Processing math: 100%
Research article Special Issues

Analytic properties and numerical representations for constructing the extended beta function using logarithmic mean

  • This paper aimed to obtain generalizations of both the logarithmic mean (Lmean) and the Euler's beta function (EBF), which we call the extended logarithmic mean (ELmean) and the extended Euler's beta-logarithmic function (EEBLF), respectively. Also, we discussed various properties, including functional relations, inequalities, infinite sums, finite sums, integral formulas, and partial derivative representations, along with the Mellin transform for the EEBLF. Furthermore, we gave numerical comparisons between these generalizations and the previous studies using MATLAB R2018a in the form of tables and graphs. Additionally, we presented a new version of the beta distribution and acquired some of its characteristics as an application in statistics. The outcomes produced here are generic and can give known and novel results.

    Citation: Mohammed Z. Alqarni, Mohamed Abdalla. Analytic properties and numerical representations for constructing the extended beta function using logarithmic mean[J]. AIMS Mathematics, 2024, 9(5): 12072-12089. doi: 10.3934/math.2024590

    Related Papers:

    [1] Feng Qi, Kottakkaran Sooppy Nisar, Gauhar Rahman . Convexity and inequalities related to extended beta and confluent hypergeometric functions. AIMS Mathematics, 2019, 4(5): 1499-1507. doi: 10.3934/math.2019.5.1499
    [2] Uthumporn Panitanarak, Aliyu Ismail Ishaq, Ahmad Abubakar Suleiman, Hanita Daud, Narinderjit Singh Sawaran Singh, Abdullahi Ubale Usman, Najwan Alsadat, Mohammed Elgarhy . A new Beta distribution with interdisciplinary data analysis. AIMS Mathematics, 2025, 10(4): 8495-8527. doi: 10.3934/math.2025391
    [3] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
    [4] D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh . Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096
    [5] Madan Mohan Soren, Luminiţa-Ioana Cotîrlǎ . Fuzzy differential subordination and superordination results for the Mittag-Leffler type Pascal distribution. AIMS Mathematics, 2024, 9(8): 21053-21078. doi: 10.3934/math.20241023
    [6] Saima Naheed, Shahid Mubeen, Thabet Abdeljawad . Fractional calculus of generalized Lommel-Wright function and its extended Beta transform. AIMS Mathematics, 2021, 6(8): 8276-8293. doi: 10.3934/math.2021479
    [7] Yong Xian Ng, Chang Phang, Jian Rong Loh, Abdulnasir Isah . Analytical solutions of incommensurate fractional differential equation systems with fractional order $ 1 < \alpha, \beta < 2 $ via bivariate Mittag-Leffler functions. AIMS Mathematics, 2022, 7(2): 2281-2317. doi: 10.3934/math.2022130
    [8] Chuan-Yu Cai, Qiu-Ying Zhang, Ti-Ren Huang . Properties of generalized $ (p, q) $-elliptic integrals and generalized $ (p, q) $-Hersch-Pfluger distortion function. AIMS Mathematics, 2023, 8(12): 31198-31216. doi: 10.3934/math.20231597
    [9] Ebrahim Analouei Adegani, Davood Alimohammadi, Teodor Bulboacă, Nak Eun Cho, Mahmood Bidkham . On the logarithmic coefficients for some classes defined by subordination. AIMS Mathematics, 2023, 8(9): 21732-21745. doi: 10.3934/math.20231108
    [10] Zhaoyang Shang . Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3(1): 1-11. doi: 10.3934/Math.2018.1.1
  • This paper aimed to obtain generalizations of both the logarithmic mean (Lmean) and the Euler's beta function (EBF), which we call the extended logarithmic mean (ELmean) and the extended Euler's beta-logarithmic function (EEBLF), respectively. Also, we discussed various properties, including functional relations, inequalities, infinite sums, finite sums, integral formulas, and partial derivative representations, along with the Mellin transform for the EEBLF. Furthermore, we gave numerical comparisons between these generalizations and the previous studies using MATLAB R2018a in the form of tables and graphs. Additionally, we presented a new version of the beta distribution and acquired some of its characteristics as an application in statistics. The outcomes produced here are generic and can give known and novel results.



    The logarithmic mean (Lmean) of θ,ϕR+, which is of interest in many fields such as engineering, statistics, geometry, and thermodynamics (for more details, see [1,2,3]), is defined in the following integral formula

    Lmean(θ,ϕ)=10θ1xϕxdx={θϕln(θ)ln(ϕ),θϕ,θ,otherwise. (1.1)

    We can rewrite Eq (1.1) as

    Lmean(θ,ϕ)=(10du(1u)θ+uϕ)1=(0du(θ+u)(u+ϕ))1,(θ,ϕR+).

    Following [1], the Lmean(θ,ϕ) is continuous when θ=ϕ and homogeneous and symmetric in θ and ϕ. Further, for θ,ϕR+, we have

    θϕ<Lmean(θ,ϕ)<θ+ϕ2. (1.2)

    Recently, various studies and generalizations for the Lmean have been presented by several researchers (see e.g., [1,2,3,4,5,6]).

    The Euler's beta function and the gamma function are defined by (see [7] and [8,Chapter 5,p.215])

    B(u,v)=10wu1(1w)v1dw,u,v>0, (1.3)

    and

    Γ(σ)=0ewwσ1dw(Re(σ)>0), (1.4)

    respectively. An essential characteristic of the beta function is its tight relationship to the gamma function in the form

    B(u,v)=Γ(u)Γ(v)Γ(u+v). (1.5)

    In recent years, the Euler's beta function has been a hotly disputed research area. Many authors have examined various extensions of the beta function (see, for example, [9,10,11,12,13,14]). The factor exp(w(1w)) has been used to extend the domain of the beta function to the entire complex plane. This function is called the extended beta function, which is defined by Choudhary et al. [9] and (see also [8,Chapter 5,p.244]) in the form

    EB(u,v;)=10wu1(1w)v1exp(w(1w))dw, (1.6)
    (Re(u)>0,Re(v)>0,andRe()>0). (1.7)

    Moreover, this extension yields an exciting connection with several special functions such as Meijer G-function, Bessel function, Macdonald function, generalized hypergeometric function, Whittaker function, and Laguerre polynomial (see [8,Chapter 5,p.241–253]). Furthermore, this extension has applications in several fields, such as mathematics, engineering, or physics, (see, for instance, [15,16,17]). In mathematics, it has mainly been used to derive certain probability distributions archived by Good [18] and other applications in fractional operators [8].

    Recently, Raïssouli and Chergui [19] used the concept of a logarithmic mean in presenting the beta-logarithmic function (BLmean) as follows

    BLmean(θ,ϕ;δ1,δ2)=10θ1uϕuuδ11(1u)δ21du,(Re(δ1)>0,Re(δ2)>0,θ,ϕR+such thatθϕ). (1.8)

    Moreover, they proved that this integral satisfies several properties. It is clear that BLmean(θ,ϕ;δ1,δ2) is an extension of both the logarithmic mean (1.1) and the beta function (1.3).

    Motivated by the preceding literature, we offer new generalizations of the logarithmic mean and the extended beta function, along with supplying some of its features and applications. The article's organization is as follows: Section 2 introduces the extended logarithmic mean and the extended Euler's beta-logarithmic function based on the logarithmic mean in (1.1). Also, we provide the Mellin transform for the latter, besides proving several properties such as functional relations, inequalities, infinite sums, finite sums, integral formulas, and partial derivative representations. In Section 3, the numerical values of the comparison results and their graphical explanations are interpreted to study the behavior of the new generalizations using MATLAB. In Section 4, we give a new extension of the conventional beta distribution by using the extended Euler's beta-logarithmic function as an application in statistics. Eventually, we exhibit some concluding remarks in Section 5.

    In this section, we propose the following novel generalization of the standard Euler's beta function.

    EBL[α,β;u,v;]=10α1wβwwu1(1w)v1exp(w(1w))dw,(α,βR+withαβ,Re(u)>0,Re(v)>0,andRe()>0), (2.1)

    which we call the extended Euler's beta-logarithmic function (EEBLF).

    Remark 2.1. Since

    0α1wβwwu1(1w)v1exp(w(1w))κwu1(1w)v1exp(w(1w))for allw(0,1),

    where κ>0 for any fixed α,βR+, the function wα1wβw is continuous and bounded on [0,1], and |exp(w(1w))|exp(|w(1w)|)1 for all R+. Therefore, the integral (2.1) exists and is convergent for all w(0,1).

    Remark 2.2. The following relationships can be acquired straightway from (2.1):

    EBL[α,β;u,v;]=EBL[β,α;v,u;], (2.2)
    EBL[α,α;u,v;]=αEB(u,v;), (2.3)
    EBL[cα,cβ;u,v;]=cEBL[α,β;u,v;],c>0. (2.4)

    Remark 2.3. We see certain particular cases of the EBL[α,β;u,v;] as follows:

    (ⅰ) If α=β=1, then Eq (2.1) reduces to the extended beta function (EBF) defined in (1.6).

    (ⅱ) When =0 in (2.1), we obtain the beta-logarithmic function (BLF) given in (1.8).

    (ⅲ) If u=v=1, then Eq (2.1) reduces to a new extension of Lmean, which is called the extended logarithmic mean (ELmean) as

    ELmean[α,β;]=10α1wβwexp(w(1w))dw,(α,βR+withαβ,andRe()>0). (2.5)

    (ⅳ) If we choose =0 in (2.5), then we get the Lmean defined in (1.1).

    (ⅴ) Taking α=β=1 and =0 in (2.1), we have the classical beta function defined in (2.1).

    In this section, we establish essential characteristics of the EEBLF.

    Theorem 2.1. The EBL[α,β;u,v;] satisfies the following functional relation:

    EBL[α,β;u+1,v;]+EBL[α,β;u,v+1;]=EBL[α,β;u,v;]. (2.6)

    Proof. From (2.1) into the LHS of (2.6), we obtain

    LHS=10α1wβw[wu(1w)v1+wu1(1w)v]exp(w(1w))dw. (2.7)

    After simple calculations, we get the RHS of (2.6).

    We state the following corollaries as direct results from (2.6), which were proved in previous works [8,9,19].

    Corollary 2.1. In case =0 in (2.6), we have

    BLmean[α,β;u+1,v]+BLmean[α,β;u,v+1]=BLmean[α,β;u,v]. (2.8)

    Corollary 2.2. Choosing α=β=1 in (2.6), yields

    EB(u+1,v;)+EB(u,v+1;)=EB(u,v;). (2.9)

    Corollary 2.3. When =0 and α=β=1 in (2.6), we get

    B(u,v)=B(u+1,v)+B(u,v+1). (2.10)

    Theorem 2.2. The following inequality holds for the EBL[α,β;u,v;]:

    min(α,β)EBL[α,β;u,v;]max(α,β),(α,βR+withαβ,Re(u)>0,Re(v)>0,andRe()>0). (2.11)

    Proof. From (1.2) and (1.6), we observe that

    min(α,β)αβLmean(α,β)(α+β2)max(α,β),

    and

    EB[u,v;]>0.

    Thus, we obtain

    min(α,β)EBL[α,β;u,v;]. (2.12)

    According to Young's inequality

    α1τβτα(1τ)+βτ,for allτ[0,1],

    and Eq (2.9), we find that

    EBL[α,β;u,v;]αEB[u,v+1;]+βEB[u+1,v;]max(α,β)[EB[u,v+1;]+EB[u+1,v;]]max(α,β). (2.13)

    From (2.12) and (2.13), we arrive at the desired assertion in (2.6).

    Corollary 2.4. Let α=β=1 in Theorem (2.2), the following inequality holds:

    EB[u,v;]exp(4)B(u,v),(u>0,v>0,and0). (2.14)

    Proof. [8,Theorem 5.5,p.224] is available to view as proof.

    Corollary 2.5. For =0 in Theorem (2.2), we have

    min(α,β)B(u,v)BLmean[α,β;u,v]max(α,β)B(u,v),(u>0,v>0,andα,β>0). (2.15)

    Proof. The proof can be viewed in [19,Proposition 2.2,p.133].

    Theorem 2.3. For α,βR+ such that αβ,Re(u)>0,Re(v)>0, and Re()>0, the following finite sum holds:

    EBL[α,β;u,v;]=mȷ=0(mȷ)EBL[α,β;u+ȷ,v+mȷ;]. (2.16)

    Proof. From (2.1), we consider

    EBL[α,β;u,v;]=10α1wβw[w+(1w)]wu1(1w)v1exp(w(1w))dw=EBL[α,β;u+1,v;]+EBL[α,β;u,v+1;]. (2.17)

    Similarly, we arrive at

    EBL[α,β;u,v;]=10α1wβw[w+(1w)]wu1(1w)v1exp(w(1w))dw=EBL[α,β;u+2,v;]+EBL[α,β;u,v+2;]+2EBL[α,β;u+1,v+1;]. (2.18)

    Using mathematical induction, we attain the desired result (2.16).

    Corollary 2.6. The following finite sum holds:

    EB[u,v;]=mȷ=0(mȷ)EBL[u+ȷ,v+mȷ;]. (2.19)

    Proof. This directly results from (2.16) when α=β=1.

    Theorem 2.4. For α,βR+ such that αβ, Re(u)>0, Re(v)>0, and Re()>0, the EBL[α,β;u,v;] satisfies the following infinite sums:

    (Ⅰ)

    EBL[α,β;u,v;]=ȷ=0EBL[α,β;u+ȷ,v+1;]. (2.20)

    (Ⅱ)

    EBL[α,β;u,v;]=ı,ȷ=0EBL[α,β;u+ı,v+ȷ;](ln(α))ı(ln(β))ȷȷ!ı!. (2.21)

    (Ⅲ)

    EBL[α,β;u,1v;]=ȷ=0(v)ȷȷ!EBL[α,β;u+ȷ,1;], (2.22)

    where (v)ȷ denotes the Pochhammer symbol, which is defined in terms of the gamma function Γ(v) as

    (v)ȷ=Γ(v+ȷ)Γ(v)=v(v+1)(v+2)...(v+(ȷ1)),ȷ1,(v)0=1,Re(v)>0.

    Proof. To prove (2.20), we use the relation

    (1w)v1=(1w)vr=0wr|w|<1,

    in the Definition (2.1). Thus, we get

    EBL[α,β;u,v;]=r=010α1wβwwu+r1(1w)vexp(w(1w))dw,

    which, given (2.1), we obtain the result (2.20).

    To prove (2.21), substitute

    α1w=r=0(lnα)rr!(1w)r,|1w|<,

    and

    βw=s=0(lnβ)ss!wr,|w|<,

    in (2.1) yields

    EBL[α,β;u,v;]=10r,s=0(lnα)r(lnβ)sr!s!wu+s1(1w)v+r1exp(w(1w))dw.

    Thus, in light of (2.1) and after simplification, we get the infinite sum in (2.21).

    To demonstrate (2.22), we observe that

    EBL[α,β;u,1v;]=10α1wβwwu1(1w)vexp(w(1w))dw.

    Using the Binomial relation

    (1w)v=r=0(v)rr!wr,|w|<1,

    we thus achieve

    EBL[α,β;u,1v;]=r=0(v)rr!10α1wβwwu+r1exp(w(1w))dw.

    After simple calculation, we get the infinite sum in (2.22).

    Corollary 2.7. For α=β=1 in Theorem 2.4, the following infinite sums hold:

    (ⅰ)

    EB[u,v;]=ȷ=0EB[u+ȷ,v+1;]. (2.23)

    (ⅱ)

    EB[u,v;]=ı,ȷ=0EB[u+ı,v+ȷ;]. (2.24)

    (ⅲ)

    EB[u,1v;]=ȷ=0(v)ȷȷ!EB[u+ȷ,1;]. (2.25)

    Proof. [8,9] are accessible for inspection as proof.

    Corollary 2.8. For =0 in Theorem 2.4, the following infinite sums hold:

    BLmean[α,β;u,v]=ȷ=0BLmean[α,β;u+ȷ,v+1]. (2.26)

    BLmean[α,β;u,v]=ı,ȷ=0BLmean[α,β;u+ı,v+ȷ](ln(α))ı(ln(β))ȷȷ!ı!. (2.27)

    BLmean[α,β;u,1v]=ȷ=0(v)ȷȷ!BLmean[α,β;u+ȷ,1]. (2.28)

    Proof. [19] is available for inspection as evidence.

    Theorem 2.5. For α,βR+ such that αβ, Re(u)>0, Re(v)>0, and Re()>0, the EBL[α,β;u,v;] satisfies the following integral representations:

    (Ⅰ)

    EBL[α,β;u,v;]=2απ20(βα)cos2(φ)cos2u1(φ)sin2v1(φ)×exp(sec2(φ)csc2(φ))dφ. (2.29)

    (Ⅱ)

    EBL[α,β;u,v;]=e20(α)ττ+1(β)1τ+1τv1(1+τ)u+vexp((τ+τ1))dτ. (2.30)

    (Ⅲ)

    EBL[α,β;u,v;]=αβ21uv0(βα)τ2(1+τ)u1(1τ)v1×exp(4/(1τ2))dτ. (2.31)

    Proof. Every situation is straightforward. Taking w=cos(φ) in (2.1) yields (2.29) after calculations. Also, replacing w=ττ+1 in (2.1) provides (2.30). Similarly, substituting w=1+τ2 in (2.1) gives the result (2.31).

    Corollary 2.9. When =0 in Theorem 2.5, the following integral formulas hold:

    BLmean[α,β;u,v]=2απ20(βα)cos2(φ)cos2u1(φ)sin2v1(φ)dφ.

    EBL[α,β;u,v]=0(α)ττ+1(β)1τ+1τv1(1+τ)u+vdτ.

    EBL[α,β;u,v]=αβ21uv0(βα)τ2(1+τ)u1(1τ)v1dτ.

    Proof. The reference [19] is available to view as evidence.

    Remark 2.4. Applying the results in Remark 2.3 for Theorems 2.3–2.5 generates other correspondent results in [8,9,19].

    Theorem 2.6. For α,βR+ such that αβ,Re(u)>0,Re(v)>0, and Re()>0, the Mellin transform of EEBLF is

    M{EBL[α,β;u,v;];σ}=Γ(σ)BLmean[α,β;u+σ,v+σ], (2.32)

    where the Mellin transform is defined in [8] by

    M{f(x);σ}=0xσ1f(x)dx,Re(σ)>0, (2.33)

    provided that the integral (2.33) exists.

    Proof. Applying (2.33) to (2.1), we observe that

    M{EBL[α,β;u,v;];σ}=0σ1EBL[α,β;u,v;]d=0σ1(10α1wβwwu1(1w)v1exp(w(1w))dw)d=10α1wβwwu1(1w)v1(0σ1exp(w(1w))d)dw.

    Replacing the inner integral by z=w(1w) and after simplification, we have

    M{EBL[α,β;u,v;];σ}=Γ(σ)10α1wβwwu+σ1(1w)v+σ1dw. (2.34)

    Inserting (1.8) into (2.34), we arrive at (2.32).

    Setting α=β=1 in (2.32), we get a desired Mellin transform involving the extended beta function (cf., [8,9]), which is archived in the following corollary.

    Corollary 2.10. Let R+, Re(u)>0, and Re(v)>0. Then

    M{EB[u,v;];σ}=Γ(σ)B[u+σ,v+σ],Re(σ)>0. (2.35)

    Theorem 2.7. For k,hN0, the following higher-order derivatives are valid for the EBL[α,β;u,v;]:

    (Ⅰ)

    kk{EBL[α,β;u,v;]}=(1)kEBL[α,β;uk,vk;],Re()>0. (2.36)

    (Ⅱ)

    kαk{EBL[α,β;u,v;]}=r=01αk(rk)!(ln(α))rkEBL[1,β;u,v+r;],Re(α)>0,r>k. (2.37)

    (Ⅲ)

    kβk{EBL[α,β;u,v;]}=r=01βk(rk)!(ln(β))rkEBL[α,1;u+r,v;],Re(β)>0,r>k. (2.38)

    (Ⅳ)

    k+hvhuk{EBL[α,β;u,v;]}=10α1wβwwu1(1w)v1×lnk(w)lnh(1w)exp(w(1w))dw,(α,βR+withαβ,Re(u)>0,Re(v)>0,andRe()>0). (2.39)

    Proof. The proof is direct by the differentiation of (2.1) for the parameters ,α,β,u, and v, respectively. Thus, we obtain the results in (2.36)–(2.39) applying mathematical induction.

    Remark 2.5. We can attain several outcomes in the literature using the results considered in Remark 2.3 for Theorem 2.7 (e.g., [1,7,8,9,17,19,20,21]).

    The numerical representations of the values of the new generalizations of the logarithmic mean and Euler's beta logarithmic function, besides some of its exceptional cases, are given in the form of tabulated data and graphical outcomes utilizing the MATLAB program in this section.

    First, Table 1 shows tabular expressions of the ELmean for various values of the parameters α,β, and . For different ranges of values of these parameters, one can note the increase in the ELmean values as the value of decreases. As evident, the last column corresponds to Lmean since =0. That explains the agreement of the values in the last two columns in this table when is close to zero. Figure 1 depicts the plots of the difference in the infinity norm, z:=maxȷ|zȷ|, between the ELmean and Lmean where the fixed values of the parameters α and β are chosen to be {0.1,0.825,2.275,3} and {0.25,0.5625,1.1875,1.5}, respectively, against the values of the parameter {103,8.9×104,7.7×104,6.7×104,5.5×104,4.4×104,3.3×104,2.2×104,1.1×104, 108}. The graph assures that the infinity norm ELmeanLmean tends to zero when approaches 0 and increases otherwise.

    Table 1.  Comparison of numerical values of ELmean in (2.5) for different values for all α,β, and .
    N α β ELmean
    =103 =7.5×104 =5×104 =2.5×104 =108 =0
    1 0.1 0.25 0.16121 0.16176 0.16233 0.16296 0.1637 0.1637
    2 0.1 0.5625 0.2633 0.26427 0.26531 0.26642 0.26777 0.26777
    3 0.1 0.875 0.35094 0.35232 0.35378 0.35537 0.3573 0.3573
    4 0.1 1.1875 0.4313 0.43307 0.43495 0.437 0.43949 0.43949
    5 0.1 1.5 0.50698 0.50913 0.51142 0.51392 0.51698 0.51698
    6 0.825 0.25 0.47407 0.47572 0.47746 0.47935 0.48161 0.48161
    7 0.825 0.5625 0.67528 0.67751 0.67985 0.68238 0.68539 0.68539
    8 0.825 0.875 0.83731 0.84005 0.84294 0.84605 0.84975 0.84975
    9 0.825 1.1875 0.9806 0.98383 0.98723 0.9909 0.99527 0.99527
    10 0.825 1.5 1.1122 1.1159 1.1198 1.1241 1.1291 1.1291
    11 1.55 0.25 0.70045 0.70307 0.70585 0.70887 0.7125 0.7125
    12 1.55 0.5625 0.95925 0.96254 0.96601 0.96975 0.97423 0.97423
    13 1.55 0.875 1.1629 1.1668 1.1709 1.1753 1.1805 1.1805
    14 1.55 1.1875 1.3407 1.3451 1.3498 1.3548 1.3607 1.3607
    15 1.55 1.5 1.5025 1.5074 1.5126 1.5182 1.5249 1.5249
    16 2.275 0.25 0.9006 0.90415 0.90793 0.91203 0.91701 0.91701
    17 2.275 0.5625 1.2059 1.2102 1.2147 1.2196 1.2255 1.2255
    18 2.275 0.875 1.4428 1.4477 1.4529 1.4585 1.4652 1.4652
    19 2.275 1.1875 1.6477 1.6532 1.659 1.6653 1.6727 1.6727
    20 2.275 1.5 1.8332 1.8392 1.8456 1.8525 1.8607 1.8607
    21 3 0.25 1.086 1.0905 1.0952 1.1004 1.1067 1.1067
    22 3 0.5625 1.432 1.4372 1.4428 1.4488 1.4561 1.4561
    23 3 0.875 1.6975 1.7035 1.7097 1.7165 1.7246 1.7246
    24 3 1.1875 1.9259 1.9324 1.9394 1.9468 1.9557 1.9557
    25 3 1.5 2.1316 2.1387 2.1463 2.1544 2.164 2.164

     | Show Table
    DownLoad: CSV
    Figure 1.  Graphical representation of ELmeanLmean various values of .

    Second, Table 2 shows tabular representations of the EEBLF for the different values of α,β,u,v, and . Here, we chose the thier values as u{0.1,0.1,0.25,0.4,0.55,0.7,0.85,1}, v{0.25,0.5,0.75,1}, {0,0.4,0.80}, and α=β{1,3,6,9}. It should be mentioned that the values of EEBLF increase as decreases while fixing the values of other parameters. Choosing α=β=1 and v=0.25 allows the reader to compare the values of EEBLF in this table with those presented for extended beta function in [8,Chapter 5,p.268–278].

    Table 2.  Comparison of numerical values of EEBLF in (2.1) for different values for all α,β,u,v, and .
    N α=β u v EEBLF
    =0 =0.40 =0.80
    1 1 0.1 0.25 13.547 0.3861 0.058419
    2 1 0.25 0.25 7.4163 0.34229 0.05213
    3 1 0.4 0.25 5.8075 0.30491 0.046648
    4 1 0.55 0.25 5.0329 0.27285 0.041855
    5 1 0.7 0.25 4.5627 0.2452 0.037651
    6 1 0.85 0.25 4.2397 0.22123 0.033953
    7 1 1 0.25 4 0.20035 0.030691
    8 3 0.1 0.5 33.969 0.96446 0.14647
    9 3 0.25 0.5 15.732 0.84903 0.13015
    10 3 0.4 0.5 11.037 0.75113 0.11597
    11 3 0.55 0.5 8.8274 0.66763 0.10363
    12 3 0.7 0.5 7.5174 0.59602 0.092838
    13 3 0.85 0.5 6.638 0.53431 0.083383
    14 3 1 0.5 6 0.48085 0.075074
    15 6 0.1 0.75 62.876 1.6251 0.24658
    16 6 0.25 0.75 26.657 1.421 0.21819
    17 6 0.4 0.75 17.479 1.2488 0.19363
    18 6 0.55 0.75 13.24 1.1028 0.17232
    19 6 0.7 0.75 10.776 0.97823 0.15376
    20 6 0.85 0.75 9.1543 0.87145 0.13756
    21 6 1 0.75 8 0.77946 0.12337
    22 9 0.1 1 90 2.0755 0.31341
    23 9 0.25 1 36 1.8032 0.27622
    24 9 0.4 1 22.5 1.5747 0.24415
    25 9 0.55 1 16.364 1.3818 0.21642
    26 9 0.7 1 12.857 1.2182 0.19236
    27 9 0.85 1 10.588 1.0786 0.17142
    28 9 1 1 9 0.95902 0.15315

     | Show Table
    DownLoad: CSV

    By selecting fixed values of α=0.1,0.825,2.275,3 and β=0.25,0.5625,1.1875,1.5 versus equal values of u=v[0.1,0.99], Figure 2 illustrates the behavior of the EBLELmean for distinct values of =0,103,7.5×104,5×104,2.5×104, 108. The concluded results can be interpreted as the difference in the infinity norm decreasing to zero as both u and v approach one for any chosen value of .

    Figure 2.  Plots of EBLELmean with equal values of {u,v}, and various values of .

    Finally, as is seen in Tables 1 and 2 and Figures 1 and 2, one can conclude that EEBLF is a more generalized form than those presented in the previous studies for the extensions of the beta function [8,10,22].

    The beta distribution is a type of continuous probability distribution defined on the interval [0,1] by any two positive parameters, which appear as exponents of the random variable and control the shape of the distribution (see [23,24,25,26]). As a helpful distribution, it can be rescaled and shifted to produce distributions with diverse shapes over any finite range. The beta function can take on various shapes depending on the values of the two parameters. Later, typical beta distributions were introduced in [8,10,13,14,16] using expanded beta functions. They suggested that these distributions could be useful for analyzing and reviewing techniques employed in specific circumstances during project evaluation and review.

    In this section, we define a random variable associated with EBL[α,β;u,v;] and discuss some of their properties.

    Definition 4.1. For α,βR+ such that αβ,Re(u)>0,Re(v)>0, and Re()>0, the extended Euler's beta logarithmic distribution (EEBLD) is defined as

    f(w)={1EBL[α,β;u,v;]α1wβwwu1(1w)v1exp(w(1w)),(0<w<1),0, otherwise. (4.1)

    We have the ϖth moment of a random variable χ as for any real number ϖ.

    E(χϖ)=EBL[α,β;u+ϖ,v;]EBL[α,β;u,v;],(α,βR+such thatαβ,Re(u)>0,Re(v)>0,and Re()>0). (4.2)

    When ϖ=1, the mean is obtained as a special case of (4.2) given by

    μ=E(χ)=EBL[α,β;u+1,v;]EBL[α,β;u,v;]. (4.3)

    The variance of a distribution is discussed as follows:

    σ2=E(χ2){E(χ)}2=EBL[α,β;u,v;]EBL[α,β;u+2,v;]{EBL[α,β;u+1,v;]}2{EBL[α,β;u,v;]}2. (4.4)

    The moment generating function (MGF) of the distribution is defined as

    M(w)=m=0wmm!E(χm)=1EBL[α,β;u,v;]m=0EBL[α,β;u+m,v;]wmm!. (4.5)

    Proposition 4.1. Let χ represent the extended Euler's beta logarithmic random variable with parameters (α,β;u,v). Then, for any ϖ,ε>0, the following suppositions are true:

    |P(χε)EBL[α,β;u,v+1;]EBL[α,β;u,v;]|12+|ε12|, (4.6)

    and

    P(χϖε)EBL[α,β;u+ϖ,v;]εEBL[α,β;u,v;]. (4.7)

    Proof. By invoking (2.6) and (4.3), we have

    E(χ)=1EBL[α,β;u,v+1;]EBL[α,β;u,v;], (4.8)

    using Lemma 3.1 in [19,24], we arrive at the required result (4.6).

    The second inequality (4.7) can be easily obtained by an application of Markov's inequality, namely

    P(χϖε)E(χϖ)ε, (4.9)

    and the definition of E(χϖ), we obtain the coveted result (4.7).

    Remark 4.1. As special cases of the results in this part,

    we get Proposition 3.2 in [19,pp.137] from (4.1) when =0;

    we can reduce the symmetric results in [8,Chapter 5,p.258] and [16] when α=β=1 in (4.1);

    we can obtain the previous results in [23,24,25,26] when α=β=1 and =0 in (4.1)(4.5).

    Recently, a great variety of extensions of the beta function have been broadly and usefully employed in describing and solving several vital problems of statistics, physics, probability theory, and astrophysics [10,11,12,13,14,22,23,24,25,26]. In particular, it should be mentioned that further generalizations of classical beta function and logarithmic mean have been introduced and investigated in [19], and their properties and applications have been archived. The works above will motivate the new studies, where the authors can introduce a more general definition of the beta function and logarithmic mean defined in (2.1) of this manuscript. This newly defined function, which is called EEBLF, will have many prospects and applications in different fields.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large group research project under grant number RGP2/432/44.

    This work does not have any conflict of interest.



    [1] B. C. Carlson, The logarithmic mean, Amer. Math. Monthly., 79 (1972), 615–618. https://doi.org/10.2307/2317088 doi: 10.2307/2317088
    [2] R. Bhatia, Positive definite matrices, Princeton University Press, 2007. https://doi.org/10.1515/9781400827787
    [3] F. Tan, A. Xie, On the logarithmic mean of accretive matrices, Filomat, 33 (2019), 4747–4752. https://doi.org/10.2298/FIL1915747T doi: 10.2298/FIL1915747T
    [4] M. Raïssouli, S. Furuichi, The logarithmic mean of two convex functionals, Open Math., 18 (2020), 1667–1684. https://doi.org/10.1515/math-2020-0095 doi: 10.1515/math-2020-0095
    [5] W. Luo, Logarithmic mean of multiple accretive matrices, Bull. Iran. Math. Soc., 48 (2022), 1229–1236. https://doi.org/10.2298/FIL1915747T doi: 10.2298/FIL1915747T
    [6] B. Jin Choi, S. Kim, Logarithmic mean of positive invertible operators, Banach. J. Math. Anal., 20 (2023), 1–17. https://doi.org/10.1007/s43037-022-00244-z doi: 10.1007/s43037-022-00244-z
    [7] W. Gautschi, Leonhard Euler: His life, the man, and his works, SIAM Rev., 50 (2008), 3–33. https://doi.org/10.1137/070702710 doi: 10.1137/070702710
    [8] M. A. Chaudhry, S. M. Zubair, On a class of incomplete gamma functions with applications, Boca Raton, 2002.
    [9] M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Mathe., 78 (1997), 19–32. https://doi.org/10.1016/S0377-0427(96)00102-1 doi: 10.1016/S0377-0427(96)00102-1
    [10] M. Chand, H. Hachimi, R. Rani, New extension of beta function and its application, Inter. J. Mathe. Mathe. Scie., 2018 (2018), 1–25. https://doi.org/10.1155/2018/6451592 doi: 10.1155/2018/6451592
    [11] E. Özergin, M. A. Özarslan, A. Altin, Extension of gamma, beta and hypergeometric functions, J. Computat. Appli. Mathe., 235 (2011), 4601–4610. https://doi.org/10.1016/j.cam.2010.04.019 doi: 10.1016/j.cam.2010.04.019
    [12] S. Mubeen, G. Rahman, K. S. Nisar, J. Choi, M. Arshad, An extended beta function and its properties, Far East. J. Mathe. Scie., 102 (2017), 1545–1557. http://dx.doi.org/10.17654/MS102071545 doi: 10.17654/MS102071545
    [13] M. Ali, M. Ghayasuddin, Extensions of beta and related functions. J. Anal., 30 (2022), 717–729. https://doi.org/10.1007/s41478-021-00363-0 doi: 10.1007/s41478-021-00363-0
    [14] M. Abdalla, A. Bakhet, Extension of beta matrix function, A. J. Math. Comput. Resear., 9 (2016), 253–264. Available from: http://public.paper4promo.com/id/eprint/1672
    [15] M. A. Chaudhry, S. M. Zubair, Analytic syudy of temperature solution due to gamma type moving point-heat sources, Int. J. Heat. Mass. Transfer., 36 (1993), 1633–1637. https://doi.org/10.1016/S0017-9310(05)80072-9 doi: 10.1016/S0017-9310(05)80072-9
    [16] A. Chandola, R. M. Pandey, R. Agarwal, S. D. Purohit, An extension of beta function, its statistical distribution, and associated fractional operator, Advan. Differ. Equat., 2020. https://doi.org/10.1186/s13662-020-03142-6
    [17] B. Fisher, A. Kilicman, D. Nicholas, On the beta function and the neutrix product of distributions, Integral Trans. Spec. Funct., 7 (1998), 35–42. https://doi.org/10.1080/10652469808819184 doi: 10.1080/10652469808819184
    [18] I. J. Good, The population frequencies of species and the estimation of population parameters, Biometrika., 40 (1953), 237–260. https://doi.org/10.2307/2333344 doi: 10.2307/2333344
    [19] M. Raïssouli, M. Chergui, On a new parametrized beta functions, Proce. Insti. Math. Mechan. Natio. Acad. Scie. Azerba., 48 (2022), 132–139. https://doi.org/10.30546/2409-4994.48.1.2022.132 doi: 10.30546/2409-4994.48.1.2022.132
    [20] N. Shang, A. Li, Z. Sun, H. Qin, A note on the beta function and some properties of its partial derivatives, IAENG Int. J. Appl. Math., 44 (2014), 200–205.
    [21] A. Li, Z. Sun, H. Qin, The algorithm and application of the beta function and its partial derivatives, Eng. Lett., 23 (2015), 140–144.
    [22] S. A. Yükçü, The numerical evaluation methods for beta function, Univ. Facult. Art. Scie. J. Scie., 17 (2022), 288–302.
    [23] R. A. Bakoban, H. H. Abu-Zinadah, The beta generalized inverted exponential distribution with real data applications, Revstat. Stat. J., 15 (2017), 65–88. https://doi.org/10.57805/revstat.v15i1.204 doi: 10.57805/revstat.v15i1.204
    [24] N. S. Barnett, S. S. Dragomir, An inequality of Ostrowski's type for cumulative distribution functions, RGMIA Resea. Repo. Collec., 1 (1998), 3–12.
    [25] R. S. Prasad, K. Mukesh, Properties and application of beta function, IJSR., 9 (2020), 1372–1374. Available from: https://www.ijsr.net/archive/v9i11/SR201122201029.pdf
    [26] E. A. Alhassan, L. Albert, O. Louis, On some applications of beta function in some statistical distributions, Researcher, 7 (2015), 50–54. https://doi.org/10.7537/marsrsj070715.08 doi: 10.7537/marsrsj070715.08
  • This article has been cited by:

    1. Mohammed Z. Alqarni, Exploring the Extended Beta-Logarithmic Function: Matrix Arguments and Properties, 2024, 12, 2227-7390, 1674, 10.3390/math12111674
    2. MOHAMED ABDALLA, YAHYA ALMALKI, IBRAHIM MEKAWY, HALA ABD-ELMAGEED, EXTENDED HYPERGEOMETRIC LOGARITHMIC FUNCTIONS AND ITS APPLICATION IN GENERALIZED FRACTIONAL KINETIC EQUATIONS, 2025, 33, 0218-348X, 10.1142/S0218348X25400948
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1304) PDF downloads(54) Cited by(2)

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog