Loading [MathJax]/jax/output/SVG/jax.js
Research article

Pivotal-based inference for a Pareto distribution under the adaptive progressive Type-II censoring scheme

  • Received: 26 October 2023 Revised: 04 January 2024 Accepted: 10 January 2024 Published: 01 February 2024
  • MSC : 62F10

  • This paper proposes an inference approach based on a pivotal quantity under the adaptive progressive Type-II censoring scheme. To exemplify the proposed methodology, an extensively employed distribution, a Pareto distribution, is utilized. This distribution has limitations in estimating confidence intervals for unknown parameters from classical methods such as the maximum likelihood and bootstrap methods. For example, in the maximum likelihood method, the asymptotic variance-covariance matrix does not always exist. In addition, both classical methods can yield confidence intervals that do not satisfy nominal levels when a sample size is not large enough. Our approach resolves these limitations by allowing us to construct exact intervals for unknown parameters with computational simplicity. Aside from this, the proposed approach leads to closed-form estimators with properties such as unbiasedness and consistency. To verify the validity of the proposed methodology, two approaches, a Monte Carlo simulation and a real-world data analysis, are conducted. The simulation testifies to the superior performance of the proposed methodology as compared to the maximum likelihood method, and the real-world data analysis examines the applicability and scalability of the proposed methodology.

    Citation: Young Eun Jeon, Suk-Bok Kang, Jung-In Seo. Pivotal-based inference for a Pareto distribution under the adaptive progressive Type-II censoring scheme[J]. AIMS Mathematics, 2024, 9(3): 6041-6059. doi: 10.3934/math.2024295

    Related Papers:

    [1] Sixing Tao . Breathers, resonant multiple waves and complexiton solutions of a (2+1)-dimensional nonlinear evolution equation. AIMS Mathematics, 2023, 8(5): 11651-11665. doi: 10.3934/math.2023590
    [2] Jianhong Zhuang, Yaqing Liu, Ping Zhuang . Variety interaction solutions comprising lump solitons for the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation. AIMS Mathematics, 2021, 6(5): 5370-5386. doi: 10.3934/math.2021316
    [3] Ihsan Ullah, Aman Ullah, Shabir Ahmad, Hijaz Ahmad, Taher A. Nofal . A survey of KdV-CDG equations via nonsingular fractional operators. AIMS Mathematics, 2023, 8(8): 18964-18981. doi: 10.3934/math.2023966
    [4] Sixing Tao . Breather wave, resonant multi-soliton and M-breather wave solutions for a (3+1)-dimensional nonlinear evolution equation. AIMS Mathematics, 2022, 7(9): 15795-15811. doi: 10.3934/math.2022864
    [5] Noufe H. Aljahdaly . Study tsunamis through approximate solution of damped geophysical Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(5): 10926-10934. doi: 10.3934/math.2024534
    [6] Jin Hyuk Choi, Hyunsoo Kim . Exact traveling wave solutions of the stochastic Wick-type fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation. AIMS Mathematics, 2021, 6(4): 4053-4072. doi: 10.3934/math.2021240
    [7] M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey . Analysis of bifurcation, chaotic structures, lump and MW-shape soliton solutions to (2+1) complex modified Korteweg-de-Vries system. AIMS Mathematics, 2024, 9(6): 16116-16145. doi: 10.3934/math.2024780
    [8] Ibrahim Alraddadi, Faisal Alsharif, Sandeep Malik, Hijaz Ahmad, Taha Radwan, Karim K. Ahmed . Innovative soliton solutions for a (2+1)-dimensional generalized KdV equation using two effective approaches. AIMS Mathematics, 2024, 9(12): 34966-34980. doi: 10.3934/math.20241664
    [9] Khalid Khan, Amir Ali, Muhammad Irfan, Zareen A. Khan . Solitary wave solutions in time-fractional Korteweg-de Vries equations with power law kernel. AIMS Mathematics, 2023, 8(1): 792-814. doi: 10.3934/math.2023039
    [10] A. K. M. Kazi Sazzad Hossain, M. Ali Akbar . Solitary wave solutions of few nonlinear evolution equations. AIMS Mathematics, 2020, 5(2): 1199-1215. doi: 10.3934/math.2020083
  • This paper proposes an inference approach based on a pivotal quantity under the adaptive progressive Type-II censoring scheme. To exemplify the proposed methodology, an extensively employed distribution, a Pareto distribution, is utilized. This distribution has limitations in estimating confidence intervals for unknown parameters from classical methods such as the maximum likelihood and bootstrap methods. For example, in the maximum likelihood method, the asymptotic variance-covariance matrix does not always exist. In addition, both classical methods can yield confidence intervals that do not satisfy nominal levels when a sample size is not large enough. Our approach resolves these limitations by allowing us to construct exact intervals for unknown parameters with computational simplicity. Aside from this, the proposed approach leads to closed-form estimators with properties such as unbiasedness and consistency. To verify the validity of the proposed methodology, two approaches, a Monte Carlo simulation and a real-world data analysis, are conducted. The simulation testifies to the superior performance of the proposed methodology as compared to the maximum likelihood method, and the real-world data analysis examines the applicability and scalability of the proposed methodology.



    Fractional differential equation models have been founded in a lot of fields of science and engineering, such as physics, chemistry, biology, dynamics, and control [1,2,3,4]. In these models, the fractional wave model plays an important role in many practical application fields including transmission and modeling propagation of electrical signals, neural conduction, weak current propagation in the animal nervous system, wave phenomena, and wave propagation. However, it is often difficult to get the analytic solutions of these complex problems. In view of the importance of this kind of model, more and more scholars have focused on solving them numerically by developing a lot of numerical methods including finite element method [5,6,7,8,9,10,11,12,13,14], wavelet method [15], finite difference method [16,17,18,19,20,21,22,23], meshless method [24], collocation method [25,26], and B-spline method [27,28].

    In this article, we consider the initial-boundary problem of the following nonlinear fractional hyperbolic wave model

    {R0Dβtu(x,t)+ut(x,t)R0Dαtuxx(x,t)uxx(x,t)+g(u(x,t))=f(x,t),(x,t)Ω×J,u(x,0)=u0(x),ut(x,0)=u1(x),xˉΩ,u(a,t)=u(b,t)=0,ut(a,t)=ut(b,t)=0,tJ, (1.1)

    where Ω=(a,b) is the spatial domain and J=(0,T] with 0<T< is the time interval. u0(x) and u1(x) are given initial functions, f(x,t) is the given source term and the nonlinear term g(u)C2(R), fractional parameter β=α+1, and R0Dγtw(x,t) is the Riemann-Liouville fractional-order derivative defined by

    R0Dαtw(x,t)=1Γ(1α)tt0w(x,s)(ts)αds,α(0,1), (1.2)

    and

    R0Dβtw(x,t)=1Γ(2β)2t2t0w(x,s)(ts)β1ds,β(1,2). (1.3)

    The fractional hyperbolic wave model (1.1), which includes both propagation and diffusion of the wave, can be degenerated into the pseudo-hyperbolic equation for β=2 and diffusion equation for β=1.

    In the following, for formulating our numerical method we need to introduce numerical techniques including the weighted and shifted Grünwald difference (WSGD) formula, BDF2-θ, H1-Galerkin MFE method, and time two-mesh (TT-M) finite element algorithm. The WSGD formula, which was proposed by Tian et al. in [29], is a useful approximate method for the Riemann-Liouville fractional derivative. Due to its high-order approximation characteristics, many scholars have developed efficient numerical methods based on the WSGD formula; see [30,31,32,33,34,35]. The H1-Galerkin MFE method is an important numerical method, which was proposed by Pani [36]. Due to several advantages of this method, many scholars have begun to use it to solve evolution partial differential equation (PDE) models, such as integer PDE models [37,38,39], fractional PDE models [40], and distributed-order PDE models [41]. The TT-M finite element method was proposed by Liu et al. in [42] to quickly solve the fractional water wave model, which can also combine many other numerical methods, such as the finite difference method and the finite volume element method, to solve evolution differential equation models [43,44,45,46].

    In this article, considering the characteristics of the nonlinear fractional hyperbolic wave equation, we introduce an auxiliary function with a fractional derivative, and formulate a fast high-order fully discrete H1-Galerkin MFE method, where the time direction is discretized by the BDF2-θ with the WSGD operator, the space direction is approximated by the H1-Galerkin MFE method, and the fast TT-M algorithm is used to reduce calculation time. The main works and contributions of this article are as follows:

    (Ⅰ) Propose a fast TT-M mixed element method with the WSGD operator to numerically solve the nonlinear pseudo-hyperbolic wave equation with two term fractional derivatives.

    (Ⅱ) Introduce a special auxiliary function, transform the original high-order equation into the coupled system of equations with lower order space-time derivatives, and directly formulate a second-order fully discrete BDF2-θ H1-Galerkin MFE system, which can avoid difficulties in numerical calculations and theoretical analysis by directly discretizing fractional derivatives. Further, develop the fast fully discrete TT-M MFE system, and derive optimal a priori error estimates for two functions.

    (Ⅲ) Provide the detailed numerical algorithm by taking smooth and weakly regular solutions. Validate the correctness of the theoretical results and the effectiveness of the numerical algorithm, and illustrate that the TT-M MFE method has good computational efficiency by comparing the calculation results with the standard nonlinear MFE method.

    The rest of the article is outlined as follows: In Section 2, the fully discrete scheme based on the combination of an MFE method and the BDF2-θ with the WSGD formula is derived. In Section 3, the optimal error estimates in both L2-norm and H1-norm for the fully discrete TT-M MFE scheme are derived. In Section 4, the numerical algorithm is shown. Some experiments in Section 5 are conducted to further confirm our theoretical results. Finally, in Section 6, conclusions and advancements are provided.

    Letting q=R0Dαtux(x,t)+ux(x,t), we rewrite equation (1.1) as

    {R0Dαtux(x,t)+ux(x,t)=q(x,t),R0Dβtu(x,t)+utqx(x,t)+g(u)=f(x,t). (2.1)

    We multiply the first equation of (2.1) by vx and the second equation of (2.1) by ωx, respectively, then make the inner product on the spatial domain ˉΩ=[a,b] to have

    {(R0Dαtux,vx)+(ux,vx)=(q,vx),vH10,(R0Dβtu+ut,ωx)+(qx,ωx)+(g(u),ωx)=(f,ωx),ωH1. (2.2)

    For the second equation of (2.2), by the integration by part and the boundary condition

    R0Dβtu(a,t)=R0Dβtu(b,t)=0,1β<2,

    we obtain

    (R0Dβtu+ut,ωx)=(R0D1+αtux+utx,ω)=((R0Dαtux+ux)t,ω)=(qt,ω).

    Now, we can get the following mixed weak form

    {(R0Dαtux,vx)+(ux,vx)=(q,vx),vH10,(qt,ω)+(qx,ωx)+(g,ωx)=(f,ωx),ωH1. (2.3)

    For obtaining the fully discrete TT-M MFE scheme, we introduce the nodes tn=nτc(n=0,1,2,,N) in the time interval [0,T], where tn satisfies 0=t0<t1<t2<<tN=T with fine mesh length τ=T/NM and coarse mesh length τc=Mτ for some positive integer N. Define un=u(,tn),qn=q(,tn) for smooth functions u and q on [0,T]. Some useful lemmas will also be introduced as follows.

    Lemma 2.1. ([35]) With v(t)C3[0,T], at time tnθ, the following formula with second-order accuracy for approximating the first-order derivative holds

    vt(tnθ)={t[vnθ]+O(τ2),n2,t[v1]+O(τ),n=1, (2.4)

    where

    t[vnθ](32θ)vn(44θ)vn1+(12θ)vn22τ,t[v1]v1v0τ, (2.5)

    for any θ[0,12].

    Lemma 2.2. At time tnθ, the following important results hold for any θ[0,1] and v(t)C2[0,T],

    v(tnθ)=(1θ)vn+θvn1+O(τ2)vnθ+O(τ2),(1θ)g(vn)+θg(vn1)g[vnθ]. (2.6)

    Lemma 2.3. ([29,35]) At time tn, the second-order approximate formula for the Riemann-Liouville fractional derivative with parameter γ(0,1) holds

    R0Dγtu(tn)=τγni=0Aγ(i)vni+O(τ2)Inγ[vn]+O(τ2), (2.7)

    with

    Aγ(i)={γ+22wγ0,i=0,γ+22wγi+γ2wγi1,i>0, (2.8)

    where series wγi are defined as wγ0=1,wγl=(1)l(γl)=Γ(lγ)Γ(γ)Γ(l+1),l1, which satisfy wγl<0,wγl=(1γ+1l)wγl1,(l=1,2,),l=1wγl=1.

    Based on the weak form (2.3) and the numerical approximate formulas above, we can get the following equivalent weak form

    Case n=1:

    (I1θα[u1θx],vx)+(u1θx,vx)=(q1θ,vx)+(E1θ1,vx),(q1q0τ,ω)+(q1θx,ωx)+(g[u1θ],ωx)=(f1θ,ωx)+(3k=1ˉE1θk,ωx), (2.9)

    Case n2:

    (Inθα[unθx],vx)+(unθx,vx)=(qnθ,vx)+(Enθ1,vx),(t[qnθ],ω)+(qnθx,ωx)+(g[unθ],ωx)=(fnθ,ωx)+(3k=1ˉEnθk,ωx), (2.10)

    where

    ˉE1θ1=t[q1]qt(t1θ)=O(τ),Enθ1=R0DατunθxInθα[unθx]=O(τ2),ˉEnθ1=nθt[q]qt(tnθ)=O(τ2),ˉEnθ2=g[unθ]g(u(tnθ))=O(τ2),ˉEnθ3=fnθf(tnθ)=O(τ2),Inθα[unθx](1θ)Inα[unx]+θIn1α[un1x]. (2.11)

    We now formulate the fully discrete TT-M MFE system at time tnθ for handling the computational time-consuming problems of implicit finite element systems, and we denote Unc,Qnc as solutions of the system on the time coarse mesh and Umf,Qmf as solutions of the system on the time fine mesh. The TT-M MFE algorithm can be implemented as the following three steps.

    STEP1: First, we arrive at the following nonlinear coupled system based on the time coarse mesh τc: Find (Unc,Qnc):[0,T]×[0,T]Vh×Wh such that

    Case n=1:

    (I1θα[U1θcx],vhx)+(U1θcx,vhx)=(Q1θc,vhx),(Q1cQ0cτc,ωh)+(Q1θcx,ωhx)+(g[U1θc],ωhx)=(f1θ,ωhx), (2.12)

    Case n2:

    (Inθα[Unθcx],vhx)+(Unθcx,vhx)=(Qnθc,vhx),(t[Qnθc],ωh)+(Qnθcx,ωhx)+(g[Unθc],ωhx)=(fnθ,ωhx). (2.13)

    STEP2: Second, we can get all the interpolated values UmI(m=0,1,,M,M+1,,2M,,NM) by using an interpolation formula

    UmI=λmUn1c+(1λm)Unc, (2.14)

    where λm=nmM[0,1)(n=mM) and U0I=U0c. Values of QmI can be obtained similarly.

    STEP3: Finally, we establish the following linear system on the time fine mesh τ based on the solutions UmI,QmI; that is, to find (Umf,Qmf):[0,T]×[0,T]Vh×Wh for any (v,ω)Vh×Wh such that

    Case m=1:

    (I1θα[U1θfx],vhx)+(U1θfx,vhx)=(Q1θf,vhx),(Q1fQ0fτ,ωh)+(Q1θfx,ωhx)+(g[U1θI]+g[U1θI](U1θfU1θI),ωhx)=(f1θ,ωhx), (2.15)

    Case m2:

    (Imθα[Umθfx],vhx)+(Umθfx,vhx)=(Qmθf,vhx),(t[Qmθf],ωh)+(Qmθfx,ωhx)+(g[UmθI]+g[UmθI](UmθfUmθI),ωhx)=(fmθ,ωhx), (2.16)

    where finite element spaces are defined as

    Vh={vh|vhPk,vh(a)=vh(b)=0,vhxL2,kZ+}H10,Wh={σh|σhPr,σhxL2,rZ+}H1.

    Remark 2.4. Here, we provide two other equivalent linearized techniques besides the one mentioned in (2.15)-(2.16).

    (a)g(Umθf)(1θ)(g(UmI)+g(UmI)(UmfUmI))+θg(Um1f),(b)g(Umθf)g[UmθI]+(1θ)g(UmI)(UmfUmI)+θg(Um1I)(Um1fUm1I). (2.17)

    For subsequent analysis, we introduce some useful lemmas.

    Lemma 3.1. ([30,35]) Let Aγ(i) be defined in (2.8), then for any positive integer L and real vector (v0,v1,,vL)RL+1, the following inequality holds

    Ln=0ni=0Aγ(i)(vni,vn)0. (3.1)

    Lemma 3.2. ([23,35]) For series χn (n2), the following inequality holds

    (t[vnθ],vnθ)14τ(H[vn]H[vn1]),H[vn]=(32θ)vn2(12θ)vn12+(2θ)(12θ)vnvn12, (3.2)

    and

    H[vn]11θvn2,θ[0,12]. (3.3)

    Lemma 3.3. ([47,48]) For any function vH10(Ω), we have

    vL4v12vx12. (3.4)

    For considering a priori error estimates for the TT-M MFE system, the projection operator and the inequality should be introduced.

    Lemma 3.4. ([36]) Define an elliptic-projection operator Υh:H10(Ω)Vh, for any ϕhVh such that

    (uxΥhux,ϕhx)=0 (3.5)

    with an estimate inequality

    uΥhu+huΥhu1Chk+1uk+1,  uH10(Ω)Hk+1(Ω). (3.6)

    Lemma 3.5. ([36]) Define a Ritz-projection operator Πh:H1(Ω)Wh by

    A(qΠhq,χh)=0,χhWh, (3.7)

    where A(q,ϕ)(qx,ϕx)+λ(q,ϕ), A(ϕ,ϕ)μ0ϕ21,μ0>0 is a constant. Further, the following estimate inequality holds

    qtΠhqt+hqΠhq1Chr+1(qr+1+qtr+1),qHr+1(Ω). (3.8)

    Theorem 3.6. Let u(,tn), q(,tn) be the solutions of system (1.1) and suppose Unc, Qnc and Umf, Qmf are the solutions of TT-M MFE systems (2.9)-(2.10) and (2.15)-(2.16), respectively, then there exists a constant C>0 that depends only on u(,tn), q(,tn), such that

    qnQnc+(τcnl=1ulθUlθc2)12C(τ2c+hmin{k+1,r+1}),(τcnl=1ulθUlθc21)12C(τ2c+hmin{k,r+1}),(τcnl=1qlθQlθc21)12C(τ2c+hmin{k+1,r}), (3.9)

    and

    qmQmf+(τml=1ulθUlθf2)12C(τ2+τ4c+hmin{k+1,r+1}),(τml=1ulθUlθf21)12C(τ2+τ4c+hmin{k,r+1}),(τml=1qlθQlθf21)12C(τ2+τ4c+hmin{k+1,r}). (3.10)

    Proof. For convenience, we write error as

    unUnc=unΥhun+ΥhunUnc=ηnc+ξnc,qnQnc=qnΠhqn+ΠhqnQnc=ρnc+σnc,umUmf=umΥhum+ΥhumUmf=ηmf+ξmf,qmQmf=qmΠhqm+ΠhqmQmf=ρmf+σmf.

    (1) Error estimate on the time coarse mesh.

    Applying the projection operators in Lemmas 3.4 and 3.5, the error equation on the time coarse mesh is as follows:

    Case n=1:

    (I1θα[ξ1θcx],vhx)+(ξ1θcx,vhx)=(ρ1θc+σ1θc,vhx)+(E1θ1,vx),(σ1cσ0cτc,ωh)+(σ1θcx,ωhx)+(g[u1θ]g[U1θc],ωhx)=(ρ1cρ0cτc,ωh)+λ(ρ1θc,ωh)+(3k=1ˉE1θk,ωhx). (3.11)

    Case n2:

    (Inθα[ξnθcx],vhx)+(ξnθcx,vhx)=(ρnθc+σnθc,vhx)+(Enθ1,vhx),(t[σnθc],ωh)+(σnθcx,ωhx)+(g[unθ]g[Unθc],ωhx)=(t[ρnθc],ωh)+λ(ρnθc,ωh)+(3k=1ˉEnθk,ωhx). (3.12)

    Set ωh=σnθc in (3.12), and use Lemma 3.3, the Cauchy-Schwarz inequality, and the Young inequality to obtain

    14τc(H(σnc)H(σn1c))+(13ε)σnθcx214ε(g[unθ]g[Unθc]2+3k=1ˉEnθk2)+12t[ρnθc]2+1+λ2σnθc2+λ2ρnθc2C(ηnθc2+ξnθc2+σnθc2+τ4c)+12t[ρnθc]2+λ2ρnθc2. (3.13)

    Multiply (3.13) by 4τc, replace n with l, and sum for l from 2 to n to arrive at

    H(σnc)+4τc(13ε)nl=2σlθcx2H(σ1c)+Cτcnl=2(ηlθc2+ξlθc2+σlθc2+τ4c)+2τcnl=2t[ρnθc]2+2τcλnl=2ρlθc2H(σ1θc)+Cτcnl=2(ξlθc2+σlθc2)+C(h2k+2+h2r+2+τ4c). (3.14)

    Setting vh=ξnθc in (3.12), summing the resulting equation from 1 to n, and using the Cauchy-Schwarz inequality as well as the Young inequality, we have

    nl=1(Ilθα[ξlθcx],ξlθcx)+nl=1(13ε)ξlθcx2=((1θ)ταcnl=1li=0Aα(i)ξlicx+θταcnl=1li=0Aα(i)ξl1icx,ξlθcx)+nl=1(13ε)ξlθcx2nl=1C(ρlθc2+σlθc2)+nl=1Elθ12. (3.15)

    Applying Lemma 3.1 and the Poincaré inequality, we obtain, for n1,

    τcnl=1(13ε)ξlθc2τcnl=1(13ε)ξlθcx2C(h2r+2+τ4c)+τcnl=1σlθc2. (3.16)

    For the term H(σ1c), we take ωh=σ1θc in (3.11) and apply the Cauchy-Schwarz inequality as well as the Young inequality to have

    σ1c2σ0c2+(12θ)σ1cσ0c2+2τcσ1θcx22τcg[u1θ]g[U1θc]σ1θcx+C3k=1τcˉE1θk2+2τcεσ1θcx2+2ε(1+τc)σ1θc2+C(ρ1cρ0c2+ρ1θc2)C(h2k+2+h2r+2+τ4c)+6τcεσ1θcx2+2ε(1+τc)σ1θc2+Cτc(ξ0c2+ξ1c2). (3.17)

    Omitting the nonnegative term on the left hand side of (3.17), we obtain

    H(σ1c)+2τc(13ε)σ1θcx2Cσ0c2+C(h2k+2+h2r+2+τ4c)+2ε(1+τc)σ1θc2+Cτc(ξ0c2+ξ1c2). (3.18)

    Substitute (3.18) into (3.14), apply (3.16), and use the Gronwall inequality to have

    σnc2+2τc(13ε)nl=1σlθcx2Cσ0c2+C(h2k+2+h2r+2+τ4c). (3.19)

    Notice that the inequalities (3.6) and (3.8) hold; combine (3.16) and (3.19) with the triangle inequality to finish the proof of the first result of Theorem 3.6.

    (2) Error estimate on the time fine mesh.

    Based on Lemmas 3.4 and 3.5, the error equation on the time fine mesh is as follows:

    Case m=1:

    (I1θα[ξ1θfx],vhx)+(ξ1θfx,vhx)=(ρ1θf+σ1θf,vhx)+(E1θ1,vhx),(g[u1θ](g[U1θI]+g[U1θI](U1θfU1θI)),ωhx)+(σ1fσ0fτ,ωh)+(σ1θfx,ωhx)=(ρ1fρ0fτ,ωh)+λ(ρ1θf,ωh)+(3k=1ˉE1θk,ωhx), (3.20)

    Case m2:

    (Imθα[ξmθfx],vhx)+(ξmθfx,vhx)=(ρmθf+σmθf,vhx)+(Emθ1,vhx),(g[umθ](g[UmθI]+g[UmθI](UmθfUmθI)),ωhx)+(t[σmθf],ωh)+(σmθfx,ωhx)=(t[ρmθf],ωh)+λ(ρmθf,ωh)+(3k=1ˉEmθk,ωhx). (3.21)

    For the nonlinear term on the right hand side of (3.21), we use Taylor's formula to get

    g[umθ](g[UmθI]+g[UmθI](UmθfUmθI))=g(umθ)+O(τ2)(g(UmθI)+O(τ2)+(g(UmθI)+O(τ2))(UmθfUmθI))=g(UmθI)(ηmθf+ξmθf)+g(ˉUmθI)(umθUmθI)2+O(τ2). (3.22)

    Set ωh=σmθf in (3.21) and use (3.22), the Cauchy-Schwarz inequality, and the Young inequality to arrive at

    14τ(H(σmf)H(σm1f))+(13ε)σmθfx214ε(g(UmθI)2(ηmθf2+ξmθf2)+g(ˉUmθI)2(umθUmθI)22+τ4+t[ρmθf]2+λρmθf2+3k=1ˉEmθk2)+2εσmθf2. (3.23)

    Using a similar derivation to (3.14), we have

    H(σmf)+4τ(13ε)ml=2σlθfx2H(σ1f)+Cτml=2ulθUlθI4L4+Cτml=1(ξlθf2+σlθf2)+(32θ)tnt0ρft2ds+C(h2k+2+h2r+2+τ4)H(σ1f)+Cτml=2ulθUlθI4L4+Cτml=1(ξlθf2+σlθf2)+C(h2k+2+h2r+2+τ4). (3.24)

    To estimate H(σ1f), we set ωh=σ1θf in (3.20) and apply Taylor's formula to deal with the nonlinear term to arrive at

    σ1f2+(12θ)σ1fσ0f2+2τσ1θfx2=σ0f2+2(ρ1fρ0f,σ1θf)+2(τ3k=1ˉE1θk,σ1θfx)+2τλ(ρ1θf,σ1θf)+2τ(g(U1θI)(η1θf+ξ1θf)+g(ˉU1θI)(u1θU1θI)2+O(τ2),σ1θfx)C(h2k+2+h2r+2+τ4)+8ετσ1θfx2+Cτ((u1θU1θI)22+σ1θf2+ξ1θf2). (3.25)

    Combining (3.25) with (3.24), we have

    σmf2+Cτ(13ε)ml=1σlθfx2C(h2k+2+h2r+2+τ4)+Cτml=1ulθUlθI4L4+Cτml=1(ξlθf2+σlθf2). (3.26)

    Setting vh=ξmθf in (3.12) and using a derivation similar to (3.16), we get

    Cτml=1(13ε)ξlθf2Cτml=1(13ε)ξlθfx2C(h2r+2+τ4)+τml=1σlθf2. (3.27)

    We now estimate the error Cτml=1ulθUlθI4L4. Denote n=lM as the smallest integer that is equal to or greater than lM, then by the notations introduced in (2.11), we get

    ul=λlun1+(1λl)un+Cτ2cutt(ˉtl),UlI=λlUn1c+(1λl)Unc, (3.28)

    where ˉtlθ(tnθ1,tnθ). For λl[0,12], follow the idea from [46] and use (3.9) and (3.28) to obtain the following result

    Cτml=1ulθUlθI2Cτml=1((1θ)(unλlUnλlc)+θ(un1λlUn1λlc)2+τ4c)Cτml=1(unλlUnλlc2+un1λlUn1λlc2+τ4c)CτmM1k=0M+kMl=1+kM(uk+1λlUk+1λlc2+ukλlUkλlc2+τ4c)Cτcnk=0(ukλlUkλlc2+τ4c)C(τ4c+hmin{2k+2,2r+2}). (3.29)

    Using the techniques applied to (3.29), we easily get the inequality

    Cτml=1(ulθUlθI)x2Cτcnk=0(ukθUkθc)x2C(τ4c+hmin{2k,2r+2}). (3.30)

    Making use of Lemma 3.3, (3.30), and (3.29), we can obtain

    Cτml=1ulθUlθI4L4Cτml=1ulθUlθI2(ulθUlθI)x2Cτml=1(ulθUlθI4+(ulθUlθI)x4)C(hmin{4r+4,4k}+τ8c). (3.31)

    Substitute (3.27) and (3.31) into (3.26) and apply the Gronwall inequality to obtain

    σmf2+Cτ(14ε)ml=1σlθfx2C(hmin{2r+2,2k+2}+τ4+τ8c). (3.32)

    Combine (3.27), (3.30), (3.32) and (3.6) with (3.8) and use the triangle inequality to finish the proof of the second result of Theorem 3.6.

    In this section, we provide a numerical algorithm for solving the examples with smooth solutions and weakly regular solutions. For the solution u with weak regularity, referring to [49,50], we split it into the smooth part and the weak regular part as the following

    u=u1+u2=jk=1cktσk+tσj+1ϱ, (4.1)

    where ck=ck(x) are coefficient functions, parameters σk satisfy 0σ1<<σj+1, σj<3 and σj+13 and ϱ is sufficiently smooth with respect to t. Thus, we can think of u1 as the nonsmooth part of the u, which may cause a loss of accuracy in time. For solving this problem, based on the idea presented in [51], we develop a corrected technique by adding correction parts. We now discretize the spatial domain ˉΩ as a=x0<x1<<xL=b, where the nodes are xk=x0+kh with the uniform spatial step size h=baL. Next, considering mixed linear element spaces with linear basis functions {ϕi(x)}Li=0 and {φi(x)}Li=0, we can write numerical solution Uc and Qc as: Unc=Li=0uniϕi, Qnc=Li=0qniφi, respectively. Based on the numerical scheme (2.9)-(2.10) combined with the corrected technique, we formulate a numerical algorithm in the matrix form.

    Case n=1:

    B1((1θ)ταcAα(0)u1c+ταjk=1ω(α)1,kukc)+B1((1θ)u1c+jk=1ω(0)1,kukc)=C((1θ)q1c+j+1k=1ˉω(0)1,kqkc),A(τ1cq1c+τ1cj+1k=1˜ω(1)1,kqkc)+B2((1θ)q1c+j+1k=1ˉω(0)1,kqkc)=F1θ+(1θ)Cg(u1c), (4.2)

    Case n2:

    B1((1θ)ταcni=0Aα(ni)uic+θταcn1i=0Aα(n1i)uic+ταjk=1ω(α)n,kukc)+B1((1θ)unc+θun1c+jk=1ω(0)n,kukc)=C((1θ)qnc+θqn1c+j+1k=1ˉω(0)n,kqkc),A(τ1c32θ2qncτ1c44θ2qn1c+τ1c12θ2qn2c+τ1cj+1k=1ˉω(1)n,kqkc)+B2((1θ)qnc+θqn1c+j+1k=1ˉω(0)n,kqkc)=Fnθ+C((1θ)g(unc)+θg(un1c)), (4.3)

    where

    A=[(φi,φj)]T0i,jL=1L(131600162316000001613),B1=[(ϕix,ϕjx)]T0i,jL=L(10000210000001),B2=[(φix,φjx)]T0i,jL=L(11001210000011),C=[(φi,φjx)]T0i,jL=(12120012012000001212),unc=[un0,un1,unL]T,qnc=[qn0,qn1,qnL]T,F=[(f,φ0x),(f,φ1x),,(f,φLx)]T. (4.4)

    In the above algorithm, {ω(α)n,k}jk=1, {ω(0)n,k}jk=1 are correction weights of Inθα[Unθcx], Unθcx, respectively. {ˉω(0)n,k}j+1k=1 are correction weights of Qnθc. {˜ω(1)1,k}j+1k=1 are correction weights of t[u1]. {ˉω(1)n,k}j+1k=1 are correction weights of t[unθ]. The correction weights {ω(α)n,k}jk=1 can be obtained by the following formula [51]

    jk=1ω(α)n,kkm=Γ(m+1)Γ(mα+1)(nθ)mαnk=1ˆAα(nk)km,m=σ1,,σj, (4.5)

    where

    ˆAα(0)=(1θ)Aα(0),ˆAα(n)=(1θ)Aα(n)+θAα(n1) (n2).

    Similarly, we can get the correction coefficients {ω(0)n,k}jk=1, {ˉω(0)n,k}j+1k=1, {ˉω(1)n,k}j+1k=1, and {˜ω(1)1,k}j+1k=1 by using (4.5).

    We divide the calculation process into two parts. First, we calculate ukc and qkc by (4.4)-(4.5), where k=1,2,,j+1, then we can obtain umc and qmc,m>j+1 by ukc and qkc. The process of computation on the fine mesh is similar to that on the coarse mesh, so we will not introduce details here.

    Here, for showing the feasibility and validity of our numerical method and the efficiency of the TT-M MFE system, we consider a linear element and provide the computing results by our numerical procedure.

    In this example, we use the linearized method (2.17)(a) to finish our calculations. Considering the space domain ˉΩ=[0,1] and the time interval ˉJ=[0,1], we take the nonlinear term g(u)=u3u, the following given source term

    f(x,t)=(Γ(4+α)Γ(3)t2+(3+α)t2+α+Γ(4+α)Γ(4)t3π2+t3+απ2t3+α)sinπx+(t3+αsinπx)3,

    and then easily validate that the exact solution is u=t3+αsinπx and the corresponding auxiliary function is q=Γ(4+α)Γ(4)t3πcosπx+t3+απcosπx.

    In Table 1, with the fixed time step length τ=110000, changed space step length h=1200,1300,1400, fractional parameter α=0.3,0.8,0.99, and shifted parameter θ=0.1,0.3,0.5, we calculate the spatial convergence results of the standard nonlinear mixed element algorithm under different parameters and record the Central Processing Unit (CPU) time required for the algorithm. One can see that for the currently selected exact solution, the spatial convergence results are optimal, which is consistent with the theoretical results of the linear element (k=r=1) we selected. Further, in Table 2, based on the chosen changed parameters as in Table 1 with the fixed time step length τ=τc/M=1/NM=1/10000 (N=M=100) for the TT-M MFE method, we get the optimal convergence results and CPU time. Comparing the data in Tables 12, one can see that the fast TT-M MFE algorithm can greatly reduce the CPU time while maintaining the same convergence accuracy as the standard nonlinear mixed element method.

    Table 1.  Spatial convergence results with τ=110000 for MFE method (Example 1).
    α θ h uuh rate qqh rate CPU(s)
    1/200 4.5123E-05 - 6.9060E-04 - 106
    0.1 1/300 2.0078E-05 1.9971 3.0697E-04 1.9997 151
    1/400 1.1299E-05 1.9983 1.7268E-04 1.9998 271
    1/200 4.5124E-05 - 6.9060E-04 - 111
    0.3 0.3 1/300 2.0079E-05 1.9971 3.0697E-04 1.9997 155
    1/400 1.1300E-05 1.9982 1.7268E-04 1.9998 285
    1/200 4.5125E-05 - 6.9060E-04 - 112
    0.5 1/300 2.0079E-05 1.9970 3.0697E-04 1.9997 153
    1/400 1.1301E-05 1.9982 1.7268E-04 1.9998 269
    1/200 4.5596E-05 - 1.1129E-03 - 111
    0.1 1/300 2.0282E-05 1.9979 4.9470E-04 1.9997 167
    1/400 1.1409E-05 1.9999 2.7828E-04 1.9998 300
    1/200 4.5597E-05 - 1.1130E-03 - 109
    0.8 0.3 1/300 2.0283E-05 1.9978 4.9470E-04 1.9997 156
    1/400 1.1410E-05 1.9997 2.7828E-04 1.9998 285
    1/200 4.5599E-05 - 1.1130E-03 - 107
    0.5 1/300 2.0285E-05 1.9977 4.9470E-04 1.9997 153
    1/400 1.1412E-05 1.9996 2.7829E-04 1.9998 271
    1/200 4.5585E-05 - 1.3908E-03 - 109
    0.1 1/300 2.0273E-05 1.9985 6.1820E-04 1.9997 144
    1/400 1.1400E-05 2.0010 3.4776E-04 1.9998 249
    1/200 4.5587E-05 - 1.3908E-03 - 97
    0.99 0.3 1/300 2.0274E-05 1.9984 6.1821E-04 1.9997 141
    1/400 1.1401E-05 2.0010 3.4776E-04 1.9998 251
    1/200 4.5588E-05 - 1.3908E-03 - 118
    0.5 1/300 2.0276E-05 1.9983 6.1821E-04 1.9997 154
    1/400 1.1403E-05 2.0007 3.4776E-04 1.9998 275

     | Show Table
    DownLoad: CSV
    Table 2.  Spatial convergence results with τ=110000 for TT-M MFE method (Example 1).
    α θ h uUf rate qQf rate CPU(s)
    1/200 4.5123E-05 - 6.9060E-04 - 70
    0.1 1/300 2.0078E-05 1.9971 3.0697E-04 1.9997 97
    1/400 1.1299E-05 1.9983 1.7268E-04 1.9998 150
    1/200 4.5124E-05 - 6.9060E-04 - 77
    0.3 0.3 1/300 2.0079E-05 1.9971 3.0697E-04 1.9997 105
    1/400 1.1300E-05 1.9982 1.7268E-04 1.9998 161
    1/200 4.5125E-05 - 6.9060E-04 - 75
    0.5 1/300 2.0079E-05 1.9970 3.0697E-04 1.9997 102
    1/400 1.1301E-05 1.9982 1.7268E-04 1.9998 159
    1/200 4.5596E-05 - 1.1129E-03 - 72
    0.1 1/300 2.0282E-05 1.9979 4.9470E-04 1.9997 95
    1/400 1.1409E-05 1.9999 2.7828E-04 1.9998 159
    1/200 4.5597E-05 - 1.1130E-03 - 76
    0.8 0.3 1/300 2.0283E-05 1.9978 4.9470E-04 1.9997 100
    1/400 1.1410E-05 1.9997 2.7828E-04 1.9998 158
    1/200 4.5599E-05 - 1.1130E-03 - 77
    0.5 1/300 2.0285E-05 1.9977 4.9470E-04 1.9997 102
    1/400 1.1412E-05 1.9996 2.7829E-04 1.9998 168
    1/200 4.5585E-05 - 1.3908E-03 - 77
    0.1 1/300 2.0273E-05 1.9985 6.1820E-04 1.9997 104
    1/400 1.1400E-05 2.0010 3.4776E-04 1.9998 159
    1/200 4.5587E-05 - 1.3908E-03 - 69
    0.99 0.3 1/300 2.0274E-05 1.9984 6.1821E-04 1.9997 92
    1/400 1.1402E-05 2.0008 3.4776E-04 1.9998 147
    1/200 4.5588E-05 - 1.3908E-03 - 71
    0.5 1/300 2.0276E-05 1.9983 6.1821E-04 1.9997 94
    1/400 1.1403E-05 2.0006 3.4776E-04 1.9998 144

     | Show Table
    DownLoad: CSV

    In Tables 34, by taking the space step length h=1/5000, time step length τ=1/144, 1/256, 1/400 (τ=τ2c for TT-M method), time fractional parameter α as 0.3,0.8,0.99, and shifted parameter θ as 0.1,0.3,0.5, we implement the numerical calculations by using standard nonlinear MFE method and fast TT-M MFE method, respectively. From this, one can see that these two methods have almost the same error results and time convergence rate, and that our TT-M MFE algorithm can save the CPU time.

    Table 3.  Temporal convergence results with h=15000 for MFE method (Example 1).
    α θ τ uuh rate qqh rate CPU(s)
    1/144 1.9638E-05 - 5.7720E-05 - 668
    0.1 1/256 6.1726E-06 2.0115 1.8140E-05 2.0117 1216
    1/400 2.4869E-06 2.0370 7.3284E-06 2.0309 1720
    1/144 1.6339E-05 - 3.7840E-05 - 690
    0.3 0.3 1/256 5.1271E-06 2.0144 1.1854E-05 2.0173 1273
    1/400 2.0589E-06 2.0443 4.7657E-06 2.0418 1977
    1/144 1.3111E-05 - 1.7996E-05 - 630
    0.5 1/256 4.0930E-06 2.0234 5.5921E-06 2.0314 1116
    1/400 1.6332E-06 2.0586 2.2216E-06 2.0685 1868
    1/144 7.8075E-05 - 1.1170E-04 - 677
    0.1 1/256 2.4724E-05 1.9986 3.5135E-05 2.0103 1228
    1/400 1.0097E-05 2.0067 1.4196E-05 2.0306 1736
    1/144 7.1921E-05 - 7.4946E-05 - 717
    0.8 0.3 1/256 2.2772E-05 1.9988 2.3504E-05 2.0154 1211
    1/400 9.2964E-06 2.0074 9.4544E-06 2.0406 1725
    1/144 6.5762E-05 - 3.8475E-05 - 698
    0.5 1/256 2.0819E-05 1.9990 1.1988E-05 2.0267 1232
    1/400 8.4963E-06 2.0082 4.7745E-06 2.0628 1711
    1/144 1.1956E-04 - 1.4295E-04 - 699
    0.1 1/256 3.7914E-05 1.9961 4.4975E-05 2.0098 1128
    1/400 1.5512E-05 2.0026 1.8174E-05 2.0303 1881
    1/144 1.1208E-04 - 9.6687E-05 - 717
    0.99 0.3 1/256 3.5542E-05 1.9962 3.0333E-05 2.0148 1223
    1/400 1.4540E-05 2.0029 1.2204E-05 2.0401 1731
    1/144 1.0459E-04 - 5.0833E-05 - 621
    0.5 1/256 3.3168E-05 1.9961 1.5850E-05 2.0254 1193
    1/400 1.3567E-05 2.0031 6.3173E-06 2.0612 1724

     | Show Table
    DownLoad: CSV
    Table 4.  Temporal convergence results with h=15000 for TT-M MFE method (Example 1).
    α θ τ uUf rate qQf rate CPU(s)
    1/144 1.9731E-05 - 5.7726E-05 - 500
    0.1 1/256 6.1900E-06 2.0148 1.8141E-05 2.0118 822
    1/400 2.4907E-06 2.0398 7.3285E-06 2.0310 1176
    1/144 1.6388E-05 - 3.7843E-05 - 466
    0.3 0.3 1/256 5.1364E-06 2.0165 1.1854E-05 2.0174 827
    1/400 2.0611E-06 2.0460 4.7658E-06 2.0418 1272
    1/144 1.3054E-05 - 1.7998E-05 - 439
    0.5 1/256 4.0850E-06 2.0192 5.5923E-06 2.0315 759
    1/400 1.6312E-06 2.0570 2.2216E-06 2.0686 1190
    1/144 7.8511E-05 - 1.1171E-04 - 441
    0.1 1/256 2.4805E-05 2.0025 3.5137E-05 2.0103 754
    1/400 1.0119E-05 2.0092 1.4196E-05 2.0307 1142
    1/144 7.2194E-05 - 7.4953E-05 - 484
    0.8 0.3 1/256 2.2823E-05 2.0015 2.3505E-05 2.0155 833
    1/400 9.3104E-06 2.0091 9.4547E-06 2.0406 1278
    1/144 6.5901E-05 - 3.8479E-05 - 478
    0.5 1/256 2.0845E-05 2.0005 1.1989E-05 2.0268 809
    1/400 8.5034E-06 2.0092 4.7747E-06 2.0629 1278
    1/144 1.2014E-04 - 1.4296E-04 - 475
    0.1 1/256 3.8023E-05 1.9995 4.4978E-05 2.0098 818
    1/400 1.5541E-05 2.0048 1.8175E-05 2.0304 1223
    1/144 1.1245E-04 - 9.6696E-05 - 442
    0.99 0.3 1/256 3.5611E-05 1.9985 3.0335E-05 2.0149 767
    1/400 1.4558E-05 2.0044 1.2204E-05 2.0401 1210
    1/144 1.0479E-04 - 5.0837E-05 - 440
    0.5 1/256 3.3206E-05 1.9975 1.5851E-05 2.0255 742
    1/400 1.3576E-05 2.0041 6.3175E-06 2.0613 1240

     | Show Table
    DownLoad: CSV

    In this example, we continue to use the linearization technique (2.17)(a) to verify the efficiency of the current TT-M MFE algorithm. Considering the space-time domain ˉΩ×ˉJ=[0,1]×[0,1], we choose the nonlinear term g(u)=arctanu and the source term f(x,t)=100sin2(5πt)sin2(3πx)[0.15(t12)2(x12)2]2. Here, we just consider the TT-M MFE algorithm with M=4. Because of the unknown exact solution, we choose the numerical solution with h=τ=11200 as the approximating exact solution.

    In Table 5, with the fixed time step length τ=τc/M=1/NM=1/1200, changed space step length h=1/30,1/40,1/50, fractional parameter α=0.3,0.5,0.99, and shifted parameter θ=0.1,0.3,0.5, we can get the errors and spatial convergence results of the TT-M MFE system. In Table 6, considering the fixed space step length h=1/1200, fine time step length τ=τc/M=1/NM=1/80,1/100,1/120 (N=20,25,30), fractional parameter α=0.3,0.5,0.99 and shifted parameter θ=0.1,0.3,0.5, we calculate the error results and time convergence rate for the TT-M MFE algorithm. The computed data shows that the TT-M MFE algorithm can also maintain a good calculation effect for the selected numerical example with an unknown exact solution.

    Table 5.  Spatial convergence results with τ=11200 for TT-M MFE method (Example 2).
    α θ h uUf rate qQf rate
    1/30 8.6102E-04 - 2.1992E-02 -
    0.1 1/40 4.7269E-04 2.0845 1.2031E-02 2.0969
    1/50 2.9250E-04 2.1510 7.3662E-03 2.1984
    1/30 8.6103E-04 - 2.1992E-02 -
    0.3 0.3 1/40 4.7270E-04 2.0845 1.2031E-02 2.0969
    1/50 2.9250E-04 2.1510 7.3662E-03 2.1984
    1/30 8.6104E-04 - 2.1992E-02 -
    0.5 1/40 4.7270E-04 2.0845 1.2031E-02 2.0969
    1/50 2.9251E-04 2.1510 7.3662E-03 2.1984
    1/30 7.2514E-04 - 2.1991E-02 -
    0.1 1/40 3.9992E-04 2.0686 1.2030E-02 2.0969
    1/50 2.4819E-04 2.1380 7.3660E-03 2.1983
    1/30 7.2515E-04 - 2.1991E-02 -
    0.5 0.3 1/40 3.9993E-04 2.0686 1.2030E-02 2.0969
    1/50 2.4819E-04 2.1380 7.3660E-03 2.1983
    1/30 7.2516E-04 - 2.1991E-02 -
    0.5 1/40 3.9993E-04 2.0686 1.2030E-02 2.0969
    1/50 2.4819E-04 2.1380 7.3660E-03 2.1983
    1/30 5.3808E-04 - 2.1989E-02 -
    0.1 1/40 3.0067E-04 2.0231 1.2029E-02 2.0968
    1/50 1.8816E-04 2.1004 7.3656E-03 2.1983
    1/30 5.3809E-04 - 2.1989E-02 -
    0.99 0.3 1/40 3.0067E-04 2.0231 1.2029E-02 2.0968
    1/50 1.8816E-04 2.1004 7.3656E-03 2.1983
    1/30 5.3809E-04 - 2.1989E-02 -
    0.5 1/40 3.0067E-04 2.0231 1.2029E-02 2.0968
    1/50 1.8816E-04 2.1004 7.3656E-03 2.1983

     | Show Table
    DownLoad: CSV
    Table 6.  Temporal convergence results with h=11200 for TT-M MFE method (Example 2).
    α θ τ uUf rate qQf rate
    1/80 3.6618E-03 - 3.9369E-02 -
    0.1 1/100 2.3445E-03 1.9981 2.5898E-02 1.8768
    1/120 1.6378E-03 1.9675 1.8949E-02 1.7138
    1/80 2.6086E-03 - 2.7341E-02 -
    0.3 0.3 1/100 1.6788E-03 1.9752 1.7193E-02 2.0789
    1/120 1.1734E-03 1.9643 1.1632E-02 2.1430
    1/80 1.5372E-03 - 1.2016E-02 -
    0.5 1/100 9.8788E-04 1.9815 7.7099E-03 1.9884
    1/120 6.9141E-04 1.9572 5.2103E-03 2.1493
    1/80 2.5340E-03 - 3.9413E-02 -
    0.1 1/100 1.6204E-03 2.0037 2.5947E-02 1.8733
    1/120 1.1305E-03 1.9749 1.8978E-02 1.7157
    1/80 1.9061E-03 - 2.7370E-02 -
    0.5 0.3 1/100 1.2434E-03 1.9143 1.7208E-02 2.0798
    1/120 8.7143E-04 1.9498 1.1652E-02 2.1386
    1/80 1.3166E-03 - 1.2030E-02 -
    0.5 1/100 8.5443E-04 1.9378 7.7174E-03 1.9896
    1/120 5.9639E-04 1.9720 5.2145E-03 2.1502
    1/80 1.1108E-03 - 3.9446E-02 -
    0.1 1/100 6.9195E-04 2.1212 2.5989E-02 1.8699
    1/120 4.6577E-04 2.1709 1.9001E-02 1.7178
    1/80 7.8786E-04 - 2.7394E-02 -
    0.99 0.3 1/100 5.0252E-04 2.0153 1.7219E-02 2.0807
    1/120 3.4426E-04 2.0746 1.1668E-02 2.1343
    1/80 5.5433E-04 - 1.2043E-02 -
    0.5 1/100 3.6261E-04 1.9020 7.7234E-03 1.9909
    1/120 2.5445E-04 1.9428 5.2176E-03 2.1512

     | Show Table
    DownLoad: CSV

    Further, in order to check the behaviors of numerical solution, we provide the comparison figures of numerical solutions between different time step length sizes. In Figure 1, we show the comparison surfaces of numerical solutions Uf with the fixed space step length h=1/1200, fractional parameter α=0.3, shifted parameter θ=0.1, and changed time step length τ=1/120,1/1200. We also provide the comparison surfaces of numerical solutions Qf in Figure 2. The comparison results tell us the corresponding numerical solutions have similar behavior. Moreover, in Figure 3, for fixed fractional parameter α=0.3 and parameter θ=0.1, we depict the figures of difference in L2-norm between reference solution with h=τ=1/1200 and numerical solution with h=1/1200 and τ=1/120, from which one can see the performances of unUnf and qnQnf. It is easy to see the changes of actual errors at different time nodes from the figures, which can reveal the overall distribution of errors.

    Figure 1.  Numerical solution Uf with different time step lengths and h=1/1200.
    Figure 2.  Numerical solution Qf with different time step lengths and h=1/1200.
    Figure 3.  L2-errors at different time.

    For comparison and validation of feasibility, we still carry out the numerical calculation by taking Example 1. Here, we apply the linearized technique (2.16) to deal with the nonlinear term. One can see from the numerical results in Table 7 that the optimal spatial convergence data is almost consistent with the calculation results in Example 1, which uses the linearized method (2.17)(a). It indicates that the linearization technique adopted in this paper is feasible. Further, comparison of CPU time in Table 2 and Table 7 shows that computing time in this example is slightly slower, which may be caused due to the linearization for the m1 layer.

    Table 7.  Spatial convergence results with τ=110000 for TT-M MFE method (Example 3).
    α θ h uuf rate qqf rate CPU(s)
    1/200 4.5123E-05 - 6.9060E-04 - 82
    0.1 1/300 2.0078E-05 1.9971 3.0697E-04 1.9997 112
    1/400 1.1299E-05 1.9983 1.7268E-04 1.9998 174
    1/200 4.5124E-05 - 6.9060E-04 - 83
    0.3 0.3 1/300 2.0079E-05 1.9971 3.0697E-04 1.9997 106
    1/400 1.1300E-05 1.9982 1.7268E-04 1.9998 169
    1/200 4.5125E-05 - 6.9060E-04 - 84
    0.5 1/300 2.0079E-05 1.9970 3.0697E-04 1.9997 113
    1/400 1.1301E-05 1.9982 1.7268E-04 1.9998 175
    1/200 4.5596E-05 - 1.1129E-03 - 87
    0.1 1/300 2.0282E-05 1.9979 4.9470E-04 1.9997 115
    1/400 1.1409E-05 1.9999 2.7828E-04 1.9998 184
    1/200 4.5597E-05 - 1.1130E-03 - 88
    0.8 0.3 1/300 2.0283E-05 1.9978 4.9470E-04 1.9997 122
    1/400 1.1410E-05 1.9997 2.7828E-04 1.9998 180
    1/200 4.5599E-05 - 1.1130E-03 - 89
    0.5 1/300 2.0285E-05 1.9977 4.9470E-04 1.9997 113
    1/400 1.1412E-05 1.9996 2.7829E-04 1.9998 183
    1/200 4.5585E-05 - 1.3908E-03 - 89
    0.1 1/300 2.0273E-05 1.9985 6.1820E-04 1.9997 119
    1/400 1.1400E-05 2.0010 3.4776E-04 1.9998 180
    1/200 4.5587E-05 - 1.3908E-03 - 80
    0.99 0.3 1/300 2.0274E-05 1.9984 6.1821E-04 1.9997 113
    1/400 1.1402E-05 2.0008 3.4776E-04 1.9998 177
    1/200 4.5588E-05 - 1.3908E-03 - 79
    0.5 1/300 2.0276E-05 1.9983 6.1821E-04 1.9997 120
    1/400 1.1403E-05 2.0006 3.4776E-04 1.9998 178

     | Show Table
    DownLoad: CSV

    In this example, we choose the solution u=t2+αsin(πx), which has weaker regularity with comparison to the case in Example 1. We choose the same space-time domain and the nonlinear term g(u) as in Example 1. We provide the source term f, which we omit here, such that the equation has the current exact solution u. For this case with weak regularity, we continue to apply the linearized technique (2.16) to deal with the nonlinear term.

    By taking τ=1/16,1/25,1/36,1/49, α=0.1,0.3,0.5, θ=0.1,0.3,0.5, and the fixed space step h=1/1000, we implement numerical tests and obtain the numerical results shown in Table 8, from which one can see that most data cannot achieve second-order approximation results in time. For solving this issue, under the same parameters, we consider the corrected scheme with correction parts, and arrive at optimal time second-order convergence results listed in Table 9, which imply that the numerical scheme by adding the correction parts can effectively solve the problem of accuracy loss and restore the optimal convergence order. Further, based on the data from Tables 89, we show the case of the convergence rate in Figures 45 for Uf and Qf, from which one can see intuitively, that with comparison to the case without adding the correction parts, the optimal convergence rate can be achieved by adding the correction parts.

    Table 8.  Temporal convergence results without correction parts with h=11000 (Example 4).
    α θ τ uUf rate qQf rate
    1/16 1.1815E-03 - 8.4390E-03 -
    0.1 1/25 5.8634E-04 1.5698 3.9830E-03 1.6824
    1/36 3.1749E-04 1.6823 2.2265E-03 1.5950
    1/49 1.8309E-04 1.7855 1.3153E-03 1.7072
    1/16 6.7319E-04 - 4.6262E-03 -
    0.1 0.3 1/25 2.9762E-04 1.8289 2.1182E-03 1.7504
    1/36 1.5559E-04 1.7787 1.0860E-03 1.8322
    1/49 8.9665E-05 1.7877 6.1517E-04 1.8434
    1/16 7.5071E-05 - 2.2560E-04 -
    0.5 1/25 3.1201E-05 1.9673 6.4598E-05 2.8021
    1/36 1.5837E-05 1.8596 3.8075E-05 1.4497
    1/49 9.1062E-06 1.7950 2.8062E-05 0.9897
    1/16 1.1096E-03 - 8.4598E-03 -
    0.1 1/25 4.9205E-04 1.8221 4.0096E-03 1.6730
    1/36 2.5452E-04 1.8078 2.1919E-03 1.6562
    1/49 1.4087E-04 1.9187 1.2752E-03 1.7570
    1/16 6.4783E-04 - 4.7511E-03 -
    0.3 0.3 1/25 2.7961E-04 1.8827 2.1137E-03 1.8149
    1/36 1.3972E-04 1.9025 1.0627E-03 1.8857
    1/49 7.6362E-05 1.9597 6.1178E-04 1.7911
    1/16 3.1590E-04 - 3.4312E-04 -
    0.5 1/25 1.2862E-04 2.0135 1.4706E-04 1.8985
    1/36 6.1578E-05 2.0199 7.4871E-05 1.8513
    1/49 3.2782E-05 2.0449 4.4690E-05 1.6738
    1/16 1.1653E-03 - 9.0917E-03 -
    0.1 1/25 4.9632E-04 1.9125 4.3197E-03 1.6675
    1/36 2.4321E-04 1.9562 2.3523E-03 1.6668
    1/49 1.3205E-04 1.9809 1.3680E-03 1.7581
    1/16 8.4052E-04 - 5.1034E-03 -
    0.5 0.3 1/25 3.4388E-04 2.0026 2.2553E-03 1.8298
    1/36 1.6484E-04 2.0165 1.1321E-03 1.8901
    1/49 8.8163E-05 2.0298 6.5240E-04 1.7877
    1/16 7.4734E-04 - 4.1001E-04 -
    0.5 1/25 3.0590E-04 2.0016 1.8169E-04 1.8237
    1/36 1.4698E-04 2.0100 9.2128E-05 1.8624
    1/49 7.8605E-05 2.0301 5.1259E-05 1.9017

     | Show Table
    DownLoad: CSV
    Table 9.  Temporal convergence results by adding correction parts with h=11000 (Example 4).
    α θ τ uUf rate qQf rate
    1/16 3.0356E-04 - 1.7376E-03 -
    0.1 1/25 1.2169E-04 2.0482 7.1047E-04 2.0039
    1/36 5.7766E-05 2.0433 3.4171E-04 2.0073
    1/49 3.0527E-05 2.0687 1.8358E-04 2.0152
    1/16 7.5801E-04 - 3.6033E-03 -
    0.1 0.3 1/25 2.9970E-04 2.0792 1.4975E-03 1.9675
    1/36 1.4141E-04 2.0598 7.3055E-04 1.9684
    1/49 7.4831E-05 2.0644 3.9721E-04 1.9764
    1/16 9.9172E-04 - 3.7014E-03 -
    0.5 1/25 3.8117E-04 2.1426 1.5811E-03 1.9060
    1/36 1.7754E-04 2.0953 7.8511E-04 1.9198
    1/49 9.3053E-05 2.0954 4.3188E-04 1.9386
    1/16 3.8731E-04 - 2.0865E-03 -
    0.1 1/25 1.5647E-04 2.0309 8.5231E-04 2.0061
    1/36 7.4130E-05 2.0487 4.0953E-04 2.0100
    1/49 3.9028E-05 2.0809 2.1954E-04 2.0222
    1/16 9.6616E-04 - 4.0215E-03 -
    0.3 0.3 1/25 3.8454E-04 2.0643 1.6689E-03 1.9707
    1/36 1.8134E-04 2.0614 8.1646E-04 1.9606
    1/49 9.5941E-05 2.0650 4.4504E-04 1.9683
    1/16 1.2274E-03 - 3.7900E-03 -
    0.5 1/25 4.7871E-04 2.1097 1.6109E-03 1.9171
    1/36 2.2407E-04 2.0818 8.0161E-04 1.9140
    1/49 1.1774E-04 2.0871 4.4331E-04 1.9214
    1/16 4.8632E-04 - 2.5322E-03 -
    0.1 1/25 1.9796E-04 2.0139 1.0356E-03 2.0034
    1/36 9.4202E-05 2.0366 4.9789E-04 2.0085
    1/49 4.9830E-05 2.0656 2.6685E-04 2.0230
    1/16 1.1980E-03 - 4.4807E-03 -
    0.5 0.3 1/25 4.8062E-04 2.0464 1.8632E-03 1.9662
    1/36 2.2775E-04 2.0481 9.1771E-04 1.9421
    1/49 1.2091E-04 2.0540 5.0351E-04 1.9470
    1/16 1.4738E-03 - 3.8871E-03 -
    0.5 1/25 5.8365E-04 2.0755 1.6369E-03 1.9379
    1/36 2.7457E-04 2.0680 8.1438E-04 1.9146
    1/49 1.4530E-04 2.0643 4.5316E-04 1.9014

     | Show Table
    DownLoad: CSV
    Figure 4.  Time convergence rates of Uf without or with correction parts.
    Figure 5.  Time convergence rates of Qf without or with correction parts.

    In this article, we developed a fast TT-M MFE method for solving the nonlinear fractional hyperbolic wave model. We derived optimal a priori error results for the fully discrete TT-M MFE scheme. To verify the correctness of theoretical results and the computational efficiency of the algorithm, we implemented four numerical tests. For the cases with smooth solutions, one can see from the computing results that our TT-M MFE algorithm can obtain the similar convergence results as that computed by using the nonlinear MFE algorithm, while the computing time was reduced. Further, for the case with a weakly regular solution, the considered numerical scheme under certain parameters may lose computational accuracy. For handling this problem, we designed the corrected TT-M MFE method by adding the correction term to restore calculation accuracy.

    In future works, we will design other TT-M MFE methods to solve some nonlinear fractional PDE models.

    The authors would like to thank the editor and all the anonymous referees for their valuable comments, which greatly improved the presentation of the article. This work is supported by the National Natural Science Foundation of China (12061053, 12161063), Natural Science Foundation of Inner Mongolia (2022LHMS01004), Young innovative talents project of Grassland Talents Project, Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT2413, NMGIRT2207).

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare there is no conflict of interest.



    [1] M. Basirat, S. Baratpour, J. Ahmadi, Statistical inferences for stress-strength in the proportional hazard models based on progressive Type-II censored samples, J. Stat. Comput. Sim., 85 (2015), 431–449. https://doi.org/10.1080/00949655.2013.824449 doi: 10.1080/00949655.2013.824449
    [2] A. S. Nik, A. Asgharzadeh, M. Z. Raqab, Estimation and prediction for a new Pareto-type distribution under progressive Type-II censoring, Math. Comput. Simulat., 190 (2021), 508–530. https://doi.org/10.1016/j.matcom.2021.06.005 doi: 10.1016/j.matcom.2021.06.005
    [3] S. Dey, L. Wang, M. Nassar, Inference on Nadarajah-Haghighi distribution with constant stress partially accelerated life tests under progressive Type-II censoring, J. Appl. Stat., 49 (2022), 2891–2912. https://doi.org/10.1080/02664763.2021.1928014 doi: 10.1080/02664763.2021.1928014
    [4] B. X. Wang, K. Yu, M. C. Jones, Inference under progressively Type-II right-censored sampling for certain lifetime distributions, Technometrics, 52 (2010), 453–460. https://doi.org/10.1198/TECH.2010.08210 doi: 10.1198/TECH.2010.08210
    [5] J. I. Seo, S. B. Kang, Pivotal inference for the scaled half logistic distribution based on progressively Type-II censored samples, Stat. Probabil. Lett., 104 (2015), 109–116. https://doi.org/10.1016/j.spl.2015.05.011 doi: 10.1016/j.spl.2015.05.011
    [6] J. I. Seo, S. B. Kang, H. Y. Kim, New approach for analysis of progressive Type-II censored data from the Pareto distribution, Commun. Stat. Appl. Met., 25 (2018), 569–575. https://doi.org/10.29220/CSAM.2018.25.5.569 doi: 10.29220/CSAM.2018.25.5.569
    [7] H. L. Lu, S. H. Tao, The estimation of Pareto distribution by a weighted least square method, Qual. Quant., 41 (2007), 913–926. https://doi.org/10.1007/s11135-007-9100-8 doi: 10.1007/s11135-007-9100-8
    [8] H. K. T. Ng, D. Kundu, P. S. Chan, Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme, Nav. Res. Log., 56 (2009), 687–698. https://doi.org/10.1002/nav.20371 doi: 10.1002/nav.20371
    [9] M. M. A. Sobhi, A. A. Soliman, Estimation for the exponentiated Weibull model with adaptive Type-II progressive censored schemes, Appl. Math. Model., 40 (2016), 1180–1192. https://doi.org/10.1016/j.apm.2015.06.022 doi: 10.1016/j.apm.2015.06.022
    [10] Z. S. Ye, P. S. Chan, M. Xie, H. K. T. Ng, Statistical inference for the extreme value distribution under adaptive Type-II progressive censoring schemes, J. Stat. Comput. Sim., 84 (2014), 1099–1114. https://doi.org/10.1080/00949655.2012.740481 doi: 10.1080/00949655.2012.740481
    [11] R. Mohan, M. Chacko, Estimation of parameters of Kumaraswamy-exponential distribution based on adaptive Type-II progressive censored schemes, J. Stat. Comput. Sim., 91 (2021), 81–107. https://doi.org/10.1080/00949655.2020.1807547 doi: 10.1080/00949655.2020.1807547
    [12] Z. Chen, Joint confidence region for the parameters of Pareto distribution, Metrika, 44 (1996), 191–197. https://doi.org/10.1007/BF02614065 doi: 10.1007/BF02614065
    [13] S. F. Wu, Interval estimation for a Pareto distribution based on a doubly Type-II censored sample, Comput. Stat. Data An., 52 (2008), 3779–3788. https://doi.org/10.1016/j.csda.2007.12.015 doi: 10.1016/j.csda.2007.12.015
    [14] J. Zhang, Simplification of joint confidence regions for the parameters of the Pareto distribution, Comput. Stat., 28 (2013), 1453–1462. https://doi.org/10.1007/s00180-012-0354-9 doi: 10.1007/s00180-012-0354-9
    [15] J. H. T. Kim, S. Ahn, S. Ahn, Parameter estimation of the Pareto distribution using a pivotal quantity, J. Korean Stat. Soc., 46 (2017), 438–450. https://doi.org/10.1016/j.jkss.2017.01.004 doi: 10.1016/j.jkss.2017.01.004
    [16] M. M. Mohie El-Din, A. R. Shafay, M. Nagy, Statistical inference under adaptive progressive censoring scheme, Comput. Stat., 33 (2018), 31–74. https://doi.org/10.1007/s00180-017-0745-z doi: 10.1007/s00180-017-0745-z
    [17] E. Cramer, G. Iliopoulos, Adaptive progressive Type-II censoring, Test, 19 (2010), 342–358. https://doi.org/10.1007/s11749-009-0167-5 doi: 10.1007/s11749-009-0167-5
    [18] A. F. Karr, Probability, New York: Springer-Verlag, 1993.
    [19] E. Slutsky, Über stochastische asymptoten und grenzwerte, Metron, 5 (1925), 3–89.
    [20] S. Weerahandi, Generalized confidence intervals, In: Exact statistical methods for data analysis, New York: Springer, 1995,143–168. https://doi.org/10.1007/978-1-4612-0825-9_6
    [21] N. Balakrishnan, R. A. Sandhu, A simple simulational algorithm for generating progressive Type-II censored samples, Am. Stat., 49 (1995), 229–230. https://doi.org/10.1080/00031305.1995.10476150 doi: 10.1080/00031305.1995.10476150
    [22] E. M. Almetwally, R. Alharbi, D. Alnagar, E. H. Hafez, A new inverted Topp-Leone distribution: Applications to the COVID-19 mortality rate in two different countries, Axioms, 10 (2021), 25. https://doi.org/10.3390/axioms10010025 doi: 10.3390/axioms10010025
    [23] A. S. Nik, A. Asgharzadeh, A. Baklizi, Inference based on new Pareto-type records with applications to precipitation and COVID-19 data, Stat. Optim. Inf. Comput., 11 (2023), 243–257. http://dx.doi.org/10.19139/soic-2310-5070-1591 doi: 10.19139/soic-2310-5070-1591
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1465) PDF downloads(82) Cited by(0)

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog