
Gravimetry is a discipline of geophysics that deals with observation and interpretation of the earth gravity field. The acquired gravity data serve the study of the earth interior, be it the deep or the near surface one, by means of the inferred subsurface structural density distribution. The subsurface density structure is resolved by solving the gravimetric inverse problem. Diverse methods and approaches exist for solving this non-unique and ill-posed inverse problem. Here, we focused on those methods that do not pre-constrain the number or geometries of the density sources. We reviewed the historical development and the basic principles of the Growth inversion methodology, which belong to the methods based on the growth of the model density structure throughout an iterative exploration process. The process was based on testing and filling the cells of a subsurface domain partition with density contrasts through an iterative mixed weighted adjustment procedure. The procedure iteratively minimized the data misfit residuals jointly with minimizing the total anomalous mass of the model, which facilitated obtaining compact meaningful source bodies of the solution. The applicability of the Growth inversion approach in structural geophysical studies, in geodynamic studies, and in near surface gravimetric studies was reviewed and illustrated. This work also presented the first application of the Growth inversion tool to near surface microgravimetric data with the goal of seeking very shallow cavities in archeological prospection and environmental geophysics.
Citation: Peter Vajda, Jozef Bódi, Antonio G. Camacho, José Fernández, Roman Pašteka, Pavol Zahorec, Juraj Papčo. Gravimetric inversion based on model exploration with growing source bodies (Growth) in diverse earth science disciplines[J]. AIMS Mathematics, 2024, 9(5): 11735-11761. doi: 10.3934/math.2024575
[1] | Takiko Sasaki, Shu Takamatsu, Hiroyuki Takamura . The lifespan of classical solutions of one dimensional wave equations with semilinear terms of the spatial derivative. AIMS Mathematics, 2023, 8(11): 25477-25486. doi: 10.3934/math.20231300 |
[2] | Sen Ming, Xiaodong Wang, Xiongmei Fan, Xiao Wu . Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities. AIMS Mathematics, 2024, 9(10): 26854-26876. doi: 10.3934/math.20241307 |
[3] | Scala Riccardo, Schimperna Giulio . On the viscous Cahn-Hilliard equation with singular potential and inertial term. AIMS Mathematics, 2016, 1(1): 64-76. doi: 10.3934/Math.2016.1.64 |
[4] | Jiangyan Yao, Sen Ming, Wei Han, Xiuqing Zhang . Blow-up of solutions to the coupled Tricomi equations with derivative type nonlinearities. AIMS Mathematics, 2022, 7(7): 12514-12535. doi: 10.3934/math.2022694 |
[5] | Feng Zhou, Hongfang Li, Kaixuan Zhu, Xin Li . Dynamics of a damped quintic wave equation with time-dependent coefficients. AIMS Mathematics, 2024, 9(9): 24677-24698. doi: 10.3934/math.20241202 |
[6] | Noufe H. Aljahdaly . Study tsunamis through approximate solution of damped geophysical Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(5): 10926-10934. doi: 10.3934/math.2024534 |
[7] | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Nour, Mostafa Zahri . Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study. AIMS Mathematics, 2022, 7(8): 15370-15401. doi: 10.3934/math.2022842 |
[8] | Sobajima Motohiro, Wakasugi Yuta . Remarks on an elliptic problem arising in weighted energy estimates for wave equations with space-dependent damping term in an exterior domain. AIMS Mathematics, 2017, 2(1): 1-15. doi: 10.3934/Math.2017.1.1 |
[9] | Jincheng Shi, Jianye Xia, Wenjing Zhi . Blow-up of energy solutions for the semilinear generalized Tricomi equation with nonlinear memory term. AIMS Mathematics, 2021, 6(10): 10907-10919. doi: 10.3934/math.2021634 |
[10] | Hasim Khan, Mohammad Tamsir, Manoj Singh, Ahmed Hussein Msmali, Mutum Zico Meetei . Numerical approximation of the time-fractional regularized long-wave equation emerging in ion acoustic waves in plasma. AIMS Mathematics, 2025, 10(3): 5651-5670. doi: 10.3934/math.2025261 |
Gravimetry is a discipline of geophysics that deals with observation and interpretation of the earth gravity field. The acquired gravity data serve the study of the earth interior, be it the deep or the near surface one, by means of the inferred subsurface structural density distribution. The subsurface density structure is resolved by solving the gravimetric inverse problem. Diverse methods and approaches exist for solving this non-unique and ill-posed inverse problem. Here, we focused on those methods that do not pre-constrain the number or geometries of the density sources. We reviewed the historical development and the basic principles of the Growth inversion methodology, which belong to the methods based on the growth of the model density structure throughout an iterative exploration process. The process was based on testing and filling the cells of a subsurface domain partition with density contrasts through an iterative mixed weighted adjustment procedure. The procedure iteratively minimized the data misfit residuals jointly with minimizing the total anomalous mass of the model, which facilitated obtaining compact meaningful source bodies of the solution. The applicability of the Growth inversion approach in structural geophysical studies, in geodynamic studies, and in near surface gravimetric studies was reviewed and illustrated. This work also presented the first application of the Growth inversion tool to near surface microgravimetric data with the goal of seeking very shallow cavities in archeological prospection and environmental geophysics.
Our main goal of the present work is to investigate the following semilinear wave equations with damping term and mass term, namely
{utt−Δu+b1(t)ut−b2(t)u=f(u,ut),x∈Ωc,t>0,u(x,0)=εf(x),ut(x,0)=εg(x),x∈Ωc,∂u∂n|∂B1(0)=0 | (1.1) |
and
{utt−Δu+μ1+tut+ν2(1+t)2u=f(u,ut),x∈Ωc,t>0,u(x,0)=εf(x),ut(x,0)=εg(x),x∈Ωc,∂u∂n|∂B1(0)=0, | (1.2) |
where Δ=3∑i=1∂2∂x2i. The coefficients b1(t)∈C([0,∞))∩L1([0,∞)), b2(t)=ν0(1+t)β+1(ν0>0,β>1) are non-negative functions. μ,ν≥0. We set f(u,ut)=|u|p, |ut|p, |ut|p+|u|q in problem (1.1) and f(u,ut)=|ut|p+|u|q in problem (1.2), respectively. The exponents of nonlinear terms satisfy 1<p,q<∞. Let Ω=B1(0)={x∈R3||x|≤1} and Ωc=R3∖B1(0). Ωc and ∂Ωc are smooth and compact. Initial values satisfy f(x),g(x)∈C∞(Ωc) and supp(f(x),g(x))⊂Ωc∩BR(0), where BR(0)={x||x|≤R}, R>2. The small parameter ε>0 describes the size of initial values. ∂u∂n stands for the derivative of external normal direction. It is well known that a solution u has compact support when the initial values have compact supports. As a consequence, we directly suppose that the solution has compact support set.
We briefly review several previous results concerning problem (1.1) with b1(t)=b2(t)=0. It is worth pointing out that the Cauchy problem with f(u,ut)=|u|p asserts the Strauss exponent pc(n) (see [31,40,41,42]), which is the positive root of quadratic equation
r(n,p)=−(n−1)p2+(n+1)p+2=0. |
The Cauchy problem with f(u,ut)=|ut|p admits the Glassey exponent pG(n)=n+1n−1, which has been investigated in [14,19]. Ikeda et al. [15] establish blow-up dynamic and lifespan estimate of solution to the semilinear wave equation and related weakly coupled system by using a framework of test function approach. The Cauchy problem with f(u,ut)=|ut|p+|u|q is discussed in Han et al. [13]. Upper bound lifespan estimate of solution is illustrated by making use of test function method and the Kato lemma.
Recently, many researchers have been devoted to the study of Cauchy problem for semilinear wave equation
{utt−Δu+g(ut)=f(u,ut),x∈Rn,t>0,u(x,0)=εu0(x),ut(x,0)=εu1(x),x∈Rn, | (1.3) |
where f(u,ut)=|u|p,|ut|p,|ut|p+|u|q. Problem (1.3) with damping term g(ut)=ut,μ1+tut,μ(1+t)βut(β>1),(−Δ)δut(δ∈(0,12]),a(x)ut(a(x)∈C(Rn)) and power nonlinear term f(u,ut)=|u|p is considered in [6,9,18,24,27,30,38]. Lai et al. [27] derive upper bound lifespan estimate of solution to problem (1.3) with damping term g(ut)=μ1+tut by exploiting the Kato lemma. Imai et al. [18] investigate problem (1.3) with scale invariant damping in two dimensions. Blow-up result and lifespan estimate of solution are discussed under certain restriction on the constant μ. Applying test function approach and imposing certain integral sign conditions on the initial values, Georgiev et al. [9] illustrate blow-up result of solution to problem (1.3) with g(ut)=ut on the Heisenberg group when 1<p<pF(n). Wakasa et al. [38] consider formation of singularity of solution to problem (1.3) with scattering damping μ(1+t)βut(β>1). Lifespan estimate of solution to the variable coefficient wave equation in the critical case is analyzed by employing rescaled test function method and iteration technique, which has been utilized in [39]. Problem (1.3) with damping term g(ut)=μ(1+t)βut(β>1),μ(1+|x|)βut(β>2),μ(−Δ)σ2ut(μ>0,0<σ≤2) and derivative type nonlinear term f(u,ut)=|ut|p is considered in [7,25,28]. Lai et al. [25] derive upper bound lifespan estimate of solution to problem (1.3) with scattering damping term g(ut)=μ(1+t)βut(β>1) in the sub-critical and critical cases by introducing a bounded multiplier. Lai et al. [28] verify blow-up and lifespan estimate of solutions to problem (1.3) with space dependent damping term g(ut)=μ(1+|x|)βut(β>2) in the case 1<p≤pG(n)=n+1n−1 by utilizing test function method (Ψ=∂tψ=∂t(−η2p′M(t)e−tϕ1(x))). Dao et al. [7] investigate formation of singularity of solution to problem (1.3) with structural damping term g(ut)=μ(−Δ)σ2ut(μ>0,0<σ≤2) and derivative nonlinearity. Problem (1.3) with damping term g(ut)=μ1+tut,μ(1+t)βut(β>1) and combined nonlinearities f(u,ut)=|ut|p+|u|q is illustrated in [12,26,32,33]. Applying the rescaled test function approach and iterative method, Ming et al. [33] establish upper bound lifespan estimate of solution to problem (1.3) with scattering damping and divergence form nonlinearity in the sub-critical and critical cases. Hamouda et al. [12] illustrate influence of scale invariant damping on the formation of singularity of solution. Lifespan estimate of solution is derived by imposing certain assumptions on the parameter μ. Liu and Wang [32] consider blow-up of solution to the semilinear wave equation with combined nonlinearities on asymptotically Euclidean manifolds in the case n=2,μ=0.
Scholars focus widespread attention on the Cauchy problem for semilinear wave equation with damping term and mass term (see detailed illustrations in [1,4,11,17,22,36,37]). Taking advantage of the iteration method, Lai et al. [22] establish blow-up result of solution to the semilinear wave equation with scattering damping term and negative mass term, where the nonlinearity is |u|p. Ikeda et al. [17] investigate lifespan estimate of solution to the semilinear wave equation with damping term, mass term as well as power nonlinearity in the sub-critical and critical cases by utilizing test function approach (ψ(x,t)=ρ(t)ϕ1(x)), which is inspired by [36]. Lai et al. [23] derive upper bound lifespan estimate of solution to the semilinear wave equation with damping term and mass term by employing the Kato lemma and iteration approach. Blow-up phenomenon and lifespan estimate of solution to the semilinear wave equation with scale invariant damping, non-negative mass term and power type of nonlinear term are documented in [36], where the iteration method is performed. Hamouda et al. [11] show blow-up dynamic of solution to the semilinear wave equation with scale invariant damping, mass term and combined nonlinearities. The proof is based on the multiplier technique and solving the ordinary differential inequality. We refer readers to the works in [2,3,5,8,10,16,20,21,29,34,35] for more details.
Enlightened by the works in [11,17,22,24,25,26,36], our interest is to show blow-up results of solutions to problems (1.1) and (1.2) with Neumann boundary conditions on exterior domain in three dimensions. It is worth pointing out that upper bound lifespan estimates of solutions to the Cauchy problem of semilinear wave equation with scattering damping term μ(1+t)βut(μ>0,β>1) and nonlinear terms |u|p, |ut|p, |ut|p+|u|q are discussed in [24,25,26]. Lai et al. [22] derive blow-up and lifespan estimate of solution to the semilinear wave equation with scattering damping and negative mass term by exploiting the test function technique and iterative approach, where the nonlinear term is |u|p. However, there is no related result about blow-up dynamic of solution to problem (1.1). Thus, we extend the Cauchy problem studied in [24,25,26] to problem (1.1) with damping term, negative mass term and Neumann boundary condition on exterior domain in three dimensions. Upper bound lifespan estimate of solution to problem (1.1) is established by making use of a radial symmetry test function ψ(x,t)=e−t1rer with r=√x21+x22+x23 (see Theorems 1.1, 1.3–1.5). The Cauchy problem investigated in [23] is extended to problem (1.1) by utilizing the test function method (ψ(x,t)=e−t1rer) and the Kato lemma (see Theorem 1.2). We derive lifespan estimate of solution to problem (1.1) with f(u,ut)=|u|p (see Theorem 1.6) by taking advantage of the test function approach (ψ1(x,t)=ρ(t)1rer), which is inspired by the work [17]. Making use of a multiplier, Hamouda et al. [11] verify blow-up phenomenon of solution to the semilinear wave equation with scale invariant damping and mass term as well as combined nonlinearities. We extend the problem discussed in [11] to problem (1.2). Upper bound lifespan estimate of solution to problem (1.2) with combined nonlinearities f(u,ut)=|ut|p+|u|q is acquired by applying the test function technique (ψ2(x,t)=ρ1(t)1rer) and iterative method (see Theorem 1.7). To the best of our knowledge, the results in Theorems 1.1–1.7 are new. Moreover, we characterize the variation of wave by utilizing numerical simulation.
Definitions of weak solutions and the main results in this paper are illustrated as follows.
Definition 1.1. A function u is called a weak solution of problem (1.1) on [0,T) if u∈C([0,T),H1(Ωc))∩C1([0,T),L2(Ωc))∩Lploc((0,T)×Ωc) when f(u,ut)=|u|p, u∈C([0,T),H1(Ωc))∩C1([0,T),L2(Ωc))∩C1((0,T),Lp(Ωc)) when f(u,ut)=|ut|p, u∈∩1i=0Ci([0,T),H1−i(Ωc))∩C1((0,T),Lp(Ωc))∩Lqloc((0,T)×Ωc) when f(u,ut)=|ut|p+|u|q and
∫Ωcut(x,t)ϕ(x,t)dx−∫Ωcεg(x)ϕ(x,0)dx+∫t0ds∫Ωc{−ut(x,s)ϕt(x,s)−Δu(x,s)ϕ(x,s)}dx+∫t0ds∫Ωcb1(s)ut(x,s)ϕ(x,s)dx−∫t0ds∫Ωcb2(s)u(x,s)ϕ(x,s)dx=∫t0ds∫Ωcf(u,ut)(x,s)ϕ(x,s)dx, | (1.4) |
where ϕ∈C∞0([0,T)×Ωc) and t∈[0,T).
Definition 1.2. A function u is called a weak solution of problem (1.2) on [0,T) if u∈C([0,T),H1(Ωc))∩C1([0,T),L2(Ωc)), u∈Lqloc((0,T)×Ωc), ut∈Lploc((0,T)×Ωc) when f(u,ut)=|ut|p+|u|q and
∫Ωcut(x,t)ϕ(x,t)dx−∫Ωcut(x,0)ϕ(x,0)dx−∫t0∫Ωcut(x,s)ϕt(x,s)dxds+∫t0∫Ωc∇u(x,s)∇ϕ(x,s)dxds+∫t0∫Ωcμ1+sut(x,s)ϕ(x,s)dxds+∫t0∫Ωcν2(1+s)2u(x,s)ϕ(x,s)dxds=∫t0∫Ωc(|ut(x,s)|p+|u(x,s)|q)ϕ(x,s)dxds, | (1.5) |
where ϕ∈C∞0([0,T)×Ωc) and t∈[0,T).
Setting
m(t)=(1+t)μ, |
we rewrite Definition 1.2 by choosing m(t)ϕ(x,t) as a test function.
Definition 1.3. A function u is called a weak solution of problem (1.2) on [0,T) if u∈C([0,T),H1(Ωc))∩C1([0,T),L2(Ωc)), u∈Lqloc((0,T)×Ωc), ut∈Lploc((0,T)×Ωc) when f(u,ut)=|ut|p+|u|q and
m(t)∫Ωcut(x,t)ϕ(x,t)dx−∫Ωcut(x,0)ϕ(x,0)dx−∫t0m(s)∫Ωcut(x,s)ϕt(x,s)dxds+∫t0m(s)∫Ωc∇u(x,s)∇ϕ(x,s)dxds+∫t0∫Ωcν2m(s)(1+s)2u(x,s)ϕ(x,s)dxds=∫t0m(s)∫Ωc(|ut(x,s)|p+|u(x,s)|q)ϕ(x,s)dxds, | (1.6) |
where ϕ∈C∞0([0,T)×Ωc) and t∈[0,T).
Theorem 1.1. Let 1<p<pc(3). Assume that (f,g)∈H1(Ωc)×L2(Ωc) are non-negative functions and f does not vanish identically. If a solution u to problem (1.1) with f(u,ut)=|u|p satisfies supp(u,ut)⊂{(x,t)∈Ωc×[0,T)||x|≤t+R}, then u blows up in finite time. Moreover, there exists a constant ε0=ε0(f,g,R,p,b1(t),b2(t))>0 such that the lifespan estimate T(ε) satisfies
T(ε)≤Cε−2p(p−1)r(p,3), | (1.7) |
where 0<ε≤ε0, C>0 is independent of ε.
Theorem 1.2. Assume b1(t)=ν1(1+t)β, b2(t)=ν2(1+t)2, ν1≥0, β>1, ν2>0. Let δ=1+4ν2eν11−β>1, d∗(3)=2√2−2∈[0,2), 1<p<pδ(3) and
pδ(3)=max{pF(5−√δ2),pc(3)}={pc(3),√δ≤3−d∗(3),pF(5−√δ2),3−d∗(3)<√δ<5,+∞,√δ≥5. |
Here, pF(n)=1+2n is the solution of equation rF(p,n)=2−n(p−1)=0. Suppose that (f,g)∈H1(Ωc)×L2(Ωc) are non-negative functions and do not vanish identically. If a solution u to problem (1.1) with f(u,ut)=|u|p satisfies supp(u,ut)⊂{(x,t)∈Ωc×[0,T)||x|≤t+R}, then u blows up in finite time. Moreover, the lifespan estimate T(ε) satisfies
T(ε)≤{Cε−2p(p−1)r(p,3),√δ≤1,Cε−(p−1)rF(p,3−1+√δ2),1<√δ<3−d∗(3),1<p≤23−√δ,Cε−2p(p−1)r(p,3),1<√δ<3−d∗(3),23−√δ<p<pδ(3),Cε−(2p−1−3+1+√δ2)−1,√δ≥3−d∗(3), |
where C>0 is independent of ε.
Theorem 1.3. Let 1<p≤pG(3)=2. Assume that (f,g)∈H1(Ωc)×L2(Ωc) are non-negative functions and g does not vanish identically. If the solution u to problem (1.1) with f(u,ut)=|ut|p satisfies supp(u,ut)⊂{(x,t)∈Ωc×[0,T)||x|≤t+R}, then u blows up in finite time. Moreover, the lifespan estimate T(ε) satisfies
T(ε)≤{Cε−p−12−p,1<p<pG(3),exp(Cε−1),p=pG(3), |
where C>0 is independent of ε.
Theorem 1.4. Let p>1 and 1<q<min{1+2p−1,6}. Assume that f and g satisfy the conditions in Theorem 1.3. If a solution u to problem (1.1) with f(u,ut)=|ut|p+|u|q satisfies supp(u,ut)⊂{(x,t)∈Ωc×[0,T)||x|≤t+R}, then u blows up in finite time. Moreover, the lifespan estimate T(ε) satisfies
T(ε)≤Cε−p(q−1)q+1−p(q−1), |
where C>0 is independent of ε.
Theorem 1.5. Let p>3 and 1<q<2. Assume that f and g satisfy the conditions in Theorem 1.3. If the solution u to problem (1.1) with f(u,ut)=|ut|p+|u|q satisfies supp(u,ut)⊂{(x,t)∈Ωc×[0,T)||x|≤t+R}, then u blows up in finite time. Moreover, the lifespan estimate T(ε) satisfies
T(ε)≤Cε−q−12(2−q), |
where C>0 is independent of ε.
Theorem 1.6. Let 1<p<pc(3). Let f and g satisfy the conditions in Theorem 1.1. Suppose that b1(t)∈C1([0,∞)) and r2(t)∈L1([0,∞)) satisfy
{r′2(t)+b1(t)r2(t)−r22(t)=−b2(t),r2(t)|t=0=r2(0). |
ρ′(0) is the initial value of ρ′(t), where ρ(t) is the solution to problem (5.1). It holds that
{g(x)+r2(0)f(x)≥0,g(x)+(b1(0)−ρ′(0))f(x)≥0. |
There is no sign requirement for b1(t) and b2(t). If a solution u to problem (1.1) with f(u,ut)=|u|p satisfies supp(u,ut)⊂{(x,t)∈Ωc×[0,T)||x|≤t+R}, then u blows up in finite time. Moreover, the lifespan estimate T(ε) satisfies
T(ε)≤Cε−2p(p−1)r(p,3), |
where C>0 is independent of ε.
Theorem 1.7. Let p>pG(3+μ), q>qS(3+μ), μ,ν2≥0 and δ=(μ−1)2−4ν2≥0. Assume that λ(p,q,3+μ)<4, where λ(p,q,n)=(q−1)((n−1)p−2)<4. The initial values (f,g)∈H1(Ωc)×L2(Ωc) are non-negative functions which do not vanish identically and satisfy
μ−1−√δ2f(x)+g(x)>0. | (1.8) |
If a solution u to problem (1.2) with f(u,ut)=|ut|p+|u|q satisfies supp(u,ut)⊂{(x,t)∈Ωc×[0,T)||x|≤t+R}, then u blows up in finite time. Moreover, there exists a constant ε0=ε0(f,g,R,p,q,μ,ν)>0 such that the lifespan estimate T(ε) satisfies
T(ε)≤Cε−2p(q−1)4−λ(p,q,3+μ), | (1.9) |
where C>0 is independent of ε.
Remark 1.1. Utilizing the Sobolev embedding theorem yields H1(Ωc)↪Lq(Ωc) when n=3,q<6 in Theorems 1.4 and 1.5. Consequently, the nonlinear term |u|q in problem (1.1) is integrable in the domain Ωc⊂R3.
Remark 1.2. Taking advantage of the Poincare's inequality, we conclude
∫Ωc|∇u|pψdx≥1(t+R)p∫Ωc|u|pψdx≥C∫Ωc|u|pψdx. |
Similar to the proof of Theorem 1.1, we obtain the same result in (1.7) when nonlinear term is f(u,ut)=|∇u|p.
Remark 1.3 We call that u is a global solution of problems (1.1) and (1.2) if the maximal existence time of solution Tmax=∞. While in the case Tmax<∞, we call that u blows up in finite time.
Lemma 2.1. [35] Let b1(t)∈C([0,∞))∩L1([0,∞)) be a non-negative function, which satisfies
m1(t)=exp(−∫∞tb1(τ)dτ), |
m1(0)≤m1(t)≤1, m′1(t)m1(t)=b1(t) for t≥0.
Lemma 2.2. Let ϕ1(x)=ϕ1(r)=1rer, where x=(x1,x2,x3) and r=√x21+x22+x23. It holds that
Δϕ1=(∂rr+2r∂r)ϕ1=ϕ1 |
and ∂ϕ1∂r|r=1=0. Setting ψ=e−tϕ1(x), it satisfies
∫Ωc∩{|x|≤t+R}ψpp−1dx≤C(R+t)2−pp−1,Δψ=ψ, |
where C is a positive constant.
Proof of Lemma 2.2. Direct calculation shows
∂ϕ1∂xi=∂ϕ1∂rxir,∂2ϕ1∂x2i=∂2ϕ1∂r2x2ir2+r2−x2ir3∂ϕ1∂r, |
where i=1,2,3. Thus, we obtain
Δϕ1=∂2ϕ1∂x21+∂2ϕ1∂x22+∂2ϕ1∂x23=∂2ϕ1∂r2(x21r2+x22r2+x23r2)+∂ϕ1∂r(r2−x21r3+r2−x22r3+r2−x23r3)=(∂rr+2r∂r)ϕ1=ϕ1. |
Employing ψ=e−t1rer gives rise to
∫Ωc∩{|x|≤t+R}ψpp−1dx=∫S2dw∫t+R1[e−t1rer]pp−1r2dr≤C∫t+R0[e−(t−r)]pp−1(R+r)2−pp−1dr≤C(R+t)2−pp−1. |
We complete the proof of Lemma 2.2.
Let us set three functions
{F0(t)=∫Ωcu(x,t)dx,F1(t)=∫Ωcu(x,t)ψ(x,t)dx,F2(t)=∫Ωcut(x,t)ψ(x,t)dx, |
where ψ(x,t)=e−tϕ1(x)=e−t1rer. It holds that
◻ψ=0,Δψ=ψ,(ψ)t=−ψ,(ψ)tt=ψ. | (2.1) |
By straightforward computation, we achieve
∫ΩcΔudx=∫∂Ωc1∂u∂ndS−∫Ωc∇1⋅∇udx=0. | (2.2) |
Choosing the test function ϕ(x,s)≡1 on (x,s)∈{Ωc×[0,t]||x|≤s+R} in (1.4) with f(u,ut)=|u|p and utilizing (2.2) yield
F″0(t)+b1(t)F′0(t)=b2(t)F0(t)+∫Ωc|u(x,t)|pdx. | (2.3) |
Multiplying (2.3) with m1(t) and integrating on [0,t], we deduce
F′0(t)≥m1(0)∫t0∫Ωc|u(x,s)|pdxds, | (2.4) |
where we have used the fact F′0(0)≥0 and F0(t)>0.
We are in the position to establish the lower bound of F1(t). Elementary computation leads to
∂u∂n|∂Ωc=∂u∂n|r=1=0,∂ψ∂n|∂Ωc=∂ψ∂n|r=1=0. | (2.5) |
Applying (2.5) and the Green formula yields
∫Ωc(Δuψ−uΔψ)dx=∫∂Ωc(∂u∂nψ−u∂ψ∂n)dS=0. |
Thus, we have
∫ΩcΔuψdx=∫ΩcuΔψdx=∫Ωcuψdx. | (2.6) |
Utilizing (2.1), (2.6) and replacing ϕ(x,s) in (1.4) with f(u,ut)=|u|p by ψ(x,s), we obtain
m1(t)∫Ωcut(x,t)ψ(x,t)dx−m1(0)ε∫Ωcg(x)ψ(x,0)dx−m1(t)∫Ωcu(x,t)ψt(x,t)dx+m1(0)ε∫Ωcf(x)ψt(x,0)dx+∫t0∫Ωcm1(s)b1(s)u(x,s)ψt(x,s)dxds=∫t0∫Ωcm1(s)b2(s)u(x,s)ψ(x,s)dxds+∫t0∫Ωcm1(s)|u(x,s)|pψ(x,s)dxds. |
That is
m1(t){F′1(t)+2F1(t)}=m1(0)ε∫Ωc{f(x)+g(x)}ϕ1(x)dx+∫t0m1(s){b1(s)+b2(s)}F1(s)ds+∫t0∫Ωcm1(s)|u(x,s)|pψ(x,s)dxds, |
which leads to
F′1(t)+2F1(t)≥m1(0)Cf,gε+∫t0m1(s){b1(s)+b2(s)}F1(s)ds, |
where Cf,g=∫Ωc{f(x)+g(x)}ϕ1(x)dx>0.
Thanks to the positivity of F1(t) and F1(0), we deduce
F1(t)>1−e−2t2m1(0)Cf,gε, | (2.7) |
where t>2. Employing (2.4) and the Holder inequality yields
F0(t)>C1m1(0)∫t0ds∫s0(r+R)−3(p−1)Fp0(r)dr. | (2.8) |
Making use of the Holder inequality and Lemma 2.2 gives rise to
∫Ωc|u(x,t)|pdx≥(∫Ωc∩{|x|≤t+R}(ψ(x,t))pp−1dx)−(p−1)|F1(t)|p≥C(t+R)2−p|F1(t)|p. | (2.9) |
Taking advantage of (2.4), (2.7) and (2.9), we acquire
F0(t)>C2εp12(R+t)−pt4. |
We denote
F0(t)>Dj(R+t)−ajtbj, | (2.10) |
where
D1=C2εp12,a1=p,b1=4. | (2.11) |
Combining (2.8) with (2.10), we derive
F0(t)>C1m1(0)Dpj(pbj+2)2(R+t)−3(p−1)−pajtpbj+2. |
Thus, we define the sequences {Dj}j∈N,{aj}j∈N,{bj}j∈N by
Dj+1≥C1m1(0)Dpj(pbj+2)2,aj+1=paj+3(p−1),bj+1=pbj+2. | (2.12) |
Exploiting (2.11), (2.12) and iterative argument gives rise to
aj=pj−1(p+3)−3,bj=pj−1(4+2p−1)−2p−1,Dj≥C3Dpj−1p2(j−1)≥exp{pj−1(logD1−Sp(∞))}, |
where Sp(∞) is obtained by using the d'Alembert's criterion. Moreover, Sp(j)=j−1∑k=12klogp−logC3pk converges to Sp(∞) as j→∞. As a consequence, making use of (2.10) yields
F0(t)≥(t+R)3t−2p−1exp(pj−1J(t)) | (2.13) |
and
J(t)=−(p+3)log(t+R)+(4+2p−1)logt+logD1−Sp(∞)≥log(D1tr(p,3)2(p−1))−C4, |
where C4=(p+3)log2+Sp(∞)>0 and t≥R>2. Utilizing the condition p<pc(3), we arrive at J(t)>1 when t≥C5ε−2p(p−1)r(p,3). Sending j→∞ in (2.13) yields F0(t)→∞. Therefore, we derive the lifespan estimate
T(ε)≤C5ε−2p(p−1)r(p,3). |
The proof of Theorem 1.1 is finished.
Integrating (2.3) on [0,t], we acquire
F0(t)=F0(0)+m1(0)F′0(0)∫t01m1(s)ds+∫t01m1(s)ds∫s0m1(r)b2(r)F0(r)dr+∫t01m1(s)ds∫s0m1(r)dr∫Ωc|u(x,s)|pdx. | (2.14) |
Let us define two functions
˜F0(t)=12F0(0)+m1(0)2F′0(0)t+m1(0)∫t0ds∫s0b2(r)˜F0(r)dr+m1(0)∫t0ds∫s0dr∫Ωc|u(x,r)|pdx | (2.15) |
and
G(t)=(1+t)k+λF0(t). |
Thanks to m1(0)<m1(t)<1 and ν2>0, we achieve
F0(t)−˜F0(t)≥12F0(0)+m1(0)2F′0(0)t+m1(0)∫t0ds∫s0b2(r)[F0(r)−˜F0(r)]dr. |
Applying comparison argument, we conclude F0(t)≥~F0(t). Employing (2.15) and the formula (4.2) with μ1=0,μ2=−m1(0)ν2 in [23] gives rise to
˜F″0(t)−b2(t)m1(0)˜F0(t)=m1(0)∫Ωc|u(x,t)|pdx. | (2.16) |
Similar to the derivation in the proof of Theorem 5 in [23], we derive
˜F0(t)=˜F0(0)(1+t)−k+[k˜F0(0)+˜F′0(0)](1+t)−k∫t0(1+s)−λds+(1+t)−k∫t0(1+s)−λds∫s0(1+r)k+λdr×∫Ωc|u(x,r)|pdx, | (2.17) |
G(t)≳∫tT0ds∫sT0r−(3+k+λ)(p−1)G(r)pdr | (2.18) |
and
G(t)≳εtλ. | (2.19) |
Here, A≳B means that there exists a positive constant C such that A≥CB. Taking into account (2.7) and the Holder inequality, we obtain
∫Ωc|u(x,t)|p≳εp(t+R)2−p, |
which together with (2.17) results in
˜F0(t)≳εp(1+t)−k∫tT1(1+s)−λds∫sT1(1+r)q+√δ−1dr, |
where t≥T1>0, q=−1+√δ2−p+4. Therefore, we arrive at
G(t)≳εp{tλ+q,q>0,tλln(1+t),q=0,tλ,q<0. | (2.20) |
Utilizing (2.18)–(2.20) and the Kato lemma in Sub-section 4.3 in [23], we finishes the proof of Theorem 1.2.
Direct computation gives rise to
ddt[m1(t)∫Ωc{ut(x,t)+u(x,t)}ψ(x,t)dx]=b1(t)m1(t)∫Ωc{ut(x,t)+u(x,t)}ψ(x,t)dx+m1(t)ddt∫Ωc{ut(x,t)+u(x,t)}ψ(x,t)dx. | (3.1) |
Making use of (1.4) and (2.6), we acquire
ddt∫Ωc{ut(x,t)+u(x,t)}ψ(x,t)dx=∫Ωc|ut(x,t)|pψ(x,t)dx−b1(t)∫Ωcut(x,t)ψ(x,t)dx+b2(t)∫Ωcu(x,t)ψ(x,t)dx. | (3.2) |
Plugging (3.2) into (3.1) yields
ddt[m1(t)∫Ωc{ut(x,t)+u(x,t)}ψ(x,t)dx]=b1(t)m1(t)∫Ωcu(x,t)ψ(x,t)dx+b2(t)m1(t)∫Ωcu(x,t)ψ(x,t)dx+m1(t)∫Ωc|ut(x,t)|pψ(x,t)dx, | (3.3) |
which together with (2.7) results in
m1(t)∫Ωc{ut(x,t)+u(x,t)}ψ(x,t)dx≥m1(0)ε∫Ωc{f(x)+g(x)}ϕ1(x)dx+∫t0ds∫Ωcm1(s)|ut(x,s)|pψ(x,s)dx. | (3.4) |
Combining (1.4), (2.1) and (2.6), we have
ddt[m1(t)∫Ωcut(x,t)ψ(x,t)dx]+m1(t)∫Ωc{ut(x,t)−u(x,t)}ψ(x,t)dx=m1(t)∫Ωc|ut(x,t)|pψ(x,t)dx+m1(t)b2(t)∫Ωcu(x,t)ψ(x,t)dx. | (3.5) |
An application of (3.4) and (3.5) gives rise to
ddt[m1(t)∫Ωcut(x,t)ψ(x,t)dx]+2m1(t)∫Ωcut(x,t)ψ(x,t)dx≥m1(0)ε∫Ωc{f(x)+g(x)}ϕ1(x)dx+m1(t)∫Ωc|ut(x,t)|pψ(x,t)dx+∫t0ds∫Ωcm1(s)|ut(x,s)|pψ(x,s)dx. | (3.6) |
We set
G(t)=m1(t)∫Ωcut(x,t)ψ(x,t)dx−m1(0)2ε∫Ωcg(x)ϕ1(x)dx−12∫t0m1(s)ds∫Ωc|ut(x,s)|pψ(x,s)dx, | (3.7) |
where G(0)=m1(0)ε2∫Ωcg(x)ϕ1(x)dx>0. Taking into account (3.6), we acquire
G′(t)+2G(t)≥m1(t)2∫Ωc|ut(x,t)|pψ(x,t)dx+m1(0)ε∫Ωcf(x)ϕ1(x)dx≥0. |
It follows that G(t)≥e−2tG(0)>0 for t≥0. Thus, we conclude
∫Ωcut(x,t)ψ(x,t)dx≥m1(0)ε2∫Ωcg(x)ϕ1(x)dx. | (3.8) |
We define
H(t)=12∫t0m1(s)ds∫Ωc|ut(x,s)|pψ(x,s)dx+m1(0)2ε∫Ωcg(x)ϕ1(x)dx. |
Applying the Holder inequality and (3.8) yields
H′(t)≥C1−p2(R+t)p−1Hp(t). |
As a direct consequence, we have
−ddt[H−p+1(t)]≥C1−p2(R+t)p−1. |
It is worth noticing that H(0)=m1(0)2ε∫Ωcg(x)ϕ1(x)dx. Therefore, employing the assumption 1<p≤2, we derive the lifespan estimate in Theorem 1.3. The proof of Theorem 1.3 is finished.
We are in the position to establish the estimate of F0(t). Choosing the test function ϕ(x,t)=1 in (1.4) yields
F″0(t)+b1(t)F′0(t)=∫Ωc{|ut(x,t)|p+|u(x,t)|q}dx+b2(t)F0(t). | (4.1) |
Multiplying (4.1) with m1(t) and integrating on [0,t] yield
F′0(t)≥m1(0)∫t0∫Ωc{|ut(x,s)|p+|u(x,s)|q}dxds, | (4.2) |
where we have applied the fact F′0(0)≥0 and F0(t)>0.
Similar to the estimates in (2.7) and (3.8), we obtain the estimates
F1(t)≥m1(0)ε2∫Ωcf(x)ϕ1(x)dx≥0,F2(t)≥m1(0)ε2∫Ωcg(x)ϕ1(x)dx≥0 |
when nonlinear term is f(u,ut)=|ut|p+|u|q. Taking advantage of Lemma 2.2 and (3.8), we derive
∫Ωc|ut(x,t)|pdx≥|F2(t)|p(∫Ωc∩{|x|≤t+R}(ψ(x,t))pp−1dx)p−1≥¯C1εp(t+R)2−p, | (4.3) |
where ¯C1=C1−p(m1(0)2∫Ωcg(x)ϕ1(x)dx)p. Plugging (4.3) into (4.2) leads to
F0(t)≥m1(0)¯C1εp∫t0∫s0(r+R)2−pdrds≥¯C2εp(t+R)−pt4. | (4.4) |
Recalling (4.2), we acquire
F0(t)≥¯C3m1(0)∫t0∫s0(r+R)−3(q−1)Fq0(r)drds. | (4.5) |
We set
F0(t)≥Dj(t+R)−ajtbj, | (4.6) |
where
D1=¯C2εp,a1=p,b1=4. | (4.7) |
Inserting (4.6) into (4.5), we come to the estimate
F0(t)≥¯C3m1(0)Dqj(qbj+2)2(t+R)−3(q−1)−qajtqbj+2. |
Therefore, we denote the sequences {Dj}j∈N,{aj}j∈N,{bj}j∈N by
Dj+1≥¯C3m1(0)Dqj(qbj+2)2,aj+1=3(q−1)+qaj,bj+1=qbj+2. | (4.8) |
Taking advantage of (4.7), (4.8) and iterative argument gives rise to
aj=qj−1(p+3)−3,bj=qj−1(4+2q−1)−2q−1,Dj≥¯C4Dqj−1q2(j−1)≥exp{qj−1(logD1−S(∞))}, |
where S(j)=j−1∑k=12klogq−log¯C4qk converges to S(∞) as j→∞.
From (4.6), we have
F0(t)≥(t+R)3t−2q−1exp{qj−1J(t)} | (4.9) |
and
J(t)≥−(p+3)log(2t)+(4+2q−1)logt+logD1−S(∞)=log(t1+2q−1−pD1)−¯C5, |
where ¯C5=(p+3)log2+S(∞)>0,t≥R>2. Recalling the assumption q<1+2p−1, we deduce that J(t)>1 when t>¯C6ε−p(q−1)q+1−p(q−1). Sending j→∞ in (4.9) yields F0(t)→∞. Therefore, we achieve the lifespan estimate
T≤¯C7ε−p(q−1)q+1−p(q−1). |
The proof of Theorem 1.4 is finished.
We set I[f]=∫Ωcf(x)dx. Utilizing (4.4) gives rise to
F0(t)≥Cεpt4−p |
for sufficiently large t, where C>0 is independent of ε. Thus, we deduce that (4.4) is weaker than the linear growth when p>3. An application of (4.2) leads to
F′0(t)≥m1(0)m1(t)F′0(0)≥m1(0)ε∫Ωcg(x)dx. | (4.10) |
That is
F0(t)≥¯C8εt. | (4.11) |
It is deduced from (4.5) and (4.11) that
F0(t)≥¯C9εq∫t0∫s0(R+r)−3(q−1)rqdrds≥¯C10εq(R+t)−3(q−1)tq+2. |
We assume
F0(t)≥¯Dj(R+t)−¯ajt¯bj, | (4.12) |
where
¯D1=¯C10εq,¯a1=3(q−1),¯b1=q+2. | (4.13) |
Plugging (4.12) into (4.5), we derive
F0(t)≥¯Dj+1(R+t)−q¯aj−3(q−1)tq¯bj+2 | (4.14) |
with
¯Dj+1≥¯C11m1(0)¯Dqj(q¯bj+2)2,¯aj+1=3(q−1)+q¯aj,¯bj+1=q¯bj+2. | (4.15) |
Making use of (4.13) and (4.15), we conclude
¯aj=3qj−3,¯bj=qj−1(q+2+2q−1)−2q−1,¯Dj≥¯C12¯Dqj−1q2(j−1)≥exp{qj−1(log¯D1−¯Sq(∞))}. |
Applying (4.12) gives rise to
F0(t)≥(R+t)3t−2q−1exp(qj−1¯J(t)) |
and
¯J(t)=−3qlog(R+t)+(q+2+2q−1)logt+log¯D1−¯Sq(∞). |
Bearing in mind 1<q<2, we arrive at the lifespan estimate in Theorem 1.5. This completes the proof of Theorem 1.5.
To outline the proof of Theorem 1.6, we recall the following Lemmas.
Lemma 5.1. [17] Let ρ(t) be a solution of the second order ODE
{ρ″(t)−b1(t)ρ′(t)+(−b2(t)−1−b′1(t))ρ(t)=0,ρ(0)=1,ρ(∞)=0, | (5.1) |
where ρ(t) decays as e−t for large t.
Lemma 5.2. Let ϕ1(x)=ϕ1(r)=1rer, where x=(x1,x2,x3) and r=√x21+x22+x23. Setting ψ1(x,t)=ρ(t)ϕ1(x), it holds that
∫Ωc∩{|x|≤t+R}(ψ1(x,t))pp−1dx≤C(R+t)2−pp−1,Δψ1=ψ1, |
where ρ(t)∼e−t, C is a positive constant.
Proof of Lemma 5.2. Taking into account ψ1=ρ(t)1rer, we obtain
∫Ωc∩{|x|≤t+R}(ψ1)pp−1dx=∫S2dw∫t+R1[ρ(t)1rer]pp−1r2dr≤C∫t+R0[ρ(t−r)]pp−1(R+r)2−pp−1dr≤C(R+t)2−pp−1. |
We finish the proof of Lemma 5.2.
Proof of Theorem 1.6. Let us define the functions
{F0(t)=∫Ωcu(x,t)dx,F1(t)=∫Ωcu(x,t)ψ1(x,t)dx, |
where ψ1(x,t)=ρ(t)ϕ1(x).
Choosing the test function ϕ(x,s)≡1 on {(x,s)∈Ωc×[0,t]||x|≤s+R} in (1.4) with f(u,ut)=|u|p, we have
F″0(t)+b1(t)F′0(t)−b2(t)F0(t)=∫Ωc|u(x,t)|pdx. | (5.2) |
We rewrite (5.2) into the form
F″0(t)+b1(t)F′0(t)−b2(t)F0(t)=[F′0(t)+r2(t)F0(t)]′+r1(t)[F′0(t)+r2(t)F0(t)], | (5.3) |
where r1(t) and r2(t) satisfy
{r1(t)+r2(t)=b1(t),r′2(t)+r1(t)r2(t)=−b2(t). |
Multiplying both sides of (5.3) by exp∫s1s2r1(τ)dτ, integrating over [0,s2] and applying g(x)+r2(0)f(x)≥0 yield
F′0(s2)+r2(s2)F0(s2)≥∫s20e∫s1s2r1(τ)dτ∫Ωc|u(x,s1)|pdxds1. | (5.4) |
Multiplying (5.4) by exp∫s2tr2(τ)dτ leads to
F0(t)≥∫t0e∫s2tr2(τ)dτ∫s20e∫s1s2r1(τ)dτ∫Ωc|u(x,s1)|pdxds1ds2. | (5.5) |
Replacing ϕ(x,s) with ψ1(x,s) in (1.4) in the case f(u,ut)=|u|p and employing (2.6), we derive
∫t0∫Ωcutt(x,s)ψ1(x,s)dxds−∫t0∫Ωcu(x,s)ψ1(x,s)dxds+∫t0∫Ωc∂s(b1(s)ψ1(x,s)u(x,s))−∂s(b1(s)ψ1(x,s))u(x,s)dxds−∫t0∫Ωcb2(s)ψ1(x,s)u(x,s)dxds=∫t0∫Ωc|u(x,s)|pψ1(x,s)dxds. | (5.6) |
Employing Lemma 5.1 and (5.6), we deduce
F′1(t)+(b1(t)−2ρ′(t)ρ(t))F1(t)≥εCf,g, | (5.7) |
where Cf,g=∫Ωc(g(x)+(b1(0)−ρ′(0))f(x))ϕ1(x)dx>0.
Multiplying (5.7) with 1ρ2(t)e∫t0b1(τ)dτ yields
F1(t)≥εCf,g,b1(t)∫t0ρ2(t)ρ2(s)ds. | (5.8) |
Utilizing Lemma 5.2 gives rise to
∫Ωc|u(x,t)|pdx≥|F1(t)|p(∫Ωc∩{|x|≤t+R}(ψ1(x,t))pp−1dx)p−1≥Cεp⟨t⟩2−p, | (5.9) |
where ⟨t⟩=3+|t|. Taking advantage of (5.5) and Lemma 2.1 in [17] leads to
F0(t)≥Cr1,r2∫t0∫s20Fp0(s1)(s1+R)3(1−p)ds1ds2. | (5.10) |
Similar to the iteration argument in Theorem 1.1, we derive the lifespan estimate in Theorem 1.6. The proof of Theorem 1.6 is finished.
Lemma 6.1. [11] Assume that ρ1(t) is solution of
d2ρ1(t)dt2−ρ1(t)−ddt(μ1+tρ1(t))+ν2(1+t)2ρ1(t)=0. | (6.1) |
The expression of ρ1(t) is
ρ1(t)=(1+t)μ+12K√δ2(1+t), |
where Kξ(t)=√π2te−t(1+O(t−1)) as t→∞ and K′ξ(t)=−Kξ+1(t)+ξtKξ(t). It holds that
ρ′1(t)ρ1(t)=−1+O(t−1),t→∞. | (6.2) |
Let ϕ1(x)=ϕ1(r)=1rer, where x=(x1,x2,x3) and r=√x21+x22+x23. Setting ψ2(x,t)=ρ1(t)ϕ1(x), it holds that
∂2tψ2(x,t)−Δψ2(x,t)−∂∂t(μ1+tψ2(x,t))+ν2(1+t)2ψ2(x,t)=0 | (6.3) |
and
∫Ωc∩{|x|≤t+R}(ψ2(x,t))pp−1dx≤Cρpp−11eptp−1(t+R)2−pp−1 | (6.4) |
for some positive constant C.
Proof of Lemma 6.1. Applying ψ2=ρ1(t)1rer gives rise to
∫Ωc∩{|x|≤t+R}(ψ2)pp−1dx=∫S2dw∫t+R1[ρ1(t)1rer]pp−1r2dr≤C∫t+R0[ρ1(t)er]pp−1r2−pp−1dr≤Cρpp−11eptp−1(t+R)2−pp−1. |
We complete the proof of Lemma 6.1.
We denote two functions
{G1(t)=∫Ωcu(x,t)ψ2(x,t)dx,G2(t)=∫Ωcut(x,t)ψ2(x,t)dx. |
Lemma 6.2. Let u be a weak solution of problem (1.2). If (p,q) and (f(x),g(x)) satisfy the conditions in Theorem 1.7, then there exists T0=T0(μ,ν)>1 such that
G1(t)≥CG1ε, | (6.5) |
where t≥T0, CG1 is a positive constant which depends on f,g,μ,ν.
Proof of Lemma 6.2. Replacing ϕ(x,t) in (1.5) by ψ2(x,t)=ρ1(t)ϕ1(x) and employing (6.3), we derive
∫Ωc(ut(x,t)ψ2(x,t)−u(x,t)∂tψ2(x,t)+μ1+tu(x,t)ψ2(x,t))dx=∫t0∫Ωc(|ut(x,s)|p+|u(x,s)|q)ψ2(x,s)dxds+εC(f,g), | (6.6) |
where
C(f,g)=K√δ2(1)∫Ωc((μ−1−√δ2f(x)+g(x))ϕ1(x)dx+K√δ2+1(1)∫Ωcg(x)ϕ1(x)dx>0. |
Thus, we obtain
G′1(t)+(μ1+t−2ρ′1(t)ρ1(t))G1(t)=∫t0∫Ωc(|ut(x,s)|p+|u(x,s)|q)ψ2(x,s)dxds+εC(f,g). | (6.7) |
Multiplying (6.7) by 1ρ21(t)(1+t)μ, integrating over (0,t) and exploiting Lemma 6.1 yield
G1(t)≥G1(0)ρ21(t)(1+t)μ+εC(f,g)ρ21(t)(1+t)μ∫t0(1+s)μρ21(s)ds≥εC(f,g)(1+t)K2√δ2(1+t)∫tt21K2√δ2(1+s)ds≥ε4C(f,g)e−2t∫tt2e2sds≥ε16C(f,g) | (6.8) |
for t>T0(μ,ν)>1, where G1(0)=εK√δ2(1)∫Ωcf(x)ϕ1(x)dx>0. This finishes the proof of Lemma 6.2.
Lemma 6.3. Let u be a weak solution of problem (1.2). If (p,q) and (f(x),g(x)) satisfy the conditions in Theorem 1.7, it holds that
G2(t)+Cν2(1+ν2p−1epp−1t(1+t))≥0, | (6.9) |
where C is a positive constant which depends on p,f,g,R,ε0,μ but not on ε,ν.
Proof of Lemma 6.3. We define two functions
{F1(t)=∫Ωcu(x,t)ψ(x,t)dx,F2(t)=∫Ωcut(x,t)ψ(x,t)dx. |
Replacing ϕ(x,s) in (1.6) by ψ(x,t) and using the fact F′1(t)+F1(t)=F2(t) lead to
m(t)(F1(t)+F2(t))−εC(f,g)+∫t0ν2m(s)(1+s)2F1(s)ds=∫t0m(s)∫Ωc(|ut(x,s)|p+|u(x,s)|q)ψ(x,s)dxds+∫t0m′(s)F1(s)ds, | (6.10) |
where C(f,g)=∫Ωc(f(x)+g(x))ϕ1(x)dx.
Therefore, we arrive at
ddt(F2(t)m(t))+2m(t)F2(t)=m(t)(F1(t)+F2(t))−ν2m(t)(1+t)2F1(t)+m(t)∫Ωc(|ut(x,t)|p+|u(x,t)|q)ψ(x,t)dx. | (6.11) |
Combining (6.8), (6.10) and (6.11), we deduce
ddt(F2(t)m(t))+2m(t)F2(t)=εC(f,g)+∫t0m(s)∫Ωc(|ut(x,s)|p+|u(x,s)|q)ψ(x,s)dxds+m(t)∫Ωc(|ut(x,t)|p+|u(x,t)|q)ψ(x,t)dx+∫t0m′(s)F1(s)ds−ν2∫t0m(t)(1+s)2F1(s)ds−ν2m(t)(1+t)2F1(t)≥∫t0∫Ωc|ut(x,s)|pψ(x,s)dxds−Cεν2−Cν2∫t0es|F2(s)|ds, | (6.12) |
where C(f,g)=∫Ωc(f(x)+g(x))ϕ1(x)dx, we have applied the facts G1(t)=etρ1(t)F1(t), F′1(t)+F1(t)=F2(t) and m(t)≥1.
Taking advantage of the Holder inequality and Lemma 2.2 yields
Cν2∫t0es|F2(s)|ds≤∫t0∫Ωc|ut(x,s)|pψ(x,s)dxds+Cν2pp−1epp−1t(1+t). | (6.13) |
Making use of (6.12) and (6.13), we have
ddt(e2tF2(t)m(t))+Cν2e2t+Cν2pp−1e3p−2p−1t(1+t)≥0. | (6.14) |
As a consequent, it holds that
G2(t)+Cν2etρ1(t)(1+t)−μ+Cν2pp−1etρ1(t)epp−1t(1+t)1−μ≥0, | (6.15) |
where we have used G2(t)=etρ1(t)F2(t).
An application of (6.15) and the fact ρ1(t)et≤C(1+t)μ2 gives rise to
G2(t)+Cν2(1+ν2p−1epp−1t(1+t))≥0. | (6.16) |
This ends the proof of Lemma 6.3.
Lemma 6.4. Let u be a weak solution of problem (1.2). If (p,q) and (f(x),g(x)) satisfy the conditions in Theorem 1.7, then there exists T1>0 such that
G2(t)≥CG2ε,t≥T1=−ln(ε), | (6.17) |
where CG2 is a positive constant which depends on p,f,g,R,ε0,ν,μ.
Proof of Lemma 6.4. Applying (6.7) and the fact G′1(t)−ρ′1(t)ρ1(t)G1(t)=G2(t) leads to
G2(t)+(μ1+t−ρ′1(t)ρ1(t))G1(t)=∫t0∫Ωc(|ut(x,s)|p+|u(x,s)|q)ψ2(x,s)dxds+εC(f,g). | (6.18) |
Taking into account (6.1), (6.2), (6.18) and Lemma 6.2, we derive
G′2(t)+34(μ1+t−2ρ′1(t)ρ1(t))G2(t)≥I4(t)+I5(t)+∫Ωc(|ut(x,t)|p+|u(x,t)|q)ψ2(x,t)dx≥Cε, | (6.19) |
where
I4(t)=(−ρ′1(t)2ρ1(t)−μ4(1+t))(G2(t)+(μ1+t−ρ′1(t)ρ1(t))G1(t))≥Cε+14∫t0∫Ωc(|ut(x,s)|p+|u(x,s)|q)ψ2(x,s)dxds |
for t>˜T1(μ,ν)≥T0,
I5(t)=(1−ν2(1+t)2+(ρ′1(t)2ρ1(t)+μ4(1+t))(μ1+t−ρ′1(t)ρ1(t)))G1(t)≥0 |
for t>˜T2(μ,ν)≥˜T1(μ,ν).
Utilizing (6.19) and Lemma 6.3, we conclude
G2(t)≥CG2ε | (6.20) |
for t≥T1=−lnε. This completes the proof of Lemma 6.4.
We define the function
F(t)=∫Ωcu(x,t)dx. | (6.21) |
Choosing the test function ϕ(x,t)≡1 in (1.5) yields
F″(t)+μ1+tF′(t)+ν2(1+t)2F(t)=∫Ωc(|ut(x,t)|p+|u(x,t)|q)dx. | (6.22) |
Therefore, we obtain
\begin{eqnarray} \big(F'(t)+\frac{r_{1}}{1+t}F(t)\big)'+\frac{r_{2}+1}{1+t}\big(F'(t)+\frac{r_{1}}{1+t}F(t) \big) = \int_{\Omega^{c}}\big(|u_{t}(x,t)|^{p}+|u(x,t)|^{q} \big)dx, \end{eqnarray} | (6.23) |
where r_{1} = \frac{\mu-1-\sqrt{\delta}}{2} and r_{2} = \frac{\mu-1+\sqrt{\delta}}{2} are real roots of the quadratic equation r^{2}-(\mu-1)r+\nu^{2} = 0 .
It is deduced from (1.8) and (6.23) that
\begin{eqnarray} F(t)\geq \int_{0}^{t}(\frac{1+\tau}{1+t})^{r_{1}}d\tau \int_{0}^{\tau}(\frac{1+s}{1+\tau})^{r_{2}+1}ds\int_{\Omega^{c}}\big(|u_{t}(x,s)|^{p}+|u(x,s)|^{q} \big)dx. \end{eqnarray} | (6.24) |
Making use of the Holder inequality and (6.24), we acquire
\begin{eqnarray} F(t)\geq C\int_{0}^{t}(\frac{1+\tau}{1+t})^{r_{1}}d\tau\int_{0}^{\tau}(\frac{1+s}{1+\tau})^{r_{2}+1}(1+s)^{-3(q-1)}|F(s)|^{q}ds, \end{eqnarray} | (6.25) |
where C = (means(B_{1}))^{1-q}R^{-3(q-1)} > 0 .
Employing Lemma 6.4, (6.4) and the fact \rho_{1}(t)e^{t}\leq C(1+t)^{\frac{\mu}{2}} gives rise to
\begin{eqnarray} &&\int_{\Omega^{c}}|u_{t}(x,t)|^{p}dx\geq G_{2}^{p}(t)(\int_{\Omega^{c}\cap\{|x|\leq t+R\}}(\psi_{2}(x,t))^{\frac{p}{p-1}}dx)^{-(p-1)}\\ &&\qquad\qquad\quad\; \; \; \,\,\geq \widetilde{C}_{1}\varepsilon^{p}(t+R)^{ -\frac{\mu p+2(p-2)}{2}}. \end{eqnarray} | (6.26) |
Plugging (6.26) into (6.24), we deduce
\begin{eqnarray} &&F(t)\geq \widetilde{C}_{1}\varepsilon^{p} \int_{0}^{t}(\frac{1+\tau}{1+t})^{r_{1}}d\tau \int_{0}^{\tau}(\frac{1+s}{1+\tau})^{r_{2}+1}(s+R)^{-\frac{\mu p+2(p-2)}{2}}ds\\ &&\quad \; \,\,\geq \widetilde{C}_{1}\varepsilon^{p}(1+t)^{-r_{1}}\int_{T_{0}}^{t}(1+\tau)^{r_{1}-r_{2}-1-(2+\mu)\frac{p}{2}}d\tau \int_{T_{0}}^{\tau} (1+s)^{3+r_{2}}ds\\ &&\quad \; \,\,\geq \widetilde{C}_{1}\varepsilon^{p}(1+t)^{-r_{2}-1-(2+\mu)\frac{p}{2}}\int_{T_{0}}^{t}d\tau \int_{T_{0}}^{\tau}(s-T_{0})^{3+r_{2}}ds\\ &&\quad \; \,\, \geq \frac{\widetilde{C}_{1}}{(4+r_{2})(5+r_{2})}\varepsilon^{p}(t+R)^{-r_{2}-1-(2+\mu)\frac{p}{2}}(t-T_{0})^{5+r_{2}} \end{eqnarray} | (6.27) |
for t > T_{0} .
We set
\begin{eqnarray} F(t)\geq D_{j}(t+R)^{-a_{j}}(t-T_{0})^{b_{j}}, \end{eqnarray} | (6.28) |
where
\begin{eqnarray} D_{1} = \frac{\widetilde{C}_{1}}{(4+r_{2})(5+r_{2})} ,\; \; a_{1} = r_{2}+1+(2+\mu)\frac{p}{2},\; \; b_{1} = 5+r_{2}. \end{eqnarray} | (6.29) |
Utilizing (6.25) and (6.28), we have
\begin{eqnarray} &&F(t) \geq CD_{j}^{q}(1+t)^{-r_{2}-1-3(q-1)-qa_{j}}\int_{T_{0}}^{t}\int_{T_{0}}^{\tau}(s-T_{0})^{r_{2}+1+qb_{j}}dsd\tau\\ &&\quad\; \; \,\geq \frac{CD_{j}^{q}}{(r_{2}+qb_{j}+2)(r_{2}+qb_{j}+3)}( t+R)^{-r_{2}-1-3(q-1)-qa_{j}}\\ &&\quad\; \; \,\quad\times (t-T_{0})^{r_{2}+qb_{j}+3}. \end{eqnarray} | (6.30) |
We denote the sequences \{D_{j}\}_{j\in\mathbb{N}} , \{a_{j}\}_{j\in\mathbb{N}} , \{b_{j}\}_{j\in\mathbb{N}} by
\begin{eqnarray} D_{j+1}\geq \frac{CD_{j}^{q}}{(r_{2}+qb_{j}+2)(r_{2}+qb_{j}+3)}, \end{eqnarray} | (6.31) |
\begin{eqnarray} a_{j+1} = r_{2}+1+3(q-1)+qa_{j} ,\; \; \; \; b_{j+1} = r_{2}+qb_{j}+3. \end{eqnarray} | (6.32) |
Taking advantage of (6.29), (6.31) and (6.32) leads to
\begin{eqnarray} a_{j} = q^{j-1}(a_{1}+3+\frac{r_{2}+1}{q-1})-(3+\frac{r_{2}+1}{q-1}), \end{eqnarray} | (6.33) |
\begin{eqnarray} b_{j} = q^{j-1} (b_{1}+\frac{r_{2}+3}{q-1})-\frac{r_{2}+3}{q-1}, \end{eqnarray} | (6.34) |
\begin{eqnarray} D_{j}\geq \exp\{q^{j-1}(\log D_{1}-S_{q}(\infty))\}, \end{eqnarray} | (6.35) |
where S_{q}(j) = \frac{2q\log q}{(q-1)^{2}}-\frac{q\log C}{q-1} converges to S_{q}(\infty) as j\rightarrow \infty .
Employing (6.28), (6.29) and (6.33)–(6.35), we achieve
\begin{eqnarray} F(t)\geq \exp(q^{j-1}J(t))(t+R)^{3+\frac{r_{2}+1}{q-1}}(t-T_{0})^{\frac{r_{2}+3}{q-1}} \end{eqnarray} | (6.36) |
and
\begin{eqnarray} &&J(t) = \log D_{1}-S_{q}(\infty)-\big(a_{1}+3+\frac{r_{2}+1}{q-1} \big)\log (t+R)\\ &&\qquad\quad\,+\big(b_{1}+\frac{r_{2}+3}{q-1} \big)\log(t-T_{0})\\ &&\quad\; \; \geq \log \big(D_{1} (t-T_{0})^{\frac{4-((2+\mu)p-2)(q-1)}{2(q-1)}}\big)-S_{q}(\infty)\\ &&\qquad\quad\,-\big(a_{1}+3+\frac{r_{2}+1}{q-1}\big) \log2 \end{eqnarray} | (6.37) |
for t > 2T_{0}+1 . Recalling p > p_{G}(3+\mu) , q > q_{S}(3+\mu) and \lambda(p, q, 3+\mu) < 4 , we conclude lifespan estimate (1.9) in Theorem 1.7. This completes the proof of Theorem 1.7.
We are in the position to show variation of wave for the Cauchy problem of semilinear wave equation in two dimensions. All codes are written and run with Matlab2014a on Windows 10 (64bite), RAM:8G and CPU 3.60 GHz. That is,
\begin{equation} \left\{ \begin{aligned} & \frac{\partial u}{\partial t} = v,\\ & \frac{\partial v}{\partial t} = (\frac{\partial ^{2}}{\partial x^{2}}+\frac{\partial ^{2}}{\partial y^{2}})u +|u|^{3}, \end{aligned} \right. \end{equation} | (7.1) |
\begin{equation} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \left\{ \begin{aligned} & \frac{\partial u}{\partial t} = v,\\ & \frac{\partial v}{\partial t} = (\frac{\partial ^{2}}{\partial x^{2}}+\frac{\partial ^{2}}{\partial y^{2}})u-u_{t}+u+|u|^{3}. \end{aligned} \right. \end{equation} | (7.2) |
Suppose that the initial values satisfy
u|_{t = 0} = e^{-20[(x-0.4)^{2}+(y+0.4)^{2}]}+e^{-20[(x+0.4)^{2}+(y-0.4)^{2}]},\; \; \frac{\partial u}{\partial t}|_{t = 0} = 0. |
The following two group figures indicate the propagation of wave in two dimensions.
Figure 1 represents the trend of wave from t = 0 s to t = 1 s when nonlinear term is |u|^{3} in problem (7.1). It indicates that there are two peaks of wave when t = 0 s. With the increase of time, two peaks of wave move downward until they disappear. Then, two new wave peaks appear at different positions when t = 0.8 s. From t = 0.8 s to t = 0.9 s, the new wave amplitudes decrease gradually. However, when t = 0.9 s \sim 1 s, the old wave amplitudes increase constantly. When t = 1 s, the wave peaks appear again and the position of wave peaks is same as the position of t = 0 s.
Figure 2 stands for the trend of wave from t = 0 s to t = 2.9 s when nonlinear term is |u|^{3} in problem (7.2). When t = 0 s, it shows the initial state of wave with two peaks. From t = 0 s to t = 0.5 s, the wave peaks continue to drop and begin to stack when they meet. When t = 0.5 s \sim 1 s, two new waves appear at different positions and the amplitude increases continuously to form two new wave peaks. When t = 1 s \sim 1.1 s, the amplitudes of wave decreases gradually. When t = 2.9 s, two wave peaks appears again and the position is same as t = 0 s.
From our observation of the above two groups of figures, we obtain that the frictional damping and negative mass terms have an effect on the wave propagation and wave amplitude.
This article is dedicated to investigating blow-up results and lifespan estimates of solutions to the initial boundary value problems of semilinear wave equations with damping term and mass term as well as Neumann boundary conditions on exterior domain in three dimensions. Our main new contribution is that upper bound lifespan estimates of solutions are related to the Strauss exponent and Glassey exponent. We extend the Cauchy problem investigated in the related papers to problems (1.1) and (1.2) with damping term, mass term and Neumann boundary condition on exterior domain in three dimensions. Applying test function technique ( \psi_{2}(x, t) = \rho_{1}(t)\frac{1}{r}e^{r} with r = \sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} ) and iterative approach, upper bound lifespan estimates of solutions to problems (1.1) and (1.2) are deduced (see Theorems 1.1–1.7). In addition, we characterize the variation of wave by employing numerical simulation.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The author Sen Ming would like to express his sincere thanks to Professor Yi Zhou for his guidance and encouragement during the postdoctoral study in Fudan University. The author Sen Ming also would like to express his sincere thanks to Professors Han Yang and Ning-An Lai for their helpful suggestions and discussions. The project is supported by the Fundamental Research Program of Shanxi Province (No. 20210302123021, No. 20210302123045, No. 20210302124657, No. 20210302123182), the Program for the Innovative Talents of Higher Education Institutions of Shanxi Province, the Innovative Research Team of North University of China (No. TD201901), National Natural Science Foundation of China (No. 11601446).
This work has no conflict of interest.
[1] | B. Alhijawi, A. Awajan, Genetic algorithms: theory, genetic operators, solutions, and applications, Evol. Intel., 2023. https://doi.org/10.1007/s12065-023-00822-6 |
[2] | V. Araña, A. G. Camacho, A. Garcia, F. G. Montesinos, I. Blanco, R. Vieira, et al., The internal structure of Tenerife (Canary Islands) based on gravity aeromagnetic and volcanological data, J. Volcanol. Geoth. Res., 103 (2000), 43–64. https://doi.org/10.1016/S0377-0273(00)00215-8 |
[3] |
V. C. F. Barbosa, J. B. C. Silva, Generalized compact gravity inversion, Geophysics, 59 (1994), 57–68. https://doi.org/10.1190/1.1443534 doi: 10.1190/1.1443534
![]() |
[4] |
V. C. F. Barbosa, J. B. C. Silva, W. E. Medeiros, Gravity inversion of basements relief using approximate equality constraints on depths, Geophysics, 62 (1997), 1745–1757. https://doi.org/10.1190/1.1444275 doi: 10.1190/1.1444275
![]() |
[5] |
G. Berrino, A. G. Camacho, 3D gravity inversion by growing bodies and shaping layers at Mt. Vesuvius (Southern Italy), Pure Appl. Geophys., 165 (2008), 1095–1115. https://doi.org/10.1007/s00024-008-0348-2 doi: 10.1007/s00024-008-0348-2
![]() |
[6] | G. Berrino, P. Vajda, P. Zahorec, A. G. Camacho, V. De Novellis, S. Carlino, et al., Interpretation of spatiotemporal gravity changes accompanying the earthquake of 21 August 2017 on Ischia (Italy), Contrib. Geophys. Geod., 51 (2021), 345–371. https://doi.org/10.31577/congeo.2021.51.4.3 |
[7] |
H. Bertete-Aguirre, E. Cherkaev, M. Oristaglio, Non-smooth gravity problem with total variation penalization functional, Geophys. J. Int., 149 (2002), 499–507. https://doi.org/10.1046/j.1365-246X.2002.01664.x doi: 10.1046/j.1365-246X.2002.01664.x
![]() |
[8] | J. Bódi, Inversion of 3D microgravity data for near surface applications for free geometry sources, Rigorous thesis, Comenius University in Bratislava, Slovakia, 2023. |
[9] |
J. Bódi, P. Vajda, A. G. Camacho, J. Papčo, J. Fernández, On gravimetric detection of thin elongated sources using the growth inversion approach, Surv. Geophys., 44 (2023), 1811–1835. https://doi.org/10.1007/s10712-023-09790-z doi: 10.1007/s10712-023-09790-z
![]() |
[10] |
O. Boulanger, M. Chouteau, Constraints in 3D gravity inversion, Geophys. Prospect., 49 (2001), 265–280. https://doi.org/10.1046/j.1365-2478.2001.00254.x doi: 10.1046/j.1365-2478.2001.00254.x
![]() |
[11] | A. G. Camacho, R. Vieira, C. de Toro, Microgravimetric model of the Las Cañadas caldera (Tenerife), J. Volcanol. Geoth. Res., 47 (1991), 75–88. https://doi.org/10.1016/0377-0273(91)90102-6 |
[12] |
A. G. Camacho, R. Vieira, F. G. Montesinos, V. Cuéllar, A gravimetric 3D Global inversion for cavity detection, Geophys. Prospect., 42 (1994), 113–130. https://doi.org/10.1111/j.1365-2478.1994.tb00201.x doi: 10.1111/j.1365-2478.1994.tb00201.x
![]() |
[13] |
A. G. Camacho, F. G. Montesinos, R. Vieira, A three-dimensional gravity inversion applied to Sao Miguel Island (Azores), J. Geophys. Res., 102 (1997), 7705–7715. https://doi.org/10.1029/96JB03667 doi: 10.1029/96JB03667
![]() |
[14] |
A. Camacho, F. Montesinos, R. Vieira, Gravity inversion by means of growing bodies, Geophysics, 65 (2000), 95–101. https://doi.org/10.1190/1.1444729 doi: 10.1190/1.1444729
![]() |
[15] |
A. Camacho, F. Montesinos, R. Vieira, J. Arnoso, Modelling of crustal anomalies of Lanzarote (Canary Islands) in light of gravity data, Geophys. J. Int., 147 (2001), 403–414. https://doi.org/10.1046/j.0956-540x.2001.01546.x doi: 10.1046/j.0956-540x.2001.01546.x
![]() |
[16] |
A. G. Camacho, F. G. Montesinos, R. Vieira, A 3-D gravity inversion tool based on exploration of model possibilities, Comput. Geosci., 28 (2002), 191–204. https://doi.org/10.1016/S0098-3004(01)00039-5 doi: 10.1016/S0098-3004(01)00039-5
![]() |
[17] |
A. G. Camacho, J. C. Nunes, E. Ortíz, Z. Franca, R. Vieira, Gravimetric determination of an intrusive complex under the island of Faial (Azores): some methodological improvements, Geophys. J. Int., 171 (2007), 478–494. https://doi.org/10.1111/j.1365-246X.2007.03539.x doi: 10.1111/j.1365-246X.2007.03539.x
![]() |
[18] | A. G. Camacho, J. Fernández, P. J. González, J. B. Rundle, J. F. Prieto, A. Arjona, Structural results for La Palma island using 3-D gravity inversion, J. Geophys. Res., 114 (2009), B05411. https://doi.org/10.1029/2008JB005628 |
[19] | A. Camacho, J. Fernández, J. Gottsmann, The 3-D gravity inversion package GROWTH 2.0 and its application to Tenerife Island, Spain, Comput. Geosci., 37 (2011), 621–633. https://doi.org/10.1016/j.cageo.2010.12.003 |
[20] | A. G. Camacho, J. Fernández, J. Gottsmann, A new gravity inversion method for multiple subhorizontal discontinuity interfaces and shallow basins, J. Geophys. Res., 116 (2011), B02413. https://doi.org/10.1029/2010JB008023 |
[21] | A. G. Camacho, P. J. González, J. Fernández, G. Berrino, Simultaneous inversion of surface deformation and gravity changes by means of extended bodies with a free geometry: application to deforming calderas, J. Geophys. Res., 116 (2011), B10. https://doi.org/10.1029/2010JB008165 |
[22] | A. G. Camacho, E. Carmona, A. García-Jerez, F. Sánchez-Martos, J. F. Prieto, J. Fernández, et al., Structure of alluvial valleys from 3-D gravity inversion: the Low Andarax Valley (Almería, Spain) test case, Pure Appl. Geophys., 172 (2015), 3107–3121. https://doi.org/10.1007/s00024-014-0914-8 |
[23] |
A. G. Camacho, J. Fernández, Modeling 3D free-geometry volumetric sources associated to geological and anthropogenic hazards from space and terrestrial geodetic data, Remote Sens., 11 (2019), 2042. https://doi.org/10.3390/rs11172042 doi: 10.3390/rs11172042
![]() |
[24] | A. G. Camacho, J. F. Prieto, E. Ancochea, J. Fernández, Deep volcanic morphology below Lanzarote, Canaries, from gravity inversion: new results for Timanfaya and implications, J. Volcanol. Geoth. Res., 369 (2019), 64–79. https://doi.org/10.1016/j.jvolgeores.2018.11.013 |
[25] |
A. G. Camacho, J. Fernández, S. V. Samsonov, K. F. Tiampo, M. Palano, 3D multi-source model of elastic volcanic ground deformation, Earth Planet. Sci. Lett., 547 (2020), 116445. https://doi.org/10.1016/j.epsl.2020.116445 doi: 10.1016/j.epsl.2020.116445
![]() |
[26] |
A. G. Camacho, J. F. A. Aparicio, E. Ancochea, J. Fernández, Upgraded GROWTH 3.0 software for structural gravity inversion and application to El Hierro (Canary Islands), Comput. Geosci., 150 (2021), 104720. https://doi.org/10.1016/j.cageo.2021.104720 doi: 10.1016/j.cageo.2021.104720
![]() |
[27] |
A. G. Camacho, P. Vajda, C. A. Miller, J. Fernández, A free-geometry geodynamic modelling of surface gravity changes using Growth-dg software, Sci. Rep., 11 (2021), 23442. https://doi.org/10.1038/s41598-021-02769-z doi: 10.1038/s41598-021-02769-z
![]() |
[28] |
A. G. Camacho, P. Vajda, J. Fernández, GROWTH-23: an integrated code for inversion of complete Bouguer gravity anomaly or temporal gravity changes, Comput. Geosci., 182 (2024), 105495. https://doi.org/10.1016/j.cageo.2023.105495 doi: 10.1016/j.cageo.2023.105495
![]() |
[29] |
F. Cannavò, A. G. Camacho, P. J. González, M. Mattia, G. Puglisi, J. Fernández, Real time tracking of magmatic intrusions by means of ground deformation modeling during volcanic crises, Sci. Rep., 5 (2015), 10970. https://doi.org/10.1038/srep10970 doi: 10.1038/srep10970
![]() |
[30] |
Z. Chen, X. Meng, L. Guo, G. Liu, GICUDA: a parallel program for 3D correlation imaging of large scale gravity and gravity gradiometry data on graphics processing units with CUDA, Comput. Geosci., 46 (2012), 119–128. https://doi.org/10.1016/j.cageo.2012.04.017 doi: 10.1016/j.cageo.2012.04.017
![]() |
[31] |
Z. Chen, X. Meng, S. Zhang, 3D gravity interface inversion constrained by a few points and its GPU acceleration, Comput. Geosci., 84 (2015), 20–28. https://doi.org/10.1016/j.cageo.2015.08.002 doi: 10.1016/j.cageo.2015.08.002
![]() |
[32] | C. G. Farquharson, M. R. Ash, H. G Miller, Geologically constrained gravity inversion for the Voisey's Bay Ovoid deposit, Lead. Edge, 27 (2008), 64–69. https://doi.org/10.1190/1.2831681 |
[33] | J. Fernández, J. F. Prieto, J. Escayo, A. G. Camacho, F. Luzón, K. F. Tiampo, et al., Modeling the two-and three-dimensional displacement field in Lorca, Spain, subsidence and the global implications, Sci. Rep., 8 (2018), 14782. https://doi.org/10.1038/s41598-018-33128-0 |
[34] | J. Fernández, J. Escayo, Z. Hu, A. G. Camacho, S. V. Samsonov, J. F. Prieto, et al., Detection of volcanic unrest onset in La Palma, Canary Islands, evolution and implications, Sci. Rep., 11 (2021), 2540. https://doi.org/10.1038/s41598-021-82292-3 |
[35] | J. Fernández, J. Escayo, A. G. Camacho, M. Palano, J. F. Prieto, Z. Hu, et al., Shallow magmatic intrusion evolution below La Palma before and during the 2021 eruption, Sci. Rep., 12 (2022), 20257. https://doi.org/10.1038/s41598-022-23998-w |
[36] | J. Fullea, J. C. Afonso, J. A. D. Connolly, M. Fernàndez, D. Garcia-Castellanos, H. Zeyen, LitMod3D: an interactive 3D software to model the thermal, compositional, density, rheological, and seismological structure of the lithosphere and sublithospheric upper mantle, Geochem. Geophys. Geosy., 10 (2009), Q08019. https://doi.org/10.1029/2009GC002391 |
[37] |
M. H. Ghalehnoee, A. Ansari, A. Ghorbani, Improving compact gravity inversion using new weighting functions, Geophys. J. Int., 208 (2017), 546–560. https://doi.org/10.1093/gji/ggw413 doi: 10.1093/gji/ggw413
![]() |
[38] |
D. Gómez-Ortiz, B. N. P. Agarwal, 3DINVER.M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg's algorithm, Comput. Geosci., 31 (2005), 513–520. https://doi.org/10.1016/j.cageo.2004.11.004 doi: 10.1016/j.cageo.2004.11.004
![]() |
[39] | J. Gottsmann, L. Wooller, J. Martí, J. Fernández, A. G. Camacho, P. J. Gonzalez, et al., New evidence for the reawakening of Teide volcano, Geophys. Res. Lett., 33 (2006), L20311. https://doi.org/10.1029/2006GL027523 |
[40] | J. Gottsmann, A. G. Camacho, J. Martí, L. Wooller, J. Fernández, A. García, et al., Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: implications for its evolution and recent reactivation, Phys. Earth Planet. Int., 168 (2008), 212–230. https://doi.org/10.1016/j.pepi.2008.06.020 |
[41] |
A. Guillen, V. Menichetti, Gravity and magnetic inversion with minimization of a specific functional, Geophysics, 49 (1984), 1354–1360. https://doi.org/10.1190/1.1441761 doi: 10.1190/1.1441761
![]() |
[42] |
J. R. Kennedy, J. D. Larsen, Heavy: software for forward modeling gravity change from MODFLOW output, Environ. Modell. Softw., 165 (2023), 105714. https://doi.org/10.1016/j.envsoft.2023.105714 doi: 10.1016/j.envsoft.2023.105714
![]() |
[43] |
C. Klesper, IVIS-3D: a tool for interactive 3D-visualisation of gravity models, Phys. Chem. Earth, 23 (1998), 279–283. https://doi.org/10.1016/S0079-1946(98)00025-1 doi: 10.1016/S0079-1946(98)00025-1
![]() |
[44] |
R. A. Krahenbuhl, Y. Li, Inversion of gravity data using a binary formulation, Geophys. J. Int., 167 (2006), 543–556. https://doi.org/10.1111/j.1365-246X.2006.03179.x doi: 10.1111/j.1365-246X.2006.03179.x
![]() |
[45] | B. J. Last, K. Kubik, Compact gravity inversion, Geophysics, 48 (1983), 713–721. https://doi.org/10.1190/1.1441501 |
[46] |
P. G. Lelievre, D. W. Oldenburg, A comprehensive study of including structural information in geophysical inversions, Geophys. J. Int., 178 (2009), 623–637. https://doi.org/10.1111/j.1365-246X.2009.04188.x doi: 10.1111/j.1365-246X.2009.04188.x
![]() |
[47] |
P. G. Lelièvre, R. Bijani, C. G. Farquharson, Joint inversion using multi-objective global optimization methods, 78th EAGE Conference and Exhibition, 2016 (2016), 1–5. https://doi.org/10.3997/2214-4609.201601655 doi: 10.3997/2214-4609.201601655
![]() |
[48] |
Y. Li, D. W. Oldenburg, 3-D inversion of gravity data, Geophysics, 63 (1998), 109–119. https://doi.org/10.1190/1.1444302 doi: 10.1190/1.1444302
![]() |
[49] | S. Mallick, Optimization using genetic algorithms–Methodology with examples from seismic waveform inversion (chapter), In: Y. H. Chemin, Genetic algorithms: theory, design and programming, IntechOpen, 2024. https://doi.org/10.5772/intechopen.113897 |
[50] | C. M. Martins, W. A. Lima, V. C. F. Barbosa, J. B. C. Silva, Total variation regularization for depth-to-basement estimate: Part 1–Mathematical details and applications, Geophysics, 76 (2011), I1–I12. https://doi.org/10.1190/1.3524286 |
[51] | C. A. Miller, G. Williams-Jones, D. Fournier, J. Witter, 3D gravity inversion and thermodynamic modelling reveal properties of shallow silicic magma reservoir beneath Laguna del Maule, Chile, Earth Planet. Sci. Lett., 459 (2017), 14–27. https://doi.org/10.1016/j.epsl.2016.11.007 |
[52] |
C. A. Miller, H. Le Mével, G. Currenti, G. Williams-Jones, B. Tikoff, Microgravity changes at the Laguna del Maule volcanic field: Magma-induced stress changes facilitate mass addition, J. Geophys. Res. Solid Earth, 122 (2017), 3179–3196. https://doi.org/10.1002/2017JB014048 doi: 10.1002/2017JB014048
![]() |
[53] |
O. F. Mojica, A. Bassrei, Regularization parameter selection in the 3D gravity inversion of the basement relief using GCV: a parallel approach, Comput. Geosci., 82 (2015), 205–213. https://doi.org/10.1016/j.cageo.2015.06.013 doi: 10.1016/j.cageo.2015.06.013
![]() |
[54] | F. G. Montesinos, A. G. Camacho, R. Vieira, Analysis of gravimetric anomalies in Furnas caldera (Saô Miguel, Azores), J. Volcanol. Geoth. Res., 92 (1999), 67–81. https://doi.org/10.1016/S0377-0273(99)00068-2 |
[55] |
F. G. Montesinos, A. G. Camacho, J. C. Nunes, C. S. Oliveira, R. Vieira, A 3-D gravity model for a volcanic crater in Terceira Island (Azores), Geophys. J. Int., 154 (2003), 393–406. https://doi.org/10.1046/j.1365-246X.2003.01960.x doi: 10.1046/j.1365-246X.2003.01960.x
![]() |
[56] | F. G. Montesinos, J. Arnoso, R. Vieira, Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands), Int. J. Earth Sci. (Geol. Rundsch.), 94 (2005), 301–316. https://doi.org/10.1007/s00531-005-0471-6 |
[57] | J. C. Nunes, A. Camacho, Z. França, F. G. Montesinos, M. Alves, R. Vieira, et al., Gravity anomalies and crustal signature of volcano-tectonic structures of Pico Island (Azores), J. Volcanol. Geoth. Res., 156 (2006), 55–70. https://doi.org/10.1016/j.jvolgeores.2006.03.023 |
[58] |
E. Oksum, Grav3CH_inv: A GUI-based MATLAB code for estimating the 3-D basement depth structure of sedimentary basins with vertical and horizontal density variation, Comput. Geosci., 155 (2021), 104856. https://doi.org/10.1016/j.cageo.2021.104856 doi: 10.1016/j.cageo.2021.104856
![]() |
[59] |
V. C. Oliveira, V. C. F. Barbosa, 3-D radial gravity gradient inversion, Geophys. J. Int., 195 (2013), 883–902. https://doi.org/10.1093/gji/ggt307 doi: 10.1093/gji/ggt307
![]() |
[60] |
L. B. Pedersen, Constrained inversion of potential field data, Geophys. Prosp., 27 (1979), 726–748. https://doi.org/10.1111/j.1365-2478.1979.tb00993.x doi: 10.1111/j.1365-2478.1979.tb00993.x
![]() |
[61] |
D. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. ACM, 9 (1962), 84–97. https://doi.org/10.1145/321105.321114 doi: 10.1145/321105.321114
![]() |
[62] | R. Pašteka, M. Terray, M. Hajach, M. Pašiaková, Výsledky geofyzikálneho (mikro-gravimetrického) prieskumu interiéru kostola Sv. Mikuláša v Trnave, unpublished work, 2006. |
[63] | R. Pašteka, J. Mikuška, M. Hajach, M. Pašiaková, Microgravity measurements and GPR technique in the search for medieval crypts: a case study from the St. Nicholas church in Trnava, SW Slovakia, Proceedings of the Archaeological Prospection 7th Conference in Nitra, 41 (2007), 222–224. |
[64] |
R. Pašteka, F. P. Richter, R. Karcol, K. Brazda, M. Hajach, Regularized derivatives of potential fields and their role in semiautomated interpretation methods, Geophys. Prospect., 57 (2009), 507–516. https://doi.org/10.1111/j.1365-2478.2008.00780.x doi: 10.1111/j.1365-2478.2008.00780.x
![]() |
[65] | R. Pašteka, J. Pánisová, P. Zahorec, J. Papčo, J. Mrlina, M. Fraštia, et al., Microgravity method in archaeological prospection: methodical comments on selected case studies from crypt and tomb detection, Archaeol. Prospect., 27 (2020), 415–431. https://doi.org/10.1002/arp.1787 |
[66] | M. Pick, J. Picha, V. Vyskočil, Theory of the earth's gravity field, Elsevier, 1973. |
[67] |
I. Prutkin, P. Vajda, M. Bielik, V. Bezák, R. Tenzer, Joint interpretation of gravity and magnetic data in the Kolárovo anomaly region by separation of sources and the inversion method of local corrections, Geol. Carpath., 65 (2014), 163–174. https://doi.org/10.2478/geoca-2014-0011 doi: 10.2478/geoca-2014-0011
![]() |
[68] |
I. Prutkin, P. Vajda, J. Gottsmann, The gravimetric picture of magmatic and hydrothermal sources driving hybrid unrest on Tenerife in 2004/5, J. Volcanol. Geoth. Res., 282 (2014), 9–18. https://doi.org/10.1016/j.jvolgeores.2014.06.003 doi: 10.1016/j.jvolgeores.2014.06.003
![]() |
[69] | I. Prutkin, P. Vajda, T. Jahr, F. Bleibinhaus, P. Novák, R. Tenzer, Interpretation of gravity and magnetic data with geological constraints for 3D structure of the Thuringian Basin, Germany, J. Appl. Geophys., 136 (2017), 35–41. https://doi.org/10.1016/j.jappgeo.2016.10.039 |
[70] |
A. B. Reid, J. M. Allsop, H. Granser, A. J. Millet, I. W. Somerton, Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics, 55 (1990), 80–91. https://doi.org/10.1190/1.1442774 doi: 10.1190/1.1442774
![]() |
[71] | R. M. René, Gravity inversion using open, reject, and "shape‐of‐anomaly" fill criteria, Geophysics, 51 (1986), 889–1033. https://doi.org/10.1190/1.1442157 |
[72] | D. F. Santos, J. B. C. Silva, C. M. Martins, R. C. S. Santos, L. C. Ramos, A. C. M. Araújo, Efficient gravity inversion of discontinuous basement relief, Geophysics, 80 (2015), G95–G106. https://doi.org/10.1190/geo2014-0513.1 |
[73] | S. V. Samsonov, K. F. Tiampo, A. G. Camacho, J. Fernández, P. J. González, Spatiotemporal analysis and interpretation of 1993–2013 ground deformation at Campi Flegrei, Italy, observed by advanced DInSAR, Geophys. Res. Lett., 41 (2014), 6101–6108. https://doi.org/10.1002/2014GL060595 |
[74] |
P. Shamsipour, D. Marcotte, M. Chouteau, 3D stochastic joint inversion of gravity and magnetic data, J. Appl. Geophys., 79 (2012), 27–37. https://doi.org/10.1016/j.jappgeo.2011.12.012 doi: 10.1016/j.jappgeo.2011.12.012
![]() |
[75] |
K. Snopek, U. Casten, 3GRAINS: 3D Gravity Interpretation Software and its application to density modeling of the Hellenic subduction zone, Comput. Geosci., 32 (2006), 592–603. https://doi.org/10.1016/j.cageo.2005.08.008 doi: 10.1016/j.cageo.2005.08.008
![]() |
[76] | M. Terray, Správa z georadarového prieskumu Dómu sv. Mikuláša v Trnave, unpublished work, 2006. |
[77] | C. Tiede, A. G. Camacho, C. Gerstenecker, J. Fernández, I. Suyanto, Modelling the crust at Merapi volcano area, Indonesia, via the inverse gravimetric problem, Geochem. Geophy. Geosy., 6 (2005), Q09011. https://doi.org/10.1029/2005GC000986 |
[78] | C. Tiede, J. Fernández, C. Gerstenecker, K. F. Tiampo, A hybrid model for the summit region of merapi volcano, Java, Indonesia, derived from gravity changes and deformation measured between 2000 and 2002, In: D. Wolf, J. Fernández, Deformation and gravity change: indicators of isostasy, tectonics, volcanism, and climate change, Pageoph Topical Volumes, Birkhäuser, (2007), 837–850. https://doi.org/10.1007/978-3-7643-8417-3_12 |
[79] | A. N. Tikhonov, V. A. Arsenin, Solutions of ill-posed problems, Winston and Sons, Washington, 1977. https://doi.org/10.2307/2006360 |
[80] | L. Uieda, V. C. F. Barbosa, Robust 3D gravity gradient inversion by planting anomalous densities, Geophysics, 77 (2012), G55–G66. https://doi.org/10.1190/GEO2011-0388.1 |
[81] |
P. Vajda, P. Vaníček, B. Meurers, A new physical foundation for anomalous gravity, Stud. Geophys. Geod., 50 (2006), 189–216. https://doi.org/10.1007/s11200-006-0012-1 doi: 10.1007/s11200-006-0012-1
![]() |
[82] | P. Vajda, I. Foroughi, P. Vaníček, R. Kingdon, M. Santos, M. Sheng, et al., Topographic gravimetric effects in earth sciences: Review of origin, significance and implications, Earth-Sci. Rev., 211 (2020), 103428. https://doi.org/10.1016/j.earscirev.2020.103428 |
[83] |
P. Vajda, P. Zahorec, C. A. Miller, H. Le Mével, J. Papčo, A. G. Camacho, Novel treatment of the deformation–induced topographic effect for interpretation of spatiotemporal gravity changes: Laguna del Maule (Chile), J. Volcanol. Geoth. Res., 414 (2021), 107230. https://doi.org/10.1016/j.jvolgeores.2021.107230 doi: 10.1016/j.jvolgeores.2021.107230
![]() |
[84] |
P. Vajda, A. G. Camacho, J. Fernández, Benefits and limitations of the growth inversion approach in volcano gravimetry demonstrated on the revisited Tenerife 2004/5 unrest, Surveys Geophys., 44 (2023), 527–554. https://doi.org/10.1007/s10712-022-09738-9 doi: 10.1007/s10712-022-09738-9
![]() |
[85] |
S. Vatankhah, V. E. Ardestani, S. S. Niri, R. S. Renaut, H. Kabirzadeh, IGUG: a MATLAB package for 3D inversion of gravity data using graph theory, Comput. Geosci., 128 (2019), 19–29. https://doi.org/10.1016/j.cageo.2019.03.008 doi: 10.1016/j.cageo.2019.03.008
![]() |
[86] |
E. J. Wahyudi, D. Santoso, W. G. A. Kadir, S. Alawiyah, Designing a genetic algorithm for efficient calculation in time-lapse gravity inversion, J. Eng. Tech. Sci., 46 (2014), 58–77. https://doi.org/10.5614/j.eng.technol.sci.2014.46.1.4 doi: 10.5614/j.eng.technol.sci.2014.46.1.4
![]() |
[87] | R. A. Wildman, G. A. Gazonas, Gravitational and magnetic anomaly inversion using a tree-based geometry representation, Geophysics, 74 (2009), I23–I35. https://doi.org/10.1190/1.3110042 |
[88] |
Y. Tian, X. Ke, Y. Wang, DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data, J. Geophys. Eng., 15 (2018), 354–365. https://doi.org/10.1088/1742-2140/aa8caf doi: 10.1088/1742-2140/aa8caf
![]() |
[89] | P. Zahorec, R. Pašteka, J. Papčo, R. Putiška, A. Mojzeš, D. Kušnirák, et al., Mapping hazardous cavities over collapsed coal mines: case study experiences using the microgravity method, Near Surface Geophys., 19 (2021), 353–364. https://doi.org/10.1002/nsg.12139 |
[90] | D. Zidarov, Inverse gravimetric problem in geoprospecting and geodesy, Elsevier Science Publ. Co., 1990. |