Processing math: 76%
Research article Special Issues

The dynamics and control of an ISCRM fractional-order rumor propagation model containing media reports

  • Modern social networks are especially beneficial for spreading rumors since they perform as multichannel communication platforms. The spread of false information has a detrimental impact on people, communities, and businesses. Media reports significantly affect rumor propagation by providing inhibiting factors. In this paper, we propose a new ISCRM fractional-order model to analyze the law of rumor propagation and provide appropriate control strategies. First, under fractional differential equations, the boundedness and non-negativeness of the solutions are obtained. Second, the local and global asymptotic stability of the rumor-free equilibrium and rumor-permanence equilibrium are proved. Third, employing Pontryagin's maximum principle, the conditions necessary for fractional optimum control are derived for the rumor model, and the optimal solutions are analyzed. Finally, several numerical simulations are presented to verify the accuracy of the theoretical results. For instance, while media reports can mitigate the propagation of rumors across various dynamic regions, they are unable to completely restrain rumor spread.

    Citation: Xuefeng Yue, Weiwei Zhu. The dynamics and control of an ISCRM fractional-order rumor propagation model containing media reports[J]. AIMS Mathematics, 2024, 9(4): 9721-9745. doi: 10.3934/math.2024476

    Related Papers:

    [1] Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Arumugam Deiveegan, Reny George, Ahmed M. Hassan, Sina Etemad . Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators. AIMS Mathematics, 2023, 8(12): 30374-30404. doi: 10.3934/math.20231551
    [2] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [3] H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220
    [4] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Suliman Alsaeed, Kottakkaran Sooppy Nisar . New interpretation of topological degree method of Hilfer fractional neutral functional integro-differential equation with nonlocal condition. AIMS Mathematics, 2023, 8(7): 17154-17170. doi: 10.3934/math.2023876
    [5] Krishnan Kavitha, Velusamy Vijayakumar, Kottakkaran Sooppy Nisar, Anurag Shukla, Wedad Albalawi, Abdel-Haleem Abdel-Aty . Existence and controllability of Hilfer fractional neutral differential equations with time delay via sequence method. AIMS Mathematics, 2022, 7(7): 12760-12780. doi: 10.3934/math.2022706
    [6] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses. AIMS Mathematics, 2021, 6(5): 4474-4491. doi: 10.3934/math.2021265
    [7] Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100
    [8] Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Significant results in the pth moment for Hilfer fractional stochastic delay differential equations. AIMS Mathematics, 2025, 10(4): 9852-9881. doi: 10.3934/math.2025451
    [9] Qing Yang, Chuanzhi Bai, Dandan Yang . Finite-time stability of nonlinear stochastic ψ-Hilfer fractional systems with time delay. AIMS Mathematics, 2022, 7(10): 18837-18852. doi: 10.3934/math.20221037
    [10] Abdelkader Moumen, Ammar Alsinai, Ramsha Shafqat, Nafisa A. Albasheir, Mohammed Alhagyan, Ameni Gargouri, Mohammed M. A. Almazah . Controllability of fractional stochastic evolution inclusion via Hilfer derivative of fixed point theory. AIMS Mathematics, 2023, 8(9): 19892-19912. doi: 10.3934/math.20231014
  • Modern social networks are especially beneficial for spreading rumors since they perform as multichannel communication platforms. The spread of false information has a detrimental impact on people, communities, and businesses. Media reports significantly affect rumor propagation by providing inhibiting factors. In this paper, we propose a new ISCRM fractional-order model to analyze the law of rumor propagation and provide appropriate control strategies. First, under fractional differential equations, the boundedness and non-negativeness of the solutions are obtained. Second, the local and global asymptotic stability of the rumor-free equilibrium and rumor-permanence equilibrium are proved. Third, employing Pontryagin's maximum principle, the conditions necessary for fractional optimum control are derived for the rumor model, and the optimal solutions are analyzed. Finally, several numerical simulations are presented to verify the accuracy of the theoretical results. For instance, while media reports can mitigate the propagation of rumors across various dynamic regions, they are unable to completely restrain rumor spread.



    The scientific world is now paying more and more attention to fractional calculus, which has an expanding variety of applications in fields including astronomy, electricity, life sciences, viscosity, medical science, control theory, data processing, etc. Due to the vast range of domains that fractional concepts are applied to, including physics, mechanics, chemistry, and engineering, fractional differential equations (FDEs), have become incredibly important. The study of ordinary and partial differential equations containing fractional derivatives has advanced significantly in recent years. We recommend the reader to read some books and articles published by Kilbas et al. [1], Diethelm [2], Zhou [3], Podulbny [4], Miller and Ross [5], Lakshmikantham et al. [6], and a series of papers [7,8,9,10] and the references cited therein.

    The Caputo and Riemann-Liouville (R-L) fractional derivatives were among the initial fractional order derivatives that Hilfer [11] presented in his new operator named the Hilfer fractional derivative (HFD). Additionally, conceptual simulations of dielectric relaxation in glass components, polymers, rheological permanent simulation, and other domains have revealed the significance and usefulness of the HFD. To study the existence of an integral solution related to an evolution boundary value problem (BVP) equipped with the HFD, Gu and Trujillo [12], recently, employed the measure of noncompactness technique. Along with this article, other numerous academic articles have addressed the HFD in their theorems; see [13,14,15,16]. According to the methods used in [17,18,19,20,21], some researchers used almost sectorial operators to find a mild solution for some BVPs in the framework of the HFD systems.

    Neutral differential equations have gained a lot of attention lately because of their many applications in a variety of domains, such as biological models, chemical kinetics, electronics, and fluid dynamics. We refer to the works on the theory and applications of neutral partial differential equations (PDEs) with non-local and classical situations as [21,22,23,24,25,26] and the references therein. We observe that there has been a recent surge in interest in neutral structures due to their prevalence in many applications of applied mathematics.

    Since the above differential equations were originally used to numerically mimic a variety of occurrences in the humanities and natural sciences [27], stochastic PDEs have also attracted a lot of interest. Rather than focusing on deterministic models, more research should be done on stochastic models, as unpredictability and uncontrollable fluctuations are intrinsic to both manmade and natural systems. Stochastic differential equations (SDEs) represent a specific event mathematically by including irrationality. The research community has recently shown a great deal of interest in the use of SDEs in finite and infinite dimensions to represent a variety of processes in population fluctuations, mathematics, mechanical engineering, physical location, behavioral science, life sciences, and several other science and technology domains. See [13,23,28,29] for a comprehensive introduction to SDEs and their applications.

    Almost sectorial operators are being used by researchers to advance the existence concepts in fractional calculus. In this direction, for a system under study, researchers have created a unique way of identifying mild solutions. In addition, a theory has been developed to predict different requirements of linked semigroups formed by almost sectorial operators using multivalued maps, the Wright function, fractional calculus, semigroup operators, the MNC, and the fixed-point approach. For more details, refer to [18,25,30,31,32,33]. Some researchers in [17,18,19] analyzed their results via the almost sectorial operators by employing the Schauder's fixed-point theorem. The authors in [34,35,36,37] conducted an analysis of fractional evolution equations (FEEs) via a similar method with the sectorial operators. Further, Zhou [38] established the attractivity for FEEs with almost sectorial operators by using the Ascoli-Arzela theorem. Later, Zhou et al. [39] discussed the existence theorems related to the attractive solutions of the Hilfer FEEs with almost sectorial operators. Very recently, Yang et al. [40] established the HF stochastic evolution equations on infinite intervals via the fixed-point method.

    To our knowledge, no work has been reported on the attractive solution for HF neutral stochastic evolution integro-differential equations on an infinite interval via almost sectorial operators. To fill this gap, by taking inspiration from the previous studies, this research intends to address this subject completely. In other words, the goal of this publication is to prove an attractive solution using the almost sectorial operators in the following form for HF neutral stochastic evolution integro-differential equations on an infinite interval:

    {HDλ,μ0+[g(s)ϖ(s,g(s))]=A[g(s)ϖ(s,g(s))]+F(s,g(s))+s0G(l,g(l))dW(l),I(1λ)(1μ)0+g(0)=g0,s(0,), (1.1)

    where HDλ,μ0+ is the HFD of order 0<μ<1 and type 0λ1, I(1λ)(1μ)0+ is a R-L integral of the fractional order (1λ)(1μ), and A denotes an almost sectorial operator in the Hilbert space Y. F:(0,)×YY, G:[0,)×YL02(K,Y), and ϖ:(0,)×YY are the given functions. {W(s)}s0 specifies a one-dimensional K-valued Wiener process along with a finite trace nuclear covariance operator Q0 formulated on a filtered complete probability space (Ξ,E,{Es}s0,P), and g0L02(Ξ,Y).

    The following is a summary of this article's primary contributions:

    (1) In this work, we investigate the attractive solution for HF neutral stochastic evolution integro-differential equations on an infinite interval via almost sectorial operators.

    (2) This work applies some concepts of functional analysis, like the Wright function, the Ascoli-Arzela theorem, Kuratowski's measure of noncompactness, and Schauder's fixed point theorem, to prove the main results.

    (3) The Ascoli-Arzela theorem, which is effectively employed to establish the new results, is the foundation of our method in the present research.

    (4) The proved theorems are validated via a theoretical example.

    The structure of this manuscript is as follows: Section 2 covers fractional calculus, MNC, and semigroup operators as a reminder. In Section 3, we establish the global existence and attractivity results of mild solutions for HF neutral stochastic evolution integro-differential equation (1.1). We present conceptual applications in Section 4 to assist us in making our discussion more successful.

    We present a few foundational definitions in this section. We require certain fundamental notations of fractional calculus and measures of noncompactness as a reminder.

    Denote by L2(Ξ,Y), the collection of all strongly measurable square-integrable Y-valued random variables, which is a Banach space for the norm g()L2(Ξ,Y)=(Eg(,W)2)12 for each gL2(Ξ,Y). Moreover, L02(Ξ,Y)={gL2(Ξ,Y): g is an subspace of L2(Ξ,Y) and is E0-measurable}.

    Let C((0,),L2(Ξ,Y)):(0,)L2(Ξ,Y) be a Banach space of all continuous functions. For each gC((0,),L2(Ξ,Y)), define

    gC((0,),L2(Ξ,Y))=(sups(0,)Eg(s)2)12<.

    Suppose that (Ξ,E,P) denotes the complete probability space defined with a complete family of right continuous increasing sub-σ-algebras {Es,s(0,)} fulfilling EsE, so that Y,K denote two real separable Hilbert spaces, and {W(s)}s0 denotes a Q-Wiener process defined on (Ξ,E,P) with values in K. Let L(K,Y):KY be the space of all operators with boundedness property, and LQ(K,Y):KY stands for the space of all Q-Hilbert-Schmidt operators.

    Furthermore, we suppose that O(s) is continuous in the uniform operator topology for s>0, and also, O(s) has uniform boundedness, i.e., there exists K>1 such that sups(0,)O(s)<K, throughout this paper.

    Definition 2.1. [31] For 0<κ<1,0<φ<π2, we define that Ψκφ is a family of all closed linear operators with the sector Sφ={vC{0}:|arg v|φ} and let A:D(A)YY be such that

    (a)σ(A)Sφ;

    (b) for all ω<λ<π, there exists a constant Rλ>0 such that (vIA)1Rλ|v|κ.

    Then, AΨκφ is called an almost sectorial operator on Y.

    Define the semigroup operator {T(s)}s0 as

    T(s)=esv(A)=12πiΓϱesvR(v;A)dv,sS0π2φ,

    where Γϱ={R+eiϱ}{R+eiϱ} with φ<ϱ<δ<π2|args| is oriented counter-clockwise.

    Proposition 2.2. [31] Let T(s) be the compact semigroup and AΨκφ for 0<κ<1 and 0<φ<π2. Then, we have the following:

    (1) T(s+ν)=T(s)T(ν), for all ν,sSπ2φ.

    (2) T(s)L(Y)K0sκ1, s>0 (K0>0 is a constant).

    (3) R(T(s)) belongs to T(s) for sSπ2φD(A), where R(T) is the range of T. Also, R(T(s))D(Aθ), for any θC with Re(θ)>0, and

    AθT(s)g=12πiΓμvθesvR(v;A)gdv, for all gY.

    Hence, there exists a constant C=C(γ,θ)>0 such that

    AθT(s)L(Y)CsγRe(θ)1, for all s>0.

    (4) If ΣT={gY:lims0+T(s)g=g}, then D(Aθ)ΣTfor θ>1+κ.

    (5) (vIA)1=0evνT(ν)dν, vC, and Re(v)>0.

    Definition 2.3. [41] The fractional integral of order μ for the function G:[0,)R is defined as

    Iμ0+G(s)=1Γ(μ)s0G(l)(sl)1μdl,s>0;μ>0,

    provided the R.H.S. is point-wise convergent.

    Definition 2.4. [11] Let 0<μ<1 and 0λ1. The HFD of order μ and type λ for G:[0,)R is

    HDλ,μ0+G(s)=[Iλ(1μ)0+D(I(1λ)(1μ)0+G)](s).

    For a Banach space Y, let P be a non-empty subset in Y. The Kuratowski's MNC α is introduced as

    α(P)=inf{c>0:Pnı=1Mı,  diam(Mı)c}.

    Here, the diameter of Mı is provided by diam(Mı)=sup{|xy|: x,yMı}, ı=1,2,,n.

    Lemma 2.5. [42] Let V1 and V2 be two bounded sets in the Banach space E. Then, we have the follwoing

    (i) α(V1)=0 if and only if V1 is relatively compact;

    (ii) α(V1)α(V2) if V1V2;

    (iii) α(V1+V2)α(V1)+α(V2), where V1+V2={g+v:gV1,vV2};

    (iv) α{{g}V}=α(V) for all gE and every non-empty subset VE;

    (v) α{V1V2}max{α(V1),α(V2)};

    (vi) α(γV)|γ|α(V).

    Lemma 2.6. [43] Assume that Y is a Hilbert space, and the sequence gn(s):[0,)Y, (n=1,2,) includes all continuous functions. If there exists ϱL1[0,) such that

    xn(s)ϱ(s),s[0,), n=1,2,,

    then α({xn}n=1) is integrable on [0,), and

    α({0xn(s)ds:n=1,2,})20α({xn(s):n=1,2,})ds.

    Definition 2.7. [44] The Wright function Mλ(ϑ) is formulated as

    Mλ(ϑ)=nN(ϑ)n1(n1)!Γ(1ϑn), ϑC,

    with

    0ϑιMλ(ϑ)dϑ=Γ(1+ι)Γ(1+λι),for ι0.

    Lemma 2.8. The system (1.1) has a solution in the form of the integral equation

    g(s)=[g0ϖ(0,g(0))]Γ(λ(1μ)+μ)s(λ1)(1μ)+ϖ(s,g(s))+1Γ(μ)s0(sl)μ1Ag(l)dl+1Γ(μ)s0(sl)μ1F(l,g(l))dl+1Γ(μ)s0(sl)μ1l0G(ω,g(ω))dW(ω)dl, s(0,). (2.1)

    Proof. This proof is similar to that of [14]; therefore, we do not repeat it.

    Lemma 2.9. Suppose that g(s) fulfills the integral equation (2.1). Then,

    g(s)=Oλ,μ[g0ϖ(0,g(0))]+ϖ(s,g(s))+s0Pμ(sl)F(l,g(l))dl+s0Pμ(sl)l0G(ω,g(ω))dW(ω)dl,s(0,),

    where Oλ,μ=Iλ(1μ)0+Pμ(s), Pμ(s)=sμ1Qμ(s), and Qμ(s)=0μϑMμ(ϑ)T(sμϑ)dϑ.

    Proof. This proof is similar to that of [14]; therefore, we do not repeat it.

    In relation to Lemma 2.8, we have a definition.

    Definition 2.10. An Es-adapted stochastic process g(s):(0,)Y is called a mild solution of the given system (1.1), if I(1λ)(1μ)0+g(0)=g0, g0L02(Ξ,Y), and for each s(0,), the function G(ω,g(ω)) is integrable, and the stochastic integral equation

    g(s)=Oλ,μ[g0ϖ(0,g(0))]+ϖ(s,g(s))+s0Pμ(sl)F(l,g(l))dl+s0Pμ(sl)l0G(ω,g(ω))dW(ω)dl,s(0,),

    holds.

    Definition 2.11. The mild solution g(s) of the system (1.1) is said to be attractive if g(s)0 as s.

    Lemma 2.12. [18] For any fixed s>0, {Qμ(s)}s>0, {Pμ(s)}s>0, and {Oλ,μ(s)}s>0 are linear operators, and for every gY,

    Qμ(s)gK1sμ(κ1)g, Pμ(s)gK1s1+μκg, and Oλ,μ(s)gK2s1+λλμ+μκg,

    where

    K1=μK0Γ(1+κ)Γ(1+μκ) and K2=K1Γ(μκ)Γ(λ(1μ)+μκ).

    Lemma 2.13. [18] Assume that O(s) is equicontinuous for s>0. Then, {Qμ(s)}s>0, {Pμ(s)}s>0 and {Oλ,μ(s)}s>0 are strongly continuous, i.e., for any gY and s>s>0, we have

    Qμ(s)gQμ(s)g0, Pμ(s)gPμ(s)g0, and Oλ,μ(s)gOλ,μ(s)g0,

    as ss.

    Let

    C([0,),L2(Ξ,Y))={x:xC([0,),L2(Ξ,Y)):limsEx(s)1+s2=0}.

    Clearly, (C([0,),L2(Ξ,Y)),) is a Banach space with

    x=(sups[0,)Ex(s)1+s2)12<,for any xC([0,),(Ξ,Y)).

    We provide the generalized Ascoli-Arzela theorem below.

    Lemma 2.14. [45] The set ΥC([0,),L2(Ξ,Y)) is relatively compact iff:

    (i) for any f>0, the set I={u:u(s)=y(s)1+s, yΥ} is equicontinuous on [0,f];

    (ii) limsEy(s)1+s2=0 uniformly for yΥ;

    (iii) for all s[0,), I(s)={u:u(s)=y(s)1+s, yΥ} is relatively compact in L2(Ξ,Y).

    Now, the main theorems will be proved in this section. Some assumptions are required to prove these theorems. We list them as follows:

    (H1) For any gY, F(,g) is measurable on (0,), and for any s(0,), F(s,) is continuous.

    (H2) There exists a function p:(0,)(0,) such that for all gY and all s(0,),

    (Iμ0+p)(s)C((0,),(0,)),EF(s,g)2p(s),

    and

    lims0s2(1λ+λμμκ)+μ(Iμ0+p)(s)=0,limss2(1λ+λμμκ)+μ(1+s2)(Iμ0+p)(s)=0.

    (H3) For every gY, G(,g) is Es-measurable on (0,), and for all s(0,), G(s,) is continuous.

    (H4) There exists a function q:(0,)(0,) such that for all gY and all s(0,),

    (I2μ10+q)(s)C((0,),(0,)),Es0G(l,g(l))dl2q(s),

    and

    lims0s2(1λ+λμμκ)(I2μ10+q)(s)=0,limss2(1λ+λμμκ)(1+s2)(I2μ10+q)(s)=0.

    (H5) ϖ:(0,)×YY is a continuous function, and there exists Kϖ>0 such that ϖ is a Y-valued function and satisfies

    Eϖ(s,g(s))2Kϖs1λ+λμμκ(1+g2), gY, s(0,).

    Define Cμ((0,),L2(Ξ,Y))={gC((0,),L2(Ξ,Y)):lims0+s(1λ)(1μ)g(s) exists and is finite, limsEs(1λ)(1μ)g(s)(1+s)2=0}, equipped with norm

    g(s)2μ=(sups[0,)Es1λ+λμμκg(s)1+s2)12.

    Thus, (Cμ((0,),L2(Ξ,Y)),2μ) is a Hilbert space. For each gCμ((0,),L2(Ξ,Y)) and for any s(0,), define the operator Σ by

    (Σg)(s)=(Σ1g)(s)+(Σ2g)(s),

    where

    (Σ1g)(s)=Oλ,μ[g0ϖ(0,g(0))]+ϖ(s,g(s)),(Σ2g)(s)=s0Pμ(sl)F(l,g(l))dl+s0Pμ(sl)l0G(ω,g(ω))dW(ω)dl.

    Clearly, the neutral stochastic HF-system (1.1) has a mild solution gCμ((0,),L2(Ξ,Y)) if and only if Σ has a fixed-point gCμ((0,),L2(Ξ,Y)).

    For each xCμ((0,),L2(Ξ,Y)), we set

    g(s)=s1λ+λμμκx(s),s(0,).

    Clearly, gCμ((0,),L2(Ξ,Y)).

    We now define the operator by

    (x)(s)=(1x)(s)+(2x)(s),

    where

    (1x)(s)={s1λ+λμμκ(Σ1g)(s),for s(0,),0,s=0,

    and

    (2x)(s)={s1λ+λμμκ(Σ2g)(s),for s(0,),0,s=0.

    By using (H2) and (H4), we claim that there exists r>0 such that the inequality

    sups(0,){8K22(1+s)2[Eg02+K2ϖ(1+g02)]+4K2ϖ(1+s)2s2(1λ+λμμκ)(1+g2)+4K21μκ(1+s)2s2(1λ+λμμκ)+μκs0(sl)μκ1p(l)dl+4Tr(Q)K21s2(1λ+λμμκ)(1+s)2s0(sl)2(μκ1)q(l)dl}r

    holds.

    Let g(s)=s1λ+λμμκx(s). Define

    Φ1={x:xC([0,),L2(Ξ,Y)), Ex2r},ˆΦ1={g:gCμ((0,),L2(Ξ,Y)), Eg2r}.

    It is clear that Φ1 is a non-empty, closed, and convex subset of C([0,),L2(Ξ,Y)). ˆΦ1 is a closed, convex and non-empty set of Cμ((0,),L2(Ξ,Y), and gˆΦ1 whenever xΦ1.

    Let

    D:={z:z(s)=(x)(s)1+s, xΦ1}.

    We must establish the next lemmas in order to establish the main theorems of this paper.

    Lemma 3.1. If (H1)(H5) are satisfied, then, D is equicontinuous.

    Proof. We follow some steps.

    Step 1: We prove D1:={z:z(s)=(1x)(s)1+s, xΦ1} is equicontinuous.

    We have,

    s1λ+λμμκOλ,μ(s)[g0ϖ(0,g(0))]+ϖ(s,g(s))=s1λ+λμμκΓ(λ(1μ))s0(sl)λ(1μ)1lμ1Qμ(l)[g0ϖ(0,g(0))]dl+ϖ(s,g(s))=10(1v)λ(1μ)1vμ1sμ(1κ)Qμ(sv)[g0ϖ(0,g(0))]dv+ϖ(s,g(s)).

    Noting that lims0+sμ(1κ)Qμ(sv)[g0ϖ(0,g(0))]+ϖ(s,g(s)) and 10(1v)λ(1μ)1vμ1dv are finite, we have

    lims0+s1λ+λμμκOλ,μ(s)[g0ϖ(0,g(0))]+ϖ(s,g(s))=0.

    Thus, from the aforesaid equality, when s1=0,s2(0,), it follows that

    E(1x)(s2)1+s2(1x)(0)2E11+s2s1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))020,

    as s20.

    Furthermore, for any 0<s1<s2<, using the elementary inequality, we get

    E(1x)(s2)1+s2(1x)(s1)1+s12Es1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))1+s2s1λ+λμμκ1Oλ,μ(s1)[g0ϖ(0,g(0))]+ϖ(s,g(s))1+s122Es1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))1+s2s1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))1+s12+2Es1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))1+s1s1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))1+s122Es1λ+λμμκ1Oλ,μ(s1)[g0ϖ(0,g(0))]+ϖ(s,g(s))2(s2s1(1+s2)(1+s1))2+2Es1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))s1λ+λμμκ1Oλ,μ(s1)[g0ϖ(0,g(0))]+ϖ(s,g(s))2(11+s1)22Es1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))2(s2s1(1+s2)(1+s1))2+4Es1λ+λμμκ2[Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))Oλ,μ(s1)[g0ϖ(0,g(0))]+ϖ(s,g(s))]2(s2s1(1+s2)(1+s1))2+4E[s1λ+λμμκ2s1λ+λμμκ1]Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))2(s2s1(1+s2)(1+s1))20, as s2s1.

    Thus, D1:={z:z(s)=(1x)(s)1+s, xΦ1} is equicontinuous.

    Step 2: Next we prove that D2:={z:z(s)=(2x)(s)1+s, xΦ1} is equicontinuous.

    For every ϵ>0, one may write

    E(2x)(s2)1+s2(2x)(s1)1+s124Es1λ+λμμκ21+s2s20Pμ(s2l)F(l,g(l))dl2+4Es1λ+λμμκ21+s2s20Pμ(s2l)l0G(ω,g(ω))dW(ω)dl2+4Es1λ+λμμκ11+s1s10Pμ(s1l)F(l,g(l))dl2+4Es1λ+λμμκ11+s1s10Pμ(s1l)l0G(ω,g(ω))dW(ω)dl24(K1s1λ+λμμκ21+s2)2s20(s2l)2(μκ1)p(l)dl+4Tr(Q)(K1s1λ+λμμκ21+s2)2s20(s2l)2(μκ1)q(l)dl+4(K1s1λ+λμμκ11+s1)2s10(s1l)2(μκ1)p(l)dl+4Tr(Q)(K1s1λ+λμμκ11+s1)2s10(s1l)2(μκ1)q(l)dl<ϵ.

    When s1=0, 0<s2T, by using the hypotheses (H2) and (H4), we have

    E(2x)(s2)1+s2(2x)(0)22Es1λ+λμμκ21+s2s20Pμ(s2l)F(l,g(l))dl2+2Es1λ+λμμκ21+s2s20Pμ(s2l)l0G(ω,g(ω))dW(ω)dl24(K1s1λ+λμμκ21+s2)2s20(s2l)2(μκ1)p(l)dl+4Tr(Q)(K1s1λ+λμμκ21+s2)2s20(s2l)2(μκ1)q(l)dl0, as s20.

    When 0<s1<s2T, we obtain

    E(2x)(s2)1+s2(2x)(s1)1+s128Es1λ+λμμκ11+s1s2s1(s2l)μ1Qμ(s2l)F(l,g(l))dl2+8Es1λ+λμμκ11+s1s10[(s2l)μ1(s1l)μ1]Qμ(s2l)F(l,g(l))dl2+8Es1λ+λμμκ11+s1s10(s1l)μ1[Qμ(s2l)Qμ(s1l)]F(l,g(l))dl2+8E[s1λ+λμμκ21+s2s1λ+λμμκ11+s1]s20(s2l)μ1Qμ(s2l)F(l,g(l))dl2+8Es1λ+λμμκ11+s1s2s1(s2l)μ1Qμ(s2l)l0G(ω,g(ω))dW(ω)dl2+8Es1λ+λμμκ11+s1s10[(s2l)μ1(s1l)μ1]Qμ(s2l)l0G(ω,g(ω))dW(ω)dl2+8Es1λ+λμμκ11+s1s10(s1l)μ1[Qμ(s2l)Qμ(s1l)]l0G(ω,g(ω))dW(ω)dl2+8E[s1λ+λμμκ21+s2s1λ+λμμκ11+s1]s20(s2l)μ1Qμ(s2l)l0G(ω,g(ω))dW(ω)dl288j=1Sj,

    where

    S1=K21(s1λ+λμμκ11+s1)2s2s1(s2l)2(μκ1)p(l)dl,S2=K21(s1λ+λμμκ11+s1)2s20(s2l)μ1(s1l)μ12(s2l)2μ(κ1)p(l)dl,S3=(s1λ+λμμκ11+s1)2s10(s1l)μ1Qμ(s2l)Qμ(s1l)2EF(l,g(l))2dl,S4=K21[s1λ+λμμκ21+s2s1λ+λμμκ11+s1]2s20(s2l)2(μκ1)p(l)dl,S5=Tr(Q)K21(s1λ+λμμκ11+s1)2s2s1(s2l)2(μκ1)q(l)dl,S6=Tr(Q)K21(s1λ+λμμκ11+s1)2s20(s2l)μ1(s1l)μ12(s2l)2μ(κ1)q(l)dl,S7=Tr(Q)(s1λ+λμμκ11+s1)2s10(s1l)μ1Qμ(s2l)Qμ(s1l)2El0G(l,g(l))dω2dl,S8=Tr(Q)K21[s1λ+λμμκ21+s2s1λ+λμμκ11+s1]2s20(s2l)2(μκ1)q(l)dl.

    By a straightforward calculation, we obtain

    S10 as s2s1.

    Since, (s2l)μ1(s1l)μ12(s2l)2μ(κ1)(s2l)2(μκ1), by using the Lebesgue dominated convergence theorem (LDCT), we obtain

    s20(s2l)μ1(s1l)μ12p(l)dl0 as s2s1.

    Thus, S20 as s2s1.

    By (H2), for ϵ>0, we have

    S3(s1λ+λμμκ11+s1)2s1ϵ0(s1l)μ1Qμ(s2l)Qμ(s1l)2EF(l,g(l))2dl+(s1λ+λμμκ11+s1)2ϵμμs1s1ϵ(s1l)μ1Qμ(s2l)Qμ(s1l)2EF(l,g(l))2dl(s1λ+λμμκ11+s1)2sμ1ϵμμs1ϵ0(s1l)μ1p(l)dlsupl[0,s1ϵ]Qμ(s2l)Qμ(s1l)2+2K1(s1λ+λμμκ11+s1)2ϵμμs1s1ϵ(s1l)μκ1p(l)dl,S31+S32+S33,

    where

    S31=(s1λ+λμμκ11+s1)2sμ1ϵμμs1ϵ0(s1l)μ1p(l)dlsupl[0,s1ϵ]Qμ(s2l)Qμ(s1l)2S32=2K1(s1λ+λμμκ11+s1)2ϵμμs10(s1l)μκ1p(l)dls1ϵ0(s1ϵl)μκ1p(l)dl,S33=2K1(s1λ+λμμκ11+s1)2ϵμμs1ϵ0(s1ϵl)μκ1(s1l)μκ1p(l)dl.

    From Lemma 2.13, we conclude that S310 as s2s1. Using the corresponding deductions in relation to the proofs of S1,S20, we obtain S320 and S330 as ϵ0. Hence, S30 as s2s1. We can also derive that S40 as s2s1 by the continuity of (s1λ+λμμκ11+s1)2 with respect to s. For the terms S5,,S8, we can show that S5,,S80 as s2s1 by the similar proofs of S1,,S40 as s2s1, respectively.

    Let 0s1<T<s2. When s2s1, then s2T and s1T hold, simultaneously. So, for any xΦ1,

    E(2x)(s2)1+s2(2x)(s1)1+s122E(2x)(s2)1+s2(2x)(T)1+T2+E(2x)(T)1+T(2x)(s1)1+s12,

    holds. So we have,

    E(2x)(s2)1+s2(2x)(s1)1+s120, as s2s1.

    Hence, D2:={z:z(s)=(2x)(s)1+s, xΦ1} is equicontinuous. As a consequence, D=D1+D2 is equicontinuous. Hence, the proof is ended.

    Lemma 3.2. If (H1)(H5) are satisfied, then, for all xΦ1, limsE(x)(s)1+s2=0 uniformly.

    Proof. Indeed, for any xΦ1, by using Lemma 2.12 and the assumptions (H2), (H4), and (H5), we obtain

    E(x)(s)24Es1λ+λμμκOλ,μ[g0ϖ(0,g(0))]2+4Es(1λ)(1μ)ϖ(s,g(s))2+4Es(1λ)(1μ)s0Pμ(sl)F(l,g(l))dl2+4Es(1λ)(1μ)s0Pμ(sl)l0G(ω,g(ω))dW(ω)dl28K22[Eg02+K2ϖ(1+g02)]+4K2ϖs2(1λ+λμμκ)(1+g2)+4K21μκs2(1λ+λμμκ)+μκs0(sl)μκ1p(s)dl+4Tr(Q)K21s2(1λ+λμμκ)s0(sl)2(μκ1)q(s)dl.

    Dividing both sides of the above inequalities by (1+s)2, we obtain

    E(x)(s)1+s28K22(1+s)2[Eg02+K2ϖ(1+g02)]+4K2ϖ(1+s)2s2(1λ+λμμκ)(1+g2)+4K21μκ(1+s)2s2(1λ+λμμκ)+μκs0(sl)μκ1p(l)dl+4Tr(Q)K21s2(1λ+λμμκ)(1+s)2s0(sl)2(μκ1)q(l)dl0, as s, (3.1)

    which proves that for any xΦ1, limsE(x)(s)1+s2=0 holds uniformly.

    Lemma 3.3. If (H1)(H5) are satisfied, then Φ1Φ1.

    Proof. For the case s>0, by Eq (3.1), we have

    E(x)(s)1+s28K22(1+s)2[Eg02+K2ϖ(1+g02)]+4K2ϖ(1+s)2s2(1λ+λμμκ)(1+g2)+4K21μκ(1+s)2s2(1λ+λμμκ)+μκs0(sl)μκ1p(s)dl+4Tr(Q)K21s2(1λ+λμμκ)(1+s)2s0(sl)2(μκ1)q(s)dlr.

    For the case s=0, we have

    E(x)(0)1+02=E(x)(0)28K22[Eg02+K2ϖ(1+g02)]r.

    As a consequence, Φ1Φ1.

    Lemma 3.4. If (H1)(H5) are satisfied, then is continuous.

    Proof. Let the sequence {xm}m=1 be in Φ1 and convergent to xΦ1. In this case, it follows that limmExm(s)2=Ex(s)2 and limmEs1+λλμ+μκxm(s)2=Es1+λλμ+μκx(s)2, for s(0,).

    We assume g(s)=s1+λλμ+μκx(s), gm(s)=s1+λλμ+μκxm(s),s(0,). Then, clearly g,gmΦ1. According to (H1) and (H3), we get limmEF(s,gm(s))2=EF(s,s1+λλμ+μκgm(s))2=EF(s,s1+λλμ+μκg(s))2=EF(s,gm(s))2 and limmEG(s,gm(s))2=EG(s,s1+λλμ+μκgm(s))2=EG(s,s1+λλμ+μκg(s))2=EG(s,gm(s))2.

    From (H2), for all s(0,), we obtain

    (sl)μκ1EF(l,gm(l))F(l,g(l))22(sl)μκ1p(l), a.e. in [0,s).

    Moreover, since 2(sl)μκ1p(l) is integrable for l[0,s) and s[0,), the LDCT enables us to claim that

    s0(sl)μκ1EF(l,gm(l))F(l,g(l))2dl0 as m.

    Identically, by using (H4) and LDCT, we obtain

    s0(sl)2(μκ1)E[l0G(ω,gm(ω))dW(ω)l0G(ω,g(ω))dW(ω)]2dl0 as m.

    Thus, for s[0,), we have

    E(xm)(s)1+s(x)(s)1+s22s2(1λ+λμμκ)(1+s)2Es0Pμ(sl)[F(l,gm(l))F(l,g(l))]dl2+2s2(1λ+λμμκ)(1+s)2Es0Pμ(sl)[l0G(ω,gm(ω))dW(ω)l0G(ω,g(ω))dW(ω)]dl22K1s2(1λ+λμμκ)(1+s)2s0(sl)μκ1dls0(sl)μκ1EF(l,gm(l))F(l,g(l))2dl+2K1Tr(Q)s2(1λ+λμμκ)(1+s)2s0(sl)2(μκ1)El0G(ω,gm(ω))dωl0G(ω,g(ω))dω2dl0 as m.

    Hence, xmx0 as m; i.e., is continuous.

    We are now prepared to present and support our first theorem about the mild solutions of the neutral stochastic HF-system (1.1).

    Theorem 3.5. Assume that the semigroup operator O(s) is compact, for every s>0. If (H1)(H5) are satisfied, then (i) there exist some mild solutions in ˆΦ1 for the given neutral stochastic HF-system (1.1) ; (ii) all mild solutions of (1.1) are attractive.

    Proof. (ⅰ) According to the properties of and Σ, we know that the neutral stochastic HF-system (1.1) possesses a mild solution gˆΦ1 if has a fixed-point xΦ1, where x(s)=s1λ+λμμκg(s). We have to prove that has a fixed-point in Φ1. In fact, from Lemmas 3.3 and 3.4, we already have that maps Φ1 into itself and is continuous on Φ1. To demonstrate that is completely continuous, we have to show that the set Φ1 is relatively compact. According to Lemmas 3.1 and 3.2, the set D:={z:z(s)=(x)(s)1+s, xΦ1} is equicontinuous, and for any xΦ1, limsE(x)(s)1+s2=0 satisfies uniformly. From Lemma 2.14, for each s[0,), we prove D:={z:z(s)=(x)(s)1+s, xΦ1} is relatively compact in L2(Ξ,Y). It is obvious that D(0) is relatively compact in L2(Ξ,Y). Therefore, we just need to investigate the case s(0,). For any ϵ(0,s) and γ>0, we consider ϵ,γ on Φ1 in the form:

    (ϵ,γx)(s):=s1λ+λμμκ(Σϵ,γg)(s)=s1λ+λμμκ{Oλ,μ[g0ϖ(0,g(0))]+ϖ(s,g(s))+sϵ00μϑ(sl)μ1Mμ(ϑ)T((sl)μϑ)F(l,g(l))dϑdl+sϵ00μϑ(sl)μ1Mμ(ϑ)T((sl)μϑ)l0G(ω,g(ω))dW(ω)dϑdl}.

    Thus,

    (ϵ,γx)(s)1+s=s1λ+λμμκ1+s{Oλ,μ[g0ϖ(0,g(0))]+ϖ(s,g(s))+T(ϵμγ)sϵ00μϑ(sl)μ1Mμ(ϑ)T((sl)μϑϵμγ)F(l,g(l))dϑdl+T(ϵμγ)sϵ00μϑ(sl)μ1Mμ(ϑ)T((sl)μϑϵμγ)l0G(ω,g(ω))dW(ω)dϑdl}.

    Since the semigroup O(s) is compact for any s>0, so Oλ,μ(s) is also compact. Furthermore, T(ϵμγ) is compact. Then for all ϵ(0,s) and for any γ>0, the set {(ϵ,γx)(s)1+s, xΦ1} is relatively compact in L2(Ξ,Y). From (H2) and (H4) and Lemma 2.12, for each xΦ1, we derive that

    E(x)(s)1+s(ϵ,γx)(s)1+s24Es2(1λ+λμμκ)(1+s)2s0γ0μϑ(sl)μ1Mμ(ϑ)T((sl)μϑ)F(l,g(l))dϑdl2+4Es2(1λ+λμμκ)(1+s)2s0γ0μϑ(sl)μ1Mμ(ϑ)T((sl)μϑ)l0G(ω,g(ω))dW(ω)dϑdl2+4Es2(1λ+λμμκ)(1+s)2ssϵγμϑ(sl)μ1Mμ(ϑ)T((sl)μϑ)F(l,g(l))dϑdl2+4Es2(1λ+λμμκ)(1+s)2ssϵγμϑ(sl)μ1Mμ(ϑ)T((sl)μϑ)l0G(ω,g(ω))dW(ω)dϑdl24(μK)2s2(1λ+λμμκ)(1+s)2s0(sl)μ1dls0(sl)μ1p(l)dl(γ0ϑMμ(ϑ)dϑ)2+4(μK)2Tr(Q)s2(1λ+λμμκ)(1+s)2s0(sl)2(μ1)p(l)dl(γ0ϑMμ(ϑ)dϑ)2+4(μK)2s2(1λ+λμμκ)(1+s)2ssϵ(sl)μ1dlssϵ(sl)μ1p(l)dl(0ϑMμ(ϑ)dϑ)2+4(μK)2Tr(Q)s2(1λ+λμμκ)(1+s)2ssϵ(sl)2(μ1)p(l)dl(0ϑMμ(ϑ)dϑ)24μK2s2(1λ+λμμκ)(1+s)2s0(sl)μ1p(l)dl(γ0ϑMμ(ϑ)dϑ)2+4(μK)2Tr(Q)s2(1λ+λμμκ)(1+s)2s0(sl)2(μ1)p(l)dl(γ0ϑMμ(ϑ)dϑ)2+4μK2s2(1λ+λμμκ)(1+s)2ssϵ(sl)μ1p(l)dl(1Γ(μ+1))2+4(μK)2Tr(Q)s2(1λ+λμμκ)(1+s)2ssϵ(sl)2(μ1)p(l)dl(1Γ(μ+1))20 as ϵ0,γ0.

    Therefore, \mathcal{D}(\mathfrak{s}) is also a relatively compact set in L_2(\Xi, \mathscr{Y}) for \mathfrak{s}\in [0, \infty) . Now, the Schauder's fixed point theorem implies that \mho has at least a fixed-point \mathsf{x}^*\in \Phi_1 . Let \mathfrak{g}^*(\mathfrak{s}) = \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}^*(\mathfrak{s}) . From the relationship between \Sigma and \mho , we have

    \begin{align*} \mathfrak{g}^*(\mathfrak{s})& = \mathscr{O}_{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}^*(\mathfrak{s}))+\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}^*(\mathfrak{l}))d\mathfrak{l}\nonumber\\[0.3cm] & \quad+\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}^*(\omega))dW(\omega)d\mathfrak{l},\quad \mathfrak{s}\in [0,\infty), \end{align*}

    which shows that \mathfrak{g}^* is a mild solution of the neutral stochastic HF-system (1.1).

    (ⅱ) If \mathfrak{g}(\mathfrak{s}) is a mild solution of the neutral stochastic HF-system (1.1), then

    \begin{align*} \mathfrak{g}(\mathfrak{s})& = \mathscr{O}_{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))+\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\mathfrak{l}\nonumber\\[0.3cm] & \quad+\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)d\mathfrak{l},\quad \mathfrak{s}\in [0,\infty). \end{align*}

    By (H_2) , (H_4) , and (H_5) , noting that -1+\lambda-\lambda\mu+\mu\kappa < 0 , we obtain

    \begin{align*} E\|\mathfrak{g}(\mathfrak{s})\|^2&\leq 8\mathcal{K}_2^2[E\|\mathfrak{g}_0\|^2+\mathcal{K}_{\varpi}^2(1+\|\mathfrak{g}_0\|^2)]+4\mathcal{K}_\varpi^2\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}(1+\|\mathfrak{g}\|^2)\\[0.3cm] & \quad +\frac{4\mathcal{K}_1^2}{\mu\kappa}\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)+\mu\kappa}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{s})d\mathfrak{l}\\[0.3cm] & \quad +4Tr(Q)\mathcal{K}_1^2\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\mathfrak{q}(\mathfrak{s})d\mathfrak{l}\rightarrow 0,\ \text{as}\ \mathfrak{s}\rightarrow \infty. \end{align*}

    Immediately, we can conclude that \mathfrak{g}(\mathfrak{s}) is an attractive solution which completes the proof.

    We assume that the subsequent hypothesis is true to demonstrate the existence results when the semigroup operator \{\mathscr{O}(\mathfrak{s})\}_{\mathfrak{s} > 0} is noncompact.

    (H_6) There exists a constant \mathscr{L} > 0 such that for every bounded set D\subset \mathscr{Y} , \alpha(\mathcal{F}(\mathfrak{s}, D))\vee \alpha(\int_0^{\mathfrak{l}}\mathit{G}(\mathfrak{l}, D))\leq \mathscr{L}\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}\alpha(D) , for a.e. \mathfrak{s}\in [0, \infty) .

    Theorem 3.6. Assume the semigroup operator \mathscr{O}(\mathfrak{s}) is noncompact for any \mathfrak{s} > 0 . If (H_1) (H_6) are satisfied, then

    (i) there exists at least one mild solution in \widehat{\Phi}_1 for the neutral stochastic HF-system (1.1);

    (ii) all these mild solutions are attractive.

    Proof. (ⅰ) We set \mathsf{x}_0(\mathfrak{s}) = \mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}\mathscr{O}_{\lambda, \mu}(\mathfrak{s})\mathfrak{g}_0, \ \mathfrak{s}\in [0, \infty) and \mathsf{x}_{m+1} = \mho\mathsf{x}_m, \ m = 0, 1, 2, \cdots . From Lemma 3.3, \mho\mathsf{x}_m\subset \Phi_1 whenever \mathsf{x}_m\in \Phi_1, \ m = 0, 1, 2, \cdots . Define \widehat{\mathcal{D}} = \{\mathrm{z}_m:\mathrm{z}_m(\mathfrak{s}) = \dfrac{(\mho\mathsf{x}_m)(\mathfrak{s})}{1+\mathfrak{s}}, \ \mathsf{x}_m\in \Phi_1\}_{m = 0}^{\infty} . We have to show that set \widehat{\mathcal{D}} is relatively compact.

    According to Lemmas 3.1 and 3.2, we already know that \widehat{\mathcal{D}} is equicontinuous, and for \mathsf{x}_m\in \Phi_1, \ \lim\limits_{\mathfrak{s}\rightarrow \infty}E\|\dfrac{(\mho\mathsf{x}_m)(\mathfrak{s})}{1+\mathfrak{s}}\|^2 = 0 uniformly. From Lemma 2.14, we have to show

    \widehat{\mathcal{D}} = \{\mathrm{z}_m:\mathrm{z}_m(\mathfrak{s}) = \dfrac{(\mho\mathsf{x})_m(\mathfrak{s})}{1+\mathfrak{s}},\ \mathsf{x}_m\in \Phi_1\}_{m = 0}^{\infty}

    is relatively compact in L^2(\Xi, \mathscr{Y}) .

    By Lemmas 2.6 and 2.12, along with the condition (H_6) , we obtain

    \begin{align*} &\quad \alpha\bigg(\bigg\{\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))d\mathfrak{l}\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] &\leq 2\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\alpha\bigg(\mathcal{F}\bigg(\mathfrak{l},\bigg\{\mathfrak{l}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{l})\bigg\}_{m = 0}^{\infty}\bigg)\bigg)d\mathfrak{l}\\[0.3cm] &\leq 2\mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{l}^{1-\lambda+\lambda\mu-\mu\kappa}\alpha\bigg(\bigg\{\mathfrak{l}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{l})\bigg\}_{m = 0}^{\infty}\bigg)d\mathfrak{l}\\[0.3cm] &\leq 2\mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}(1+\mathfrak{l})\alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{l})}{1+\mathfrak{l}}\bigg\}_{m = 0}^{\infty}\bigg)d\mathfrak{l}. \end{align*}

    On the other side, for all \mathfrak{g}, v\in \mathscr{Y} , from Lemmas 2.6 and 2.12, we obtain

    \begin{align*} &\quad\bigg\|\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\bigg[\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))-\int_0^{\mathfrak{l}}\mathit{G}(\omega,v(\omega))\bigg]dW(\omega)\bigg\|\\[0.3cm] &\leq \mathcal{K}_1\bigg(\bigg\|\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}[\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))-\int_0^{\mathfrak{l}}\mathit{G}(\omega,v(\omega))]dW(\omega)\bigg\|^2\bigg)^{\frac{1}{2}}\\[0.3cm] &\leq \mathcal{K}_1Tr(Q)\bigg(\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)} \mathcal{K}_1\bigg\|\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))-\int_0^{\mathfrak{l}}\mathit{G}(\omega,v(\omega)) \mathcal{K}_1\bigg\|^2d\omega\bigg)^{\frac{1}{2}}. \end{align*}

    Thus, one has

    \begin{align*} &\quad\alpha\bigg(\bigg\{\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] &\leq \mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\bigg[\alpha\bigg(\mathit{G}\bigg(\mathfrak{l},\bigg\{\mathfrak{l}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{l})\bigg\}_{m = 0}^{\infty}\bigg)\bigg)\bigg]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}\\[0.3cm] &\leq \mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\mathfrak{l}^{2(1-\lambda+\lambda\mu-\mu\kappa)}\bigg[\alpha\bigg(\bigg\{\mathfrak{l}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{l})\bigg\}_{m = 0}^{\infty}\bigg)\bigg]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}\\[0.3cm] &\leq \mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}(1+\mathfrak{l})^2\bigg[\alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{l})}{1+\mathfrak{l}}\bigg\}_{m = 0}^{\infty}\bigg)\bigg]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}. \end{align*}

    The above estimates yield that

    \begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))& = \alpha\bigg(\bigg\{\frac{(\mho\mathsf{x})_m(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] & = \alpha\bigg(\bigg\{\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\mathscr{O}{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}_m(\mathfrak{s}))\\[0.3cm] & \quad+\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))d\mathfrak{l}\\[0.3cm] &\quad+\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)d\mathfrak{l}\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] & = \alpha\bigg(\bigg\{\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))d\mathfrak{l}\\[0.3cm] &\quad+\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)d\mathfrak{l}\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] & = 2\mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}(1+\mathfrak{l})\alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{l})}{1+\mathfrak{l}}\bigg\}_{m = 0}^{\infty}\bigg)d\mathfrak{l}\\[0.3cm] &\quad +\mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}(1+\mathfrak{l})^2\bigg[\alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{l})}{1+\mathfrak{l}}\bigg\}_{m = 0}^{\infty}\bigg)\bigg]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}. \end{align*}

    For any \mathfrak{s}\in [0, \infty) , from Lemma 2.5, one can derive that

    \begin{align*} \alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}_{m = 0}^{\infty}\bigg) = \alpha\bigg(\bigg\{\frac{\mathsf{x}_0(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}\cup\bigg\{\frac{\mathsf{x}_m(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}_{m = 1}^{\infty}\bigg) = \alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}_{m = 1}^{\infty}\bigg) = \alpha(\widehat{\mathcal{D}}(\mathfrak{s})). \end{align*}

    Hence, we deduce that

    \begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))&\leq 2\mathscr{L}\mathcal{K}_1\mathcal{M}^*\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}(1+\mathfrak{l})\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))d\mathfrak{l}\\[0.3cm] &\quad +\mathscr{L}\mathcal{K}_1\mathcal{M}^*\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}(1+\mathfrak{l})^2[\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}\\[0.3cm] & = M_1+M_2, \end{align*}

    where \mathcal{M}^* = \max\limits_{\mathfrak{s}\in [0, \infty)}\bigg\{\dfrac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg\} .

    If M_1 > M_2 , from the estimates above, we have

    \begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))&\leq 4\mathscr{L}\mathcal{K}_1\mathcal{M}^*\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}(1+\mathfrak{l})\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))d\mathfrak{l}. \end{align*}

    Therefore, by a similar estimation, one of the inequalities

    \begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))&\leq 8\mathscr{L}\mathcal{K}_1\mathcal{M}^*\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))d\mathfrak{l}, \end{align*}

    or

    \begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))&\leq 8\mathscr{L}\mathcal{K}_1\mathcal{M}^*\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{l}\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))d\mathfrak{l} \end{align*}

    holds. As a result, the inequality, in ([46], p. 188), enables us to claim that \alpha(\widehat{\mathcal{D}}(\mathfrak{s})) = 0 .

    If M_1 < M_2 , a standard calculation yields that

    \begin{align*} \big(\alpha(\widehat{\mathcal{D}}(\mathfrak{s}))\big)^2\leq (2\mathscr{L}\mathcal{K}_1\mathcal{M}^*)^2\bigg(2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}(1+\mathfrak{l})^2[\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))]^2d\mathfrak{l}\bigg). \end{align*}

    We may also conclude that \alpha(\widehat{\mathcal{D}}(\mathfrak{s})) = 0 by using an analogous argument to the first scenario. Therefore, \widehat{\mathcal{D}}(\mathfrak{s}) is relatively compact. Lemma 2.14, finally, gives this fact that the set \widehat{\mathcal{D}} is relatively compact. A subsequence of \{\mathsf{x}_m\}_{m = 0}^{\infty} exists so that it is convergent to, say, \mathsf{x}^* , i.e., \lim_{m\rightarrow \infty}\mathsf{x}_m = \mathsf{x}^*\in \Phi_1 . Thus, the continuity of the operator \mho enables us to declare that

    \begin{align*} \mathsf{x}^* = \lim\limits_{m\rightarrow \infty}\mathsf{x}_m = \lim\limits_{m\rightarrow \infty}\mho\mathsf{x}_{m-1} = \mho(\lim\limits_{m\rightarrow \infty}\mathsf{x}_{m-1}) = \mho\mathsf{x}^*. \end{align*}

    Let \mathfrak{g}^*(\mathfrak{s}) = \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}^*(\mathfrak{s}) . Thus, \mathfrak{g}^* is a fixed-point of \Sigma , which will be the mild solution of the neutral stochastic HF-system (1.1).

    (ⅱ) This proof is similar to (ⅱ) in Theorem 3.5.

    By Theorems 3.5 and 3.6, we have a corollary.

    Corollary 3.7. Assume that the semigroup operator \mathscr{O}(\mathfrak{s}) is compact for any \mathfrak{s} > 0 and assumptions (H_1) and (H_3) are fulfilled.

    (H_7) There exist a function \mathfrak{p}:(0, \infty)\rightarrow (0, \infty) and constants \chi\in (0, 1), \ \mathscr{N} > 0 such that for any \mathfrak{g}\in \mathscr{Y}, \ \mathfrak{s}\in (0, \infty) ,

    (I_{0+}^{\mu}\mathfrak{p})(\mathfrak{s})\in C((0,\infty),(0,\infty)),\ \mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)+\mu}(I_{0+}^{\mu}\mathfrak{p})(\mathfrak{s})\leq \mathscr{N}\mathfrak{s}^{2\chi},

    and

    E\|\mathcal{F}(\mathfrak{s},\mathfrak{g})\|^2\leq \mathfrak{p}(\mathfrak{s}).

    (H_8) There exist a function \mathfrak{q}:(0, \infty)\rightarrow (0, \infty) and constants \widehat{\chi}\in (0, 1), \ \widehat{\mathscr{N}} > 0 such that for any \mathfrak{g}\in \mathscr{Y}, \ \mathfrak{s}\in (0, \infty) ,

    (I_{0+}^{2\mu-1}\mathfrak{q})(\mathfrak{s})\in C((0,\infty),(0,\infty)),\ \mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}(I_{0+}^{2\mu-1}\mathfrak{q})(\mathfrak{s})\leq \widehat{\mathscr{N}}\mathfrak{s}^{2\widehat{\chi}},

    and

    E\|\int_0^{\mathfrak{s}}\mathit{G}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\mathfrak{l}\|^2\leq \mathfrak{q}(\mathfrak{s}).

    Then, there exists at least one mild solution in \widehat{\Phi}_1 for the neutral stochastic HF-system (1.1).

    Corollary 3.8. Suppose that the semigroup operator \mathscr{O}(\mathfrak{s}) is noncompact for all \mathfrak{s} > 0 . If (H_1) , (H_3) , (H_7) , (H_8) , and (H_6) are hold, then one can find at least one mild solution in \widehat{\Phi}_1 to the neutral stochastic HF-system (1.1).

    Consider the following HF neutral stochastic evolution integro-differential system on an infinite interval:

    \begin{align} \begin{cases} ^{H}D_{0+}^{\mu}[\mathfrak{g}(\mathfrak{s})-w(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))] = \mathcal{A}[\mathfrak{g}(\mathfrak{s})-w(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))]+f(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))+ \int_0^{\mathfrak{s}}g(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))dW(\mathfrak{l}),\\[0.2cm] I_{0+}^{1-\mu}\mathfrak{g}(0) = \mathfrak{g}_0,\; \; \; \; \; \mathfrak{s}\in (0,\infty), \end{cases} \end{align} (4.1)

    where f(\mathfrak{s}, \mathfrak{g}(\mathfrak{s})) and \int_0^{\mathfrak{s}}g(\mathfrak{l}, \mathfrak{g}(\mathfrak{l}))dW(\mathfrak{l}) fulfill (H_1) and (H_3) , respectively, and the constants \zeta, \beta > 0 exist such that E\|f(\mathfrak{s}, \mathfrak{g}(\mathfrak{s}))\|^2\leq \mathfrak{s}^{-\zeta}, \ E\| \int_0^{\mathfrak{s}}g(\mathfrak{l}, \mathfrak{g}(\mathfrak{l}))d\mathfrak{l}\|^2\leq \mathfrak{s}^{-\beta} for \zeta\in (\mu, 1), \ \beta\in (2\mu-1, 1) , and for \mathfrak{s}\in (0, \infty), \ \{\mathscr{O}(\mathfrak{s})\}_{\mathfrak{s}\geq 0} is compact.

    Let \mathfrak{p}(\mathfrak{s}) = \mathfrak{s}^{-\zeta}, \ \mathfrak{q}(\mathfrak{s}) = \mathfrak{s}^{-\beta} , for \mathfrak{s} > 0 . Then, it is easy to verify that

    \begin{align*} (I_{0+}^{\mu}\mathfrak{p})(\mathfrak{s})& = \frac{\Gamma(1-\zeta)}{\Gamma(1+\mu-\zeta)}\mathfrak{s}^{\mu-\zeta}\in C((0,\infty),(0,\infty)),\ \mathfrak{s}^{2(1-\mu)+\mu}(I_{0+}^{\mu}\mathfrak{p})(\mathfrak{s})\leq \mathscr{N}\mathfrak{s}^{2\chi},\\[0.3cm] (I_{0+}^{2\mu-1}\mathfrak{q})(\mathfrak{s})& = \frac{\Gamma(1-\beta)}{\Gamma(2\mu-\beta)}\mathfrak{s}^{2\mu-\beta-1}\in C((0,\infty),(0,\infty)),\ \mathfrak{s}^{2(1-\mu)}(I_{0+}^{2\mu-1}\mathfrak{q})(\mathfrak{s})\leq \widehat{\mathscr{N}}\mathfrak{s}^{2\widehat{\chi}}, \end{align*}

    where \chi = \dfrac{1}{2}(2-\zeta)\in (0, 1), \ \widehat{\chi} = \dfrac{1}{2}(1-\beta)\in (0, 1), \ \mathscr{N}\geq \dfrac{\Gamma(1-\zeta)}{\Gamma(1+\mu-\zeta)}\mathfrak{s}^{\mu-\zeta}, \widehat{\mathscr{N}}\geq \dfrac{\Gamma(1-\beta)}{\Gamma(2\mu-\beta)}\mathfrak{s}^{2\mu-\beta-1} , which means that the conditions (H_7) and (H_8) are fulfilled. Further, it is easy to prove that 1-\dfrac{\mu}{2} > \dfrac{1}{2}(2-\zeta) = \chi and 1-\mu > \dfrac{1}{2}(1-\beta) = \widehat{\chi} . By Corollary 3.7, the neutral stochastic HF-system (4.1) has at least a mild solution and also an attractive solution.

    Remark 4.1. This result may also extend to the attractive solution for Hilfer fractional neutral stochastic differential equations with Poisson jump.

    In this paper, we proved that Hilfer fractional neutral stochastic integro-differential equations on an infinite interval with almost sectorial operators have global mild and attractive solutions, and that the corresponding semigroup is either compact or noncompact. We determined the Wright function, the measure of noncompactness, and several alternative criteria to ensure the worldwide existence of mild solutions to the HF-system (1.1) by using the generalized Ascoli-Arzela theorem. To demonstrate the acquired theoretical findings, an example was given. This result may also be used to study Hilfer fractional neutral stochastic integro-differential equations with impulses on an infinite interval and their approximate controllability.

    The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

    This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (grant no. 6041). This study is supported via funding from Prince Sattam bin Abdulaziz University, project number (PSAU/2024/R/1445).

    The authors declare no conflicts of interest.



    [1] A. Bodaghi, S. Goliaei, M. Salehi, The number of followings as an influential factor in rumor spreading, Appl. Math. Comput., 357 (2019), 167–184. https://doi.org/10.1016/j.amc.2019.04.005 doi: 10.1016/j.amc.2019.04.005
    [2] S. Z. Yu, Z. Y. Yu, H. J. Jiang, S. Yang, The dynamics and control of 2I2SR rumor spreading models in multilingual online social networks, Inform. Sci., 581 (2021), 18–41. https://doi.org/10.1016/j.ins.2021.08.096 doi: 10.1016/j.ins.2021.08.096
    [3] P. Luo, C. X. Wang, F. Guo, L. Luo, Factors affecting individual online rumor sharing behavior in the COVID-19 pandemic, Comput. Human Behav., 125 (2021), 106968. https://doi.org/10.1016/j.chb.2021.106968 doi: 10.1016/j.chb.2021.106968
    [4] D. J. Daley, D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. https://doi.org/10.1038/2041118a0 doi: 10.1038/2041118a0
    [5] D. P. Maki, Mathematical models and applications: with emphasis on the social, life, and management sciences, Upper Saddle River, NJ, USA: Prentice-Hall, 1973.
    [6] D. H. Zanette, Dynamics of rumor propagation on small-world networks, Phys. Rev. E, 65 (2002), 041908. https://doi.org/10.1103/PhysRevE.65.041908 doi: 10.1103/PhysRevE.65.041908
    [7] Y. Moreno, M. Nekovee, A. F. Pacheco, Dynamics of rumor spreading in complex networks, Phys. Rev. E, 69 (2004), 066130. https://doi.org/10.1103/PhysRevE.69.066130 doi: 10.1103/PhysRevE.69.066130
    [8] L. L. Xia, G. P. Jiang, B. Song, Y. R. Song, Rumor spreading model considering hesitating mechanism in complex social networks, Phys. A, 437 (2015), 295–303. https://doi.org/10.1016/j.physa.2015.05.113 doi: 10.1016/j.physa.2015.05.113
    [9] W. K. Chen, H. Zhang, P. Georgescu, T. Li, B. Zhang, Taming obstinate spreaders: the dynamics of a rumor spreading model incorporating inhibiting mechanisms and attitude adjustment, Comput. Appl. Math., 40 (2021), 125. https://doi.org/10.1007/s40314-021-01492-9 doi: 10.1007/s40314-021-01492-9
    [10] T. Y. Yuan, G. Guan, S. L. Shen, L. H. Zhu, Stability analysis and optimal control of epidemic-like transmission model with nonlinear inhibition mechanism and time delay in both homogeneous and heterogeneous networks, J. Math. Anal. Appl., 526 (2023), 127273. https://doi.org/10.1016/j.jmaa.2023.127273 doi: 10.1016/j.jmaa.2023.127273
    [11] L. H. Zhu, W. S. Liu, Z. D. Zhang, Delay differential equations modeling of rumor propagation in both homogeneous and heterogeneous networks with a forced silence function, Appl. Math. Comput., 370 (2020), 124925. https://doi.org/10.1016/j.amc.2019.124925 doi: 10.1016/j.amc.2019.124925
    [12] S. Z. Yu, Z. Y. Yu, H. J. Jiang, X. H. Mei, J. R. Li, The spread and control of rumors in a multilingual environment, Nonlinear Dyn., 100 (2020), 2933–2951. https://doi.org/10.1007/s11071-020-05621-7 doi: 10.1007/s11071-020-05621-7
    [13] Y. Y. Cheng, L. A. Huo, L. J. Zhao, Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination, Chaos Solitons Fract., 157 (2022), 111931. https://doi.org/10.1016/j.chaos.2022.111931 doi: 10.1016/j.chaos.2022.111931
    [14] L. A. Huo, L. Wang, X. M. Zhao, Stability analysis and optimal control of a rumor spreading model with media report, Phys. A, 517 (2019), 551–562. https://doi.org/10.1016/j.physa.2018.11.047 doi: 10.1016/j.physa.2018.11.047
    [15] W. Q. Pan, W. J. Yan, Y. H. Hu, R. M. He, L. B. Wu, Dynamic analysis of a SIDRW rumor propagation model considering the effect of media reports and rumor refuters, Nonlinear Dyn., 111 (2023), 3925–3936. https://doi.org/10.1007/s11071-022-07947-w doi: 10.1007/s11071-022-07947-w
    [16] H. M. Guo, X. F. Yan, Dynamic modeling and simulation of rumor propagation based on the double refutation mechanism, Inform. Sci., 630 (2023), 385–402. https://doi.org/10.1016/j.ins.2022.10.095 doi: 10.1016/j.ins.2022.10.095
    [17] H. M. Guo, X. F. Yan, Y. B. Niu, J. P. Zhang, Dynamic analysis of rumor propagation model with media report and time delay on social networks, J. Appl. Math. Comput., 69 (2023), 2473–2502. https://doi.org/10.1007/s12190-022-01829-5 doi: 10.1007/s12190-022-01829-5
    [18] M. Saeedian, M. Khalighi, N. Azimi-Tafreshi, G. R. Jafari, M. Ausloos, Memory effects on epidemic evolution: the susceptible-infected-recovered epidemic model, Phys. Rev. E, 95 (2017), 022409. https://doi.org/10.1103/PhysRevE.95.022409 doi: 10.1103/PhysRevE.95.022409
    [19] G. González-Parra, A. J. Arenas, B. M. Chen-Charpentier, A fractional order epidemic model for the simulation of outbreaks of influenza A(H1N1), Math. Methods Appl. Sci., 37 (2014), 2218–2226. https://doi.org/10.1002/mma.2968 doi: 10.1002/mma.2968
    [20] F. Alzahrani, O. A. Razzaq, D. U. Rehman, N. A. Khan, A. S. Alshomrani, M. Z. Ullah, Repercussions of unreported populace on disease dynamics and its optimal control through system of fractional order delay differential equations, Chaos Solitons Fract., 158 (2022), 111997. https://doi.org/10.1016/j.chaos.2022.111997 doi: 10.1016/j.chaos.2022.111997
    [21] H. Kheiri, M. Jafari, Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment, J. Comput. Appl. Math., 346 (2019), 323–339. https://doi.org/10.1016/j.cam.2018.06.055 doi: 10.1016/j.cam.2018.06.055
    [22] H. M. Ali, I. G. Ameen, Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions, Chaos Solitons Fract., 146 (2021), 110864. https://doi.org/10.1016/j.chaos.2021.110864 doi: 10.1016/j.chaos.2021.110864
    [23] J. J. Huo, H. Y. Zhao, Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks, Phys. A, 448 (2016), 41–56. https://doi.org/10.1016/j.physa.2015.12.078 doi: 10.1016/j.physa.2015.12.078
    [24] E. O. Alzahrani, M. A. Khan, Modeling the dynamics of Hepatitis E with optimal control, Chaos Solitons Fract., 116 (2018), 287–301. https://doi.org/10.1016/j.chaos.2018.09.033 doi: 10.1016/j.chaos.2018.09.033
    [25] X. S. Cui, D. Y. Xue, F. Pan, Dynamic analysis and optimal control for a fractional-order delayed SIR epidemic model with saturated treatment, Eur. Phys. J. Plus, 137 (2022), 1–18. https://doi.org/10.1140/epjp/s13360-022-02810-8 doi: 10.1140/epjp/s13360-022-02810-8
    [26] X. H.Wang, Z. Wang, X. Huang, Y. X. Li, Dynamic analysis of a delayed fractional-order SIR model with saturated incidence and treatment functions, Int. J. Bifur. Chaos, 28 (2018), 1850180. https://doi.org/10.1142/S0218127418501808 doi: 10.1142/S0218127418501808
    [27] M. R. Sidi Ammi, M. Tahiri, D. F. M. Torres, Global stability of a Caputo fractional SIRS model with general incidence rate, Math. Comput. Sci., 15 (2021), 91–105. https://doi.org/10.1007/s11786-020-00467-z doi: 10.1007/s11786-020-00467-z
    [28] Z. A. Khan, A. L. Alaoui, A. Zeb, M. Tilioua, S. Djilali, Global dynamics of a SEI epidemic model with immigration and generalized nonlinear incidence functional, Results Phys., 27 (2021), 104477. https://doi.org/10.1016/j.rinp.2021.104477 doi: 10.1016/j.rinp.2021.104477
    [29] M. B. Ghori, P. A. Naik, J. Zu, Z. Eskandari, M. Naik, Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate, Math. Methods Appl. Sci., 45 (2022), 3665–3688. https://doi.org/10.1002/mma.8010 doi: 10.1002/mma.8010
    [30] M. Naim, F. Lahmidi, A. Namir, A. Kouidere, Dynamics of an fractional SEIR epidemic model with infectivity in latent period and general nonlinear incidence rate, Chaos Solitons Fract., 152 (2021), 111456. https://doi.org/10.1016/j.chaos.2021.111456 doi: 10.1016/j.chaos.2021.111456
    [31] R. K. Upadhyay, A. K. Pal, S. Kumari, P. Roy, Dynamics of an SEIR epidemic model with nonlinear incidence and treatment rates, Nonlinear Dyn., 96 (2019), 2351–2368. https://doi.org/10.1007/s11071-019-04926-6 doi: 10.1007/s11071-019-04926-6
    [32] X. Liu, M. Arfan, M. Ur Rahman, B. Fatima, Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator, Comput. Methods Biomech. Biomed. Eng., 26 (2023), 98–112. https://doi.org/10.1080/10255842.2022.2047954 doi: 10.1080/10255842.2022.2047954
    [33] X. Liu, K. Zhao, J. L. Wang, H. T. Chen, Stability analysis of a SEIQRS epidemic model on the finite scale-free network, Fractals, 30 (2022), 2240054. https://doi.org/10.1142/S0218348X22400540 doi: 10.1142/S0218348X22400540
    [34] J. Singh, A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law, Chaos, 29 (2019), 013137. https://doi.org/10.1063/1.5080691 doi: 10.1063/1.5080691
    [35] M. L. Ye, J. R. Li, X. Han, H. J. Jiang, Global analysis of a fractional-order reaction-diffusion rumor-spreading model in multi-lingual environment, Eur. Phys. J. Plus, 138 (2023), 102. https://doi.org/10.1140/epjp/s13360-023-03698-8 doi: 10.1140/epjp/s13360-023-03698-8
    [36] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [37] A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integrals and derivatives (theory and applications), Switzerland: Gordon and Breach, 1993.
    [38] Y. Li, Y. Q. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965–1969. https://doi.org/10.1016/j.automatica.2009.04.003 doi: 10.1016/j.automatica.2009.04.003
    [39] L. H. Zhu, B. X. Wang, Stability analysis of a SAIR rumor spreading model with control strategies in online social networks, Inform. Sci., 526 (2020), 1–19. https://doi.org/10.1016/j.ins.2020.03.076 doi: 10.1016/j.ins.2020.03.076
    [40] H. L. Li, L. Zhang, C. Hu, Y. L. Jiang, Z. D. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449. https://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8
    [41] P. Van Den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [42] E. X. DeJesus, C. Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations, Phys. Rev. A, 35 (1987), 5288. https://doi.org/10.1103/PhysRevA.35.5288 doi: 10.1103/PhysRevA.35.5288
    [43] J. P. Hespanha, Uniform stability of switched linear systems: extensions of LaSalle's invariance principle, IEEE Trans. Automat. Control, 49 (2004), 470–482. https://doi.org/10.1109/TAC.2004.825641 doi: 10.1109/TAC.2004.825641
    [44] L. S. Pontryagin, The mathematical theory of optimal processes, London: Routledge, 2018. https://doi.org/10.1201/9780203749319
    [45] T. Roshan, S. Ghosh, R. P. Chauhan, S. Kumar, A robust study on fractional order HIV/AIDS model by using numerical methods, Eng. Comput., 40 (2023), 1545–1569. https://doi.org/10.1108/EC-10-2022-0626 doi: 10.1108/EC-10-2022-0626
    [46] B. W. Cao, G. Guan, S. L. Shen, L. H. Zhu, Dynamical behaviors of a delayed SIR information propagation model with forced silence function and control measures in complex networks, Eur. Phys. J. Plus, 138 (2023), 402. https://doi.org/10.1140/epjp/s13360-023-04005-1 doi: 10.1140/epjp/s13360-023-04005-1
    [47] X. R. Tong, H. J. Jiang, X. Y. Chen, J. R. Li, Z. Cao, Deterministic and stochastic evolution of rumor propagation model with media coverage and class-age-dependent education, Math. Methods Appl. Sci., 46 (2023), 7125–7139. https://doi.org/10.1002/mma.8959 doi: 10.1002/mma.8959
    [48] X. R. Tong, H. J. Jiang, J. L. Qiu, X. P. Luo, S. S. Chen, Dynamic analysis of the IFCD rumor propagation model under stochastic disturbance on heterogeneous networks, Chaos Solitons Fract., 173 (2023), 113637. https://doi.org/10.1016/j.chaos.2023.113637 doi: 10.1016/j.chaos.2023.113637
  • This article has been cited by:

    1. M. Lavanya, B. Sundara Vadivoo, Kottakkaran Sooppy Nisar, Controllability Analysis of Neutral Stochastic Differential Equation Using \psi -Hilfer Fractional Derivative with Rosenblatt Process, 2025, 24, 1575-5460, 10.1007/s12346-024-01178-7
    2. A. Priyadharshini, K. Jothimani, V. Vijayakumar, Existence and Uniqueness of the Solution for the Hilfer Fuzzy Fractional Integrodifferential Equation Via Resolvent Operators, 2025, 24, 1575-5460, 10.1007/s12346-024-01192-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1687) PDF downloads(128) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog