Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

Shock stability of a novel flux splitting scheme

  • Received: 19 October 2023 Revised: 24 January 2024 Accepted: 05 February 2024 Published: 21 February 2024
  • MSC : 58J45, 76J20

  • This article introduced the HLL-CPS-T flux splitting scheme, which is characterized by low dissipation and robustness. A detailed theoretical analysis of the dissipation and shock stability of this scheme was provided. In comparison to Toro's TV flux splitting scheme, the HLL-CPS-T scheme not only exhibits accurate capture of contact discontinuity, but also demonstrates superior shock stability, as evidenced by its absence of 'carbuncle' phenomenon. Through an examination of the disturbance attenuation properties of physical quantities in the TV and HLL-CPS-T schemes, an inference was derived: The shock stability condition for an upwind method in the velocity perturbation was damped. Theoretical analysis was given to verify the reasonableness of this inference. Numerical experiments were carefully selected to test the robustness of the new splitting scheme.

    Citation: Weiping Wei, Youlin Shang, Hongwei Jiao, Pujun Jia. Shock stability of a novel flux splitting scheme[J]. AIMS Mathematics, 2024, 9(3): 7511-7528. doi: 10.3934/math.2024364

    Related Papers:

    [1] Yong-Ki Ma, N. Valliammal, K. Jothimani, V. Vijayakumar . Solvability and controllability of second-order non-autonomous impulsive neutral evolution hemivariational inequalities. AIMS Mathematics, 2024, 9(10): 26462-26482. doi: 10.3934/math.20241288
    [2] Ahmed Salem, Kholoud N. Alharbi . Fractional infinite time-delay evolution equations with non-instantaneous impulsive. AIMS Mathematics, 2023, 8(6): 12943-12963. doi: 10.3934/math.2023652
    [3] Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan . Existence of S-asymptotically ω-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order 1<α<2. AIMS Mathematics, 2023, 8(1): 76-101. doi: 10.3934/math.2023004
    [4] Misbah Iram Bloach, Muhammad Aslam Noor . Perturbed mixed variational-like inequalities. AIMS Mathematics, 2020, 5(3): 2153-2162. doi: 10.3934/math.2020143
    [5] Lu-Chuan Ceng, Li-Jun Zhu, Tzu-Chien Yin . Modified subgradient extragradient algorithms for systems of generalized equilibria with constraints. AIMS Mathematics, 2023, 8(2): 2961-2994. doi: 10.3934/math.2023154
    [6] Ebrahem A. Algehyne, Abdur Raheem, Mohd Adnan, Asma Afreen, Ahmed Alamer . A study of nonlocal fractional delay differential equations with hemivariational inequality. AIMS Mathematics, 2023, 8(6): 13073-13087. doi: 10.3934/math.2023659
    [7] Qiang Li, Jina Zhao . Extremal solutions for fractional evolution equations of order 1<γ<2. AIMS Mathematics, 2023, 8(11): 25487-25510. doi: 10.3934/math.20231301
    [8] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536
    [9] Chunli You, Linxin Shu, Xiao-bao Shu . Approximate controllability of second-order neutral stochastic differential evolution systems with random impulsive effect and state-dependent delay. AIMS Mathematics, 2024, 9(10): 28906-28930. doi: 10.3934/math.20241403
    [10] Zhi Guang Li . Global regularity and blowup for a class of non-Newtonian polytropic variation-inequality problem from investment-consumption problems. AIMS Mathematics, 2023, 8(8): 18174-18184. doi: 10.3934/math.2023923
  • This article introduced the HLL-CPS-T flux splitting scheme, which is characterized by low dissipation and robustness. A detailed theoretical analysis of the dissipation and shock stability of this scheme was provided. In comparison to Toro's TV flux splitting scheme, the HLL-CPS-T scheme not only exhibits accurate capture of contact discontinuity, but also demonstrates superior shock stability, as evidenced by its absence of 'carbuncle' phenomenon. Through an examination of the disturbance attenuation properties of physical quantities in the TV and HLL-CPS-T schemes, an inference was derived: The shock stability condition for an upwind method in the velocity perturbation was damped. Theoretical analysis was given to verify the reasonableness of this inference. Numerical experiments were carefully selected to test the robustness of the new splitting scheme.



    Differential variational inequality is a dynamical system that includes variational inequalities and ordinary differential equations. Differential variational inequalities plays an important role for formulating models involving both dynamics and inequality constraints. Aubin and Cellina [3] introduced the concept of differential variational inequality and after that it was studied by Pang and Stewart [25]. The partial differential variational inequalities was studied by Liu, Zeng and Motreanu [15] and shown that the solution set is compact and continuous. There are some obstacles in their work that constraint set necessarily be compact and only local boundary conditions are satisfied. Liu, Migórskii and Zeng [14] relaxed the conditions of [15] and proved the existence of partial differential variational inequality in non-compact setting. Properties of solution set like strong-weak upper semicontinuity and measurability was proved by them.

    Differential variational inequalities are application oriented and have several applications in engineering and physical sciences, operation research, etc. In particular, they are applicable in electrical circuits with ideal diodes, economical dynamics, dynamic traffic network, functional problems, differential Nash games, control systems, etc., see for example [1,2,16,17,18,19,20,23,26,27,31].

    Evolution equation can be explained as the differential law of the development (evolution) in time of a system. The evolution character of the equation make easier its numerical solution. Variational-like inequality is a generalized form of a variational inequalities and has many applications in operations research, optimization, convex mathematical programming, etc. On the other hand, many problems of engineering and applied sciences can be solved by using second order evolution equation, see for example [5,6,9,10,12,13,22,28,30,32,33].

    Throughout the paper, we assume ~B1 and ~B2 denote separable reflexive Banach spaces and ˆK(ϕ) be convex and closed subset of ~B1. We define some mapping below, that is,

    ˜F:[0,T]×~B2×~B2L(~B1,~B2),˜f:[0,T]×~B2×~B2~B2,˜g:[0,T]×~B2×~B2~B2,˜A:ˆK~B1,η:ˆK׈K~B1,ψ:˜KR{+}, where T>0.

    Inspired by the above discussed work, in this paper, we introduce and study a second order evolutionary partial differential variational-like inequality in Banach spaces. We mention our problem below:

    {y(x)=˜Ay(x)+˜F(x,y(x),y(x))ˆu(x)+˜f(x,y(x),y(x)), a.e. x[0,T],ˆu(x)Sol(˜K,˜g(x,y(x),y(x))+˜A(),ψ), a.e. x[0,T],y(0)=y0,y(0)=y0. (2.1)

    We also consider a variational-like inequality problem of finding ˆu:[0,T]ˆK such that

    ˜g(x,y(x),y(x))+˜A(ˆu(x)),η(ˆv,ˆu(x))+ψ(ˆv)ψ(ˆu(x))0,ˆvˆK, a.e. x[0,T]. (2.2)

    The solution set of problem (2.2) is denoted by Sol[(2.1)].

    The mild solution of problem (2.1) is described by the following definition.

    Definition 2.1. A pair of function (y,ˆu) such that yC1([0,T],~B2) and ˆu:[0,T]ˆK(~B1) measurable, called mild solution of problem (2.1) if

    y(x)=Q(x)y0+R(x)y0+x0R(xp)[˜F(p,y(p),y(p))ˆu(p)+˜f(p,y(p),y(p))]dp,

    where x[0,T] and ˆu(p)Sol(ˆK,˜g(p,y(p),y(p))+A(,ψ). R(x) will be defined in continuation. Here, Sol(ˆK,ˆw+A(.),ψ) denotes the solution set of mixed variational-like inequality (3.1). If (y,ˆu) is a mild solution of above assumed problem, then y is said to be the mild trajectory and ˆu is called the variational control trajectory. Here C1([0,T],~B2) denotes the Banach space of all continuous differentiable mappings y:[0,T]~B2 with norm

    yC1=max{maxx[0,T]y(x),maxx[0,T]y(x)},

    and L(~B2) denotes the Banach space of bounded linear operators from ~B2 into ~B2.

    The subsequent part of this paper is organised in this way. In the next section, some definitions and results are defined, which will be used to achieve our goal. In Section 3, an existence result for variational-like inequalities is proved. Also, we have proved that Sol(ˆK,ˆw+A(.),ψ) is nonempty, closed and convex. The upper semicontinuity of the multi-valued mapping F:[0,T]×~B2×~B2Πbv(^B1) is discussed. In the last section, we have proved that the existence result for the mild solution of second order evolutionary partial differerntial variational-like inequalities under some appropriate conditions.

    Let ^X1 and ^X2 are topological spaces. We shall use Π(^X2) to denote the family of all nonempty subsets of X2, and

    Πc(^X2):={ˆDΠ(^X2):ˆD is closed};

    Πb(^X2):={ˆDΠ(^X2):ˆD is bounded};

    Πbc(^X2):={ˆDΠ(^X2):ˆD is bounded and closed};

    Πcv(^X2):={ˆDΠ(^X2):ˆD is closed and convex};

    Πbv(^X2):={ˆDΠ(^X2):ˆD is bounded and convex};

    Πkv(^X2):={ˆDΠ(^X2):ˆD is compact and convex}.

    One parameter family Q(x), where x is real number, of bounded linear operators from a Banach space ^B2 into itself is called a strongly continuous cosine family if and only if

    (1) Q(x+p)+Q(xp)=2C(x)C(p),x,pR,

    (2) Q(0)=I,(I is the identity operator in ^B2),

    (3) Q(x)w is continuous in x on R for every fixed w^B2.

    We associate with the strongly continuous cosine family Q(x) in ^B2 the strongly continuous sine family R(x), such that

    R(x)W=x0Q(p)wdp,w^B2,xR,

    and the two sets

    E1={w^B2:Q(x)uis one time continuously differentiable in  x  on R},E2={w^B2:Q(x)wis two times continuously differentiable in  x  onR}.

    The operator A:D(A)^B2^B2 is the infinitesimal generator of a strongly continuous cosine family Q(x), xR defined by A(y)=d2/dx2Q(0)ywith D(A)=E2.

    Proposition 2.1. [29] Let Q(x),xR be a strongly continuous cosine family in ^B1. Then the following hold:

    (i) Q(x)=Q(x), xR,

    (ii) Q(p),R(p),Q(x),andR(x)commute x,pR,

    (iii) R(x+p)+Q(xp)=2R(x)Q(p), x,pR,

    (iv) R(x+p)=R(x)Q(p)+R(p)C(x), x,pR,

    (v) R(x)=R(x), xR.

    For furthure information related to the properties of the sine and cosine families, see [12,23,27] and references therein.

    Definition 2.2. [21] Let ^X1,^X2 are topological spaces. Then the multi-valued mapping ˆF:^X1Π(^X2) is said to be:

    (i) Upper semicontinuous (u.s.c., in short) at x^X1, if for each open set U^X2 with ˆF(x)U, a neighbourhood N(x) of x such that

    ˆF(N(x)):=ˆF(y)yN(x)U.

    If ˆF is u.s.c. x^X1, then ˆF is said to be upper semicontinuous on ^X1.

    (ii) Lower semicontinuous (l.s.c., in short) at x^X1 if, for each open set U^X2 satisfying ˆFUϕ, a neighbourhood N(x) of x such that ˆFUϕ yN(x). If ˆF is l.s.c. x^X1, then ˆF is called lower semicontinuous on ^X1.

    Proposition 2.2. [21] Let ˆF:^X1Π(^X2) be a multi-valued mapping, where ^X1,and^X2 denote topological vector spaces. Then the following are equivalent:

    (i) ˆF is upper semicontinuous,

    (ii) the set

    ˆF(C)={x^X1:ˆF(x)Cϕ},

    is closed in ^X1, for each closed set C^X2,

    (iii) the set

    ˆF+(C)={x^X1:ˆF(x)U},

    is open in ^X1, for each open set U^X2.

    Proposition 2.3. [4] Let Ω(ϕ) subset of Banach space ˆX. Assume that the multi-valued mapping ˆF:ΩΠ(ˆX) is weakly compact and convex. Then, ˆF is strongly-weakly u.s.c. if and only if {xn}Ω with xnx0Ω and ynˆF(xn) implies yny0ˆF(x0) up to a subsequence.

    Lemma 2.1. [7] Let {xn} be a sequence such that xnˉx in a normed space V. Then there is a sequence of combinations {yn} such that

    yn=i=nλixi,i=nλi=1andλi0,1i,

    which converges to ˉx in norm.

    Now we define the measurability of a multi-valued mapping, which is needed in the proof of existence of solution of second order evolutionary partial differential variational-like inequality problem (2.1).

    Definition 2.3. [11,21]

    (i) A multi-valued mapping ˆF:IΠ(ˆX) is called measurable if for each open subset UˆX the set ˆF+(U) is measurable in R.

    And

    (ii) the multi-valued mapping ˆF:IΠbc(ˆX) is called strongly measurable if a sequence {ˆFn}n=1 of step set-valued mappings such that

    ˆH(ˆF(t),ˆFn(t))0,asn,tI a.e.,

    here ˆX denotes Banach space, I be an interval of real numbers and ˆH(.,.) denotes the Hausdorff metric on Πbc(ˆX).

    Definition 2.4. [11,34] Let ˆX be Banach space and (F,) be a partial ordered set. A function β:Πb(ˆX)F is called a measure of non compactness (MNC, for short) in ˆX if

    β(¯convO)=β(O)foreveryOΠb(ˆX),

    here ¯convO showing the closure of convex hull of O.

    Definition 2.5. [34] A measure of non compactness β is called

    (i) monotone, if O0,O1Πb(ˆX) and O0O1 implies β(O0)β(O1),

    (ii) nonsingular, if β(aO)=β(O) aˆX and OΠb(ˆX),

    (iii) invariant with respect to union of compact set, if β(KO)=β(O) for each relatively compact set KˆX and OΠb(ˆX),

    (iv) algebraically semiadditive, if β(O0+O1)β(O0)+β(O1) for every O0,O1Πb(ˆX),

    (v) regular, if β(O)=0 is equivalent to the relative compactness of O.

    A very famous example of measure of non compactness is the following Hausdorff measure of non compactness on C([0,T],ˆX) with 0<T< calculated by the following formula:

    χT(O)=12limδ0supxOmax|t1t2|δx(t1)x(t2)ˆX. (2.3)

    Here, χT(O) is said to be the modulus of equicontinuity of OC([0,T],ˆX). Definition (2.4) is applicable on (2.3).

    Definition 2.6. [11] A multi-valued mapping ˆF:ˆKˆXΠ(ˆX) is said to be condensing relative to measure of non compactness β (or β-condensing) if for each OˆK, we have

    β(ˆF(O))

    That is not relatively compact.

    Definition 2.7. [8] A single valued mapping T:\widehat{K}\to \widehat{X}^* is called relaxed \eta - \alpha monotone if \exists a mapping \eta: \widehat{K}\times \widehat{K}\to \widehat{X} and a real-valued mapping \alpha: \widehat{X} \to \mathbb{R} , with \alpha(tz) = t^p\alpha(z) , { \forall } t > 0, and z\in \widehat{X} , such that

    \begin{equation} \langle Tx-Ty, \eta(x, y)\rangle\geq- \alpha(x-y), {\rm{ \forall }}x, y\in \widehat{K}, \end{equation} (2.4)

    where p > 1 is a constant.

    Definition 2.8. [8] A mapping T:\widehat{K}\to \widehat{X}^* is called \eta -coercive with respect to \psi if \exists x_0\in \widehat{K} such that

    \begin{equation} \underset{x\in K, \; \|x\|\to \infty}{lim \; inf}\frac{\langle T(x)-T(y), \eta(x, x_0)\rangle+\psi(x)-\psi(x_0)}{\|\eta(x, x_0)\|}\to +\infty. \end{equation} (2.5)

    Where \eta: \widehat{K}\times \widehat{K}\to \widehat{X} be a mapping and \psi:\widehat{X}\to \mathbb{R}\cup\{+\infty\} is proper convex lower semicontinuous function.

    Theorem 2.1. [11] Let \widehat{X} be a Banach space and \mathcal{M} its closed convex subset, then the fixed point set of \mathcal{\beta} -condensing multi-valued mapping \widehat{F}:\mathcal{M}\to \Pi_{kv}(\mathcal{M}) is nonempty. That is \mathit{\mbox{Fix}}\widehat{F}: = \{x\in \mathcal{M}:x\in \widehat{F}(x)\}\neq \phi. Where \mathcal{\beta} is a nonsingular measure of non compactness defined on subsets of \mathcal{M} .

    Let \widehat{B_1} and \widehat{B_2} are real reflexive Banach spaces and {\widehat{B_1}^*} be the dual of \widehat{B_1} and \widehat{K} be a nonempty closed, convex subset of \widehat{B_1} .

    We consider the following problem of finding \widehat{\mathfrak{u}}\in \widehat{K} such that

    \begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\geq 0, {\rm{ \forall }}\widehat{\mathfrak{v}}\in \widehat{K}, \end{equation} (3.1)

    where \widehat{\mathfrak{w}}\in \widehat{B_1}^* , \mathcal{A}:\widehat{K}\to \widehat{B_1}^* and \eta:\widehat{K}\times \widehat{K}\to \widehat{B_1}. Problem (3.1) is called generalized mixed variational-like inequality. We prove the following lemma.

    Lemma 3.1. Suppose that the following conditions are satisfied:

    (I_1) \mathcal{A}: \widehat{B_1}\to \widehat{B_1}^* is an \eta -hemicontinuous and \eta - \alpha monotone mapping;

    (I_2) \psi: \widehat{B_1}\to \mathbb{R}\cup\{+\infty\} be a proper convex and lower semicontinuous;

    (I_3) the mapping \widehat{\mathfrak{u}}\to\langle \mathcal{A}\widehat{\mathfrak{z}}, \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}})\rangle is convex, lower semicontinuous for fixed \widehat{\mathfrak{v}}, \widehat{\mathfrak{z}}\in \widehat{K} and \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{u}}) = 0, \mathit{\rm{\forall }\; }\widehat{\mathfrak{u}}\in \widehat{K}.

    Then \widehat{\mathfrak{u}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \psi) , if and only if \widehat{\mathfrak{u}} is the solution of following inequality:

    \begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\geq \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}), \mathit{\rm{ \forall }}\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} (3.2)

    Proof. Let \widehat{\mathfrak{u}} is a solution of problem (3.1), then

    \begin{equation*} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\geq 0. \end{equation*}

    Since \mathcal{A} is relaxed \eta - \alpha monotone, we have

    \begin{eqnarray*} && \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\\ & = &\langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+\langle \mathcal{A}(\widehat{\mathfrak{v}})-\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\\ &\geq& \langle \mathcal{A}(\widehat{\mathfrak{v}})-\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle\geq\alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}), {\rm{ \forall }}\widehat{\mathfrak{v}}\in \widehat{K}. \end{eqnarray*}

    Hence, \widehat{\mathfrak{u}} is the solution of inequality (3.2).

    Conversely, let \widehat{\mathfrak{u}}\in \widehat{K} be a solution of problem (3.2) and let \widehat{\mathfrak{v}}\in \widehat{K} be any point \psi(\widehat{\mathfrak{v}}) < \infty . We define \widehat{\mathfrak{v}}_s = (1-s)\widehat{\mathfrak{u}}+s\widehat{\mathfrak{v}}, \; \; s\in (0, 1), then due to convexity of \widehat{K} \widehat{\mathfrak{v}}_s\in K . Since \widehat{\mathfrak{v}}_s\in \widehat{K} is the solution of inequality (3.2), it follows from (I_1) (I_3)

    \begin{eqnarray*} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta(\widehat{\mathfrak{v}}_s, \widehat{\mathfrak{u}})\rangle +\psi(\widehat{\mathfrak{v}}_s)-\psi(\widehat{\mathfrak{u}})&\geq& \alpha(\widehat{\mathfrak{v}}_s-\widehat{\mathfrak{u}})\\ \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta((1-s)\widehat{\mathfrak{u}}+s\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +\psi((1-s)\widehat{\mathfrak{u}}+s\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})&\geq& \alpha((1-s)\widehat{\mathfrak{u}}\\ &&+s\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}})\\ \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), (1-s)\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{u}})+s\eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +(1-s)\psi(\widehat{\mathfrak{u}})+s\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})&\geq& \alpha(s(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}})). \end{eqnarray*}

    Using (I_3) , we have

    \begin{eqnarray*} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), s\eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +s(\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}))&\geq&s^p\alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}})\\ \langle \widehat{\mathfrak{w}}+\mathcal{A}((1-s)\widehat{\mathfrak{u}}+s\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +(\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}))&\geq&s^{p-1}\alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}), \end{eqnarray*}

    letting s\to 0^{+} , we get

    \begin{equation*} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\geq 0, {\rm{ \forall }}\widehat{\mathfrak{v}}\in K. \end{equation*}

    Theorem 3.1. Suppose that the conditions (I_1) (I_3) are satisfied. Additionally, if the following conditions hold.

    (I_4) \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}})+\eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) = 0,

    (I_5) \exists \; \; \widehat{\mathfrak{v}}_0\in \widehat{K}\cap D(\psi) such that

    \begin{equation} \underset{\widehat{\mathfrak{u}}\in \widehat{K}, \; \|\widehat{\mathfrak{u}}\|\to \infty}{lim \; inf}\frac{\langle \mathcal{A}(\widehat{\mathfrak{u}})-\mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\rangle+\psi(\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}}_0)}{\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|}\xrightarrow{} +\infty. \end{equation} (3.3)

    Then, Sol(K, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) = \{\widehat{\mathfrak{u}}\in \widehat{K}: \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\geq0, \mathit{\rm{\forall }\; }\widehat{\mathfrak{v}}\in K\}\neq \phi , bounded, closed and convex, for \widehat{\mathfrak{w}}\in \widehat{B_1}^*.

    Proof. Clearly, Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi)\neq \phi , as \widehat{\mathfrak{v}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) , for each \widehat{\mathfrak{v}}\in \widehat{K}.

    Now, we have to show that Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is bounded. Suppose to contrary that Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is not bounded, then there exists a sequence \{\widehat{\mathfrak{u}}_n\}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) such that \|\widehat{\mathfrak{u}}_n\|_{\widehat{B_1}}\to \infty as n\to \infty . We can consider, \forall n\in \mathbb{N} , \|\widehat{\mathfrak{u}}_n\| > n. By \eta -coercive condition (3.3), \exists a constant M > 0 and a mapping \kappa:[0, \infty)\to [0, \infty) with \kappa(k)\to \infty such that for every \|\widehat{\mathfrak{u}}\|_{\widehat{B_1}}\geq M,

    \begin{equation*} \langle \mathcal{A}(\widehat{\mathfrak{u}})-\mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\rangle+\psi(\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}}_0)\geq \kappa(\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}})\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}}. \end{equation*}

    Thus, if n is sufficiently large as \kappa(n) > (\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|+\|\widehat{\mathfrak{w}}\|),

    \begin{eqnarray*} 0&\leq& \langle \mathcal{A}(\widehat{\mathfrak{u}}_n)+\widehat{\mathfrak{w}}, \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_n)\rangle+\psi(\widehat{\mathfrak{v}}_0)-\psi(\widehat{\mathfrak{u}}_n)\\ & = &\langle \mathcal{A}(\widehat{\mathfrak{u}}_n), \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_n)\rangle+\langle \widehat{\mathfrak{w}}, \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_n)\rangle+\psi(\widehat{\mathfrak{v}}_0)-\psi(\widehat{\mathfrak{u}}_n)\\ & = &-\langle \mathcal{A}(\widehat{\mathfrak{u}}_n)-\mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}_n, \widehat{\mathfrak{v}}_0)\rangle+\psi(\widehat{\mathfrak{v}}_0)-\psi(\widehat{\mathfrak{u}}_n)+\langle \mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_n)\rangle\\ &&+\langle \widehat{\mathfrak{w}}, \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_n)\rangle\\ &\leq& -\kappa(\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|)\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}}+\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|.\|\eta(\widehat{\mathfrak{u}}_n, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}}+\|\widehat{\mathfrak{w}}\|.\|\eta(\widehat{\mathfrak{u}}_n, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}}\\ & = &\|\eta(\widehat{\mathfrak{u}}_n, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}}\Big[-\kappa(\|\eta(\widehat{\mathfrak{u}}_n, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}})+\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|+\|\widehat{\mathfrak{w}}\|\Big]\\ & < &0. \end{eqnarray*}

    Which is not possible. Thus, Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is bounded.

    Now it remains to prove that Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is closed.

    Let \{\widehat{\mathfrak{u}}_n\} be a sequence in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) such that \widehat{\mathfrak{u}}_n\to \widehat{\mathfrak{u}}\in \widehat{K}. Then, \forall n\in \mathbb{N}

    \begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{u}}_n), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}_n)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}_n)\geq 0, \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} (3.4)

    From Lemmas (3.1) and (3.4) same as

    \begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{u}}_n, \widehat{\mathfrak{v}})\rangle +\psi(\widehat{\mathfrak{u}}_n)-\psi(\widehat{\mathfrak{v}})\geq \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}_n), \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} (3.5)

    By using (I_4) , we have

    \begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}_n)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}_n)+ \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}_n)\leq 0, \ {\rm{ \forall }}\ \widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} (3.6)

    Which implies that

    \begin{equation} \underset{n\to 0^+}{lim\; sup}\{\langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}_n)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}_n)+ \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}_n)\}\leq 0, {\rm{ \forall }}\; \widehat{\mathfrak{v}}\in \widehat{K}, \end{equation} (3.7)

    as \widehat{\mathfrak{u}}\to\langle \mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle , \psi and \alpha are lower semicontinuous functions. From (3.7), we have

    \begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})+ \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}})\leq0, \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}, \end{equation} (3.8)

    that is,

    \begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}})\rangle +\psi(\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}})\geq \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}), \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} (3.9)

    By Lemma 3.1, we get \widehat{\mathfrak{u}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) , that is Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is closed.

    Lastly, we show that Sol(\widehat{K}, \widehat{\mathfrak{w}}+G(.), \; \psi) is convex. For any \widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) and s\in [0, 1], let \widehat{\mathfrak{v}}_s = (1-s)\widehat{\mathfrak{v}}+s\widehat{\mathfrak{u}} . Since \widehat{K} is convex, so that \widehat{\mathfrak{u}}_s\in \widehat{K} . Using (I_3) and letting s\to 0^+ , we obtain

    \begin{align*} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta(\widehat{\mathfrak{v}}_s, \widehat{\mathfrak{v}})\rangle+\psi(\widehat{\mathfrak{v}}_s)&-\psi(\widehat{\mathfrak{v}})\rangle\\ & = \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta((1-s)\widehat{\mathfrak{v}}+s\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}})\rangle +\psi((1-s)\widehat{\mathfrak{v}}+s\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}})\\ &\leq (1-s)\langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{v}})\rangle +s\langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle\\ &+s(\psi(\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}}))\\ &\leq s[\langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+(\psi(\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}}))]\\ &\leq0, \end{align*}

    that is,

    \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{v}}_s)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{v}}_s)\geq 0.

    Hence, Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is convex.

    Boundedness of \widehat{\mathfrak{w}} implies that Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is bounded.

    Theorem 3.2. Suppose that all the conditions and mappings are same as considered in Theorem 3.1. Additionally, \forall \widehat{\mathfrak{w}}\in \overline{B}(n, \widehat{B_1}^*), \exists a constant M_n > 0, depending on n , such that

    \begin{equation} \|\widehat{\mathfrak{u}}\|_{\widehat{B_1}}\leq M_n, \; \mathit{\rm{ \forall }\;}\widehat{\mathfrak{u}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi), \end{equation} (3.10)

    where \overline{B}(n, \widehat{B_1}^*) = \{\widehat{\mathfrak{w}}\in \widehat{B_1}^*:\|\widehat{\mathfrak{w}}\|_{\widehat{B_1}^*}\leq n\}.

    Proof. On contrary let us suppose that \exists N_0 > 0 and

    \begin{equation*} \underset{\widehat{\mathfrak{w}}\in\overline{B}(N_0, \widehat{B_1}^*)}{Sup}\Big\{\|\widehat{\mathfrak{u}}\|_{\widehat{B_1}}:\widehat{\mathfrak{u}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi)\Big\} = +\infty. \end{equation*}

    Therefore, \exists \widehat{\mathfrak{w}}_{\hat{k}}\in \overline{B}(N_0, \widehat{B_1}^*) and \widehat{\mathfrak{u}}_{\hat{k}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) with \|\eta(\widehat{\mathfrak{u}}_{\hat{k}}, \widehat{\mathfrak{v}}_0)\| > \hat{k} (\hat{k} = 1, 2, 3, \cdots). By \eta -coercivity assumption, \exists a constant M > 0 such that \forall \|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|\geq M and a function \kappa:[0, \infty)\to [0, \infty) with \kappa(\hat{k})\to \infty as \hat{k}\to \infty , we have

    \begin{equation*} \langle \mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\rangle+\psi(\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}}_0)\geq \kappa(\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|)\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}}. \end{equation*}

    Thus, for \hat{k} > M sufficiently large such that \kappa(\hat{k}) > \frac{N_0+\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|}{\hat{k}} , one has

    \begin{eqnarray*} 0&\leq& \langle \widehat{\mathfrak{w}}_{\hat{k}}+\mathcal{A}(\widehat{\mathfrak{u}}_{\hat{k}}), \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\rangle+\psi(\widehat{\mathfrak{v}}_0)-\psi(\widehat{\mathfrak{u}}_{\hat{k}})\\ & = & \langle \widehat{\mathfrak{w}}_{\hat{k}}, \eta(\widehat{\mathfrak{v}}_0, u_{\hat{k}})\rangle- \langle \mathcal{A}(\widehat{\mathfrak{u}}_{\hat{k}})-\mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}_{\hat{k}}, \widehat{\mathfrak{v}}_0)\rangle+\langle \mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}_{\hat{k}}, \widehat{\mathfrak{v}}_0)\rangle\\ &&+\psi(\widehat{\mathfrak{v}}_0)-\psi(\widehat{\mathfrak{u}}_{\hat{k}})\\ & = &\langle \widehat{\mathfrak{w}}_{\hat{k}}, \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\rangle- [\langle \mathcal{A}(\widehat{\mathfrak{u}}_{\hat{k}})-\mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}_{\hat{k}}, \widehat{\mathfrak{v}}_0)\rangle+\psi(\widehat{\mathfrak{u}}_{\hat{k}})-\psi(\widehat{\mathfrak{v}}_0)]\\ &&+\langle \mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}_{\hat{k}}, \widehat{\mathfrak{v}}_0)\rangle\\ & = &\|\widehat{\mathfrak{w}}_{\hat{k}}\|_{\widehat{B_1}^*}\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|-r(\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|)\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|+\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|\\ & = &N_0\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|-r(\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|)\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|+\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|\\ &\leq& (N_0+\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|)\hat{k}-r(\hat{k}) < 0, \end{eqnarray*}

    which is a contradiction. Hence our supposition is wrong.

    Let \widetilde{\mathfrak{g}}:[0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}\rightarrow \widehat{B_1}^* be the single valued mapping and a multi-valued mapping \mathfrak{F}:[0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}\to \Pi(\widehat{K}) is defined as follows:

    \begin{equation*} \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)): = \Big\{\widehat{\mathfrak{u}}\in \widehat{K}: \widehat{\mathfrak{u}}\in Sol(\widehat{K}, \widetilde{\mathfrak{g}}(x, \mathfrak{y}(x), \mathfrak{y}'(x))+\mathcal{A}(.), \; \psi)\Big\}. \end{equation*}

    It follows from Theorem 3.1 that \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)) is nonempty, bounded, closed and convex that is, \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x))\in \Pi_{bcv}(\widehat{B_1}) \forall (x, \mathfrak{y}(x), \mathfrak{y}'(x))\in [0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}.

    Theorem 3.3. Suppose that all the conditions and mappings are same as considered in Theorem 3.1 and the mapping \widetilde{g}:[0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}\to \widehat{B_1}^* is bounded and continuous, then the following assertions hold:

    (i) \mathfrak{F} is strongly weakly u.s.c.;

    (ii) x\to \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)) is measurable \forall \mathfrak{y}, \mathfrak{y}'\in \widehat{B_2} ;

    (iii) for every bounded subset \Omega^* = \Omega_1\times \Omega_2 of C^1\Big([0, \mathcal{T}], \widehat{B_2}\times \widehat{B_2}\Big) , \exists a constant M_{\Omega^*} such that

    \begin{equation} \|\mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x))\|: = sup\{\|\widehat{\mathfrak{u}}\|_{\widehat{B_1}}: \widehat{\mathfrak{u}}\in \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x))\}\leq M_{\Omega^*}, \mathit{\rm{ \forall }\;}x\in [0, \mathcal{T}]\; \end{equation} (3.11)

    \mathit{\mbox{and}}\; (\mathfrak{y}, \mathfrak{y}')\in \Omega^*.

    Proof. () Let \mathcal{C}\subset \widehat{B_1} be any weakly closed subset of \widehat{B_1} , suppose that \{(x_n, \mathfrak{y}_n, \mathfrak{y'}_n)\} \subset [0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2} such that (x_n, \mathfrak{y}_n, {\mathfrak{y}'}_n)\to (x^*, \mathfrak{y}^{*}, \mathfrak{y}^*{'}) in [0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2} with (x_n, \mathfrak{y}_n, \mathfrak{y}_n{'})\in \mathfrak{F}^{-1}(\mathcal{C}): = \{(x, \mathfrak{y}, \mathfrak{y'})\; |\; \mathcal{C}\cap \mathfrak{F}(x, \mathfrak{y}, \mathfrak{y}')\neq \phi\}. Therefore, for any n\in\mathbb{N} , there exists \widehat{\mathfrak{u}}_n\in \mathcal{C}\cap \mathfrak{F}(x_n, \mathfrak{y}_n, \mathfrak{y}_n{'}) such that

    \begin{equation} \langle \widetilde{\mathfrak{g}}(x_n, \mathfrak{y}_n, \mathfrak{y}_n{'})+\mathcal{A}(\widehat{\mathfrak{u}}_n), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}_n)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}_n)\geq 0, {\rm{ \forall }}\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} (3.12)

    By Lemma 3.1, (3.12) is equivalent to

    \begin{equation} \langle \widetilde{\mathfrak{g}}(x_n, \mathfrak{y}_n, \mathfrak{y}_n{'})+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}_n)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{v}}_n)\geq \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}_n), \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} (3.13)

    Which implies that,

    \begin{eqnarray} \underset{n\to 0^+}{lim\; sup}\{\langle \widetilde{\mathfrak{g}}(x_n, \mathfrak{y}_n, \mathfrak{y}_n{'})+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}_n)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{v}}_n)\}\geq \underset{n\to 0^+}{lim\; sup}\{ \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}_n)\}, \\ \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}.\; \; \; \; \; \; \; \end{eqnarray} (3.14)

    Since \widetilde{\mathfrak{g}} is continuous. Therefore, by Theorem 3.3, it implies that \{\widehat{\mathfrak{u}}_n\} is bounded. Hence, by reflexivity of \widehat{B_1}, we can suppose that \widehat{\mathfrak{u}}_n\to \widehat{\mathfrak{u}}^*\in \mathcal{C} in \widehat{B_1}.

    From (3.14), we get

    \begin{equation} \langle \widetilde{\mathfrak{g}}(x^*, \mathfrak{y}^{*}, \mathfrak{y}^*{'})+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}^*)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}^*)\geq \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}^*), \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} (3.15)

    Using Lemma 3.1, we have

    \begin{equation*} \langle \widetilde{\mathfrak{g}}(x^*, \mathfrak{y}^{*}, \mathfrak{y}^*{'})+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}^*)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}^*)\geq 0, \; \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation*}

    It follows from weakly closeness of \mathcal{C} that

    \begin{equation*} (x^*, \mathfrak{y}^{*}, \mathfrak{y}^*{'})\in \mathfrak{F}^{-1}(\mathcal{C}): = \{(x, \mathfrak{y}, \mathfrak{y}'):\mathcal{C}\cap \mathfrak{F}(x, \mathfrak{y}, \mathfrak{y}')\neq \phi\}. \end{equation*}

    Hence, \mathfrak{F} is strongly weakly u.s.c..

    () Define a set

    L_\lambda: = \{x\in [0, \mathcal{T}]; d(v, \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x))) > \lambda\}, \; { \forall }\; (\mathfrak{y}, \mathfrak{y}')\in \widehat{B_2}\times \widehat{B_2}, \; \widehat{\mathfrak{v}}\in \widehat{B_1}.

    Now we will show that L_\lambda is an open set for all \lambda\geq 0. For this let \{x_n\} \subset (L_\lambda)^c = [0, \mathcal{T}]\setminus L_\lambda be a sequence with x_n\to x. Then \forall n\in \mathbb{N} , we have d(v, \mathfrak{F}(x_n, \mathfrak{y}, \mathfrak{y}'))\leq \lambda . As for every (x, \mathfrak{y}, \mathfrak{y}')\in [0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}, the multi-valued mapping \mathfrak{F}(x, \mathfrak{y}, \mathfrak{y}') is bounded, closed and convex by Theorem 3.1, we get \forall n\in \mathbb{N}, \widehat{\mathfrak{u}}_n\in \mathfrak{F}(x_n, \mathfrak{y}, \mathfrak{y}') such that \|\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}_n\|\leq \lambda. By Theorem 3.3, \{\widehat{\mathfrak{u}}_n\} is bounded, so we may assume that \widehat{\mathfrak{u}}_n\rightharpoonup \widehat{\mathfrak{u}}\in \widehat{K}. By (i) , \widehat{\mathfrak{u}}\in \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)) . Hence, we obtain

    \begin{equation*} d(v, \mathfrak{F}(x, \mathfrak{y}, \mathfrak{y}'))\leq \|\widehat{\mathfrak{u}}-\widehat{\mathfrak{v}}\|_{\widehat{B_1}} = \underset{n\to \infty}{\liminf}\|\widehat{\mathfrak{u}}_n-\widehat{\mathfrak{v}}\|_{\widehat{B_1}}\leq \lambda, \end{equation*}

    that is x\in (L_\lambda)^c , thus [0, \mathfrak{F}]\setminus L_\lambda is closed. Hence, L_\lambda is open, consequently L_\lambda is measurable. By [24,Proposition 6.2.4], the mapping x\mapsto \mathfrak{F}(x, \mathfrak{y}, \mathfrak{y}') is measurable \forall (\mathfrak{y}, \mathfrak{y}')\in \widehat{B_2}\times \widehat{B_2} .

    (ⅲ) As \widetilde{\mathfrak{g}} is bounded. Therefore

    \widetilde{\mathfrak{g}}_{\Omega^*}: = \{\widetilde{\mathfrak{g}}(x, \mathfrak{y}(x), \mathfrak{y}'(x)):\; x\in [0, \mathcal{T}] \mbox{ and } (\mathfrak{y}, \mathfrak{y}')\in \Omega^*\},

    is also bounded in \widehat{B_1} for every bounded subset \Omega^* of C^1\Big([0, \mathcal{T}], \widehat{B_2}\times \widehat{B_2}\Big) . Then, by Theorem 3.3, \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)) is bounded, \forall\; x\in [0, \mathcal{T}] and (\mathfrak{y}, \mathfrak{y}')\in\Omega^* . Hence, \exists a constant M_{\Omega^*} > 0 such that 3.11 holds.

    Before proving our main result, we mention that by Theorem 3.3, \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)) is measurable and \widehat{B_1} is a separable Banach space. Hence, by [21,Theorem 3.17] \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)) possess a measurable selection \xi such that \xi\in L^\infty \Big([0, \mathcal{T}]; \widehat{B_1}\Big)\subset L^2\Big([0, \mathcal{T}], \widehat{B_1}\Big) \forall (\mathfrak{y}, \mathfrak{y}')\in C^1\Big([0, \mathcal{T}], \widehat{B_2}\times \widehat{B_2}\Big). So

    \begin{equation} P_\mathfrak{F}(\mathfrak{y}, \mathfrak{y}'): = \Big\{\xi\in L^2([0, \mathcal{T}], \widehat{B_1})\; |\; \xi(t)\in \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)), \; \; a.e., \; x\in [0, \mathcal{T}]\Big\}, \end{equation} (4.1)

    is well defined \forall (\mathfrak{y}, \mathfrak{y}')\in C^1([0, \mathcal{T}], \widehat{B_2}\times \widehat{B_2}).

    Lemma 4.1. Suppose that (I_1)-(I_4) hold and \widetilde{g}:[0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}\to \widehat{B_1}^* is bounded and continuous. Then, multi-valued mapping P_\mathfrak{F} is strongly upper semicontinuous.

    Proof. Let \{\mathfrak{y}_n, \mathfrak{y}_n'\}\subset C^1([0, \mathcal{T}], \widehat{B_2}\times \widehat{B_2}) with (\mathfrak{y}_n, \; \mathfrak{y}_n')\to (\mathfrak{y}_0, \mathfrak{y}_0') in C^1([0, \mathcal{T}], \widehat{B_2}\times \widehat{B_2}) and \xi_n\in P_\mathfrak{F}(\mathfrak{y}_n, \mathfrak{y}_n') for n\in \mathbb{N} . Now, we need to prove that \exists a subsequence of \{\xi_n\} , such that \xi_n\to\xi_0\in P_\mathfrak{F}(\mathfrak{y}_0, \mathfrak{y}_0') .

    Indeed, (I_5) confirms that the sequence \{\xi_n\} is bounded in L^2([0, \mathcal{T}], \widehat{B_1}) . Therefore, we can suppose \xi_n\to \xi_0 weakly in L^2([0, T], \widehat{B_1}) . By Lemma 2.1, there is \{\xi\} , a finite combination of the \{\xi_i: i\geq n\} with \bar{\xi_n}\to \xi_0 converges strongly in L^2([0, \mathcal{T}], \widehat{B_1}).

    Since \mathfrak{F} is strongly weakly upper semicontinuous and (\mathfrak{y}_n, \mathfrak{y}_n')\to (\mathfrak{y}_0, \mathfrak{y}_0')\in C^1([0, \mathcal{T}], \widehat{B_2}), therefore for every weak neighborhood \mathcal{Y}_x of \mathfrak{F}(x, \mathfrak{y}_0(x), \mathfrak{y}_0'(x)) there exists a strong neighborhood

    \mathfrak{F}(x, \mathfrak{y}, \mathfrak{y}')\subset \mathcal{Y}_x, \; \; \; { \forall }\; (\mathfrak{y}, \mathfrak{y}')\in \mathcal{U}_x.

    Which shows that \xi \in P_\mathfrak{F}(\mathfrak{y}_0, \mathfrak{y}_0'). Thus, by Proposition 2.3, P_\mathfrak{F} is strongly upper semi continuous.

    We also need the following assumptions for achieving the goal.

    (I_6) \widetilde{\mathfrak{g}}: [0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}\to \widehat{B_1}^* is continuous and bounded;

    (I_7) \widetilde{\mathcal{F}}(., \mathfrak{y}, .):[0, \mathcal{T}]\to \mathcal{L}(\widehat{B_1}, \widehat{B_2}) , \widetilde{\mathcal{F}}(., ., \mathfrak{y}'):[0, \mathcal{T}]\to \mathcal{L}(\widehat{B_1}, \widehat{B_2}) are measurable for all \mathfrak{y}, \mathfrak{y}'\in \widehat{B_2} and \widetilde{\mathcal{F}}(x, ., .):\widehat{B_2}\to \mathcal{L}(\widehat{B_2}, \widehat{B_1}) is continuous for a.e. x\in [0, \mathcal{T}], where \mathcal{L}(\widehat{B_1}, \widehat{B_2}) denotes the class of bounded linear operators from \widehat{B_1} to \widehat{B_2} , and there exists \rho_{\widetilde{\mathcal{F}}}\in L^2([0, \mathcal{T}], \mathbb{R_+}) and a non-decreasing continuous mapping \gamma_{\widetilde{\mathcal{F}}}:[0, \infty)\to [0, \infty) such that

    \|\widetilde{\mathcal{F}}(x, \mathfrak{y}(x), \mathfrak{y}'(x))\|\leq \rho_{\widetilde{\mathcal{F}}}(x)\gamma_{\widetilde{\mathcal{F}}}\Big(\|\mathfrak{y}(x)\|_{\widehat{B_2}}+\|\mathfrak{y}'(x)\|_{\widehat{B_2}}\Big), \ {\rm{ \forall }}\;(x, \mathfrak{y}, \mathfrak{y}')\in [0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}.

    (I_8) \widetilde{\mathfrak{f}}(., \mathfrak{y}, .), \; \widetilde{\mathfrak{f}}(., ., \mathfrak{y}'):[0, \mathcal{T}]\to \widehat{B_2} are measurable for all \mathfrak{y}, \mathfrak{y}'\in \widehat{B_2} and there exists \rho_{\widetilde{\mathfrak{f}}}\in L^2\Big([0, \mathcal{T}], \mathbb{R_+}\Big) such that for x\in [0, \mathcal{T}] \widetilde{\mathfrak{f}}(x, ., .):\widehat{B_2}\to \widehat{B_2} satisfies

    \begin{equation} \begin{cases} \|\widetilde{\mathfrak{f}}(x, \mathfrak{y}, \mathcal{y})-\widetilde{\mathfrak{f}}(x, \mathfrak{y}', \mathcal{y})\|\leq \rho_{\widetilde{\mathfrak{f}}}(x)\|\mathfrak{y}-\mathfrak{y}'\|_{\widehat{B_2}}, \cr \|\widetilde{\mathfrak{f}}(x, \mathfrak{y}, \mathcal{y})-\widetilde{\mathfrak{f}}(x, \mathfrak{y}, \mathcal{y}')\|\leq \rho_{\widetilde{\mathfrak{f}}}(x)\|\mathcal{y}-\mathcal{y}'\|_{\widehat{B_2}}, \cr \|\widetilde{\mathfrak{f}}(x, 0, 0)\|\leq \rho_{\widetilde{\mathfrak{f}}}(x). \end{cases} \end{equation} (4.2)

    The following result ensures the existence of solution of problem (2.1).

    Theorem 4.1. Under the assumptions (I_1) (I_8) , if the following inequalities hold

    \begin{equation} \underset{\hat{k}\to \infty}{lim\; inf}\Big[\frac{\gamma_{\widetilde{\mathcal{F}}}(\hat{k})}{\hat{k}}\|\rho_{\widetilde{\mathcal{F}}}(x)\|M_{\|\widetilde{\mathfrak{g}}\|}+\|\rho_{\widetilde{\mathfrak{f}}}(x)\|_{L^2}+\frac{\|\mathfrak{y}_0\|+\|y_0\|}{\hat{k}\mathcal{T}^{1/2}}\Big] < \frac{1}{\delta \mathcal{T}^{1/2}}, \end{equation} (4.3)
    \begin{equation} \|Q(x_1)-Q(x_2)\|\leq \|x_1-x_2\|\; \mathit{\mbox{and}}\; \|R(x_1)-R(x_2)\|\leq \|x_1-x_2\|, \end{equation} (4.4)

    where

    \begin{equation*} \delta = max\Big\{\underset{x\in J}{sup}\|Q(x)\|_{L(\widehat{B_2})}, \; \; \underset{x\in J}{sup}\|R(x)\|_{L(\widehat{B_2})}\Big\}, \end{equation*}

    and M_{\|\widetilde{\mathfrak{g}}\|} > 0 is a constant stated in Theorem 3.2, then, the problem (2.1) has at least one mild solution (\mathfrak{y}, \widehat{\mathfrak{u}}).

    Proof. We define the multi-valued mapping \Gamma: C^1([0, \mathcal{T}], \widehat{B_2})\to \Pi(C^1([0, \mathcal{T}], \widehat{B_2})) such that

    \begin{eqnarray} \Gamma(\mathfrak{y}): = \Big\{y\in C^1([0, \mathcal{T}], \widehat{B_2})\Big{|}\; y(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)\Big[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ +\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\Big]dp, \; x\in [0, \mathcal{T}], \; \xi\in P_\mathfrak{F}(x)\Big\}, \\ \end{eqnarray} (4.5)

    where P_\mathfrak{F} is defined in (4.1). Our aim is to show that Fix(\Gamma)\neq \phi .

    Step-Ⅰ. \Gamma(\mathfrak{y})\in \Pi_{cv}\Big(C^1([0, \mathcal{T}], \widehat{B_2})\Big) for each \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).

    Clearly, \Gamma(\mathfrak{y}) is convex for every \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}) due to the convexity of P_\mathfrak{F}(\mathfrak{y}).

    Since for each y\in \Gamma(\mathfrak{y}), we can choose \xi\in P_\mathfrak{F}(\mathfrak{y}) such that

    \begin{eqnarray*} y(x)& = &Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp, \end{eqnarray*}

    which implies that,

    \begin{eqnarray*} \|y(x)\|&\leq& \|\mathfrak{y}_0Q(x)\|+\|y_0R(x)\|+\Big\|\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|\\ &\leq& \delta \|\mathfrak{y}_0\|+\delta \|y_0\|+\delta \Big[\int_{0}^{x}\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\xi(p)\|dp\\ &&+\int_{0}^{x}\|\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|dp\Big]. \end{eqnarray*}

    Using (I_7) and (I_8) and applying Hölder's inequality,

    \begin{eqnarray*} \|y(x)\|&\leq& \delta \|\mathfrak{y}_0\|+\delta \|y_0\|+\delta \Big[\int_{0}^{x}\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\xi(p)\|dp\\ &&+\int_{0}^{x}\|\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|dt\Big], \\ & = &\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\delta \Big[\int_{0}^{x}\rho_{\widetilde{\mathcal{F}}}(p)\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}\|+\|\mathfrak{y}'\|)M_{\|\widetilde{\mathfrak{g}}\|}dp\\ &&+\int_{0}^{x}\rho_{\widetilde{\mathfrak{f}}}(p)(1+\|\mathfrak{y}\|+\|\mathfrak{y}'\|)dp\Big]\\ & = &\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\delta \gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}\|+\|\mathfrak{y}'\|)M_{\|\widetilde{\mathfrak{g}}\|}\int_{0}^{x}\rho_{\widetilde{\mathcal{F}}}(p)dp\\ &&+\delta(1+\|\mathfrak{y}\|+\|\mathfrak{y}'\|)\int_{0}^{x}\rho_{\widetilde{\mathfrak{f}}}(p)dp, \\ & = &\delta\Big(\|\mathfrak{y}_0\|+\|y_0\|+\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}\|+\|\mathfrak{y}'\|)M_{\|\widetilde{\mathfrak{g}}\|}\|\rho_{\widetilde{\mathcal{F}}}\|\mathcal{T}^{1/2}\\ &&+(1+\|\mathfrak{y}\|+\|\mathfrak{y}'\|)\|\rho_{\widetilde{\mathfrak{f}}}\|\mathcal{T}^{1/2}\Big)\\ & = &\delta \mathcal{T}^{1/2}\Big[\frac{\|\mathfrak{y}_0\|+\|y_0\|}{\mathcal{T}^{1/2}}+\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}\|+\|\mathfrak{y}'\|)M_{\|\widetilde{\mathfrak{g}}\|}\|\rho_{\widetilde{\mathcal{F}}}\|\\ &&+(1+\|\mathfrak{y}\|+\|\mathfrak{y}'\|)\|\rho_{\widetilde{\mathfrak{f}}}\|\Big]. \end{eqnarray*}

    Hence, \Gamma(\mathfrak{y}) is bounded in C^1([0, \mathcal{T}], \widehat{B_2}) for each \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).

    Next we shall prove that \Gamma(\mathfrak{y}) is a collection of equicontinuous mappings \forall\; \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).

    \begin{eqnarray} \|y(x_2)-y(x_1)\|_{\widehat{B_2}}& = &\Big\|\mathfrak{y}_0Q(x_2)+y_0R(x_2)+\int_{0}^{x_2}R(x_2-p)\Big[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\nonumber\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\Big]dp-\mathfrak{y}_0Q(x_1)-y_0R(x_1)\nonumber\\ &&-\int_{0}^{x_1}R(x_1-t)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|_{\widehat{B_2}} \\ &\leq&\|\mathfrak{y}_0\|\|Q(x_2)-Q(x_1)\|+\|y_0\|\|R(x_2)-R(x_1)\|\\ &&+\Big\|\int_{0}^{x_2}R(x_2-t)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\\ &&-\int_{0}^{x_1}R(x_1-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\\ &&+\int_{0}^{x_1}R(x_2-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\\ &&-\int_{0}^{x_1}R(x_2-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|\\ &\leq& \|\mathfrak{y}_0\|\|x_2-x_1\|+\|y_0\|\|x_2-x_1\|+\int_{x_1}^{x_2}\Big\|R(x_2-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \\ &&\mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|+\int_{0}^{x_1}\Big\|(R(x_2-p) \\ &&-R(x_1-p))[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\Big\|dp\\ & = &(\|\mathfrak{y}_0\|+\|y_0\|)\|x_2-x_1\|+I_1+I_2, \end{eqnarray} (4.6)
    \begin{eqnarray} \label{eq4.6} \text{where} \quad I_1& = &\int_{x_1}^{x_2}\Big\|R(x_2-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|, \\ \text{and}\ \ \ \ \quad I_2& = &\int_{0}^{x_1}\Big\|(R(x_2-p)-R(x_1-p))[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\Big\|dp. \end{eqnarray}

    Applying Hölder's inequality, we have

    \begin{eqnarray} I_1&\leq& \int_{x_1}^{x_2}\|R(x_2-p)\|\|[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\|dp\\ &&+\int_{x_1}^{x_2}\|R(x_2-p)\|\|\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\|dp\\ &\leq& \int_{x_1}^{x_2}\delta M_{\|\widetilde{\mathfrak{g}}\|}\rho_{\widetilde{\mathcal{F}}}(p)\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)dp\\ &&+\int_{x_1}^{x_2}\delta\gamma_{\widetilde{\mathfrak{g}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)dp, \\ & = &\delta M_{\|\widetilde{\mathfrak{g}}\|}\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\|\rho_{\widetilde{\mathcal{F}}}(p)\|(x_2-x_1)^{1/2}\\ &&+\delta \gamma_{\widetilde{\mathfrak{f}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)(x_2-x_1)^{1/2}\\ & = &\delta (x_2-x_1)^{1/2}\Big[M_{\|\widetilde{\mathfrak{g}}\|}\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p))\|\rho_{\widetilde{\mathcal{F}}}(p)\|\\ &&+\gamma_{\widetilde{\mathfrak{f}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\Big]\rightarrow 0\text{ as } x_1\to x_2. \end{eqnarray} (4.7)

    Further by Proposition 2.2 and (4.4) and Hölder's inequality, we have

    \begin{eqnarray} I_2& = &\int_{0}^{x_1}\Big\|(R(x_2-p)-R(x_1-p))[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\Big\|dp\\ & = &\Big\|\int_{0}^{x_1}[R(p)(Q(x_2)-Q(x_1))+Q(p)(R(x_1)-R(x_2))]\\ &&\times[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\Big\|dp\\ &\leq& \int_{0}^{x_1}\|R(p)\|\|Q(x_1)-Q(x_2)\|\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|dp+\int_{0}^{x_1}\|Q(p)\|\|R(x_1)-R(x_2)\|\\ &&\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|dp\\ &\leq& \int_{0}^{x_1}\delta\|x_1-x_2\|\Big[\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|\|\xi(p)\|\\ &&+\|\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|\Big]dp+\int_{0}^{x_1}\delta \|x_1-x_2\|\\ &&\times[\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|+\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|]dp\\ &\leq&2\delta(\|x_1-x_2\|)\int_{0}^{x_1}[M_{\|\widetilde{\mathfrak{g}}\|}\rho_{\widetilde{\mathcal{F}}}(p)\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\\ &&+\rho_{\widetilde{\mathfrak{f}}}(p)\gamma_{\widetilde{\mathfrak{f}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)]dp, \\ &\leq&2\delta\|x_1-x_2\|\Big[M_{\|\widetilde{\mathfrak{g}}\|}\|\rho_{\widetilde{\mathcal{F}}}(p)\|\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\\ &&+\gamma_{\widetilde{\mathcal{F}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\Big]x^{1/2}\to0\text{ as } x_1\to x_2. \end{eqnarray} (4.8)

    From (4.6)–(4.8), we have

    \begin{equation*} \|y(x_2)-y(x_1)\|_{\widehat{B_2}}\longrightarrow 0, \; \mbox{as}\; \; x_1\to x_2. \end{equation*}

    Hence, \Gamma(\mathfrak{y}) is equicontinuous, \forall\; \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}). By Arzela-Ascoli theorem [34], we obtained that \Gamma(\mathfrak{y}) is relatively compact \forall\; \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).

    Now, we have to check that \Gamma(\mathfrak{y}) is closed in C^1([0, \mathcal{T}], \widehat{B_2}) \forall\; \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).

    Let \{y_n\}\subset \Gamma(\mathfrak{y}) is a sequence with y_n\to y^* in C^1([0, \mathcal{T}]; \widehat{B_2}) as n\to \infty . Hence, there exist a sequence \{\xi_n\}\subset P_\mathfrak{F}(\mathfrak{y}) such that

    \begin{equation*} y_n(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi_n(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp, \end{equation*}

    x\in [0, \mathcal{T}]. By (iii) of Theorem 3.3, it follows that the sequence \{\xi_n\} is weakly relatively compact. Since P_\mathfrak{F}(\mathfrak{y}) is upper semicontinuity (see Lemma 4.1), we may assume \xi_n\to \xi^*\in P_\mathfrak{F}(\mathfrak{y}) in L^2([0, \mathcal{T}], \widehat{B_1}) , where \xi^*\in P_\mathfrak{F}(\mathfrak{y}) . On the other hand, by strongly continuity of Q(x) and R(x) for x > 0 , we have

    \begin{equation*} y^*(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi^*(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp, \end{equation*}

    x\in [0, \mathcal{T}]. Which implies that y^*\in \Gamma(\mathfrak{y}) , that is \Gamma(\mathfrak{y})\in \Pi_{cv}(C^1[0, \mathcal{T}], \widehat{B_2}) .

    Step-Ⅱ. The multi-valued mapping \Gamma is closed.

    For this assume \mathfrak{y}_n\to \mathfrak{y}^* and y_n\to y^* in C^1([0, \mathcal{T}], \widehat{B_2}) with y_n\in \Gamma(\mathfrak{y}_n) \forall \; n\in \mathbb{N}. We need to prove that y^*\in \Gamma(\mathfrak{y}^*). From the definition of multi-valued map \Gamma , we may take \xi_n\in P_\mathfrak{F}(\mathfrak{y}_n) \forall\; n\in \mathbb{N} such that

    \begin{eqnarray} y_n(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}_n(p), \mathfrak{y}_n{'}(p))\xi_n(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}_n(p), \mathfrak{y}_n{'}(p))]dp, \\ x\in [0, \mathcal{T}].\\ \end{eqnarray} (4.9)

    With the help of Theorem 3.3 and Lemma 4.1, we may consider that \xi_n\rightharpoonup \xi^*\in P_\mathfrak{F}(\mathfrak{y}^*) . By using, I_8 we get that \widetilde{\mathfrak{f}}(., \mathfrak{y}_n(.), \mathfrak{y}_n'(.))\to \widetilde{\mathfrak{f}}(., \mathfrak{y}^*, \mathfrak{y}^*{'}) in L^2([0, \mathcal{T}], \widehat{B_2}) .

    By using the continuity of \widetilde{\mathcal{F}}(x, ., .) and strongly continuity of Q(x) , R(x) for x > 0 , we obtain from (4.9) that

    \begin{eqnarray*} y^*(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}^*(p), \mathfrak{y}^*{'}(p))\xi^*(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}^*(p), \mathfrak{y}^*{'}(p))]dp, \\ x\in [0, \mathcal{T}], \end{eqnarray*}

    and \xi^*\in P_\mathfrak{F}(\mathfrak{y}) . Thus \mathfrak{y}^*\in \Gamma(\mathfrak{y}^*).

    Step-Ⅲ. \Gamma is \chi_T condensing.

    Let \mathcal{D}\subset \Pi_b(C^1([0, \mathcal{T}], \widehat{B_2})). Therefore, \mathcal{D} is not relatively compact subset of C^1([0, \mathcal{T}], \widehat{B_2}). For \mathcal{D} , we need to prove that \chi_\mathcal{T}(\mathcal{(D)})\nleq \chi_\mathcal{T}(\Gamma(\mathcal{(D)})). Since \mathcal{D} is bounded subset of C^1([0, \mathcal{T}], \widehat{B_2}) , then by applying the same technique as in Step-I, we may prove that \Gamma(\mathcal{(D)}) is relatively compact, that is, \chi_\mathcal{T}(\mathcal{D}) = 0. Hence, \chi_\mathcal{T}(\mathcal{(D)})\leq \chi_\mathcal{T}(\Gamma(\mathcal{D})) = 0 implies that \mathcal{D} is relatively compact by regularity of \chi_T , we conclude that \Gamma is \chi_\mathcal{T} -condensing.

    Step-Ⅳ. \exists a constant M_\mathfrak{R} > 0 such that

    \begin{equation} \Gamma(\bar{B}_{M_\mathfrak{R}}\subset \bar{B}{M_\mathfrak{R}}): = \{\mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}):\|\mathfrak{y}\|_C\leq M_\mathfrak{R}\}\subset C^1([0, \mathcal{T}], \widehat{B_2}). \end{equation} (4.10)

    Let us assume that \forall k > 0, \exists two sequences \{\mathfrak{y}_k\} and \{y_k\} such that

    \|\mathfrak{y}_k\|_{C^1([0, \mathcal{T}], \widehat{B_2})}, \; \|\mathfrak{y}_k^{'}\|_{C^1([0, \mathcal{T}], \widehat{B_2})}\leq k/2 and y_k\in \Gamma(\mathfrak{y}_k) such that \|y_k\| > 0 . Hence, there is \xi_k\in P_\mathfrak{F}(\mathfrak{y}_k) such that

    \begin{eqnarray*} y_k(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}_k(p), \mathfrak{y}_k{'}(p))\xi_k(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}_k(p), \mathfrak{y}_k{'}(p))]dp, \\ \; \; x\in [0, \mathcal{T}]. \end{eqnarray*}

    Using Hölder's inequality, for every x\in [0, \mathcal{T}] , we have

    \begin{eqnarray*} \|\mathfrak{y}_k(x)\|&\leq& \|Q(x)\|\|\mathfrak{y}_0\|+\|R(x)\|\|y_0\|\\ && +\int_{0}^{x}\|R(x-p)\|\|[\widetilde{\mathcal{F}}(p, \mathfrak{y}_k(p), \mathfrak{y}_k{'}(p))\xi_k(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}_k(p), \mathfrak{y}_k{'}(p))]\|dp, \\ & = &\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\int_{0}^{x}\delta[\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}_k\|+\|\mathfrak{y}_k{'}\|)\rho_{\widetilde{\mathcal{F}}}(p)M_{\|\widetilde{\mathfrak{f}}\|}]dp\\ &&+\int_{0}^{x}\delta\gamma_{\widetilde{\mathfrak{f}}}(1+\|\mathfrak{y}_k\|+\|\mathfrak{y}_k^{'}\|)\rho_{\widetilde{\mathfrak{f}}}(p)dp\\ &\leq&\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\int_{0}^{x}\delta[\gamma_{\widetilde{\mathcal{F}}}(k)\rho_{\widetilde{\mathcal{F}}}(p)M_{\|\widetilde{\mathfrak{g}}\|}]dp\\ &&+\int_{0}^{x}\delta\gamma_{\widetilde{\mathfrak{f}}}(1+k)\rho_{\widetilde{\mathfrak{f}}}(p)dp\\ &\leq&\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\delta\gamma_{\widetilde{\mathcal{F}}}(k)\|\rho_{\widetilde{\mathcal{F}}}(x)\|M_{\|\widetilde{\mathfrak{g}}\|}\mathcal{T}^{1/2}\\ &&+\delta\gamma_{\widetilde{\mathfrak{f}}}(1+\kappa)\|\rho_{\widetilde{\mathfrak{f}}}(x)\|\mathcal{T}^{1/2}\\ & = &\delta \mathcal{T}^{1/2}\Big[\gamma_{\widetilde{\mathcal{F}}}(k)\|\rho_{\widetilde{\mathcal{F}}}(x)\|M_{\|\widetilde{\mathfrak{g}}\|}+\gamma_{\widetilde{\mathfrak{f}}}(1+k)\|\rho_{\widetilde{\mathfrak{g}}}(x)\|+\frac{\|\mathfrak{y}_0\|+\|y_0\|}{\mathcal{T}^{1/2}}\Big], \end{eqnarray*}

    we obtain by using (4.9),

    \begin{eqnarray*} 1&\leq& \underset{k\to \infty}{lim\; inf}\frac{\|y_k\|_{C^1([0, \mathcal{T}], \widehat{B_2})}}{k}\\ &\leq&\underset{k\to \infty}{lim\; inf}\Big[\gamma_{\widetilde{\mathcal{F}}}(k)\|\rho_{\widetilde{\mathcal{F}}}(x)\|M_{\|\widetilde{\mathfrak{g}}\|}\mathcal{T}^{1/2}+\gamma_{\widetilde{\mathfrak{f}}}(1+k)\|\rho_{\widetilde{\mathfrak{f}}}(x)\|\mathcal{T}^{1/2}+(\|\mathfrak{y}_0\|+\|y_0\|)\Big]\\ & < &1, \end{eqnarray*}

    which is a contradiction. Therefore there exists M_\mathfrak{R} such that (4.10) holds.

    Thus, all requirements of Theorem 2.1 are fulfilled. This implies that Fix\Gamma\neq \phi in \overline{B}_{M_\mathfrak{R}}. Therefore, (SOEPDVLI) has at least one mild solution (\mathfrak{y}, \widehat{\mathfrak{u}}).

    In this paper, a second order evolutionary partial differential variational-like inequality problem is introduced and studied in a Banach space, which is much more general than the considered by Liu-Migórski-Zeng [14], Li-Huang-O'Regan [13] and Wang-Li-Li-Huang [33] etc. We investigate suitable conditions to prove an existence theorem for our problem by using the theory of strongly continuous cosine family of bounded linear operator, fixed point theorem for condensing set-valued mapping and the theory of measure of non-compactness.

    The authors are highly thankful to anonymous referees and the editor for their valuable suggestions and comments which improve the manuscript a lot.

    The authors declare that they have no conflicts of interest.



    [1] G. Tchuen, M. Fogue, Y. Burtschell, D. Zeitoun, G. Ben-Dor, Shock-on-shock interactions over double-wedges: Comparison between inviscid, viscous and nonequilibrium hypersonic flow, Berlin: Springer, 2009. https://doi.org/10.1007/978-3-540-85181-3_114
    [2] N. H. Johannesen, Experiments on two-dimensional supersonic flow in corners and over concave surfaces, Lond. Edinb. Dubl. Phil. Mag. J. Sci., 43 (1952), 568–580. https://doi.org/10.1080/14786440508520212 doi: 10.1080/14786440508520212
    [3] G. C. Zha, E. Bilgen, Numerical solutions of Euler equations by using a new flux vector splitting scheme, Int. J. Numer. Methods Fluids, 17 (1993), 115–144. https://doi.org/10.1002/fld.1650170203 doi: 10.1002/fld.1650170203
    [4] D. J. Singh, A. Kumar, S. N. Tiwari, Numerical simulation of shock impingement on blunt cowl lip in viscous hypersonic, Numer. Heat Tr. A Appl., 20 (1991), 329–344. https://doi.org/10.1080/10407789108944825 doi: 10.1080/10407789108944825
    [5] J. W. Shen, Shock wave solutions of the compound Burgers-Korteweg-de Vries equation, Appl. Math. Comput., 196 (2008), 842–849. https://doi.org/10.1016/j.amc.2007.07.029 doi: 10.1016/j.amc.2007.07.029
    [6] B. Barker, H. Freistühler, K. Zumbrun, Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability, Arch Ration. Mech. Anal., 217 (2015), 309–372. https://doi.org/10.1007/s00205-014-0838-6 doi: 10.1007/s00205-014-0838-6
    [7] B. Xue, F. Li, X. G. Geng, Quasi-periodic solutions of coupled KDV type equations, J. Nonlinear Math. Phys., 20 (2013), 61–77. http://dx.doi.org/10.1080/14029251.2013.792472 doi: 10.1080/14029251.2013.792472
    [8] B. Xue, X. G. Geng, F. Li, Quasiperiodic solutions of Jaulent-Miodek equations with a negative flow, J. Math. Phys., 53 (2012), 063710. https://doi.org/10.1063/1.4729868 doi: 10.1063/1.4729868
    [9] R. T. Alqahtani, J. C. Ntonga, E. Ngondiep, Stability analysis and convergence rate of a two-step predictor-corrector approach for shallow water equations with source terms, AIMS Mathematics, 8 (2023), 9265–9289. https://doi.org/10.3934/math.2023465 doi: 10.3934/math.2023465
    [10] C. Caginalp, Minimization solutions to conservation laws with non-smooth and non-strictly convex flux, AIMS Mathematics, 3 (2018), 96–130. https://doi.org/10.3934/Math.2018.1.96 doi: 10.3934/Math.2018.1.96
    [11] E. F. Toro, C. E. Castro, D. Vanzo, A. Siviglia, A flux-vector splitting scheme for the shallow water equations extended to high-order on unstructured meshes, Int. J. Numer. Methods Fluids, 94 (2022), 1679–1705. https://doi.org/10.1002/fld.5099 doi: 10.1002/fld.5099
    [12] B. Parent, Positivity-preserving flux difference splitting schemes, J. Comput. Phys., 243 (2013), 194–209. https://doi.org/10.1016/j.jcp.2013.02.048 doi: 10.1016/j.jcp.2013.02.048
    [13] W. T. Roberts, The behavior of difference splitting schemes near slowly moving shock waves, J. Comput. Phys., 90 (1990), 141–160. https://doi.org/10.1016/0021-9991(90)90200-K doi: 10.1016/0021-9991(90)90200-K
    [14] E. F. Toro, Riemann solvers and numerical methods for fluid dynamic, Berlin: Springer, 1997. https://doi.org/10.1007/978-3-540-49834-6
    [15] G. Tchuen, Y. Burtschell, D. E. Zeitoun, Computation of non-equilibrium hypersonic flow with artificially upstream flux vector splitting (AUFS) scheme, Int. J. Comput. Fluid Dyn., 22 (2008), 209–220. https://doi.org/10.1080/10618560701766525 doi: 10.1080/10618560701766525
    [16] J. L. Steger, R. F. Warming, Flux vector splitting of the inviscid gas dynamic equations with application to finite difference methods, J. Comput. Phys., 40 (1981), 263–293. https://doi.org/10.1016/0021-9991(81)90210-2 doi: 10.1016/0021-9991(81)90210-2
    [17] E. F. Toro, M. E. Vázquez-Cendón, Flux splitting schemes for the Euler equations, Comput. Fluids, 70 (2012), 1–12. https://doi.org/10.1016/j.compfluid.2012.08.023 doi: 10.1016/j.compfluid.2012.08.023
    [18] J. C. Mandal, V. Panwar, Robust HLL-type Riemann solver capable of resolving contact discontinuity, Comput. Fluids, 63 (2012), 148–164. https://doi.org/10.1016/j.compfluid.2012.04.005 doi: 10.1016/j.compfluid.2012.04.005
    [19] W. J. Xie, H. Li, Z. Y. Tian, S. Pan, A low diffusion flux splitting method for inviscid compressible flows, Comput. Fluids, 112 (2015), 83–93. https://doi.org/10.1016/j.compfluid.2015.02.004 doi: 10.1016/j.compfluid.2015.02.004
    [20] K. Chakravarthy, D. Chakraborty, Modified SLAU2 scheme with enhanced shock stability, Comput. Fluids, 100 (2014), 176–184. https://doi.org/10.1016/j.compfluid.2014.04.015 doi: 10.1016/j.compfluid.2014.04.015
    [21] H. Kim, M. S. Liou, Adaptive Cartesian cut-cell sharp interface method (aC3SIM) for three-dimensional multi-phase flows, Shock Waves, 29 (2019), 1023–1041. https://doi.org/10.1007/s00193-019-00902-6 doi: 10.1007/s00193-019-00902-6
    [22] A. V. Fedorov, A. A. Ryzhov, V. G. Soudakov, S. V. Utyuzhnikov, Numerical simulation of the effect of local volume energy supply on high-speed boundary layer stability, Comput. Fluids, 100 (2014), 130–137. https://doi.org/10.1016/j.compfluid.2014.04.026 doi: 10.1016/j.compfluid.2014.04.026
    [23] M. Pandolfi, D. D'Ambrosio, Numerical instabilities in upwind methods: Analysis and cures for the 'carbuncle' phenomenon, J. Comput. Phys., 166 (2001), 271–301. https://doi.org/10.1006/jcph.2000.6652 doi: 10.1006/jcph.2000.6652
    [24] M. S. Liou, C. J. Steffen, A new flux spitting scheme, J. Comput. Phys., 107 (1993), 23–39. https://doi.org/10.1006/jcph.1993.1122 doi: 10.1006/jcph.1993.1122
    [25] M. S. Liou, Mass flux schemes and connection to shock instability, J. Comput. Phys., 160 (2000), 623–648. https://doi.org/10.1006/jcph.2000.6478 doi: 10.1006/jcph.2000.6478
    [26] D. Sun, C. Yan, F. Qu, R. Du, A robust flux splitting method with low dissipation for all-speed flows, Int. J. Numer. Methods Fluids, 84 (2016), 3–18. https://doi.org/10.1002/fld.4337 doi: 10.1002/fld.4337
    [27] N. Fleischmann, S. Adami, X. Y. Hu, N. A. Adams, A low dissipation method to cure the grid-aligned shock instability, J. Comput. Phys., 401 (2020) 109004. https://doi.org/10.1016/j.jcp.2019.109004 doi: 10.1016/j.jcp.2019.109004
    [28] N. Fleischmann, S. Adami, N. A. Adams, A shock-stable modification of the HLLC Riemann solver with reduced numerical dissipation. J. Comput. Phys., 423 (2020) 109762. https://doi.org/10.1016/j.jcp.2020.109762 doi: 10.1016/j.jcp.2020.109762
    [29] F. Kemm, Numerical investigation of Mach number consistent Roe solvers for the Euler equations of gas dynamics, J. Comput. Phys., 477 (2023), 111947. https://doi.org/10.1016/j.jcp.2023.111947 doi: 10.1016/j.jcp.2023.111947
    [30] M. S. Liou, A sequel to AUSM, Part Ⅱ: AUSM+-up for all speeds, J. Comput. Phys., 214 (2006), 137–170. https://doi.org/10.1016/j.jcp.2005.09.020 doi: 10.1016/j.jcp.2005.09.020
    [31] K. Xu, Z.W. Li, Dissipative mechanism in Godunov-type schemes, Int. J. Numer. Methods Fluids, 37 (2001), 1–22. https://doi.org/10.1002/fld.160 doi: 10.1002/fld.160
    [32] M. Sun, K.Takayama, An artificially upstream flux vector splitting scheme for the Euler equations, J. Comput. Phys., 189 (2003), 305–329. https://doi.org/10.1016/S0021-9991(03)00212-2 doi: 10.1016/S0021-9991(03)00212-2
    [33] J. J. Quirk, A contribution to the great Riemann solver debate, Int. J. Numer. Methods Fluids, 18 (1994), 555–574. https://doi.org/ 10.1002/fld.1650180603 doi: 10.1002/fld.1650180603
    [34] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Philadelphia: SIAM, 1973. https://doi.org/10.1137/1.9781611970562
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1168) PDF downloads(41) Cited by(0)

Figures and Tables

Figures(13)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog