4p1Fk4(p)(4p+2)16α416α2p+4p1Fk2(p)+4(4α22p)16α416α2p+4p1Fk1(p).

    Lemma 1. Let p be an odd prime with p1mod4. Then for any fourth-order character χ4modp, we have the identity

    τ2(χ4)+τ2(¯χ4)=2pα,

    where

    τ(χ4)=p1a=1χ4(a)e(ap)

    denotes the classical Gauss sums, e(y)=e2πiy,i2=1, and α is the same as in the Theorem 1.

    Proof. See Lemma 2.2 in [9].

    Lemma 2. Let p be an odd prime. Then for any non-principal character ψ modulo p, we have the identity

    τ(ψ2)=ψ2(2)τ(χ2)τ(ψ)τ(ψχ2),

    where χ2=(p) denotes the Legendre's symbol modulo p.

    Proof. See Lemma 2 in [12].

    Lemma 3. Let p be a prime with p1mod4, then for any integer n with (n,p)=1 and fourth-order character χ4modp, we have the identity

    p1a=1(a2+nˉa2p)=1χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)).

    Proof. For any integer a with (a,p)=1, we have the identity

    1+χ4(a)+χ2(a)+¯χ4(a)=4,

    if a satisfies ab4modp for some integer b with (b,p)=1 and

    1+χ4(a)+χ2(a)+¯χ4(a)=0,

    otherwise. So from these and the properties of Gauss sums we have

    p1a=1(a2+nˉa2p)=p1a=1(a2p)(a4+np)=p1a=1χ2(a4)χ2(a4+n)=p1a=1(1+χ4(a)+χ2(a)+¯χ4(a))χ2(a)χ2(a+n)=p1a=1(1+χ4(na)+χ2(na)+¯χ4(na))χ2(na)χ2(na+n)=p1a=1χ2(a)χ2(a+1)+p1a=1χ4(na)χ2(a)χ2(a+1) (2)
    +p1a=1χ2(na)χ2(a)χ2(a+1)+p1a=1¯χ4(na)χ2(a)χ2(a+1)=p1a=1χ2(1+ˉa)+p1a=1χ4(na)χ2(a)χ2(a+1)+p1a=1χ2(n)χ2(a+1)+p1a=1¯χ4(na)χ2(a)χ2(a+1).

    Noting that for any non-principal character χ,

    p1a=1χ(a)=0

    and

    p1a=1χ(a)χ(a+1)=1τ(ˉχ)p1b=1p1a=1ˉχ(b)χ(a)e(b(a+1)p).

    Then we have

    p1a=1χ2(1+ˉa)=1,p1a=1χ2(a+1)=1,
    p1a=1χ4(a)χ2(a)χ2(a+1)=1τ(χ2)p1b=1p1a=1χ2(b)χ4(a)χ2(a)e(b(a+1)p)=1τ(χ2)p1b=1¯χ4(b)e(bp)p1a=1χ4(ab)χ2(ab)e(abp) (3)
    =1τ(χ2)τ(¯χ4)τ(χ4χ2).

    For any non-principal character ψ, from Lemma 2 we have

    τ(ψ2)=ψ2(2)τ(χ2)τ(ψ)τ(ψχ2). (4)

    Taking ψ=χ4, note that

    τ(χ2)=p,  τ(χ4)τ(¯χ4)=χ4(1)p,

    from (3) and (4), we have

    p1a=1χ4(a)χ2(a)χ2(a+1)=¯χ42(2)τ(χ24)τ(χ2)τ(¯χ4)τ(χ2)τ(χ4)=χ2(2)τ(χ2)τ2(¯χ4)τ(χ4)τ(¯χ4)=χ2(2)pτ2(¯χ4)χ4(1)p (5)
    =χ2(2)τ2(¯χ4)χ4(1)p.

    Similarly, we also have

    p1a=1¯χ4(a)χ2(a)χ2(a+1)=χ2(2)τ2(χ4)χ4(1)p. (6)

    Consider the quadratic character modulo p, we have

    (2p)=χ2(2)={1,if p±1mod8;1,if p±3mod8. (7)

    And when p1mod8, we have χ4(1)=1; when p5mod8, we have χ4(1)=1. Combining (2) and (5)–(7) we can deduce that

    p1a=1(a2+nˉa2p)=1χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)).

    This prove Lemma 3.

    Lemma 4. Let p be an odd prime with p1mod4. Then for any integer k4 and n with (n,p)=1, we have the fourth-order linear recurrence formula

    Gk(n)=(4p+2)Gk2(n)+8(p2α2)Gk3(n)+[(4α22p)2(2p1)2]Gk4(n),

    where

    α=α(p)=12p1a=1(a3+ap)=p12a=1(a+ˉap),

    (p)=χ2 denotes the Legendre's symbol.

    Proof. For p1mod4, any integer n with (n,p)=1, and fourth-order character χ4 modulo p, we have the identity

    χ44(n)=¯χ44(n)=χ0(n),  χ24(n)=χ2(n),

    where χ0 denotes the principal character modulo p.

    According to Lemma 3,

    p1a=1(a2+nˉa2p)=1χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)),
    G(n)=1+p1a=1(a2+nˉa2p).  

    We have

    G(n)=χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)), (8)
    G2(n)=[χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))]2=12χ2(n)1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))+1p(χ2(n)τ4(¯χ4)+χ2(n)τ4(χ4)+2p2)=12χ2(n)1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))+1p(χ2(n)(τ4(¯χ4)+τ4(χ4))+2p2).

    According to Lemma 1, we have

    (τ2(χ4)+τ2(¯χ4))2=τ4(¯χ4)+τ4(χ4)+2p2=4pα2.

    Therefore, we may immediately deduce

    G2(n)=12(χ2(n)(G(n)+χ2(n))+1p(χ2(n)(τ4(¯χ4)+τ4(χ4))+2p2)=12χ2(n)(G(n)+χ2(n)) (9)
    +1p[χ2(n)((τ2(¯χ4)+τ2(χ4))22p2)+2p2]=2p12χ2(n)G(n)+(4α22p)χ2(n),
    G3(n)=[χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))]3=(2p12χ2(n)G(n)+(4α22p)χ2(n))G(n) (10)
    =(4α22p)χ2(n)G(n)+(2p+3)G(n)(4p2)χ2(n)2(4α22p)

    and

    [G2(n)(2p1)]2=[χ2(n)(4α22p)2χ2(n)G(n)]2,

    which implies that

    G4(n)=(4p+2)G2(n)+8(p2α2)G(n)+[(4α22p)2(2p1)2]. (11)

    So for any integer k4, from (8)–(11), we have the fourth-order linear recurrence formula

    Gk(n)=Gk4(n)G4(n)=(4p+2)Gk2(n)+8(p2α2)Gk3(n)+[(4α22p)2(2p1)2]Gk4(n).

    This proves Lemma 4.

    In this section, we will complete the proof of our theorem.

    Let p be any prime with p1mod4, then we have

    K0(p)=1p1p1n=1G0(n)=p1p1=1. (12)
    K1(p)=1p1p1n=1G1(n)=1p1p1n=1(χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))=0, (13)
    K2(p)=1p1p1n=1G2(n)=1p1p1n=1(χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))2=2p+1, (14)
    K3(p)=1p1p1n=1G3(n)=1p1p1n=1(χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))3=3(4α22p). (15)

    It is clear that from Lemma 4, if k4, we have

    Kk(p)=1p1p1n=1Gk(n)=(4p+2)Kk2(p)8(2α2p)Kk3(p)+(16α416pα2+4p1)Kk4(p). (16)

    Now Theorem 1 follows (12)–(16). Obviously, using Theorem 1 to all negative integers, and that lead to Corollary 1.

    This completes the proofs of our all results.

    Some notes:

    Note 1: In our theorem, know n is an integer, and (n,p)=1. According to the properties of quadratic residual, χ2(n)=±1, χ4(n)=±1.

    Note 2: In our theorem, we only discussed the case p1mod8. If p3mod4, then the result is trivial. In fact, in this case, for any integer n with (n,p)=1, we have the identity

    G(n)=1+p1a=1(a2+nˉa2p)=1+p1a=1(a4p)(a4+np)=1+p1a=1(ap)(a+np)=1+p1a=1(a2+nap)=1+p1a=1(1+nˉap)=p1a=0(1+nap)=0.

    Thus, for all prime p with p3mod4 and k1, we have Kk(p)=0.

    The main result of this paper is Theorem 1. It gives an interesting computational formula for Kk(p) with p1mod4. That is, for any integer k, we have the identity

    Kk(p)=(4p+2)Kk2(p)8(2α2p)Kk3(p)+(16α416pα2+4p1)Kk4(p).

    Thus, the problems of calculating a linear recurrence formula of one kind special character sums modulo a prime are given.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are grateful to the anonymous referee for very helpful and detailed comments.

    This work is supported by the N.S.F. (11971381, 12371007) of China and Shaanxi Fundamental Science Research Project for Mathematics and Physics (22JSY007).

    The authors declare no conflicts of interest.



    [1] T. Abdeljawad, D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Diff. Equ., 2016 (2016), 1–18. https://doi.org/10.1186/s13662-016-0949-5 doi: 10.1186/s13662-016-0949-5
    [2] A. Abidemi, Optimal cost-effective control of drug abuse by students: Insight from mathematical modeling, Model. Earth Syst. Environ., 9 (2023), 811–829. https://doi.org/10.1007/s40808-022-01534-z doi: 10.1007/s40808-022-01534-z
    [3] E. Addai, A. Adeniji, O. J. Peter, J. O. Agbaje, K. Oshinubi, Dynamics of age-structure smoking models with government intervention coverage under fractal-fractional order derivatives, Fractal Fract., 7 (2023), 370. https://doi.org/10.3390/fractalfract7050370 doi: 10.3390/fractalfract7050370
    [4] E. Addai, L. L. Zhang, J. A. Prah, J. F. Gordon, J. K. K. Asamoah, J. F. Essel, Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets, Physica A: Stat. Mecha. Appl., 603 (2022), 127809. https://doi.org/10.1016/j.physa.2022.127809 doi: 10.1016/j.physa.2022.127809
    [5] E. Addai, L. L. Zhang, A. K. Preko, J. K. K. Asamoah, Fractional order epidemiological model of SARS-CoV-2 dynamism involving Alzheimer's disease, Healthcare Analytics, 2 (2022), 100114. https://doi.org/10.1016/j.health.2022.100114 doi: 10.1016/j.health.2022.100114
    [6] Z. Ahmad, F. Ali, N.Khan, I. Khan, Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel, Chaos Soliton. Fract., 153 (2021), 111602. https://doi.org/10.1016/j.chaos.2021.111602 doi: 10.1016/j.chaos.2021.111602
    [7] Z. Ahmad, G. Bonanomi, D. D. Serafino, F. Giannino, Transmission dynamics and sensitivity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional differential operator of Mittag-Leffler kernel, Appl. Numer. Math., 185 (2023), 446–465. https://doi.org/10.1016/j.apnum.2022.12.004 doi: 10.1016/j.apnum.2022.12.004
    [8] S. Ahmad, A. Ullah, T. Abdeljawad, A. Akg¨ul, N. Mlaiki, Analysis of fractal-fractional model of tumor-immune interaction, Results Phys., 25 (2021), 104178. https://doi.org/10.1016/j.rinp.2021.104178 doi: 10.1016/j.rinp.2021.104178
    [9] J. O. Akanni, Mathematical assessment of the role of illicit drug use on terrorism spread dynamics, J. Appl. Math. Comput., 68 (2022), 3873–3900. https://doi.org/10.1007/s12190-021-01674-y doi: 10.1007/s12190-021-01674-y
    [10] J. O. Akanni, D. A. Adediipo, O. O. Kehinde, O. W. Ayanrinola, O. A. Adeyemo, Mathematical Modelling of the Co-dynamics of illicit drug use and terrorism, Inf. Sci. Lett., 11 (2022), 559–572.
    [11] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Qualitative analysis of fractal-fractional order COVID-19 mathematical model with case study of Wuhan, Alex. Eng. J., 60 (2021), 477–489. https://doi.org/10.1016/j.aej.2020.09.020 doi: 10.1016/j.aej.2020.09.020
    [12] N. Almutairi, S. Saber, Application of a time-fractal fractional derivative with a power-law kernel to the Burke-Shaw system based on Newton's interpolation polynomials, MethodsX, 12 (2024), 102510. https://doi.org/10.1016/j.mex.2023.102510 doi: 10.1016/j.mex.2023.102510
    [13] Y. N. Anjam, R. Shafqat, I. E. Sarris, M. U. Rahman, S. Touseef, M. Arshad, A fractional order investigation of smoking model using Caputo-Fabrizio differential operator, Fractal Fract., 6 (2022), 623. https://doi.org/10.3390/fractalfract6110623 doi: 10.3390/fractalfract6110623
    [14] Y. N. Anjam, I. Shahid, H. Emadifar, S. A. Cheema, M. U. Rahman, Dynamics of the optimality control of transmission of infectious disease: A sensitivity analysis, Sci. Rep., 14 (2024), 1041. https://doi.org/10.1038/s41598-024-51540-7 doi: 10.1038/s41598-024-51540-7
    [15] Y. N. Anjam, M. Yavuz, M. U. Rahman, A. Batool, Analysis of a fractional pollution model in a system of three interconnecting lakes, AIMS Biophys., 10 (2023), 220–240. http://dx.doi.org/10.3934/biophy.2023014 doi: 10.3934/biophy.2023014
    [16] A. T. Anwar, P. Kumam, K. Sitthithakerngkiet, S. Muhammad, A fractal-fractional model-based investigation of shape influence on thermal performance of tripartite hybrid nanofluid for channel flows, Numer. Heat Tr. A. Appl., 85 (2024), 155–186. https://doi.org/10.1080/10407782.2023.2209926 doi: 10.1080/10407782.2023.2209926
    [17] A. M. Arria, K. M. Caldeira, B. A. Bugbee, K. B. Vincent, K. E. O. Grady, The academic consequences of marijuana use during college, Psychol. Addict. Behav., 29 (2015), 564–575. https://psycnet.apa.org/doi/10.1037/adb0000108 doi: 10.1037/adb0000108
    [18] J. K. K. Asamoah, E. Okyere, E. Yankson, A. A. Opoku, A. Adom-Konadu, E. Acheampong, et al., Non-fractional and fractional mathematical analysis and simulations for Q fever, Chaos Soliton. Fract., 156 (2022), 111821. https://doi.org/10.1016/j.chaos.2022.111821 doi: 10.1016/j.chaos.2022.111821
    [19] E. J. Aspinall, D. Nambiar, D. J. Goldberg, M. Hickman, A. Weir, E. V. Velzen, et al., Are needle and syringe programmes associated with a reduction in HIV transmission among people who inject drugs: A systematic review and meta-analysis, Int. J. Epidemiol., 43 (2014), 235–248. https://doi.org/10.1093/ije/dyt243 doi: 10.1093/ije/dyt243
    [20] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?, Chaos Soliton. Fract., 136 (2020), 109860. https://doi.org/10.1016/j.chaos.2020.109860 doi: 10.1016/j.chaos.2020.109860
    [21] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [22] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [23] Attaullah, M. Jawad, S. Alyobi, M. F. Yassen, W. Weera, A higher order Galerkin time discretization scheme for the novel mathematical model of COVID-19, AIMS Math., 8 (2023), 3763–3790. http://dx.doi.org/10.3934/math.2023188 doi: 10.3934/math.2023188
    [24] A. Babaei, H. Jafari, A. Liya, Mathematical models of HIV/AIDS and drug addiction in prisons, Eur. Phys. J. Plus, 135 (2020), 1–12. https://doi.org/10.1140/epjp/s13360-020-00400-0 doi: 10.1140/epjp/s13360-020-00400-0
    [25] P. J. Brown, R. L. Stout, J. G. Rowley, 15Substance use disorder-PTSD comorbidity: Patients' perceptions of symptom interplay and treatment issues, J. Subst. Abuse Treat., 15 (1998), 445–448. https://doi.org/10.1016/S0740-5472(97)00286-9 doi: 10.1016/S0740-5472(97)00286-9
    [26] M. Caputo, M. Fabrizio, On the singular kernels for fractional derivatives. Some applications to partial differential equations, Progr. Fract. Differ. Appl., 7 (2021), 79–82. http://dx.doi.org/10.18576/pfda/0070201 doi: 10.18576/pfda/0070201
    [27] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [28] K. M. Carroll, L. S. Onken, Behavioral therapies for drug abuse, Am. J. Psychiat., 162 (2005), 1452–1460. https://doi.org/10.1176/appi.ajp.162.8.1452 doi: 10.1176/appi.ajp.162.8.1452
    [29] K. Diethelm, R. Garrappa, M. Stynes, Good (and not so good) practices in computational methods for fractional calculus, Mathematics, 8 (2020), 324. https://doi.org/10.3390/math8030324 doi: 10.3390/math8030324
    [30] M. Farman, R. Sarwar, A. Akgul, Modeling and analysis of sustainable approach for dynamics of infections in plant virus with fractal fractional operator, Chaos Soliton. Fract., 170 (2023), 113373. https://doi.org/10.1016/j.chaos.2023.113373 doi: 10.1016/j.chaos.2023.113373
    [31] V. A. Fonner, S. L. Dalglish, C. E. Kennedy, R. Baggaley, K. R. ˊOreilly, F. M. Koechlin, et al., Effectiveness and safety of oral HIV preexposure prophylaxis for all populations, AIDS, 30 (2016), 1973–1983. https://doi.org/10.1097/QAD.0000000000001145 doi: 10.1097/QAD.0000000000001145
    [32] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [33] M. Hafiruddin, F. Fatmawati, M. Miswanto, Mathematical model analysis of a drug transmission with criminal law and its optimal control, AIP Conf. Proceed., 2192 (2019). https://doi.org/10.1063/1.5139156 doi: 10.1063/1.5139156
    [34] A. A. Hamou, E. Azroul, G. Diki, M. Guedda, Effect of family and public health education in drug transmission: An epidemiological model with memory, Model. Earth Syst. Environ., 9 (2023), 2809–2828. https://doi.org/10.1007/s40808-022-01662-6 doi: 10.1007/s40808-022-01662-6
    [35] D. C. D. Jarlais, K. Arasteh, C. McKnight, H. Hagan, D. Perlman, S. R. Friedman, Using hepatitis C virus and herpes simplex virus-2 to track HIV among injecting drug users in New York City, Drug Alcohol Depen., 101 (2009), 88–91. https://doi.org/10.1016/j.drugalcdep.2008.11.007 doi: 10.1016/j.drugalcdep.2008.11.007
    [36] D. C. D. Jarlais, A. Nugent, A. Solberg, J. Feelemyer, J. Mermin, D. Holtzman, Syringe service programs for persons who inject drugs in urban, suburban, and rural areas-United States, 2013, MMWR, 64 (2015), 1337–1341.
    [37] A. S. Kalula, F. Nyabadza, A theoretical model for substance abuse in the presence of treatment, S. Afr. J. Sci., 108 (2012), 1–12. https://hdl.handle.net/10520/EJC97218
    [38] K. S. Kendler, C. A. Prescott, Cocaine use, abuse and dependence in a population-based sample of female twins, Brit. J. Psychiat., 173 (1998), 345–350. https://doi.org/10.1192/bjp.173.4.345 doi: 10.1192/bjp.173.4.345
    [39] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Cont. Pap. Math. Phys. Charac., 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [40] A. A. Konadu, E. Bonyah, A. L. Sackitey, M. Anokye, J. K. K. Asamoah, A fractional order Monkeypox model with protected travelers using the fixed point theorem and Newton polynomial interpolation, Healthcare Analytics, 3 (2023), 100191. https://doi.org/10.1016/j.health.2023.100191 doi: 10.1016/j.health.2023.100191
    [41] G. F. Koob, N. D. Volkow, Neurobiology of addiction: A neurocircuitry analysis, Lancet. Psychiat., 3 (2016), 760–773. https://doi.org/10.1016/S2215-0366(16)00104-8 doi: 10.1016/S2215-0366(16)00104-8
    [42] E. Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, 1991.
    [43] P. Kumar, V. Govindaraj, Z. A. Khan, Some novel mathematical results on the existence and uniqueness of generalized Caputo-type initial value problems with delay, AIMS Math., 7 (2022), 10483–10494. http://dx.doi.org/10.3934/math.2022584 doi: 10.3934/math.2022584
    [44] Z. F. Li, Z. Liu, M. A. Khan, Fractional investigation of bank data with fractal-fractional Caputo derivative, Chaos Soliton. Fract., 131 (2020), 109528. https://doi.org/10.1016/j.chaos.2019.109528 doi: 10.1016/j.chaos.2019.109528
    [45] J. Li, M. J. Ma, The analysis of a drug transmission model with family education and public health education, Infect. Dis. Model., 3 (2018), 74–84. https://doi.org/10.1016/j.idm.2018.03.007 doi: 10.1016/j.idm.2018.03.007
    [46] P. Y. Liu, L. Zhang, Y. F. Xing, Modelling and stability of a synthetic drugs transmission model with relapse and treatment, J. Appl. Math. Comput., 60 (2019), 465–484. https://doi.org/10.1007/s12190-018-01223-0 doi: 10.1007/s12190-018-01223-0
    [47] A. Malik, M. Alkholief, F. M. Aldakheel, A. A. Khan, Z. Ahmad, W. Kamal, et al., Sensitivity analysis of COVID-19 with quarantine and vaccination: A fractal-fractional model, Alex. Eng. J., 61 (2022), 8859–8874. https://doi.org/10.1016/j.aej.2022.02.024 doi: 10.1016/j.aej.2022.02.024
    [48] R. P. Mattick, C. Breen, J. Kimber, M. Davoli, Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence, Coch. Data. Syst. Rev., 3 (2009). https://doi.org/10.1002/14651858.CD002209.pub2 doi: 10.1002/14651858.CD002209.pub2
    [49] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, 1993.
    [50] K. M. Owolabi, A. Shikongo, Fractal fractional operator method on HER2+ breast cancer dynamics, Int. J. Appl. Comput. Math., 7 (2021), 85. https://doi.org/10.1007/s40819-021-01030-5 doi: 10.1007/s40819-021-01030-5
    [51] C. Potier, V. Laprˊevote, F. Dubois-Arber, O. Cottencin, B. Rolland, Supervised injection services: What has been demonstrated? A systematic literature review, Drug Alcohol Depen., 145 (2014), 48–68. https://doi.org/10.1016/j.drugalcdep.2014.10.012 doi: 10.1016/j.drugalcdep.2014.10.012
    [52] S. Qureshi, A. Atangana, Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data, Chaos Soliton. Fract., 136 (2020), 109812. https://doi.org/10.1016/j.chaos.2020.109812 doi: 10.1016/j.chaos.2020.109812
    [53] M. U. Rahman, S. Ahmad, R. T. Matoog, N. A. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Fract., 150 (2021), 111121. https://doi.org/10.1016/j.chaos.2021.111121 doi: 10.1016/j.chaos.2021.111121
    [54] M. U. Rahman, M. Arfan, M. Shah, Z. Shah, E. Alzahrani, Evolution of fractional mathematical model for drinking under Atangana-Baleanu Caputo derivatives, Phys. Scr., 96 (2021), 115203. https://doi.org/10.1088/1402-4896/ac1218 doi: 10.1088/1402-4896/ac1218
    [55] R. A. Rudd, N. Aleshire, J. E. Zibbell, R. M. Gladden, Increases in drug and opioid overdose deaths-United States, 2000–2014, Am. J. Transplant., 16 (2016), 1323–1327. https://doi.org/10.1111/ajt.13776 doi: 10.1111/ajt.13776
    [56] J. Singh, H. K. Jassim, D. Kumar, An efficient computational technique for local fractional Fokker Planck equation, Physica A: Stat. Mech. Appl., 555 (2020), 124525. https://doi.org/10.1016/j.physa.2020.124525 doi: 10.1016/j.physa.2020.124525
    [57] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 1–16. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0
    [58] N. D. Volkow, J. Montaner, The urgency of providing comprehensive and integrated treatment for substance abusers with HIV, Health Affairs, 30 (2011), 1411–1419. https://doi.org/10.1377/hlthaff.2011.0663 doi: 10.1377/hlthaff.2011.0663
    [59] T. X. Zhang, Y. Q. Zhao, X. L. Xu, S. Wu, Y. J. Gu, Solution and dynamics analysis of fractal-fractional multi-scroll Chen chaotic system based on Adomain decomposition method, Chaos, Soliton. Fract., 178 (2024), 114268. https://doi.org/10.1016/j.chaos.2023.114268 doi: 10.1016/j.chaos.2023.114268
  • This article has been cited by:

    1. Mounia Mouy, Hamid Boulares, Saleh Alshammari, Mohammad Alshammari, Yamina Laskri, Wael W. Mohammed, On Averaging Principle for Caputo–Hadamard Fractional Stochastic Differential Pantograph Equation, 2022, 7, 2504-3110, 31, 10.3390/fractalfract7010031
    2. Sabbavarapu Nageswara Rao, Manoj Singh, Ahmed Hussein Msmali, Abdullah Ali H. Ahmadini, Existence of Positive Solutions for a Coupled System of p-Laplacian Semipositone Hadmard Fractional BVP, 2023, 7, 2504-3110, 499, 10.3390/fractalfract7070499
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1344) PDF downloads(57) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog