In this paper, we dealt with the tracking control problem of a class of fractional-order uncertain systems with time delays. In order to handle the effects brought by the uncertainties, external disturbances, time-delay terms, and to overcome the obstacles caused by inputs saturation, the tracking controller, which consisted of linear control law, nonlinear law, and robust control law proposed in this paper, was designed by combining the composite nonlinear feedback control method and the properties of fractional order operators. Furthermore, the validation of this tracking controller was proved.
Citation: Guijun Xing, Huatao Chen, Zahra S. Aghayan, Jingfei Jiang, Juan L. G. Guirao. Tracking control for a class of fractional order uncertain systems with time-delay based on composite nonlinear feedback control[J]. AIMS Mathematics, 2024, 9(5): 13058-13076. doi: 10.3934/math.2024637
[1] | Jean De Dieu Mangoubi, Mayeul Evrard Isseret Goyaud, Daniel Moukoko . Pullback attractor for a nonautonomous parabolic Cahn-Hilliard phase-field system. AIMS Mathematics, 2023, 8(9): 22037-22066. doi: 10.3934/math.20231123 |
[2] | Brice Landry Doumbé Bangola . Phase-field system with two temperatures and a nonlinear coupling term. AIMS Mathematics, 2018, 3(2): 298-315. doi: 10.3934/Math.2018.2.298 |
[3] | Franck Davhys Reval Langa, Armel Judice Ntsokongo . A conserved phase-field model based on type II heat conduction. AIMS Mathematics, 2018, 3(2): 288-297. doi: 10.3934/Math.2018.2.288 |
[4] | Joseph L. Shomberg . Well-posedness and global attractors for a non-isothermal viscous relaxationof nonlocal Cahn-Hilliard equations. AIMS Mathematics, 2016, 1(2): 102-136. doi: 10.3934/Math.2016.2.102 |
[5] | Armel Andami Ovono, Alain Miranville . On the Caginalp phase-field system based on the Cattaneo law with nonlinear coupling. AIMS Mathematics, 2016, 1(1): 24-42. doi: 10.3934/Math.2016.1.24 |
[6] | Armel Judice Ntsokongo, Daniel Moukoko, Franck Davhys Reval Langa, Fidèle Moukamba . On higher-order anisotropic conservative Caginalp phase-field type models. AIMS Mathematics, 2017, 2(2): 215-229. doi: 10.3934/Math.2017.2.215 |
[7] | Cyril Dennis Enyi, Soh Edwin Mukiawa . Dynamics of a thermoelastic-laminated beam problem. AIMS Mathematics, 2020, 5(5): 5261-5286. doi: 10.3934/math.2020338 |
[8] | Yang Wang, Jihui Wu . Long-time dynamics of nonlinear MGT-Fourier system. AIMS Mathematics, 2024, 9(4): 9152-9163. doi: 10.3934/math.2024445 |
[9] | Aymard Christbert Nimi, Daniel Moukoko . Global attractor and exponential attractor for a Parabolic system of Cahn-Hilliard with a proliferation term. AIMS Mathematics, 2020, 5(2): 1383-1399. doi: 10.3934/math.2020095 |
[10] | Feng Zhou, Hongfang Li, Kaixuan Zhu, Xin Li . Dynamics of a damped quintic wave equation with time-dependent coefficients. AIMS Mathematics, 2024, 9(9): 24677-24698. doi: 10.3934/math.20241202 |
In this paper, we dealt with the tracking control problem of a class of fractional-order uncertain systems with time delays. In order to handle the effects brought by the uncertainties, external disturbances, time-delay terms, and to overcome the obstacles caused by inputs saturation, the tracking controller, which consisted of linear control law, nonlinear law, and robust control law proposed in this paper, was designed by combining the composite nonlinear feedback control method and the properties of fractional order operators. Furthermore, the validation of this tracking controller was proved.
The Caginalp phase-field system
∂tu+Δ2u−Δf(u)=−Δθ, | (1.1) |
∂tα−Δθ=−∂tu, | (1.2) |
has been proposed in [1] to model phase transition phenomena, e.g. melting-solidification phenomena, in certain classes of materials. In this context, u is the order parameter and θ the relative temperature (relative to the equilibrium melting temperature), f is a given function (precisely, the derivative of a doublewell potential F). This system has been studied, e.g., [2,6,7,8,9,10,11,13,15] and [17].
Equations (1.1) and (1.2) are based on the total free energy
Ψ(u,θ)=∫Ω(12|∇u|2+F(u)−uθ−12θ2)dx, | (1.3) |
where Ω is the domain occupied by the material (we assume that it is a bounded and smooth domain of Rn, n=2 or 3 with boundary Γ).
We then introduce the enthalpy H defined by
H=−∂θψ, | (1.4) |
where ∂ denotes a variational derivative, so that
H=u+θ. | (1.5) |
The gouverning equations for u and θ are finally given by
∂tu=Δ∂uψ, | (1.6) |
where ∂u stands for the variational derivative with respect to u, which yields (1.1). Then, we have the energy equation
∂tH=−divq, | (1.7) |
where q is the thermal flux vector. Assuming the classical Fourier law
q=−∇θ, | (1.8) |
we obtain (1.1) and (1.2).
Now, one drawback of the Fourier law is that it predicts that thermal signals propagate with an infinite speed, which violates causality (the so-called "paradox of heat conduction", see, e.g. [5]). Therefore, several modifications of (1.8) have been proposed in the literature to correct this unrealistic feature, leading to a second order in time equation for the temperature.
A different approach to heat conduction was proposed in the Sixties (see, [14,16]), where it was observed that two temperatures are involved in the definition of the entropy: the conductive temperature θ, influencing the heat conduction contribution, and the thermodynamic temperature, appearing in the heat supply part. For time-independent models, it appears that these two temperatures coincide in absence of heat supply. Actually, they are generally different in time for example, [8] and references therein for more discussion on the subject. In particular, this happens for non-simple materials. In that case, the two temperatures are related as follows (see [4,5]).
θ=α−△α, | (1.9) |
Our aim in this paper is to study a generalization of the Caginalp phase-field system based on these two temperatures theory and the usual Fourier law with a nonlinear coupling. In particular, we obtain the existence and the uniqueness of the solutions and we prove the existence of the exponential attractors and, thus, of finite-dimensional global attractors.
We consider the following initial and boundary value problem:
∂tu+Δ2u−Δf(u)=−Δg(u)(α−△α), | (2.1) |
∂tα−Δ∂tα+Δ2α−Δα=−g(u)∂tu, | (2.2) |
u=Δu=α=Δα=0onΓ, | (2.3) |
u|t=0=u0,α|t=0=α0, | (2.4) |
where Γ is the boundary of the spatial domain Ω.
We make the following assumptions on nonlinearities f and g:
fisofclassC2(R),f(0)=0,g∈C2(R),g(0)=0, | (2.5) |
∣G(s)∣<c1F(s)+c2,c0,c1,c2⩾0,s∈R, | (2.6) |
∣g(s)s∣<c3(∣G(s)∣2+1),c3⩾0,s∈R, | (2.7) |
c4sk+2−c5≤F(s)≤f(s)s+c0≤c6sk+2−c7,c4,c6>0,c5,c7⩾0,s∈R, | (2.8) |
∣g(s)∣<c8(∣s∣+1),∣g′(s)∣≤c9c8,c9⩾0,s∈R, | (2.9) |
∣f′(s)∣≤c10(∣s∣k+1),c10⩾0,s∈R, | (2.10) |
where k is an integer, G(s)=∫s0g(τ)dτ,and,F(s)=∫s0f(τ)d(τ).
We denote by ‖.‖ the usual L2-norm (with associated scalar product ((., .))) and set ‖.‖−1=‖(−Δ)−12.‖, where −Δ denotes the minus Laplace operator with Dirichlet boundary conditions. More generally, ‖.‖X denotes the norm in the Banach space X. Throughout this paper, the same letters c, c′ and c″ denotes (generally positive) constants which may change from line to line, or even in a same line. Similarly, the same letter Q denotes monotone increasing (with respect to each argument) functions which may change from line to line, or even in a same line.
Remark 2.1. In our case, to obtain equations (2.1) and (2.2), the total free energy reads in terms of the conductive temperature θ
ψ(u,θ)=∫Ω(12|∇u|2+F(u)−G(u)θ−12θ2)dx, | (2.11) |
where f=F′ and g=G′, and (1.6) yields, in view of (1.9), the evolution equation for the order parameter (2.1). Furthermore, the enthalpy now reads
H=G(u)+θ=G(u)+α−△α, |
which yields thanks to (1.7), the energy equation,
∂α∂t−△∂α∂t+divq=−g(u)∂u∂t. |
Considering the usual Fourier law (q=−∇θ), we have (2.2).
We can note that we still have an infinite speed of propagation here.
The estimates derived in this section are formal, but they can easily be justified within a Galerkin scheme. In what follows, the Poincaré, Hölder and Young inequalities are extensively used, Without further referring to them.
We rewrite (2.1) in the equivalent form:
(−Δ)−1∂tu−Δu+f(u)=g(u)(α−Δα). | (3.1) |
We multiply (3.1) by ∂tu and integrate over Ω, we have
((−Δ)−1∂tu,∂tu)+(−Δu,∂tu)+(f(u),∂tu)=(g(u)(α−Δα),∂tu), |
which gives
12ddt(‖∇u‖2+2∫ΩF(u)dx)+‖∂tu‖2−1=∫Ωg(u)∂tu(α−Δα)dx. | (3.2) |
We multiply (2.2) by (α−Δα) and integrate over Ω, we have
(∂tα,α−Δα)+(Δ2α,α−Δα)+(−Δ∂tα,α−Δα)+(−Δα,α−Δα)=−(g(u)∂tu,(α−Δα)), |
which gives,
12ddt‖α−Δα‖2+‖∇α‖2+2‖Δα‖2+‖∇Δα‖2=−∫Ωg(u)∂tu(α−Δα)dx | (3.3) |
(note that ‖α−Δα‖2=‖α‖2+2‖∇α‖2+‖Δα‖2).
Summing (3.2) and (3.3), we find
ddt(‖∇u‖2+‖α−Δα‖2+2∫ΩF(u)dx)+2‖∇α‖2+4‖Δα‖2+2‖∇Δα‖2+2‖∂tu‖2−1=0, | (3.4) |
which yields,
dE1dt+c(‖∇α‖2+‖Δα‖2+‖∇Δα‖2+‖∂tu‖2−1)≤c. | (3.5) |
where
E1=‖∇u‖2+‖α−Δα‖2+2∫ΩF(u)dx, | (3.6) |
Owing to (2.8), we obtain
\begin{eqnarray} c(\Vert u\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+\Vert u\Vert^{k+2}_{L^{k+2}(\Omega)})-c^{'}\leq E_{1} \\\leq c"(\Vert u\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+\Vert u\Vert^{k+2}_{L^{k+2}(\Omega)})-c^{'''}, \end{eqnarray} | (3.7) |
We multiply (2.1) by u and integrate over \Omega , we have
\begin{eqnarray} \frac{d}{dt}\Vert u\Vert^{2}_{-1}+c(\Vert u\Vert^{2}_{H^{1}(\Omega)}+ \int_{\Omega} F(u)dx)\leq \frac{c}{2}\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+2c_{0}. \end{eqnarray} | (3.8) |
Summing (3.5) and \delta (3.8), where \delta > 0 is small enough, we have
\begin{eqnarray} \frac{d}{dt}E_{2}+c(E_{2}+\Vert\nabla\Delta\alpha\Vert^{2}+\Vert\partial_{t}u\Vert^{2}_{-1})\leq c, \; c > 0, \end{eqnarray} | (3.9) |
where
\begin{eqnarray*} E_{2} = E_{1}+\delta \Vert u\Vert^{2}_{-1}, \end{eqnarray*} |
satifies
\begin{eqnarray*} c(\Vert u\Vert^{2}_{H^{1}(\Omega)}+\Vert u\Vert^{k+2}_{L^{k+2}(\Omega)}+\Vert \alpha\Vert^{2}_{H^{2}(\Omega)})-c^{'}\leq \\\nonumber E_{2}\leq c^{''}(\Vert u\Vert^{2}_{H^{1}(\Omega)}+\Vert u\Vert^{k+2}_{L^{k+2}(\Omega)}+\Vert \alpha\Vert^{2}_{H^{2}(\Omega)})-c^{'''},\\ c, c^{''} > 0. \end{eqnarray*} |
In particular, we deduce from (3.9) and Gronwall's lemma the dissipative estimate
\begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{1}(\Omega)}+\Vert u(t)\Vert^{k+2}_{L^{k+2}(\Omega)}+\Vert\alpha(t)\Vert^{2}_{H^{2}(\Omega)}+\int^{t}_{0}e^{-c(t-s)}(\Vert\nabla\Delta\alpha(s)\Vert^{2}+\Vert \partial_{t}u(s)\Vert^{2}_{-1})ds \\ \leq c (\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert u_{0}\Vert^{k+2}_{L^{k+2}(\Omega)}+\Vert\alpha_{0}\Vert^{2}_{H^{2}(\Omega)})e^{-ct}, c > 0,\; t\geq 0. \end{eqnarray} | (3.10) |
We multiply (2.1) by \partial_{t}u and integrate over \Omega , we obtain
\begin{eqnarray} && \frac{d}{dt}\Vert\Delta u\Vert^{2}+2\Vert\partial_{t}u\Vert^{2} = 2 \int_{\Omega}\Delta f(u) \partial_{t}u dx-2\int_{\Omega}\Delta g(u)(\alpha-\Delta\alpha)\partial_{t}u)dx. \end{eqnarray} | (3.11) |
We multiply (2.2) by -\Delta(\alpha-\Delta\alpha) and integrate over \Omega , we obtain
\begin{eqnarray} \frac{d}{dt}\Vert \nabla(\alpha-\Delta\alpha)\Vert^{2}+2\Vert\Delta\alpha\Vert^{2}+4\Vert\nabla\Delta\alpha\Vert^{2}+2\Vert\Delta^{2}\alpha\Vert = 2 \int_{\Omega}g(u)\partial_{t}u.\Delta(\alpha-\Delta\alpha)dx. \end{eqnarray} | (3.12) |
(note that \Vert \nabla(\alpha-\Delta\alpha)\Vert^{2} = \Vert\nabla\alpha \Vert^{2}+2\Vert\Delta\alpha\Vert^{2}+\Vert\nabla\Delta\alpha\Vert^{2} )
Summing (3.11) and (3.12), we find
\begin{eqnarray} &&\frac{d}{dt}(\Vert\Delta u\Vert^{2}+\Vert \nabla(\alpha-\Delta\alpha)\Vert^{2})+2\Vert\Delta\alpha\Vert^{2}+4\Vert\nabla\Delta\alpha\Vert^{2}+2\Vert\Delta^{2}\alpha\Vert^{2}+2\Vert\partial_{t}u\Vert^{2} \\ && = 2(\Delta f(u), \partial_{t}u)-2(\Delta g(u)(\alpha-\Delta\alpha),\partial_{t}u)+2(g(u)\partial_{t}u,\Delta(\alpha-\Delta\alpha)). \end{eqnarray} | (3.13) |
This, let find estimates of (3.13) right terms, using H \ddot{o} lder inequality, owing to \alpha \in H^{2}(\Omega) with continuous injection the H^{2}(\Omega)\subset L^{\infty}(\Omega) , we have
\begin{eqnarray} 2\vert(\Delta f(u), \partial_{t}u)\vert \leq c\Vert f(u)\Vert^{2}_{H^{2}(\Omega)}+\frac{1}{3}\Vert\partial_{t}u\Vert^{2}. \end{eqnarray} | (3.14) |
Furthermore,
\begin{eqnarray} 2\vert(\Delta g(u)(\alpha-\Delta\alpha),\partial_{t}u)\vert &\leq & 2 \int_{\Omega}\vert\Delta g(u)\vert\vert(\alpha-\Delta\alpha)\vert_{L^{\infty}(\Omega)}\vert\partial_{t}u\vert dx \\ & \leq & 2c\Vert \Delta g(u)\Vert\Vert\partial_{t}u\Vert \\ & \leq & c\Vert \Delta g(u)\Vert^{2}+\frac{1}{3}\Vert\partial_{t}u\Vert^{2}, \end{eqnarray} | (3.15) |
and,
\begin{eqnarray} 2\vert (g(u)\partial_{t}u,\Delta(\alpha-\Delta\alpha))\vert & = & 2\vert((\alpha-\Delta\alpha)\Delta g(u),\partial_{t}u)\vert \\ & \leq & c_{1}\Vert \Delta g(u)\Vert^{2}+c_{3}\Vert\partial_{t}u\Vert^{2}. \end{eqnarray} | (3.16) |
Inserting (3.14), (3.15) and (3.16) into (3.13), we find
\begin{eqnarray} && \frac{d}{dt}(\Vert\Delta u\Vert^{2}+\Vert \nabla(\alpha-\Delta\alpha)\Vert^{2})+2\Vert\Delta\alpha\Vert^{2}+4\Vert\nabla\Delta\alpha\Vert^{2}+2\Vert\Delta^{2}\alpha\Vert^{2}+c_{5}\Vert\partial_{t}u\Vert^{2} \\ &&\leq c \Vert f(u)\Vert^{2}_{H^{2}(\Omega)}+c\Vert\Delta g(u)\Vert^{2}. \end{eqnarray} | (3.17) |
We recall that H^{2}(\Omega)\subset C(\overline{\Omega}) and owing to (2.5), we obtain
\begin{eqnarray} \Vert f(u)\Vert^{2}_{H^{2}(\Omega)}+\Vert g(u)\Vert^{2}_{H^{2}(\Omega)}\leq Q(\Vert u\Vert_{H^{2}(\Omega)}). \end{eqnarray} | (3.18) |
and inserting (3.18) into (3.17), we find
\begin{eqnarray} &&\frac{d}{dt}(\Vert\Delta u\Vert^{2}+\Vert \nabla(\alpha-\Delta\alpha)\Vert^{2})+2\Vert\Delta\alpha\Vert^{2}+4\Vert\nabla\Delta\alpha\Vert^{2}+\Vert\Delta^{2}\alpha\Vert^{2} \\ && +c_{5}\Vert\partial_{t}u\Vert^{2} \leq Q(\Vert u\Vert_{H^{2}(\Omega)}). \end{eqnarray} | (3.19) |
In particular, we deduce
\begin{eqnarray} \frac{d}{dt}(\Vert\Delta u\Vert^{2}+\Vert \nabla(\alpha-\Delta\alpha)\Vert^{2}) \leq Q(\Vert u\Vert_{H^{2}(\Omega)}). \end{eqnarray} | (3.20) |
We set
\begin{eqnarray} y = \Vert\Delta u\Vert^{2}+\Vert \nabla(\alpha-\Delta\alpha)\Vert^{2}, \end{eqnarray} | (3.21) |
we deduce from (3.20) an inequation of the form
\begin{eqnarray} y^{'} \leq Q(y). \end{eqnarray} | (3.22) |
Let z be the solution to the ordinary differential equation
\begin{eqnarray} z' = Q(z),\quad z(0) = y(0). \end{eqnarray} | (3.23) |
It follows from the comparison principle, that there exists a time
T_{0} = T_{0}(\Vert u_{0}\Vert_{H^{2}(\Omega)}, \Vert\alpha_{0}\Vert_{H^{3}(\Omega)}) > 0 belonging to, say (0, \frac{1}{2}) such that
\begin{eqnarray} y(t) \leq z(t),\quad \forall t \in [0, T_{0}], \end{eqnarray} | (3.24) |
hence
\begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)}+ \Vert\alpha(t)\Vert^{2}_{H^{3}(\Omega)} \leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}) , \forall t \leq T_{0}. \end{eqnarray} | (3.25) |
We now differentiate (3.1) with respect to time, and have
\begin{eqnarray} (-\Delta)^{-1}\partial^{2}_{t}u-\Delta\partial_{t}u+f'(u)\partial_{t}u = g'(u)\partial_{t}u(\alpha-\Delta\alpha)+g(u)(\partial_{t}\alpha-\Delta\partial_{t}\alpha). \end{eqnarray} | (3.26) |
Owing to (2.2), we have
\begin{eqnarray} (-\Delta)^{-1}\partial^{2}_{t}u-\Delta\partial_{t}u+f'(u)\partial_{t}u = g'(u)\partial_{t}u(\alpha-\Delta\alpha)-g^{2}(u)\partial_{t}u+g(u)\Delta\alpha. \end{eqnarray} | (3.27) |
We multiply (3.27) by t\partial_{t}u and integrate over \Omega , we find for t \leq T_{0}
\begin{eqnarray} &&\frac{d}{dt}(t\Vert\partial_{t}u\Vert^{2}_{-1})+2t\Vert\nabla\partial_{t}u\Vert^{2}+2(f'(u)\partial_{t}u, t\partial_{t}u) = 2 \int_{\Omega}g'(u)\partial_{t}u(\alpha-\Delta\alpha).t\partial_{t}u dx \\ &&-2\int_{\Omega}g^{2}(u)\partial_{t}u.t\partial_{t}u dx+2\int_{\Omega}g(u)\Delta\alpha. t\partial_{t}u dx. \end{eqnarray} | (3.28) |
Owing to (2.9), (3.18) and (3.25), we obtain t \leq T_{0}
\begin{eqnarray} \vert 2(f'(u)\partial_{t}u, t\partial_{t}u)\vert &\leq & 2t Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\partial_{t}u\Vert^{2} \\ & \leq & Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})(t\Vert\partial_{t}u\Vert^{2}_{-1})+\frac{t}{2}\Vert\nabla\partial_{t}u\Vert^{2}. \end{eqnarray} | (3.29) |
Using to the interpolation inequality note that, \Vert\partial_{t}u\Vert^{2}\leq c\Vert\partial_{t}u\Vert_{-1}\Vert\nabla\partial_{t}u\Vert .
Owing to (3.25) and that -\Delta\alpha \in L^{2}(\Omega) \subset H^{-1}(\Omega) , we have
\begin{eqnarray} \vert 2(g(u)(\Delta\alpha, t\partial_{t}u)\vert & \leq & 2tQ(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\Delta\alpha\Vert\Vert\partial_{t}u\Vert \\ & \leq & Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})(t\Vert\Delta\alpha\Vert^{2}+t\Vert\partial_{t}u\Vert^{2}) \\ & \leq & Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})(t\Vert \alpha\Vert^{2}_{H^{2}(\Omega)}+t\Vert\nabla\partial_{t}u\Vert^{2}). \end{eqnarray} | (3.30) |
Using the estimates (2.9) and owing to (3.25), we find
\begin{eqnarray} \vert 2(g'(u)\partial_{t}u(\alpha-\Delta\alpha), t\partial_{t}u)\vert &\leq & 2tQ(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\partial_{t}u\Vert^{2} \\ & \leq & tQ(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\partial_{t}u\Vert^{2}_{-1}+\frac{t}{2}\Vert\nabla\partial_{t}u\Vert^{2}. \end{eqnarray} | (3.31) |
Owing to (3.25), we have
\begin{eqnarray} \vert 2(g^{2}(u)\partial_{t}u, t\partial_{t}u,)\vert \leq tQ(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\partial_{t}u\Vert^{2}_{-1}+\frac{t}{2}\Vert\nabla\partial_{t}u\Vert^{2}. \end{eqnarray} | (3.32) |
In inserting (3.29), (3.30), (3.31), (3.32) into (3.28) and owing to (3.25), we find
\begin{eqnarray} && \frac{d}{dt}(t\Vert\partial_{t}u\Vert^{2}_{-1})+ct\Vert\nabla\partial_{t}u\Vert^{2} \\ &&\leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})(t\Vert\partial_{t}u\Vert^{2}_{-1})+ct\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}. \end{eqnarray} | (3.33) |
In particular, owing to (3.5), (3.10), (3.25) and (3.33), Gronwall's lemma and, we find
\begin{eqnarray} \Vert\partial_{t}u\Vert^{2}_{-1} \leq \frac{1}{t}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}), \forall t \in (0, T_{0}]. \end{eqnarray} | (3.34) |
We multiply (3.27) by \partial_{t}u and integrate over \Omega , we have
\begin{eqnarray} \frac{d}{dt}\Vert\partial_{t}u\Vert^{2}_{-1}+ \Vert\nabla\partial_{t}u\Vert^{2} \leq c(\Vert\partial_{t}u\Vert^{2}_{-1}+\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}). \end{eqnarray} | (3.35) |
Owing to (3.10), (3.25) and Granwall's lemma, then the estimates (3.35) becomes
\begin{eqnarray} \Vert\partial_{t}u\Vert^{2}_{-1} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\partial_{t}u(T_{0})\Vert^{2}_{-1}, \; c\geq 0, \; t\geq T_{0}, \end{eqnarray} | (3.36) |
hence, owing to (3.34), we have
\begin{eqnarray} \Vert\partial_{t}u\Vert^{2}_{-1} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}), \; c\geq 0, \; t\geq T_{0}. \end{eqnarray} | (3.37) |
We now rewrite (3.1), for t\geq T_{0} fixed, in the form
\begin{eqnarray} -\Delta u +f(u) = h_{u}(t), u = 0 \; {\rm{on}} \; \Gamma , \end{eqnarray} | (3.38) |
where
\begin{eqnarray} h_{u}(t) = -(-\Delta)^{-1}\partial_{t}u+g(u)(\alpha-\Delta\alpha). \end{eqnarray} | (3.39) |
We multiply (3.39) by h_{u}(t) and integrate over \Omega , we have
\begin{eqnarray} \Vert h_{u}(t)\Vert^{2} \leq c(\Vert\partial_{t}u\Vert^{2}_{-1}+\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}). \end{eqnarray} | (3.40) |
Owing to (3.34)-(3.37), we obtain
\begin{eqnarray} \Vert h_{u}(t)\Vert^{2} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}), \; c > 0, \; t\geq T_{0}. \end{eqnarray} | (3.41) |
We multiply (3.38) by u , owing to (2.8) and integrate over \Omega , we find
\begin{eqnarray} \Vert\nabla u\Vert^{2}+c \int_{\Omega}F(u)dx \leq c\Vert h_{u}(t)\Vert^{2}+c^{'}, c > 0. \end{eqnarray} | (3.42) |
We multiply (3.38) by -\Delta u , owing to (3.9)-(3.25) and integrate over \Omega , we have
\begin{eqnarray} \Vert \Delta u\Vert^{2} \leq \Vert h_{u}(t)\Vert^{2}+c\Vert\nabla u\Vert^{2} , \end{eqnarray} | (3.43) |
we deduce the (3.41)-(3.43), we obtain
\begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c^{'}, \; c\geq 0, \; t\geq T_{0}. \end{eqnarray} | (3.44) |
Owing to (3.25), we find
\begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}), \; c\geq 0, \; t\geq 0. \end{eqnarray} | (3.45) |
Then the estimate (3.3) becomes
\begin{eqnarray} && \frac{d}{dt}\Vert\alpha-\Delta\alpha\Vert^{2}+2\Vert\nabla\alpha\Vert^{2}+2\Vert\Delta\alpha\Vert^{2}+2\Vert\nabla\Delta\alpha\Vert^{2} \\ &&\leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})(\Vert\alpha-\Delta\alpha\Vert^{2}+\Vert\partial_{t}u\Vert^{2}). \end{eqnarray} | (3.46) |
Owing to (3.25) and (3.36), we have
\begin{eqnarray} \Vert\alpha-\Delta\alpha\Vert^{2}+\Vert\partial_{t}u\Vert^{2}\leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}). \end{eqnarray} | (3.47) |
Owing to (3.35)-(3.37) and we integrate over T_{0} to t , we deduce that
\begin{eqnarray} \Vert\alpha(t)\Vert^{2}_{H^{2}(\Omega)}+ \int^{t}_{T_{0}}(\Vert\nabla\alpha(s)\Vert^{2}+\Vert\Delta\alpha(s)\Vert^{2}+\Vert\nabla\Delta\alpha(s)\Vert^{2})ds \\ \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}), \;t\geq T_{0}, \end{eqnarray} | (3.48) |
which implies
\begin{eqnarray} \Vert\alpha(t)\Vert^{2}_{H^{2}(\Omega)} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}),\;c > 0\;, t\geq T_{0}. \end{eqnarray} | (3.49) |
Combining (3.44) and (3.49), we have
\begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha(t)\Vert^{2}_{H^{2}(\Omega)} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c, c\geq 0,\;t\geq T_{0}. \end{eqnarray} | (3.50) |
Finally, we deduce (3.35) and (3.50) that
\begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha(t)\Vert^{2}_{H^{2}(\Omega)} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c,\; c > 0,\; t\geq 0. \end{eqnarray} | (3.51) |
Integrating (3.51) between 0 to 1 , we obtain
\begin{eqnarray} \int^{1}_{0} \Vert\alpha(t)\Vert^{2}_{H^{2}(\Omega)}dt\leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c. \end{eqnarray} | (3.52) |
We multiply (2.1) by u and integrate over \Omega , we have
\begin{eqnarray} \frac{d}{dt}\Vert u \Vert^{2}+c\Vert \Delta u\Vert^{2} \leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})(\Vert \nabla u\Vert^{2}+\Vert \alpha\Vert^{2}_{H^{3}(\Omega)}) . \end{eqnarray} | (3.53) |
Owing to (3.18) and (3.25), we find
\begin{eqnarray} \frac{d}{dt}\Vert u \Vert^{2}+c\Vert \Delta u\Vert^{2} \leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}). \end{eqnarray} | (3.54) |
We deduce the (3.54), we have
\begin{eqnarray} \int^{1}_{0}\Vert u(t)\Vert^{2}_{H^{2}(\Omega)}dt\leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}). \end{eqnarray} | (3.55) |
The estimates (3.52) and (3.55) conclude that there exists T \in (0, 1) such that
\begin{eqnarray} \Vert u(T)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha (T)\Vert^{2} \leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c, \end{eqnarray} | (3.56) |
which implies
\begin{eqnarray} \Vert u(1)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha (1)\Vert^{2}_{H^{2}{(\Omega)}} \leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c. \end{eqnarray} | (3.57) |
Owing to (3.10), (3.51) and (3.57), we have the estimate dissipative following
\begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha (t)\Vert^{2}_{H^{2}{(\Omega)}} \leq e^{-ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c,\; c > 0 ,\; t\geq 0. \end{eqnarray} | (3.58) |
We multiply (2.2) by \Delta\partial_{t}\alpha and integrate over \Omega , we have
\begin{eqnarray} \frac{d}{dt}(\Vert\nabla\Delta\alpha\Vert^{2}+\Vert\Delta\alpha\Vert^{2})+\Vert\Delta\partial_{t}\alpha\Vert^{2}+\Vert\nabla\partial_{t}\alpha\Vert^{2} \leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\partial_{t}u\Vert^{2}_{-1}. \end{eqnarray} | (3.59) |
Owing to (3.35)-(3.37) and integrate between T_{0} to t , we deduce that
\begin{eqnarray} \int^{t}_{T_{0}}(\Vert\Delta\partial_{t}\alpha(s)\Vert^{2}+\Vert\nabla\partial_{t}\alpha(s)\Vert^{2})ds \leq e^{-ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}),\; t\geq T_{0}, \end{eqnarray} | (3.60) |
Setting y = \Vert\nabla\Delta\alpha\Vert^{2}, g = 0 and h = \Vert\partial_{t}u\Vert^{2}_{-1} , we deduce from (3.60) that
\begin{eqnarray} y' \leq gy+h, t\geq t_{0}, \end{eqnarray} | (3.61) |
where, owing to the above estimates, y, g and h satisfy the assumptions of the uniform Gronwall's lemme (for t\geq t_{0} ), and for t\geq t_{0}+r ,
\begin{eqnarray} \int^{t+r}_{t}\Vert\nabla\Delta\alpha\Vert^{2} ds \leq e^{-ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}, r)+c(r), c > 0, \;t\geq r, \end{eqnarray} | (3.62) |
which implies
\begin{eqnarray} \Vert \alpha(t)\Vert^{2}_{H^{3}(\Omega)} \leq e^{-ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}, r)+c(r), c > 0, \;t\geq r. \end{eqnarray} | (3.63) |
We deduce owing to (3.58) and (3.63) that
\begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha(t)\Vert^{2}_{H^{3}(\Omega)}\leq e^{-ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}, r)+ c(r), c(r) > 0, \; t \geq r. \end{eqnarray} | (3.64) |
Based on the a priori estimates, we have the
Theorem 4.1. We assume that (u_{0}, \alpha_{0})\in (H^{2}(\Omega)\cap H^{1}_{0}(\Omega)\cap L^{K+2}(\Omega))\times(H^{3}(\Omega)\cap H^{1}_{0}(\Omega)) . Then, the system (2.1)-(2.4) possesses at least solution (u, \alpha) such that u \in L^{\infty}(0, T; H^{2}(\Omega)\cap H^{1}_{0}(\Omega)\cap L^{k+2}(\Omega)) , \alpha \in L^{\infty}(0, T; H^{3}(\Omega)\cap H^{1}_{0}(\Omega)) and \partial_{t}u \in L^{2}(0, T; H^{-1}(\Omega)), \; \forall\; T > 0 .
Proof. The proof is based on the estimate (3.64) and, e.g., a standard Galerkin scheme.
We have, concerning the uniqueness, the following.
Theorem 4.2. We assume that the assumptions of Theorem 4.1 hold. Then, the solution obtained in Theorem 4.1 is unique.
Proof. Let now (u_{1}, \alpha_{1}) and (u_{2}, \alpha_{2}) be two solutions to (2.1)-(2.4) with initial data (u_{1, 0}, \alpha_{1, 0}) et (u_{2, 0}, \alpha_{2, 0}) \in (H^{2}(\Omega)\cap H^{1}_{0}(\Omega)\cap L^{K+2}(\Omega))\times(H^{3}(\Omega)\cap H^{1}_{0}(\Omega)) respectively. We set (u, \alpha) = (u_{1}, \alpha_{1})-(u_{2}, \alpha_{2}) and (u_{0}, \alpha_{0}) = (u_{1, 0}, \alpha_{1, 0})-(u_{2, 0}, \alpha_{2, 0}) . Then (u, \alpha) verifies the following problem.
\begin{eqnarray} (-\Delta)^{-1}\partial_{t}u-\Delta u-(f(u_{1})-f(u_{2})) = g(u_{1})(\alpha-\Delta\alpha)+(g(u_{1})- g(u_{2}))(\alpha_{2}-\Delta\alpha_{2}), \end{eqnarray} | (4.1) |
\begin{eqnarray} \partial_{t}\alpha-\Delta\partial_{t}\alpha+\Delta^{2}\alpha -\Delta\alpha = -g(u_{1})\partial_{t}u-(g(u_{1})-g(u_{2}))\partial_{t}u_{2}, \end{eqnarray} | (4.2) |
\begin{eqnarray} u = \Delta u = \alpha = \Delta\alpha = 0\quad {\rm{on}} \quad\Gamma, \end{eqnarray} | (4.3) |
\begin{eqnarray} u\vert_{t = 0} = u_{0}, \alpha\vert_{t = 0} = \alpha_{0}. \end{eqnarray} | (4.4) |
We multiply (4.1) by \partial_{t}u and integrate over \Omega , we have
\begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}\Vert \nabla u\Vert^{2}+\Vert\partial_{t}u\Vert^{2}_{-1}+ \int_{\Omega}(f(u_{1})-f(u_{2}))\partial_{t}u dx \\ & = &\int_{\Omega}g(u_{1})(\alpha-\Delta\alpha)\partial_{t}u dx-\int_{\Omega}(g(u_{1})-g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})\partial_{t}u dx. \end{eqnarray} | (4.5) |
We multiply (4.2) by (\alpha-\Delta\alpha) and integrate \Omega , we obtain
\begin{eqnarray} && \frac{d}{dt}\Vert \alpha-\Delta\alpha\Vert^{2}+2\Vert\nabla \alpha\Vert^{2}+4\Vert\Delta\alpha\Vert^{2}+2\Vert\nabla\Delta\alpha\Vert^{2} \\ & = & -2 \int_{\Omega}g(u_{1})\partial_{t}u(\alpha-\Delta\alpha) dx-2\int_{\Omega}(g(u_{1})-g(u_{2}))\partial_{t}u_{2}(\alpha-\Delta\alpha) dx \\ & \leq & 2\int_{\Omega}\vert\nabla g(u_{1})\vert\vert(-\Delta)^{-1}\partial_{t}u\vert\vert\alpha-\Delta\alpha\vert dx+2\int_{\Omega}\vert g(u_{1})-g(u_{2})\vert\vert\partial_{t}u_{2}\vert\vert\alpha-\Delta\alpha\vert dx \\ & \leq & \frac{c}{4}\Vert\partial_{t}u\Vert^{2}_{-1}+c\Vert\partial_{t}u_{2}\Vert^{2}+c\Vert\alpha-\Delta\alpha\Vert^{2}. \end{eqnarray} | (4.6) |
Summing (4.5) and (4.6) and integrate over \Omega , we find
\begin{eqnarray} &&\frac{d}{dt}(\Vert\nabla u\Vert^{2}+\Vert\alpha-\Delta\alpha\Vert^{2})+2\Vert\nabla\alpha\Vert^{2}+4\Vert\Delta\alpha\Vert^{2}+2\Vert\nabla\Delta\alpha\Vert^{2}+2\Vert\partial_{t}u\Vert^{2}_{-1} \\ &&+2 \int_{\Omega}(f(u_{1})-f(u_{2}))\partial_{t}u dx \\ & = & c\Vert\alpha-\Delta\alpha\Vert^{2}+c\Vert\partial_{t}u_{2}\Vert^{2}+\frac{c}{4}\Vert\partial_{t}u\Vert^{2}_{-1}- 2\int_{\Omega}(g(u_{1})-g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})\partial_{t}u dx \\ && +2\int_{\Omega}g(u_{1})(\alpha-\Delta\alpha)\partial_{t}u dx, \end{eqnarray} | (4.7) |
which implies
\begin{eqnarray} &&\frac{d}{dt}E_{4}+2\Vert\nabla\alpha\Vert^{2}+4\Vert\Delta\alpha\Vert^{2}+2\Vert\nabla\Delta\alpha\Vert^{2}+c'\Vert\partial_{t}u\Vert^{2}_{-1}+2 \int_{\Omega}(f(u_{1})-f(u_{2}))\partial_{t}u dx \\ & = & +c\Vert\alpha-\Delta\alpha\Vert^{2}+ c\Vert\partial_{t}u_{2}\Vert^{2}-2\int_{\Omega}(g(u_{1})-g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})\partial_{t}u dx \\ &&+2\int_{\Omega} g(u_{1})(\alpha-\Delta\alpha)\partial_{t}u dx, \end{eqnarray} | (4.8) |
where
\begin{eqnarray*} E_{4} = \Vert\nabla u\Vert^{2}+\Vert\alpha-\Delta\alpha\Vert^{2}, \end{eqnarray*} |
satisfies
\begin{eqnarray} E_{4}\geq c(\Vert u\Vert^{2}_{H^{1}(\Omega)}+\Vert \alpha\Vert^{2}_{H^{2}(\Omega)}). \end{eqnarray} | (4.9) |
Find the estimates for (4.8),
\begin{eqnarray} 2\vert((f(u_{1})-f(u_{2}), \partial_{t}u)\vert &\leq &2\vert\nabla(fu_{1})-f(u_{2}))\vert\vert(-\Delta)^{-\frac{1}{2}}\partial_{t}u\vert \\ & \leq & 2\Vert\nabla(fu_{1})-f(u_{2}))\Vert^{2}+\frac{1}{2}\Vert\partial_{t}u\Vert^{2}_{-1}. \end{eqnarray} | (4.10) |
Besides
\begin{eqnarray} 2\Vert\nabla(fu_{1})-f(u_{2}))\Vert^{2} & = 2& \int_{\Omega}\vert\nabla (f'((u_{1}s+(1-s)u_{2})u \vert^{2}dx \\ & \leq & 2\int_{\Omega}\vert(\int^{1}_{0}f'((u_{1}s+(1-s)u_{2})ds \nabla u \\ &&+\int^{1}_{0}f''((u_{1}s+(1-s)u_{2})(\vert u\vert\vert\nabla u_{1}\vert+\vert u\vert\vert\nabla u_{2}\vert)ds \vert^{2} dx \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})\Vert \nabla u\Vert^{2} \\ &&+ Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})\Vert u\Vert^{2} \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})(\Vert \nabla u\Vert^{2}+\Vert u\Vert^{2}) \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})\Vert\nabla u\Vert^{2} . \end{eqnarray} | (4.11) |
Inserting (4.11) into the estimates (4.10), we find
\begin{eqnarray} && 2\vert((f(u_{1})-f(u_{2}), \partial_{t}u)\vert \\&\leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})\Vert\nabla u\Vert^{2}+\frac{1}{2}\Vert\partial_{t}u\Vert^{2}_{-1}. \end{eqnarray} | (4.12) |
Furthermore
\begin{eqnarray} && 2\vert(g(u_{1})-g(u_{2})(\alpha_{2}-\Delta\alpha_{2}),\partial_{t}u_{2})\vert \\ & \leq & 2 \int_{\Omega}\vert\nabla(g(u_{1})-g(u_{2})\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(\Delta)^{-\frac{1}{2}}\partial_{t}u_{2}\vert dx \\ & \leq & \vert\alpha_{2}-\Delta\alpha_{2}\vert_{L^{\infty}(\Omega)}(\int_{\Omega}\vert u\vert\vert(-\Delta)^{-\frac{1}{2}}\partial_{t}u\Vert \times\int^{1}_{0}\vert g'(su_{1}2+(1-s)u_{2})\vert dsdx) \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})\int_{\Omega}\vert u\vert\vert(-\Delta)^{-\frac{1}{2}}\partial_{t}u_{2}\vert dx \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})\times \Vert \nabla u\Vert^{2}+\frac{1}{2}\Vert\partial_{t}u\Vert^{2}_{-1} . \end{eqnarray} | (4.13) |
and
\begin{eqnarray} 2\vert(g(u_{1})(\alpha-\Delta\alpha),\partial_{t}u)\vert & \leq & 2\vert((-\Delta)^{\frac{1}{2}}(g(u_{1}))(\alpha-\Delta\alpha),(-\Delta)^{-\frac{1}{2}}\partial_{t}u)\vert \\ & \leq & 2 \int_{\Omega}\vert\nabla g(u_{1})\vert\vert\alpha-\Delta\alpha\vert\vert(-\Delta)^{-1}\partial_{t}u\vert dx \\ & \leq & \int_{\Omega}\vert\nabla g(u_{1})\vert_{L^{\infty}}\vert\alpha-\Delta\alpha\vert\vert\partial_{t}u\vert _{-1}dx \\ & \leq & 2c \Vert \alpha-\Delta\alpha\Vert\Vert\partial_{t}u\Vert_{-1} \\ & \leq & c\Vert \alpha-\Delta\alpha\Vert+\frac{c}{2}\Vert\partial_{t}u\Vert^{2}. \end{eqnarray} | (4.14) |
Inserting (4.12), (4.13) and (4.14) into (4.8), owing (3.37), we find
\begin{eqnarray} &&\frac{d}{dt}E_{4}+2\Vert\nabla\alpha\Vert^{2}+c\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+2\Vert\nabla\Delta\alpha\Vert^{2}+c\Vert\partial_{t}u\Vert^{2}_{-1} \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega))}) ( \Vert\nabla u\Vert^{2}), \end{eqnarray} | (4.15) |
which gives
\begin{eqnarray} &&\frac{d}{dt}E_{4}+2\Vert\nabla\alpha\Vert^{2}+c\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+2\Vert\nabla\Delta\alpha\Vert^{2}+c\Vert\partial_{t}u\Vert^{2}_{-1} \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)}) E_{4}. \end{eqnarray} | (4.16) |
Applying Granwall's lemme, into (4.16), we find
\begin{eqnarray} &&\Vert u(t)\Vert^{2}_{H^{1}(\Omega)}+\Vert \alpha(t)\Vert^{2}_{H^{2}(\Omega)} \\ &\leq & e^{ct}Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})(\Vert \alpha_{0}\Vert^{2}_{H^{2}(\Omega)}+\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}), \end{eqnarray} | (4.17) |
hence the uniqueness, as well as continuous depending with respect to the initial data.
We set \Psi = (H^{2}(\Omega)\cap H^{1}_{0}(\Omega)\cap L^{K+2}(\Omega))\times (H^{3}(\Omega)\cap H^{1}_{0}(\Omega)) . It follows from Theorem 4.2, that we have the continuous (with respect to the H^{1}(\Omega)\times H^{2}(\Omega) -norm) of the following semigroup
\begin{eqnarray} S(t): \Psi \longrightarrow \Psi, (u_{0},\alpha_{0})\longrightarrow (u(t),\alpha(t)), \end{eqnarray} |
(i.e, S(0) = I, S(t)oS(s) = S(t+s), \; t, s\geq 0) . We then deduce from (3.47) the following theorem.
Theorem 4.3. The semigroup S(t) is dissipative in \Psi , i.e., there exists a bounded set B\in \Psi (called absorbing set) such that, for every bounded B \in \Psi , there exists t_{0} = t_{0}(B)\geq 0 such that t\geq t_{0} implies S(t)B\subset {B}_{0} .
Remark 4.1. It is easy to see that we can assume, without loss of generality, that B_{0} is positively invariant by S(t), i.e., S(t){B}_{0} \subset {B}_{0}, \forall t \geq 0 . Furthermore, it follows from (3.64) that S(t) is dissipative in H^{2}(\Omega)\times H^{3}(\Omega) and it follows from (3.63) that we can take {B}_{0} in H^{2}(\Omega)\times H^{3}(\Omega) .
Corollary 4.1. The semigroup S(t) possesses the global attractor \mathcal{A} who is bounded in H^{2}(\Omega)\times H^{3}(\Omega) and compact in \Psi .
The aim of this section is to prove the existence of exponential attractors for the semigroup S(t), t\geq 0 , associated to the problem (2.1)-(2.4). To do so, we need the semigroup that has to be Lipschitz continuous, satisfying the smoothing property and checking a Hölder continuous with respect to time. This is enough to conclude on the existence of exponential attractors.
Lemma 5.1. Let (u_{1}, \alpha_{1}) and (u_{2}, \alpha_{2}) be two solutions to (2.1)-(2.4) with initial data (u_{1, 0}, \alpha_{1, 0}) and (u_{2, 0}, \alpha_{2, 0}) , respectively, belonging to {B}_{0} . Then, the corresponding solutions of the problem (2.1)-(2.4) satisfy the following estimate
\begin{eqnarray} &&\Vert u_{1}(t)-u_{2}(t)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha_{1}(t)-\alpha_{2}(t)\Vert^{2}_{H^{3}(\Omega)} \\ & \leq & ce^{c't}(\Vert u_{1,0}-u_{2,0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{1,0}-\alpha_{2,0}\Vert^{2}_{H^{2}(\Omega)}),\; t\geq 1, \end{eqnarray} | (5.1) |
where the constants only depend on {B}_{0}.
Proof. We set (u, \alpha) = (u_{1}, \alpha_{1})-(u_{2}, \alpha_{2}) and (u_{0}, \alpha_{0}) = (u_{1, 0}, \alpha_{1, 0})-(u_{2, 0}, \alpha_{2, 0}) , then (u, \alpha) satisfies
\begin{eqnarray} &&(-\Delta)^{-1}\partial_{t}u -\Delta u-(f(u_{1})-f(u_{2})) \\ && = g(u_{1})(\alpha-\Delta\alpha) -(g(u_{1})- g(u_{2}))(\alpha_{2}-\Delta\alpha_{2}), \end{eqnarray} | (5.2) |
\begin{eqnarray} \partial_{t}\alpha-\Delta\partial_{t}\alpha+\Delta^{2}\alpha -\Delta\alpha = -g(u_{1})\partial_{t}u-(g(u_{1})-g(u_{2}))\partial_{t}u_{2}, \end{eqnarray} | (5.3) |
\begin{eqnarray} u = \Delta u = \alpha = \Delta\alpha = 0\quad {\rm{on}} \quad\Gamma \end{eqnarray} | (5.4) |
\begin{eqnarray} u|_{t = 0} = u_{0},\quad \alpha|_{t = 0} = \alpha_{0}. \end{eqnarray} | (5.5) |
We first deduce from (4.16) that
\begin{eqnarray} \Vert \nabla u(t)\Vert^{2}+\Vert \alpha(t)\Vert^{2}_{H^{2}(\Omega)} \leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{0}\Vert^{2}_{H^{2}(\Omega)}), c' > 0, t\geq 0, \end{eqnarray} | (5.6) |
and
\begin{eqnarray} \int^{t}_{0}(\Vert\nabla\alpha(s)\Vert^{2}+\Vert\nabla\Delta\alpha(s)\Vert^{2}+\Vert\partial_{t}u(s)\Vert^{2}_{-1})ds \leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{0}\Vert^{2}_{H^{2}(\Omega)}), c' > 0, t\geq 0, \end{eqnarray} | (5.7) |
where the constants only depend on B_{0} .
We differentiate (5.2) with respect to time and have, owing to (5.3), we obtain
\begin{eqnarray} &&(-\Delta)^{-1}\partial_{t}\theta+\Delta\theta-f'(u_{1})\theta+(f'(u_{1})-f'(u_{2}))\partial_{t}u_{2} \\ && = g'(u_{1})\partial_{t}u_{1}(\alpha-\Delta\alpha)+g^{2}(u_{1})\theta-g(u_{1})(g(u_{1})-g(u_{2}))\partial_{t}u_{2}+g(u_{1})\Delta\alpha \\ && +g'(u_{1})\theta(\alpha_{2}-\Delta\alpha_{2})+(g'(u_{1})-g'(u_{2}))\partial_{t}u_{2}(\alpha_{2}-\Delta\alpha_{2}) \\ && +(g(u_{1})-g(u_{2}))(\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}), \end{eqnarray} | (5.8) |
where \theta = \partial_{t}u and u_{1} = u+u_{2} .
We multiply (5.8) by (t-T_{0})\theta and integrate over \Omega , where T_{0} is same as in one of previous section, we have
\begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}((t-T_{0})\Vert\theta\Vert^{2}_{-1})+(t-T_{0})\Vert\nabla\theta\Vert^{2} \\ && \leq \vert(g^{2}(u_{1})\theta,(t-T_{0})\theta)\vert +\vert((f'(u_{1})-f'(u_{2}))\partial_{t}u_{2},(t-T_{0})\theta)\vert \\ &&+\vert(g'(u_{1})\partial_{t}u_{1}(\alpha-\Delta\alpha),(t-T_{0})\theta\vert+\vert(g(u_{1})(g(u_{1})-g(u_{2}))\partial_{t}u_{2},(t-T_{0})\theta)\vert \\ &&+\vert(g(u_{1})\Delta\alpha,(t-T_{0})\theta\vert+\vert(g'(u_{1})\theta(\alpha_{2}-\Delta\alpha_{2}),(t-T_{0})\theta)\vert \\ &&+ \vert((g'(u_{1})-g'(u_{2}))\partial_{t}u_{2}(\alpha_{2}-\Delta\alpha_{2}),(t-T_{0})\theta)\vert \\ &&+\vert((g(u_{1})-g(u_{2}))(\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}),(t-T_{0})\theta)\vert+\vert (f'(u_{1})\theta,(t-T_{0})\theta)\vert. \end{eqnarray} | (5.9) |
We have,
\begin{eqnarray} \vert(g^{2}(u)\theta,(t-T_{0})\theta)\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g^{2}(u)\vert\vert\theta\vert^{2}dx \\ & \leq & c(t-T_{0})\Vert\theta\Vert^{2}\; ( {\rm{owing}}\;(2.9)\; {\rm{and }}\;H^{2}(\Omega)\subset L^{\infty}(\Omega)), \end{eqnarray} | (5.10) |
Noting that u_{1}, u_{2}\in H^{2}(\Omega)\subset L^{\infty}(\Omega) , we have
\begin{eqnarray} \vert((f'(u_{1})-f'(u_{2}))\partial_{t}u_{2},(t-T_{0})\theta)\vert &\leq & (t-T_{0}) \int_{\Omega}\vert f'(u_{1})-f'(u_{2})\vert\vert\theta\vert\vert\partial_{t}u_{2}\vert dx \\ & \leq & (t-T_{0})\int_{\Omega}\vert 3u^{2}_{1}-3u^{2}_{2}\vert\vert\theta\vert\vert\partial_{t}u_{2}\vert dx \\ & \leq & c(t-T_{0})(\Vert u_{1}\Vert_{L^{\infty}}+\Vert u_{2}\Vert_{L^{\infty}})\int_{\Omega}\vert u\vert\vert\theta\vert\vert\partial_{t}u_{2}\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert u\vert_{L^{4}}\vert\theta\vert_{L^{4}}\vert\partial_{t}u_{2}\vert dx \\ &\leq & c(t-T_{0})\Vert u\Vert_{L^{4}}\Vert\theta\Vert_{L^{4}}\Vert\partial_{t}u_{2}\Vert \\ & \leq & c(t-T_{0})\Vert \nabla u\Vert\Vert\nabla\theta\Vert\Vert\partial_{t}u_{2}\Vert, \end{eqnarray} | (5.11) |
Furthermore,
\begin{eqnarray} \vert((g'(u_{1})-g'(u_{2}))\partial_{t}u_{2}(\alpha_{2}-\Delta\alpha_{2}),(t-T_{0})\theta)\vert &\leq & (t-T_{0}) \int_{\Omega}\vert g'(u_{1})-g'(u_{2})\vert\vert\partial_{t}u_{2}\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert\partial_{t}u_{2}\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\Vert\alpha_{2}-\Delta\alpha_{2}\Vert_{L^{4}}\Vert\theta\Vert_{L^{4}}\Vert\partial_{t}u_{2}\Vert \\ &\leq & c(t-T_{0})\Vert\nabla(\alpha_{2}-\Delta\alpha_{2})\Vert\Vert\nabla\theta\Vert\Vert\partial_{t}u_{2}\Vert \\ & \leq & c(t-T_{0})\Vert\nabla\theta\Vert\Vert\partial_{t}u_{2}\Vert, \end{eqnarray} | (5.12) |
Using (2.9) and (4.17), we find
\begin{eqnarray} \vert(g'(u_{1})\partial_{t}u_{1}(\alpha-\Delta\alpha),(t-T_{0})\theta\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g'(u_{1})\vert\vert\partial_{t}u_{1}\vert\vert\alpha-\Delta\alpha\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert\partial_{t}u_{1}\vert\vert\alpha-\Delta\alpha\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert\partial_{t}u_{1}\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\Vert\partial_{t}u_{1}\Vert\Vert\theta\Vert, \end{eqnarray} | (5.13) |
noting that u_{1}\in H^{2}(\Omega) and \alpha \in H^{3}(\Omega) , then
\begin{eqnarray} \vert(g'(u_{1})\theta(\alpha_{2}-\Delta\alpha_{2}),(t-T_{0})\theta)\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g'(u_{1})\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert\theta\vert^{2}dx \\ & \leq & c(t-T_{0})\Vert\theta\Vert^{2}, \end{eqnarray} | (5.14) |
after Green, we have
\begin{eqnarray} \vert(g(u)\Delta\alpha,(t-T_{0})\theta\vert & \leq & (t-T_{0})\int_{\Omega}\vert \nabla\alpha\vert\vert g'(u)\nabla u\vert\vert\theta\vert dx+(t-T_{0})\int_{\Omega}\vert \nabla\alpha\vert\vert g(u)\vert\vert\nabla\theta\vert dx \\ & \leq & c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\theta\Vert+c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\nabla\theta\Vert, \end{eqnarray} | (5.15) |
we have that \alpha_{2}\in H^{2}(\Omega) , then
\begin{eqnarray} \vert((g(u_{1})-g(u_{2}))(\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}),(t-T_{0})\theta)\vert &\leq & (t-T_{0}) \int_{\Omega}\vert g(u_{1})-g(u_{2})\vert\vert\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}\vert\vert\theta\vert dx \\ & \leq & (t-T_{0})\int_{\Omega}\vert u\vert_{L^{4}}\vert\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}\vert\vert\theta\vert_{L^{4}} dx \\ & \leq & (t-T_{0})\Vert u\Vert_{L^{4}}\Vert\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}\Vert\Vert\theta\Vert_{L^{4}} \\ & \leq & (t-T_{0})\Vert \nabla u\Vert\Vert\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}\Vert\Vert\nabla\theta\Vert \\ & \leq & c(t-T_{0})\Vert\nabla u\Vert\Vert\nabla\theta\Vert, \end{eqnarray} | (5.16) |
moreover
\begin{eqnarray} \vert(g(u_{1})(g(u_{1})-g(u_{2}))\partial_{t}u_{2},(t-T_{0})\theta)\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g(u_{1})\vert\vert g(u_{1})-g(u_{2})\vert\vert\partial_{t}u_{2}\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert g(u_{1})\vert\vert\partial_{t}u_{2}\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}(\vert u_{1}\vert_{L^{4}}+1)\vert\partial_{t}u_{2}\vert\vert\theta\vert_{L^{4}} dx \\ & \leq & c(t-T_{0})(\Vert u_{1}\Vert_{L^{4}}+1)\Vert\partial_{t}u_{2}\Vert\Vert\theta\Vert_{L^{4}} \\ & \leq & c(t-T_{0})\Vert\partial_{t}u_{2}\Vert\Vert\theta\Vert_{L^{4}}, \end{eqnarray} | (5.17) |
and
\begin{eqnarray} \vert (f'(u_{1})\theta,(t-T_{0})\theta)\vert\leq c(t-T_{0})\Vert\theta\Vert^{2}, \end{eqnarray} | (5.18) |
where the constants only depend on B_{0} .
By substituting (5.10), (5.11), (5.12), (5.13), (5.14), (5.15), (5.16), (5.17) and (5.18) into (5.9), we have, owing to the interpolation inequality,
\begin{eqnarray} &&\frac{d}{dt}((t-T_{0})\Vert\theta\Vert^{2}_{-1})+\frac{3}{4}(t-T_{0})\Vert\nabla\theta\Vert^{2} \\ && \leq c(t-T_{0})\Vert\theta\Vert^{2}_{-1}+c(t-T_{0})\Vert\theta\Vert\Vert\partial_{t}u_{2}\Vert+2c(t-T_{0})\Vert\theta\Vert\Vert\partial_{t}u_{1}\Vert \\ &&+\frac{1}{4}c(t-T_{0})\Vert\nabla\alpha\Vert. \end{eqnarray} | (5.19) |
We now multiply (5.3) by -(t-T_{0})\alpha and intégrate over \Omega , we obtain
\begin{eqnarray*} &&(\partial_{t}\alpha,-(t-T_{0})\alpha)+(-\Delta\partial_{t}\alpha,-(t-T_{0})\alpha)+(-\Delta\alpha,-(t-T_{0})\alpha)+(\Delta^{2}\alpha,(t-T_{0})\alpha) \\ && = (-g(u_{1})\partial_{t}u,-(t-T_{0})\alpha)+((g(u_{1})-g(u_{2}))\partial_{t}u_{2},-(t-T_{0})\alpha), \end{eqnarray*} |
which implies
\begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}((t-T_{0})\Vert\alpha\Vert^{2}+(t-T_{0})\Vert\nabla\alpha\Vert^{2})+(t-T_{0})\Vert\nabla\alpha\Vert^{2}+(t-T_{0})\Vert\Delta\alpha\Vert^{2} \\ &&\leq \vert(-g(u_{1})\partial_{t}u,-(t-T_{0})\alpha)\vert+\vert((g(u_{1})-g(u_{2}))\partial_{t}u_{2},-(t-T_{0})\alpha)\vert. \end{eqnarray} | (5.20) |
For that, let find the estimates of (5.20) right terms, using Hölder inequality, we have
\begin{eqnarray} \vert(-g(u_{1})\partial_{t}u,-(t-T_{0})\alpha)\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g(u_{1})\vert\vert\partial_{t}u\vert\vert\alpha\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}(\vert u_{1}\vert_{L^{4}}+1)\vert\partial_{t}u\vert\vert\alpha\vert_{L^{4}} dx \\ & \leq & c(t-T_{0})(\Vert\nabla u_{1}\Vert_{L^{4}}+1)\Vert\partial_{t}u\Vert\Vert\alpha\Vert_{L^{4}} \\ & \leq & c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\partial_{t}u\Vert, \end{eqnarray} | (5.21) |
and
\begin{eqnarray} \vert((g(u_{1})-g(u_{2}))\partial_{t}u_{2},-(t-T_{0})\alpha)\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g(u_{1})-g(u_{2})\vert\vert\alpha\vert\vert\partial_{t}u_{2}\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert u\vert_{L^{4}}\vert\alpha\vert_{L^{4}}\vert\partial_{t}u_{2}\vert dx \\ & \leq & c(t-T_{0})\Vert\nabla u\Vert\Vert\nabla\alpha\Vert\Vert\partial_{t}u_{2}\Vert \\ & \leq & c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\partial_{t}u_{2}\Vert. \end{eqnarray} | (5.22) |
Inserting (5.21) and (5.22) into (5.20), we find
\begin{eqnarray} && \frac{d}{dt}[(t-T_{0})(\Vert\alpha\Vert^{2}+\Vert\nabla\alpha\Vert^{2})]+2(t-T_{0})\Vert\nabla\alpha\Vert^{2}+2(t-T_{0})\Vert\Delta\alpha\Vert^{2} \\ & \leq & 2c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\partial_{t}u\Vert +2c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\partial_{t}u_{2}\Vert. \end{eqnarray} | (5.23) |
Noting that (u, \alpha) = (u_{2}, \alpha_{2}) = (u_{1}, \alpha_{1}) , then
\begin{eqnarray} \int^{t}_{T_{0}}\Vert\partial_{t}u_{2}(s)\Vert^{2}dx \leq ce^{c't} , t\geq T_{0}, \end{eqnarray} | (5.24) |
where the constants only depend on B_{0} .
Combining (5.19) and (5.23), we find
\begin{eqnarray} && \frac{d}{dt}E_{5}++2(t-T_{0})\Vert\Delta\alpha\Vert^{2}+c(t-T_{0})\Vert\nabla\theta\Vert^{2}+2(t-T_{0})\Vert\nabla\alpha\Vert^{2} \\ & \leq & c(t-T_{0})(\Vert\theta\Vert^{2}_{-1}+\Vert\alpha\Vert^{2}_{H^{1}(\Omega)})+c(t-T_{0})(\Vert\partial_{t}u_{1}\Vert^{2}+\Vert\partial_{t}u_{2}\Vert^{2}), \end{eqnarray} | (5.25) |
where
\begin{eqnarray} E_{5} = (t-T_{0})(\Vert\theta\Vert^{2}_{-1}+\Vert \nabla\alpha\Vert^{2}+\Vert\alpha\Vert^{2}). \end{eqnarray} | (5.26) |
Applying Gronwall's lemma to (5.25) over [T_{0}, t] , we have
\begin{eqnarray} && \Vert\theta(t)\Vert^{2}_{-1}+\Vert\alpha(t)\Vert^{2}_{H^{1}(\Omega)}+ \int^{t}_{T_{0}}(\Vert\nabla\alpha(s)\Vert^{2}+\Vert\Delta\alpha(s)\Vert^{2}+\Vert\nabla\theta(s)\Vert^{2})e^{-c(s-t)}ds \\ &\leq &\int^{t}_{T^{0}}(\Vert\partial_{t}u_{1}(s)\Vert^{2}+\Vert\partial_{t}u_{2}(s)\Vert^{2})e^{-c(s-t)}ds+E(0)e^{ct}, \end{eqnarray} | (5.27) |
which implies
\begin{eqnarray} \Vert\theta(t)\Vert^{2}_{-1}+\Vert\alpha(t)\Vert^{2}_{H^{1}(\Omega)}\leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{0}\Vert^{2}_{1}), c > 0, \end{eqnarray} | (5.28) |
finally, we obtain
\begin{eqnarray} \Vert\partial_{t}u(t)\Vert^{2}_{-1}+\Vert\alpha(t)\Vert^{2}_{H^{1}(\Omega)}\leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{0}\Vert^{2}_{H^{2}(\Omega)}), c > 0, t\geq 1, \end{eqnarray} | (5.29) |
where the constants only depend on B_{0} .
We rewrite (5.8) in the form
\begin{eqnarray} -\Delta u = \tilde{h}_{u}(t),\quad u = 0\; on \;\Gamma. \end{eqnarray} | (5.30) |
for t \geq 1 fixed, where
\begin{eqnarray} \tilde{h}_{u}(t) & = & -(-\Delta)^{-1}\partial_{t}u-(f(u_{1})-f(u_{2}))+ g(u_{1})(\alpha-\Delta\alpha) \\ &&+(g(u_{1})- g(u_{2}))(\alpha_{2}-\Delta\alpha_{2}). \end{eqnarray} | (5.31) |
We multiply (5.31) by \tilde{h}_{u}(t) and integrate over \Omega , we have
\begin{eqnarray*} &&(\tilde{h}_{u}(t),\tilde{h}_{u}(t)) \\ && = -((-\Delta)^{-1}\partial_{t}u,\tilde{h}_{u}(t))-(f(u_{1})-f(u_{2}),\tilde{h}_{u}(t)) -(g(u_{1})(\alpha-\Delta\alpha),\tilde{h}_{u}(t)) \\ &&+((-\Delta)^{-1}[(\Delta g(u_{1})-\Delta g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})],\tilde{h}_{u}(t)), \end{eqnarray*} |
which implies
\begin{eqnarray} \Vert\tilde{h}_{u}(t)\Vert^{2} &\leq & c\Vert\tilde{h}_{u}(t)\Vert\Vert\partial_{t}u\Vert_{-1}+\vert((f(u_{1})-f(u_{2}),\tilde{h}_{u}(t))\vert+\vert(g(u_{1})(\alpha-\Delta\alpha),\tilde{h}_{u}(t))\vert \\ &&+\vert((-\Delta)^{-1}[(\Delta g(u_{1})-\Delta g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})],\tilde{h}_{u}(t))\vert. \end{eqnarray} | (5.32) |
Here
\begin{eqnarray} \vert((f(u_{1})-f(u_{2}),\tilde{h}_{u}(t))\vert &\leq & \int_{\Omega}\vert f(u_{1})-f(u_{2})\vert\vert\tilde{h}_{u}(t)\vert dx \\ & \leq & \Vert f(u_{1})-f(u_{2})\Vert\Vert\tilde{h}_{u}(t)\Vert \\ & \leq & c \Vert f(u_{1})-f(u_{2})\Vert^{2}+\frac{1}{6}\Vert\tilde{h}_{u}(t)\Vert^{2}, \end{eqnarray} | (5.33) |
furthermore u_{1}, u_{2} \in H^{2}(\Omega) \subset L^{\infty}(\Omega) , then
\begin{eqnarray} \Vert f(u_{1})-f(u_{2})\Vert^{2} & \leq & \int_{\Omega}\vert f(u_{1})-f(u_{2})\vert^{2}dx \\ & \leq & \int_{\Omega}\int^{1}_{0}\vert f'(u_{1}s+(1-s)u_{2}\vert^{2}\vert u\vert^{2}ds dx \\ & \leq & \int^{1}_{0}\vert f'(u_{1}s+(1-s)u_{2}\vert^{2}ds\int_{\Omega}\vert u\vert^{2} dx \\ & \leq & c\int^{1}_{0}(\Vert su_{1}+(1-s)u_{2}\Vert^{2k}_{L^{\infty}}+1)ds\int_{\Omega}\vert u\vert^{2} dx \\ & \leq & c(\Vert u_{1}+u_{2}\Vert^{2k}_{L^{\infty}}+1)\Vert u\Vert^{2}, \end{eqnarray} | (5.34) |
if n = 2 where n = 3 , for k\leq 1 (in particular k = 1 ), preceding estimate give
\begin{eqnarray} \Vert f(u_{1})-f(u_{2})\Vert^{2} & \leq & c(\Vert u_{1}\Vert^{2}_{L^{\infty}}+\Vert u_{2}\Vert^{2}_{L^{\infty}}+1)\Vert u\Vert^{2}_{H^{1}_{0}}, \end{eqnarray} | (5.35) |
if n = 2 where n = 3 with k > 1 , owing we have
\begin{eqnarray} \Vert f(u_{1})-f(u_{2})\Vert^{2} & \leq &c((\Vert u_{1}\Vert^{2}_{L^{\infty}}+\Vert u_{2}\Vert^{2}_{L^{\infty}})^{k}+1)\Vert u\Vert^{2}_{H^{1}_{0}}, \end{eqnarray} | (5.36) |
on the one hand,
\begin{eqnarray} \vert(g(u_{1})(\alpha-\Delta\alpha),\tilde{h}_{u}(t))\vert & \leq & \int_{\Omega}\vert g(u_{1})\vert\vert\alpha-\Delta\alpha\vert\vert\tilde{h}_{u}(t)\vert dx \\ & \leq & \int_{\Omega} \vert g(u_{1})\vert_{L^{\infty}}\vert\alpha-\Delta\alpha\vert\vert\tilde{h}_{u}(t)\vert dx \\ & \leq & c\Vert\alpha-\Delta\alpha\Vert\Vert\tilde{h}_{u}(t)\Vert \\ & \leq &c\Vert\alpha-\Delta\alpha\Vert^{2}+\frac{1}{6}\Vert\tilde{h}_{u}(t)\Vert^{2} \\ & \leq & c\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+\frac{1}{6}\Vert\tilde{h}_{u}(t)\Vert^{2}, \end{eqnarray} | (5.37) |
on the other hand,
\begin{eqnarray} \vert((-\Delta)^{-1}[(\Delta g(u_{1})-\Delta g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})],\tilde{h}_{u}(t))\vert \\ & = & \vert((\Delta g(u_{1})-\Delta g(u_{2}))(\alpha_{2}-\Delta\alpha_{2}),\tilde{h}_{u}(t))\vert \\ & \leq & \int_{\Omega}\vert\Delta g(u_{1})-\Delta g(u_{2})\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(-\Delta)^{-1}\tilde{h}_{u}(t)\vert dx \\ & \leq & \int_{\Omega}\vert\Delta u_{1}-\Delta u_{2}\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(-\Delta)^{-1}\tilde{h}_{u}(t)\vert dx \\ & \leq & \int_{\Omega}\vert\Delta u_{1}-\Delta u_{2}\vert_{L^{\infty}}\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(-\Delta)^{-1}\tilde{h}_{u}(t)\vert dx \\ &\leq & c\int_{\Omega}\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(-\Delta)^{-1}\tilde{h}_{u}(t)\vert dx \\ & \leq & c\Vert\alpha_{2}-\Delta\alpha_{2}\Vert^{2}+\frac{1}{6}\Vert\tilde{h}_{u}(t)\Vert^{2}, \end{eqnarray} | (5.38) |
combining (5.33), (5.36), (5.37) and (5.38), we find
\begin{eqnarray} \Vert\tilde{h}_{u}(t)\Vert^{2} \leq c(\Vert\partial_{t}u\Vert^{2}_{-1}+\Vert\alpha\Vert^{2}_{H^{2}(\Omega)})+c\Vert\nabla u\Vert^{2}+c\Vert\alpha_{2}-\Delta\alpha_{2}\Vert^{2}. \end{eqnarray} | (5.39) |
Using (5.29) and (5.6), we obtain
\begin{eqnarray} \Vert\tilde{h}_{u}(t)\Vert^{2} \leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\theta_{0}\Vert^{2}_{H^{2}(\Omega)}), t\geq 1, \end{eqnarray} | (5.40) |
where the constants only depend on {B}_{0}
We multiply (5.30) by and intergrate over \Omega , we find
\begin{eqnarray} \Vert\Delta u\Vert^{2}\leq \Vert \tilde{h}_{u}(t)\Vert^{2}, \end{eqnarray} | (5.41) |
hence, owing to (5.40), we have
\begin{eqnarray} \Vert\Delta u\Vert^{2}\leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\theta_{0}\Vert^{2}_{H^{2}(\Omega)}), \;t\geq 1, \end{eqnarray} | (5.42) |
we finally deduce from (5.29) and (5.42), the estimate (5.1) which concludes the proof
Lemma 5.2. Let (u_{1}, \alpha_{1}) and (u_{2}, \alpha_{2}) be two solutions to (2.1)-(2.4) with initial data (u_{1, 0}, \alpha_{1, 0}) and (u_{2, 0}, \alpha_{2, 0}) , respectively, belonging to {B}_{0} . Then, the semigroup \lbrace S(t))\rbrace_{t\geq 0} is Lipschitz continuity with respect to space, i.e, there exists the constant c > 0 such that
\begin{eqnarray} &&\Vert u_{1}(t)-u_{2}(t)\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{1}(t)-\alpha_{2}(t)\Vert^{2}_{H^{2}(\Omega)} \\ & \leq & ce^{c't}(\Vert u_{1,0}-u_{2,0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{1,0}-\alpha_{2,0}\Vert^{2}_{H^{2}(\Omega)}), t\geq 1, \end{eqnarray} | (5.43) |
where the constants only depend on {B}_{0} .
Proof. The proof of the Lemma 5.2 is a direct consequence of the estimate (5.6).
It just remains to prove the Hölder continuity with respect to time.
Lemma 5.3. Let (u, \alpha) be the solution of (5.2)-(5.5) with intial data (u_{0}, \alpha_{0}) \; in {B}_{0} . Then, the semigroup \lbrace S(t))\rbrace_{t\geq 0} is Hölder continuous with respect to time, i.e, there exists the constant c > 0 such that \forall t_{1}, t_{2}\in [0, T]
\begin{eqnarray} \Vert S(t_{1})(u_{0},\alpha_{0})-S(t_{2})(u_{0},\alpha_{0})\Vert_{\Psi}\leq c\vert t_{1}-t_{2}\vert^{\frac{1}{2}}, \end{eqnarray} | (5.44) |
where the constants only depend on {B}_{0} and \Gamma .
Proof.
\begin{eqnarray} \Vert S(t_{1})(u_{0},\alpha_{0})-S(t_{2})(u_{0},\alpha_{0})\Vert_{\Psi} & = & \Vert (u(t_{1})-u(t_{2}),\alpha(t_{1})-\alpha_{2}))\Vert_{\Psi} \\ & \leq & \Vert u(t_{1})-u(t_{2})\Vert_{H^{1}(\Omega)}+\Vert \alpha(t_{1})-\alpha(t_{2})\Vert_{H^{2}(\Omega)} \\ & \leq & c(\Vert \nabla (u(t_{1})-u(t_{2}))\Vert+\Vert \alpha(t_{1})-\alpha(t_{2})\Vert_{H^{2}(\Omega)}) \\ & \leq & ( \Vert \int^{t_{2}}_{t_{1}}\nabla \partial_{t}u ds\Vert+\Vert \int^{t_{2}}_{t_{1}}\partial_{t}\alpha\Vert_{H^{2}}) \\ & \leq & c\vert t_{1}-t_{2})\vert^{\frac{1}{2}} \vert \int^{t^{2}}_{t_{1}}(\Vert\nabla \partial_{t}u\Vert^{2}+\Vert\partial_{t}\alpha\Vert^{2}_{H^{2}})ds\vert^{\frac{1}{2}}. \end{eqnarray} | (5.45) |
Noting that, thanks to (3.5) and (3.37), we have
\begin{eqnarray} \vert \int^{t_{2}}_{t_{1}}\Vert \nabla\partial_{t}u\Vert^{2}ds \vert \leq c, \end{eqnarray} | (5.46) |
where the constant c depends only on {B}_{0} and T\geq T_{0} such that t_{1}, t_{2}\in [0, T] .
Furthermore, multiplying (5.3) by (-\Delta)^{-1}\partial_{t}\alpha and integrate over \Omega , we obtain
\begin{eqnarray} \frac{d}{dt}\Vert\alpha\Vert^{2}+c\Vert\partial_{t}\alpha\Vert^{2}_{-1}+2\Vert\nabla\partial_{t}\alpha\Vert^{2}+2\Vert\partial_{t}\alpha\Vert^{2} \leq c(\Vert\partial_{t}u_{2}\Vert^{2}+\Vert\partial_{t}u\Vert^{2}), \end{eqnarray} | (5.47) |
and it follows from (3.60), (5.24), (5.46) and (5.47) that
\begin{eqnarray} \vert \int^{t_{2}}_{t_{1}}\Vert\partial_{t}\alpha\Vert^{2}_{H^{2}(\Omega)}ds \vert \leq c, \end{eqnarray} | (5.48) |
\begin{eqnarray} \Vert S(t_{1})(u_{0},\alpha_{0})-S(t_{2})(u_{0},\alpha_{0})\Vert_{\Psi}\leq c\vert t_{1}-t_{2}\vert^{\frac{1}{2}}, \end{eqnarray} | (5.49) |
where c only depends on {B}_{0} and T such that t_{1}, t_{2}\in [0, T] .
Finally, we obtain thanks to (5.46) and (5.48), the estimate (5.44). Thus, the Lemma is proved. We finally deduce from Lemma 5.1, Lemma 5.2 and Lemma 5.3 the following result (see, e.g. [12]).
Theorem 5.1. The semigroup S(t) possesses an exponential attractor M \subset {B}_{0} , i.e.,
(i) M is compact in H^{1}(\Omega)\times H^{2}(\Omega) ;
(ii) M is positively invariant, S(t)M \subset M, t\geq 0 ;
(iii) M has finite fractal dimension in H^{1}(\Omega)\times H^{2}(\Omega) ;
(iv) M attracts exponentially fast the bounded subsets of \Psi
\begin{eqnarray*} \forall B \in \Psi \;bounded, dist_{H^{1}(\Omega)\times H^{2}(\Omega)}(S(t)B,M) \leq Q(\Vert B\Vert_{\Psi})e^{-ct} ,\; c > 0, t\geq 0, \end{eqnarray*} |
where the constant c is independent of B and dist_{H^{1}(\Omega)\times H^{2}(\Omega)} denotes the Hausdorff semidistance between sets defined by
\begin{eqnarray*} dist_{H^{1}(\Omega)\times H^{2}(\Omega)}(A,B) = \sup\limits_{a \in A}\inf\limits_{b \in B}\Vert a-b\Vert_{H^{1}(\Omega)\times H^{2}(\Omega)}. \end{eqnarray*} |
Remark 5.1. Setting \tilde{M} = S(1)M , we can prove that \tilde{M} is an exponential attractor for S(t) , but now in the topology of \Psi .
Since M (or \tilde{M} ) is a compact attracting set, we deduce from Theorem 5.1 and standard results (see, e.g, [3,12]) the
Corollary 5.1. The semigroup S(t) possesses the finite-dimensional global attractor {A}\subset {B}_{0} .
Remark 5.2. We note that the global attractor {A} is the smallest (for the inclusion) compact set of the phase space which is invariant by the flow (i.e. S(t){A} = {A}, \; \forall t\geq 0) and attractors all bounded sets of initial data as time goes to infinity; thus, it appears as a suitable object in view of the study of asymptotic behaviour of the system. Furthermore, the finite dimensionality means, roughly speaking, that, even though the initial phase space is infinite dimensional, the reduced dynamics is, in some proper sense, finite dimensional and can be described by a finite number of parameters.
The existence of the global attractor being established, one question is to know whether this attractor has a finite dimension in terms of the fractal or Hausdorff dimension. This is the aim of the final section.
Remark 5.3. Comparing to the global attractor, an exponentiel attractor is expected to be more robust under perturbations. Indeed, the rate of attraction of trajectories to the global attractor may be slow and it is very difficult, if not impossible, to estimate this rate of attraction with respect to the physical parameters of the problem in general. As a consequence, global attractors may change drastically under small perturbations.
This manuscript explains in a clear way, the context of dynamic system with two temperatures, when the relative solution exists. The existence of exponential attractor, associated to the problem (2.1)-(2.4) that we have proved, allow to assert that the existing solution of the problem (2.1)-(2.4) that we have shown in this work, belongs to the finite-dimensional subset called global attractor, from a certain time.
The authors thank the referees for their careful reading of the paper and useful comments.
The authors declare that there is no conflict of interests in this paper.
[1] |
R. L. Bagley, R. A. Calico, Fractional order state equations for the control of viscoelasticallydamped structures, J. Guid. Control Dynam., 14 (1991), 304–311. https://doi.org/10.2514/3.20641 doi: 10.2514/3.20641
![]() |
[2] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999. https://doi.org/10.1016/s0076-5392(99)x8001-5 |
[3] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[4] |
K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
![]() |
[5] | A. Loverro, Fractional calculus: History, definitions and applications for the engineer, 2004. |
[6] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0 |
[7] | J. S. Bardi, The calculus wars: Newton, Leibniz, and the greatest mathematical clash of all time, New York: Thunder's Mouth Press, 2006. |
[8] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
![]() |
[9] |
Y. Di, J. X. Zhang, X. Zhang, Robust stabilization of descriptor fractional-order interval systems with uncertain derivative matrices, Appl. Math. Comput., 453 (2023), 128076. https://doi.org/10.1016/j.amc.2023.128076 doi: 10.1016/j.amc.2023.128076
![]() |
[10] |
Z. Ma, H. Ma, Adaptive fuzzy backstepping dynamic surface control of strict-feedback fractional-order uncertain nonlinear systems, IEEE. T. Fuzzy. Syst., 28 (2019), 122–133. https://doi.org/10.1109/TFUZZ.2019.2900602 doi: 10.1109/TFUZZ.2019.2900602
![]() |
[11] |
H. L. Li, J. Cao, C. Hu, H. Jiang, F. E. Alsaadi, Synchronization analysis of discrete-time fractional-order quaternion-valued uncertain neural networks, IEEE. T. Neur. Net. Lear., 2023. https://doi.org/10.1109/TNNLS.2023.3274959 doi: 10.1109/TNNLS.2023.3274959
![]() |
[12] |
H. Delavari, R. Ghaderi, A. Ranjbar, S. Momani, Fuzzy fractional order sliding mode controller for nonlinear systems, Commun. Nolinear Sci., 15 (2010), 963–978. https://doi.org/10.1016/j.cnsns.2009.05.025 doi: 10.1016/j.cnsns.2009.05.025
![]() |
[13] |
J. Jiang, H. Chen, D. Cao, J. L. Guirao, The global sliding mode tracking control for a class of variable order fractional differential systems, Chaos Solition Fract., 154 (2022), 111674. https://doi.org/10.1016/j.chaos.2021.111674 doi: 10.1016/j.chaos.2021.111674
![]() |
[14] |
S. Ladaci, J. J. Loiseau, A. Charef, Fractional order adaptive high-gain controllers for a class of linear systems, Commun. Nolinear Sci., 13 (2008), 707–714. https://doi.org/10.1016/j.cnsns.2006.06.009 doi: 10.1016/j.cnsns.2006.06.009
![]() |
[15] | I. Petráš, Fractional-order feedback control of a dc motor, J. Electr. Eng., 60 (2009), 117–128. |
[16] |
H. Delavari, H. Heydarinejad, Fractional-order backstepping sliding-mode control based on fractional-order nonlinear disturbance observer, J. Comput. Nonlinear Dynam., 13 (2018), 111009. https://doi.org/10.1115/1.4041322 doi: 10.1115/1.4041322
![]() |
[17] |
N. Bigdeli, H. A. Ziazi, Finite-time fractional-order adaptive intelligent backstepping sliding mode control of uncertain fractional-order chaotic systems, J. Fanklin Inst., 354 (2017), 160–183. https://doi.org/10.1016/j.jfranklin.2016.10.004 doi: 10.1016/j.jfranklin.2016.10.004
![]() |
[18] |
X. Li, C. Wen, Y. Zou, Adaptive backstepping control for fractional-order nonlinear systems with external disturbance and uncertain parameters using smooth control, IEEE Trans. Syst. Man Cybern., 51 (2020), 7860–7869. https://doi.org/10.1109/TSMC.2020.2987335 doi: 10.1109/TSMC.2020.2987335
![]() |
[19] |
J. Jiang, H. Li, K. Zhao, D. Cao, J. L. Guirao, Finite time stability and sliding mode control for uncertain variable fractional order nonlinear systems, Adv. Differ. Equ., 2021 (2021), 127. https://doi.org/10.1186/s13662-021-03286-z doi: 10.1186/s13662-021-03286-z
![]() |
[20] |
J. Jiang, X. Xu, K. Zhao, J. L. Guirao, T. Saeed, H. Chen, The tracking control of the variable-order fractional differential systems by time-varying sliding-mode control approach, Fractal Fract., 6 (2022), 231. https://doi.org/10.3390/fractalfract6050231 doi: 10.3390/fractalfract6050231
![]() |
[21] |
M. Karami, A. Kazemi, R. Vatankhah, A. Khosravifard, Adaptive fractional-order backstepping sliding mode controller design for an electrostatically actuated size-dependent microplate, J. Vib. Control, 27 (2021), 1353–1369. https://doi.org/10.1177/1077546320940916 doi: 10.1177/1077546320940916
![]() |
[22] | E. Fridman, Introduction to time-delay systems: Analysis and control, Springer, 2014. https://doi.org/10.1007/978-3-319-09393-2 |
[23] |
S. E. Hamamci, An algorithm for stabilization of fractional-order time delay systems using fractional-order pid controllers, IEEE Trans. Autom. Control, 52 (2007), 1964–1969. https://doi.org/10.1109/TAC.2007.906243 doi: 10.1109/TAC.2007.906243
![]() |
[24] |
M. P. Lazarević, A. M. Spasić, Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach, Math. Comput. Model., 49 (2009), 475–481. https://doi.org/10.1016/j.mcm.2008.09.011 doi: 10.1016/j.mcm.2008.09.011
![]() |
[25] |
I. Birs, C. Muresan, I. Nascu, C. Ionescu, A survey of recent advances in fractional order control for time delay systems, IEEE Access, 7 (2019), 951–965. https://doi.org/10.1109/ACCESS.2019.2902567 doi: 10.1109/ACCESS.2019.2902567
![]() |
[26] |
Z. Y. Nie, Y. M. Zheng, Q. G. Wang, R. J. Liu, L. J. Xiang, Fractional-order pid controller design for time-delay systems based on modified bode's ideal transfer function, IEEE Access, 8 (2020), 103500–103510. https://doi.org/10.1109/ACCESS.2020.2996265 doi: 10.1109/ACCESS.2020.2996265
![]() |
[27] |
H. Min, S. Xu, Q. Ma, B. Zhang, Z. Zhang, Composite-observer-based output-feedback control for nonlinear time-delay systems with input saturation and its application, IEEE Trans. Ind. Electron., 65 (2017), 5856–5863. https://doi.org/10.1109/TIE.2017.2784347 doi: 10.1109/TIE.2017.2784347
![]() |
[28] |
Y. Wu, X. J. Xie, Adaptive fuzzy control for high-order nonlinear time-delay systems with full-state constraints and input saturation, IEEE Trans. Fuzzy Syst., 28 (2019), 1652–1663. https://doi.org/10.1109/TFUZZ.2019.2920808 doi: 10.1109/TFUZZ.2019.2920808
![]() |
[29] |
H. Min, S. Xu, B. Zhang, Q. Ma, Output-feedback control for stochastic nonlinear systems subject to input saturation and time-varying delay, IEEE Trans. Autom. Control, 64 (2018), 359–364. https://doi.org/10.1109/TAC.2018.2828084 doi: 10.1109/TAC.2018.2828084
![]() |
[30] |
Y. Y. Cao, Z. Lin, T. Hu, Stability analysis of linear time-delay systems subject to input saturation, IEEE Trans. Circuits Syst. I, 49 (2002), 233–240. https://doi.org/10.1109/81.983870 doi: 10.1109/81.983870
![]() |
[31] |
S. Xu, G. Feng, Y. Zou, J. Huang, Robust controller design of uncertain discrete time-delay systems with input saturation and disturbances, IEEE Trans. Autom. Control, 57 (2012), 2604–2609. https://doi.org/10.1109/TAC.2012.2190181 doi: 10.1109/TAC.2012.2190181
![]() |
[32] |
Z. Lin, M. Pachter, S. Banda, Toward improvement of tracking performance nonlinear feedback for linear systems, Int. J. Control, 70 (1998), 1–11. https://doi.org/10.1080/002071798222433 doi: 10.1080/002071798222433
![]() |
[33] |
S. Mobayen, F. Tchier, Composite nonlinear feedback control technique for master/slave synchronization of nonlinear systems, Nonlinear Dynam., 87 (2017), 1731–1747. https://doi.org/10.1007/s11071-016-3148-8 doi: 10.1007/s11071-016-3148-8
![]() |
[34] |
B. M. Chen, T. H. Lee, K. Peng, V. Venkataramanan, Composite nonlinear feedback control for linear systems with input saturation: Theory and an application, IEEE Trans. Autom. Control, 48 (2003), 427–439. https://doi.org/10.1109/TAC.2003.809148 doi: 10.1109/TAC.2003.809148
![]() |
[35] |
D. Lin, W. Lan, M. Li, Composite nonlinear feedback control for linear singular systems with input saturation, Syst. Control Lett., 60 (2011), 825–831. https://doi.org/10.1016/j.sysconle.2011.06.006 doi: 10.1016/j.sysconle.2011.06.006
![]() |
[36] |
Y. He, B. M. Chen, C. Wu, Composite nonlinear control with state and measurement feedback for general multivariable systems with input saturation, Syst. Control Lett., 54 (2005), 455–469. https://doi.org/10.1016/j.sysconle.2004.09.010 doi: 10.1016/j.sysconle.2004.09.010
![]() |
[37] |
E. Jafari, T. Binazadeh, Observer-based improved composite nonlinear feedback control for output tracking of time-varying references in descriptor systems with actuator saturation, ISA Trans., 91 (2019), 1–10. https://doi.org/10.1016/j.isatra.2019.01.035 doi: 10.1016/j.isatra.2019.01.035
![]() |
[38] |
S. Mondal, C. Mahanta, Composite nonlinear feedback based discrete integral sliding mode controller for uncertain systems, Commun. Nonlinear Sci., 17 (2012), 1320–1331. https://doi.org/10.1016/j.cnsns.2011.08.010 doi: 10.1016/j.cnsns.2011.08.010
![]() |
[39] |
E. Jafari, T. Binazadeh, Low-conservative robust composite nonlinear feedback control for singular time-delay systems, J. Vib. Control, 27 (2021), 2109–2122. https://doi.org/10.1177/1077546320953736 doi: 10.1177/1077546320953736
![]() |
[40] |
V. Ghaffari, An improved control technique for designing of composite non-linear feedback control in constrained time-delay systems, IET Control Theory Appl., 15 (2021), 149–165. https://doi.org/10.1049/cth2.12018 doi: 10.1049/cth2.12018
![]() |
[41] |
Z. Sheng, Q. Ma, Composite-observer-based sampled-data control for uncertain upper-triangular nonlinear time-delay systems and its application, Int. J. Robust Nonlinear Control, 31 (2021), 6699–6720. https://doi.org/10.1002/rnc.5637 doi: 10.1002/rnc.5637
![]() |
[42] |
S. Mobayen, Robust tracking controller for multivariable delayed systems with input saturation via composite nonlinear feedback, Nonlinear Dyn., 76 (2014), 827–838. https://doi.org/10.1007/s11071-013-1172-5 doi: 10.1007/s11071-013-1172-5
![]() |
[43] |
S. Rasoolinasab, S. Mobayen, A. Fekih, P. Narayan, Y. Yao, A composite feedback approach to stabilize nonholonomic systems with time varying time delays and nonlinear disturbances, ISA Trans., 101 (2020), 177–188. https://doi.org/10.1016/j.isatra.2020.02.009 doi: 10.1016/j.isatra.2020.02.009
![]() |
[44] |
H. Wu, Robust tracking and model following control with zero tracking error for uncertain dynamical systems, J. Optim. Theory Appl., 107 (2000), 169–182. https://doi.org/10.1023/A:1004665018593 doi: 10.1023/A:1004665018593
![]() |
[45] | F. Zhang, The Schur complement and its applications, New York: Springer, 2005. https://doi.org/10.1007/b105056 |
[46] |
N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci., 19 (2014), 2951–2957. https://doi.org/10.1016/j.cnsns.2014.01.022 doi: 10.1016/j.cnsns.2014.01.022
![]() |
[47] |
M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos, R. Castro-Linares, Using general quadratic lyapunov functions to prove lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci., 22 (2015), 650–659. https://doi.org/10.1016/j.cnsns.2014.10.008 doi: 10.1016/j.cnsns.2014.10.008
![]() |
[48] |
J. Jiang, D. Cao, H. Chen, Sliding mode control for a class of variable-order fractional chaotic systems, J. Fanklin Inst., 357 (2020), 10127–10158. https://doi.org/10.1016/j.jfranklin.2019.11.036 doi: 10.1016/j.jfranklin.2019.11.036
![]() |
[49] |
Y. Li, Y. Chen, I. Podlubny, Mittag-leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965–1969. https://doi.org/10.1016/j.automatica.2009.04.003 doi: 10.1016/j.automatica.2009.04.003
![]() |
[50] |
Z. Wu, Y. Xia, X. Xie, Stochastic barbalat's lemma and its applications, IEEE Trans. Autom. Control, 57 (2011), 1537–1543. https://doi.org/10.1109/TAC.2011.2175071 doi: 10.1109/TAC.2011.2175071
![]() |
[51] |
D. Lin, W. Lan, Output feedback composite nonlinear feedback control for singular systems with input saturation, J. Fanklin Inst., 352 (2015), 384–398. https://doi.org/10.1016/j.jfranklin.2014.10.018 doi: 10.1016/j.jfranklin.2014.10.018
![]() |
[52] |
S. Mobayen, Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control, ISA Trans., 77 (2018), 100–111. https://doi.org/10.1016/j.isatra.2018.03.026 doi: 10.1016/j.isatra.2018.03.026
![]() |
[53] |
S. Mobayen, F. Tchier, Composite nonlinear feedback integral sliding mode tracker design for uncertain switched systems with input saturation, Commun. Nonlinear Sci., 65 (2018), 173–184. https://doi.org/10.1016/j.cnsns.2018.05.019 doi: 10.1016/j.cnsns.2018.05.019
![]() |