Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
Research article Special Issues

Accelerating biomedical image segmentation using equilibrium optimization with a deep learning approach

  • Biomedical image segmentation is a vital task in the analysis of medical imaging, including the detection and delineation of pathological regions or anatomical structures within medical images. It has played a pivotal role in a variety of medical applications, involving diagnoses, monitoring of diseases, and treatment planning. Conventionally, clinicians or expert radiologists have manually conducted biomedical image segmentation, which is prone to human error, subjective, and time-consuming. With the advancement in computer vision and deep learning (DL) algorithms, automated and semi-automated segmentation techniques have attracted much research interest. DL approaches, particularly convolutional neural networks (CNN), have revolutionized biomedical image segmentation. With this motivation, we developed a novel equilibrium optimization algorithm with a deep learning-based biomedical image segmentation (EOADL-BIS) technique. The purpose of the EOADL-BIS technique is to integrate EOA with the Faster RCNN model for an accurate and efficient biomedical image segmentation process. To accomplish this, the EOADL-BIS technique involves Faster R-CNN architecture with ResNeXt as a backbone network for image segmentation. The region proposal network (RPN) proficiently creates a collection of a set of region proposals, which are then fed into the ResNeXt for classification and precise localization. During the training process of the Faster RCNN algorithm, the EOA was utilized to optimize the hyperparameter of the ResNeXt model which increased the segmentation results and reduced the loss function. The experimental outcome of the EOADL-BIS algorithm was tested on distinct benchmark medical image databases. The experimental results stated the greater efficiency of the EOADL-BIS algorithm compared to other DL-based segmentation approaches.

    Citation: Eman A. Al-Shahari, Marwa Obayya, Faiz Abdullah Alotaibi, Safa Alsafari, Ahmed S. Salama, Mohammed Assiri. Accelerating biomedical image segmentation using equilibrium optimization with a deep learning approach[J]. AIMS Mathematics, 2024, 9(3): 5905-5924. doi: 10.3934/math.2024288

    Related Papers:

    [1] Habibu Abdullahi, A. K. Awasthi, Mohammed Yusuf Waziri, Issam A. R. Moghrabi, Abubakar Sani Halilu, Kabiru Ahmed, Sulaiman M. Ibrahim, Yau Balarabe Musa, Elissa M. Nadia . An improved convex constrained conjugate gradient descent method for nonlinear monotone equations with signal recovery applications. AIMS Mathematics, 2025, 10(4): 7941-7969. doi: 10.3934/math.2025365
    [2] Xuejie Ma, Songhua Wang . A hybrid approach to conjugate gradient algorithms for nonlinear systems of equations with applications in signal restoration. AIMS Mathematics, 2024, 9(12): 36167-36190. doi: 10.3934/math.20241717
    [3] Yixin Li, Chunguang Li, Wei Yang, Wensheng Zhang . A new conjugate gradient method with a restart direction and its application in image restoration. AIMS Mathematics, 2023, 8(12): 28791-28807. doi: 10.3934/math.20231475
    [4] Sani Aji, Poom Kumam, Aliyu Muhammed Awwal, Mahmoud Muhammad Yahaya, Kanokwan Sitthithakerngkiet . An efficient DY-type spectral conjugate gradient method for system of nonlinear monotone equations with application in signal recovery. AIMS Mathematics, 2021, 6(8): 8078-8106. doi: 10.3934/math.2021469
    [5] Wei Xue, Pengcheng Wan, Qiao Li, Ping Zhong, Gaohang Yu, Tao Tao . An online conjugate gradient algorithm for large-scale data analysis in machine learning. AIMS Mathematics, 2021, 6(2): 1515-1537. doi: 10.3934/math.2021092
    [6] Jamilu Sabi'u, Ibrahim Mohammed Sulaiman, P. Kaelo, Maulana Malik, Saadi Ahmad Kamaruddin . An optimal choice Dai-Liao conjugate gradient algorithm for unconstrained optimization and portfolio selection. AIMS Mathematics, 2024, 9(1): 642-664. doi: 10.3934/math.2024034
    [7] Xiyuan Zhang, Yueting Yang . A new hybrid conjugate gradient method close to the memoryless BFGS quasi-Newton method and its application in image restoration and machine learning. AIMS Mathematics, 2024, 9(10): 27535-27556. doi: 10.3934/math.20241337
    [8] Maulana Malik, Ibrahim Mohammed Sulaiman, Auwal Bala Abubakar, Gianinna Ardaneswari, Sukono . A new family of hybrid three-term conjugate gradient method for unconstrained optimization with application to image restoration and portfolio selection. AIMS Mathematics, 2023, 8(1): 1-28. doi: 10.3934/math.2023001
    [9] Xiaowei Fang . A derivative-free RMIL conjugate gradient method for constrained nonlinear systems of monotone equations. AIMS Mathematics, 2025, 10(5): 11656-11675. doi: 10.3934/math.2025528
    [10] Xiao Guo, Chuanpei Xu, Zhibin Zhu, Benxin Zhang . Nonmonotone variable metric Barzilai-Borwein method for composite minimization problem. AIMS Mathematics, 2024, 9(6): 16335-16353. doi: 10.3934/math.2024791
  • Biomedical image segmentation is a vital task in the analysis of medical imaging, including the detection and delineation of pathological regions or anatomical structures within medical images. It has played a pivotal role in a variety of medical applications, involving diagnoses, monitoring of diseases, and treatment planning. Conventionally, clinicians or expert radiologists have manually conducted biomedical image segmentation, which is prone to human error, subjective, and time-consuming. With the advancement in computer vision and deep learning (DL) algorithms, automated and semi-automated segmentation techniques have attracted much research interest. DL approaches, particularly convolutional neural networks (CNN), have revolutionized biomedical image segmentation. With this motivation, we developed a novel equilibrium optimization algorithm with a deep learning-based biomedical image segmentation (EOADL-BIS) technique. The purpose of the EOADL-BIS technique is to integrate EOA with the Faster RCNN model for an accurate and efficient biomedical image segmentation process. To accomplish this, the EOADL-BIS technique involves Faster R-CNN architecture with ResNeXt as a backbone network for image segmentation. The region proposal network (RPN) proficiently creates a collection of a set of region proposals, which are then fed into the ResNeXt for classification and precise localization. During the training process of the Faster RCNN algorithm, the EOA was utilized to optimize the hyperparameter of the ResNeXt model which increased the segmentation results and reduced the loss function. The experimental outcome of the EOADL-BIS algorithm was tested on distinct benchmark medical image databases. The experimental results stated the greater efficiency of the EOADL-BIS algorithm compared to other DL-based segmentation approaches.



    Consider the constrained system

    F(x)=0,xΨ, (1.1)

    where the function F:ΨRn is a continuous, monotone, and ΨRn is nonempty, closed and convex. The monotonicity of F implies

    (F(x)F(y))T(xy)0,x,yΨ. (1.2)

    This problem has applications in financial forecasting problems [1] and compressive sensing [2]. The Newton method [3], quasi-Newton methods [4], and conjugate gradient (CG) methods [5] are among the most often used approaches for solving it. When dealing with large-scale nonsmooth algebraic systems, CG methods are seen to be the most successful. The iterative technique for the CG algorithm is as follows:

    x0Rnxk+1=xk+αkdk, (1.3)

    the vector dk is given by

    dk=F0,k=0,dk=Fk+βkdk1,k1, (1.4)

    where Fk=F(xk), and βk is the CG formula that differentiates CG methods. One of the most efficient CG formulas with restarting feature is the Polak-Ribiˊere-Polyak (PRP) [6] formula defined by

    βPRPk=FTk+1ykFk2, (1.5)

    where yk=Fk+1Fk. Despite the good features of the formula (1.5), it doesn't satisfy the sufficient descent condition (SDC). This opens up the possibility for future investigations on the modification of the PRP formula to satisfy the SDC. There are different PRP algorithms for solving the general monotone system of nonlinear equations in the literature. The first PRP algorithm for solving monotone algebraic systems was proposed by Cheng [7] where he extended the default PRP using the hyperplane technique discussed in [8]. Subsequently, Yu [9] proposed the derivative-free PRP for a large-scale monotone system that uses the backtracking line search procedure. Ahookhosh [10] proposed a descent three-term PRP algorithm for solving large-scale nonlinear monotone equations that combine extended PRP formula with the projection technique. Yuan and Zhang [11] proposed another descent-modified PRP CG algorithm for monotone nonlinear equations. Sabi'u and Gadu [12]proposed a projection-based hybrid FR and PRP algorithm for the monotone system. Others are; the improved three-term PRP CG method [13], spectral modified Polak–Ribiére–Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations [14], the new hybrid algorithm for solving large-scale monotone nonlinear equations [15], and the accelerated CG algorithm for solving nonlinear monotone equations and image restoration problems [16].

    Moreover, for the convex-constrained system (1.1), Jinkui [17] proposed a spectral PRP projection algorithm for solving nonlinear monotone equations with convex constraints. Followed by; the projection-based PRP-like algorithm [18], the modified spectral PRP conjugate gradient projection method for solving large-scale monotone equations and its application in compressed sensing [19], the new hybrid prpfr CG method for solving nonlinear monotone equations and image restoration problems [20], the modified PRP CG projection method for solving large scale nonlinear convex constrained monotone equations [21], the modified PRP CG method with weaker conditions [22], the PRP-like algorithm for monotone operator equations [23], and the modified PRP-type conjugate gradient projection algorithm for solving large-scale monotone nonlinear equations with convex constraint [24]. In this work, we will propose a scaled PRP CG gradient algorithm for constrained nonlinear systems in which the scaling parameters are determined by approaching the quasi-Newton direction and exploiting the advantages of the well-known Barzilai-Borwein technique. The appealing features of our algorithm are: (i) derivative and matrix-free algorithm, (ii) exploiting best out of the PRP formula numerically and theoretically in contrast to conventional scaled CG algorithms, (iii) the application of the proposed algorithm in solving the two-joint planar robotic manipulator problems, and finally, (iv) the proposed directions will satisfy the SDC independent of the line search procedure.

    The next section will discuss the proposed algorithm using the scaling strategy, Section 3 contains the global convergence of the method. The numerical experiment will be presented in Section 4, and the last section will contain the concluding remarks.

    The scaling strategy is proved to be an efficient strategy for enhancing numerical and theoretical performances of the CG methods, see [25,26]. In line with this, we scaled the PRP CG (SPRP) formula to get

    βSPRPk=γβPRPk, (2.1)

    such that |γ|1. We are going to propose two effective ways of computing the parameter γ at each iteration.

    We are going to propose an optimal choice for the scaling parameter γ at every iteration by tending the proposed direction to approach the general quasi-Newton direction. Starting with the quasi-Newton equation

    yk=Bk+1sk, (2.2)

    where Bk+1 is a positive definite and symmetric Jacobian approximate. Now, the general quasi-Newton direction is as follows:

    dk+1=Hk+1Fk+1, (2.3)

    where the matrix Hk+1 is the inverse of Bk+1. Now, using (1.4) and (2.1), the SPRPR search direction can be written as

    dk+1=Fk+1+βSPRPkdk,k=0,1,. (2.4)

    In order to incorporate Jacobian approximation information in the quasi-Newton direction into our scheme, since the quasi-Newton schemes employ the actual Jacobian approximations, from (2.3), (2.4), and also by the virtue of equality relation, we get

    Hk+1Fk+1=Fk+1+γFTk+1ykFk2dk. (2.5)

    Multiplying (2.5) by Bk+1sTk to obtain

    sTkFk+1=Bk+1sTkFk+1γFTk+1ykFk2Bk+1sTkdk. (2.6)

    Solving for γ after eliminating the matrix Bk+1 in (2.6) by using (2.2) to get

    γk=(yksk)TFk+1βPRPkyTkdk. (2.7)

    We further achieved |γ1k|1 by using the Polak-Ribiˊere-Polyak non-negative restriction to obtain

    γ1k=min{1,|γk|}. (2.8)

    We will again propose another optimal choice for the scaling parameter γ by using some prominent features of the Barzilai-Borwein approach. The Barzilai-Borwein [27] proposed some prevalent choices for the scaling parameters given by

    ω1k=sTkskyTksk,andω2k=sTkykyTkyk. (2.9)

    By considering Perry's point of view, the scaled SPRP search direction can be written as

    d0=F0,dk+1=^Hk+1Fk+1,k=0,1,, (2.10)

    where ^Hk+1 is defined by

    ^Hk+1=IγykdTkFk2. (2.11)

    Now, we aim at taking the advantage of the Barzilai-Borwein [27] approach to propose the parameter γ by minimizing

    minγ^Hk+1ωkI2F, (2.12)

    where .F stands for the Frobenius matrix norm. Moreover, if we assigned Q=^Hk+1ωkI and utilized the relation Q2F=Trace(QTQ), we arrived at

    γk=(1ωk)yTkdkFk2yk2dk2, (2.13)

    In addition, we ensure that all of the prevalent choices for the Barzilai-Borwein scaling parameters are properly integrated into our scheme by suggesting that

    ωk=max{ωmin,min{ωik,ωmax}},i=1,2, (2.14)

    with 0<ωmin<ωmax<. We proposed the following modified version of (2.13) that satisfies |γ2k|1 as

    γ2k=min{1,|γk|}. (2.15)

    Furthermore, to guarantee that the sufficient descent condition is fulfilled independent of the line search process, we provided the following modified SPRP directions

    dSPRP1k+1=ζ1kFk+1+γ1kβPRPkdk,k=0,1,, (2.16)

    and,

    dSPRP2k+1=ζ2kFk+1+γ2kβPRPkdk,k=0,1,, (2.17)

    where

    ζ1k=1+γ1kβPRPkFTk+1dkFk+12,ζ2k=1+γ2kβPRPkFTk+1dkFk+12. (2.18)

    Below we present the proposed algorithm.

    Algorithm 2.1. The scaled PRP projection-based CG algorithm (SPRPCG)

    Step 0. Start by initializing: ϵ0, b(0,1), θ>0, τ>0, a>0, 0<ωminωmax and x0Rn. Set k=0 and d0=F0.

    Step 1. If Fkϵ, terminate, otherwise continue with Step 2.

    Step 2. Determine the scaled PRP CG direction dk via (2.16) or (2.17), where sk=ukxk, and yk=F(uk)Fk+bsk.

    Step 3. Set uk=xk+αkdk and compute αk=max{τθi:i=0,1,2,} satisfying

    F(uk)TdkaαkF(uk)dk2 (2.19)

    Step 4. If ukΨ and F(uk)=0 stop, otherwise

    xk+1=AΨ[xkvkF(hk)], (2.20)

    where A is the projection operator, and

    vk=F(uk)T(xkuk)F(uk)2. (2.21)

    Step 5. Set k=k+1 and repeat from Step 1.

    This section describes the global convergence of the proposed algorithm under the Lipschitz continuous and monotonicity assumptions on F.

    Lemma 3.1. For all k0, the line search (2.19) is well-defined.

    Proof. Suppose there exists k00 such that for i=0,1,2,,

    F(xk0+τθidk0)Tdk0<aτθiF(xk0+τθidk0)dk02. (3.1)

    Let i in (3.1), we have

    F(xk0)Tdk00. (3.2)

    Since the proposed directions satisfiy the sufficient condition, we have

    F(xk0)Tdk0F(xk0)2>0. (3.3)

    Thus, the relations (3.2) and (3.3) yield a contradiction. Hence, the proof is complete.

    Lemma 3.2. [25] If the sequences {xk} and {vk} are produced by the SPRPCG algorithm, then for some M>0 we have

    FkM,limkαkdk=0,k. (3.4)

    Proof. Now, from the line search (2.19), we have

    F(uk)T(xkuk)=F(uk)Tdkaα2kF(uk)dk2>0. (3.5)

    Assume that xΩ such that F(x)=0, using the monotonicity of F, we have

    F(uk)T(xkx)=F(uk)T(xkuk)+F(uk)T(ukx)F(uk)T(xkuk)+F(x)T(ukx)=F(uk)T(xkuk). (3.6)

    Using (3.5) and (3.6) to get

    xk+1x2=AΨ(xkvkF(uk))x2xkvkF(uk)x2=xkx22vkF(uk)T(xkx)+v2kF(uk)2. (3.7)

    By the definition of vk, and the Cauchy Schwarz inequality in (3.7), we obtain

    xk+1x2xkx22vkF(uk)T(xkuk)+v2kF(uk)2xkx2(F(uk)T(xkuk))2F(uk)2xkx2a2xkuk4, (3.8)

    thus, we have

    xk+1xxkx,k0. (3.9)

    Therefore, {xkx} is a decreasing sequence and hence convergent. Now, utilizing (3.9) and the Lispchitz continuity of F, we get

    F(xk)=F(xk)F(x)LxkxLx0x=M. (3.10)

    By (2.19), monotonicity of F, and the Cauchy Schwarz inequality, we obtain

    aF(uk)xkuk2F(uk)T(xkuk)F(uk)xkuk, (3.11)

    which gives

    axkuk1. (3.12)

    From (3.12), we see that the sequence {uk} is bounded. Also, from (3.8), we obtain

    a2k=0xkuk4k=0(xkx2xk+1x2)<. (3.13)

    This implies

    limkxkuk=limkαkdk=0. (3.14)

    The proof is now complete.

    Theorem 3.1. The SPRPCG algorithm converges, i.e.,

    lim infkFk=0. (3.15)

    Proof. Assume that (3.15) is not true, i.e., there exists q>0 such that

    Fkq,kN. (3.16)

    Again from the Lipschitz continuinity of F it is easy to see that yk(L+a)sk=N, where L is assumed to be the Lipschitz constant. Thus,

    dk+1=ζ1kFk+1+γ1kβPRPkdk=(1+γ1kβPRPkFTk+1dkFk+12)Fk+1+γ1kβPRPkdkFk+1+2+Fk+1ykq2dkM+2MNq2dk. (3.17)

    Now, let h=2MNq2, therefore from (3.17) we get

    dk+1M+hdkM(1+h+h2++hkk0+1)dk0M1h+dk0. (3.18)

    Hence, for Z=max{d1,d2,,dk0,M1h+dk0}, we obtain the boundedness of the proposed direction. Similarly, we can show that (2.17) is also bounded. From the sufficient condition and the Cauchy-Schwarz inequality we get

    FkdkFkdkFk2>0. (3.19)

    From (3.19) we obtain

    dkFk>q. (3.20)

    Therefore, from (3.14) and (3.20) we have

    limkαk=0. (3.21)

    Suppose αk doesn't safies the line search procedure (2.19), i.e.,

    F(xk+αkdk)Tdk<aαkF(xk+αkdk)dk2, (3.22)

    It is obvious that {xk} is bounded and has an accumulation point ˆx and an infinite index set D1 such that limkD1xk=ˆx. It also follows that {dk}kD1 is bounded. Therefore, there exist an infinite index set D2D1 with an accumulation point ˆd such that limkD2dk=ˆd. Now, taking limit in (3.22), we obtain

    F(ˆx)Tˆd0. (3.23)

    Also taking the limit in (3.19), we get

    F(ˆx)Tˆd0. (3.24)

    The last two inequalities give a contradiction and the proof is complete.

    The proposed scaled PRP algorithm is numerically compared to the MPRPA [24], DFSP [26], and STCGM [25] algorithms, using published values in the compared papers. Furthermore, we initialized the following variables for the SPRPCG algorithm: b=0.2, a=0.0001, θ=0.99, τ=1, ωmin=0.0001, ωmax=104, Ψ=Rn+, and ϵ=1010. Matlab14 is used to run all algorithms on an Intel Core i5 8th Generation personal computer. We carried out our experiment using the following test problems:

    Problem 4.1. Reference [25] F(xi)=2xisin|xi|, for i=1,2,3,,n, and Ω=Rn+.

    Problem 4.2. Reference [25] Fi(x)=4xi+(xi+12xi)x2i+13, for i=1,2,,n1, Fn(x)=4xn+(xn12xn)x2n13, and Ω=Rn+.

    Problem 4.3. Reference [26] Fi(x)=exi1,i=1,2,,n, and Ω=Rn+.

    Problem 4.4. Reference [25] F1(x)=cos(x1)9+3x1+8exp(x2) Fi(x)=cos(xi)9+3xi+8exp(xi2), for i=2,3,,n, and Ω=Rn+

    Problem 4.5. Reference [25] F1(x)=ex11, Fi(x)=exi+xi11,i=2,3,,n1, and Ω=Rn+.

    From Tables 1–5, we used eight initial points, namely; x10=(2,2,,2), x20=(1,12,13,,1n), x30=(1,1,,1), x40=(1n,2n,,1), x50=(n1n,n2n,,n1), x60=(2,22,23,,2n), x70=(11,112,113,,11n) and x80=(3,3,,3). In which the terms ITER, FVAL, TIME, and NORM stand for the number of iterations, function evaluation, computing time and the norm of Fk at the stopping criteria respectively.

    Table 1.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25] and MPRPA algorithms [24].
    Problem 1 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 1 14 0.005949 0 1 14 0.005133 0 35 71 0.02165 9.62E-11 23 49 0.027654 7.9E-11 8 25 0.00943 6.42E-11
    x20 2 27 0.007886 0 2 27 0.007942 0 22 189 0.033029 5.1E-11 6 56 0.013212 0 5 53 0.008826 0
    x30 1 14 0.0054 0 1 14 0.006263 0 37 75 0.023115 6.37E-11 22 46 0.015948 6.25E-11 8 20 0.010007 7.57E-12
    x40 2 27 0.007635 0 2 27 0.007432 0 27 221 0.039841 5.48E-11 5 43 0.010364 0 17 136 0.123572 0
    x50 2 27 0.00817 0 2 27 0.007754 0 27 218 0.042077 9E-11 6 56 0.013789 0 17 130 0.023084 0
    x60 2 27 0.008051 0 2 27 0.007844 0 24 206 0.086541 5.98E-11 6 57 0.01194 0 8 25 0.012607 9.09E-11
    x70 2 27 0.007648 0 2 27 0.007856 0 27 218 0.044937 9E-11 6 56 0.013552 0 5 53 0.010073 0
    x80 2 27 0.008063 0 2 27 0.009222 0 1 4 0.004576 0 1 6 0.004244 0 8 20 0.011038 1.07E-11
    1000 x10 1 14 0.007079 0 1 14 0.006871 0 36 73 0.027915 6.73E-11 24 51 0.021346 3.39E-11 17 135 0.029611 0
    x20 2 27 0.009849 0 2 27 0.009229 0 21 185 0.055912 7.33E-11 6 56 0.016773 0 18 138 0.035786 0
    x30 1 14 0.006306 0 1 14 0.006283 0 37 75 0.030669 9.01E-11 22 46 0.02162 8.88E-11 9 27 0.048078 5.63E-12
    x40 2 27 0.010302 0 2 27 0.009833 0 11 83 0.027815 0 6 56 0.018072 0 5 53 0.082559 0
    x50 2 27 0.010085 0 2 27 0.01037 0 11 83 0.023342 0 6 57 0.017067 0 8 20 0.039123 3.39E-11
    x60 2 27 0.00958 0 2 27 0.012111 0 24 203 0.055708 8.24E-11 6 57 0.01826 0 18 144 0.223104 0
    x70 2 27 0.009673 0 2 27 0.00937 0 11 83 0.027194 0 6 57 0.017675 0 18 143 0.12509 0
    x80 2 27 0.011959 0 2 27 0.010101 0 1 4 0.004386 0 1 6 0.005709 0 9 27 0.212339 1.26E-11
    10000 x10 1 14 0.026098 0 1 14 0.025464 0 38 77 0.200128 5.22E-11 25 53 0.111401 3.45E-11 5 53 0.200085 0
    x20 2 27 0.047774 0 2 27 0.041911 0 11 98 0.153287 0 6 56 0.089864 0 8 20 0.164896 7.57E-11
    x30 1 14 0.025732 0 1 14 0.02334 0 39 79 0.246965 6.98E-11 23 48 0.096345 8.71E-11 18 144 0.601218 0
    x40 2 27 0.044049 0 2 27 0.042824 0 14 110 0.20247 0 6 56 0.091267 0 19 151 1.020748 0
    x50 2 27 0.047091 0 2 27 0.044061 0 14 110 0.195937 0 6 56 0.087251 0 9 27 0.268154 1.78E-11
    x60 2 27 0.04558 0 2 27 0.042455 0 24 202 0.328184 8.06E-11 6 57 0.086451 0 5 53 0.831941 0
    x70 2 27 0.045994 0 2 27 0.046985 0 14 110 0.201035 0 6 56 0.087745 0 9 22 0.299434 2.1E-12
    x80 2 27 0.047422 0 2 27 0.048712 0 1 4 0.009599 0 1 6 0.014179 0 19 150 2.261945 0
    50000 x10 1 14 0.096279 0 1 14 0.101904 0 39 79 0.767104 5.77E-11 25 53 0.437284 8.8E-11 19 152 1.872535 0
    x20 2 27 0.185007 0 2 27 0.184709 0 11 98 0.69978 0 6 56 0.374874 0 8 25 0.003892 7.04E-12
    x30 1 14 0.095243 0 1 14 0.097266 0 40 81 0.769044 7.73E-11 24 50 0.425448 6.2E-11 5 52 0.006669 0
    x40 2 27 0.389746 0 2 27 0.178131 0 16 127 0.929816 0 5 43 0.318514 0 7 18 0.00442 4.23E-11
    x50 2 27 0.36199 0 2 27 0.189434 0 16 127 0.992202 0 5 43 0.308814 0 6 68 0.009472 0
    x60 2 27 0.329928 0 2 27 0.178671 0 24 205 1.581707 6.03E-11 6 57 0.385743 0 5 51 0.00544 0
    x70 2 27 0.295669 0 2 27 0.185862 0 16 127 0.892216 0 5 43 0.296815 0 8 25 0.007498 7.6E-12
    x80 2 27 0.282256 0 2 27 0.201677 0 1 4 0.039697 0 1 6 0.046323 0 5 52 0.00674 0
    100000 x10 1 14 0.292199 0 1 14 0.187861 0 39 79 1.65231 8.17E-11 26 55 0.911281 4.11E-11 7 18 0.004102 4.57E-11
    x20 2 27 0.454309 0 2 27 0.376562 0 11 98 1.488625 0 6 56 0.725688 0 2 18 0.005527 0
    x30 1 14 0.237757 0 1 14 0.187526 0 41 83 1.776357 5.41E-11 24 50 0.861569 9.16E-11 5 51 0.005885 0
    x40 2 27 0.471781 0 2 27 0.397482 0 16 126 1.741981 0 5 43 0.589476 0 8 25 0.00696 8.13E-12
    x50 2 27 0.462599 0 2 27 0.370585 0 17 139 1.953327 0 5 43 0.59129 0 5 52 0.003811 0
    x60 2 27 0.453023 0 2 27 0.376696 0 24 204 2.711584 6.75E-11 6 57 0.760319 0 7 18 0.006613 4.88E-11
    x70 2 27 0.48348 0 2 27 0.362695 0 17 139 1.840027 0 5 43 0.583836 0 2 18 0.005547 0
    x80 2 27 0.495025 0 2 27 0.42318 0 1 4 0.076396 0 1 6 0.092276 0 6 60 0.006736 0

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25], and MPRPA algorithms [24].
    Problem 2 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 1 14 0.00616 0 1 14 0.006448 0 3 30 0.009564 0 9 85 0.024533 9.27E-11 1 14 0.007168 0
    x20 1 14 0.006193 0 1 14 0.005646 0 2 18 0.007262 0 6 71 0.01834 0 2 27 0.00951 0
    x30 1 14 0.005835 0 1 14 0.00614 0 3 32 0.009654 0 9 85 0.019681 4.01E-11 1 14 0.005623 0
    x40 1 14 0.006187 0 1 14 0.006602 0 4 45 0.011538 0 5 58 0.017104 0 1 14 0.007012 0
    x50 1 14 0.005661 0 1 14 0.006467 0 5 58 0.015613 0 5 58 0.016217 0 2 27 0.004613 0
    x60 1 14 0.005917 0 1 14 0.006679 0 2 18 0.007484 0 6 71 0.018448 0 1 14 0.006543 0
    x70 1 14 0.005769 0 1 14 0.006531 0 5 58 0.015084 0 5 58 0.016812 0 2 27 0.006565 0
    x80 1 3 0.004172 0 1 3 0.004642 0 1 9 0.006094 0 1 3 0.0038 0 1 14 0.007489 0
    1000 x10 1 14 0.006684 0 1 14 0.007853 0 3 30 0.012287 0 10 96 0.034862 4.34E-12 1 14 0.005651 0
    x20 1 14 0.00862 0 1 14 0.007312 0 4 45 0.017093 0 6 71 0.026176 0 2 27 0.011575 0
    x30 1 14 0.007406 0 1 14 0.00786 0 3 32 0.013344 0 9 85 0.030241 5.69E-11 1 14 0.032168 0
    x40 1 14 0.008181 0 1 14 0.008113 0 4 45 0.017142 0 5 58 0.021131 0 2 27 0.050307 0
    x50 1 14 0.007682 0 1 14 0.007276 0 5 58 0.020869 0 5 58 0.022127 0 1 14 0.033315 0
    x60 1 14 0.008416 0 1 14 0.008252 0 2 18 0.009431 0 6 71 0.02732 0 1 14 0.01479 0
    x70 1 14 0.008132 0 1 14 0.007605 0 5 58 0.01976 0 5 58 0.021743 0 2 27 0.061964 0
    x80 1 3 0.004654 0 1 3 0.004176 0 1 9 0.006268 0 1 3 0.004233 0 1 14 0.091229 0
    10000 x10 1 14 0.034062 0 1 14 0.034897 0 3 30 0.068186 0 10 96 0.221348 1.84E-11 2 27 0.285117 0
    x20 1 14 0.035571 0 1 14 0.034198 0 4 45 0.097955 0 6 71 0.156478 0 1 14 0.092376 0
    x30 1 14 0.034545 0 1 14 0.03343 0 3 32 0.071271 0 10 96 0.214021 5.82E-12 1 14 0.15221 0
    x40 1 14 0.033543 0 1 14 0.033777 0 4 45 0.095412 0 5 58 0.134208 0 2 27 0.185719 0
    x50 1 14 0.034247 0 1 14 0.033997 0 5 58 0.123651 0 5 58 0.126169 0 1 14 0.350673 0
    x60 1 14 0.033179 0 1 14 0.033604 0 2 18 0.040918 0 6 71 0.152915 0 2 27 0.502155 0
    x70 1 14 0.034517 0 1 14 0.032933 0 5 58 0.125501 0 5 58 0.127013 0 1 14 0.250523 0
    x80 1 3 0.01073 0 1 3 0.010852 0 1 9 0.022272 0 1 3 0.011772 0 1 14 0.308355 0
    50000 x10 1 14 0.144173 0 1 14 0.146136 0 3 30 0.323007 0 10 96 1.002645 6.02E-11 2 27 0.491642 0
    x20 1 14 0.144648 0 1 14 0.145859 0 4 45 0.453818 0 6 71 0.746929 0 1 14 0.004396 0
    x30 1 14 0.144283 0 1 14 0.147213 0 3 32 0.319894 0 10 96 0.997627 1.36E-11 2 27 0.008702 0
    x40 1 14 0.142842 0 1 14 0.139717 0 4 45 0.481684 0 5 58 0.609387 0 1 14 0.004268 0
    x50 1 14 0.142552 0 1 14 0.143273 0 5 58 0.585424 0 5 58 0.598987 0 1 14 0.005546 0
    x60 1 14 0.144208 0 1 14 0.141715 0 2 18 0.18099 0 6 71 0.737116 0 2 27 0.003315 0
    x70 1 14 0.141234 0 1 14 0.167606 0 5 58 0.603428 0 5 58 0.605638 0 1 14 0.004384 0
    x80 1 3 0.03565 0 1 3 0.036751 0 1 9 0.092186 0 1 3 0.036785 0 2 27 0.003942 0
    100000 x10 1 14 0.288466 0 1 14 0.281604 0 3 30 0.623989 0 11 107 2.484277 3.3E-12 1 14 0.004815 0
    x20 1 14 0.281627 0 1 14 0.281598 0 4 45 0.98394 0 6 71 1.63692 0 1 14 0.002507 0
    x30 1 14 0.28431 0 1 14 0.293397 0 3 32 0.670524 0 10 96 2.212571 1.98E-11 2 27 0.007047 0
    x40 1 14 0.274463 0 1 14 0.279905 0 4 45 0.980961 0 5 58 1.297317 0 1 14 0.002786 0
    x50 1 14 0.289894 0 1 14 0.289534 0 5 58 1.262739 0 5 58 1.323224 0 2 27 0.007023 0
    x60 1 14 0.288962 0 1 14 0.289889 0 2 18 0.437525 0 6 71 1.624833 0 1 14 0.002699 0
    x70 1 14 0.284459 0 1 14 0.286553 0 5 58 1.210862 0 5 58 1.331419 0 1 14 0.005008 0
    x80 1 3 0.068662 0 1 3 0.066155 0 1 9 0.191548 0 1 3 0.073259 0 2 27 0.003077 0

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25], and MPRPA algorithms [24].
    Problem 3 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 1 14 0.005065 0 1 14 0.005702 0 33 76 0.019308 5.51E-11 23 58 0.020183 3.02E-11 1 14 0.004557 0
    x20 2 27 0.007402 0 2 27 0.007827 0 21 163 0.027816 6.91E-11 6 66 0.013712 0 4 50 0.009725 0
    x30 1 14 0.006092 0 1 14 0.006609 0 31 63 0.017096 6.17E-11 23 49 0.016392 3.01E-11 8 26 0.008178 1.33E-11
    x40 2 27 0.008335 0 2 27 0.00744 0 24 179 0.031604 5.04E-11 5 46 0.011696 0 4 49 0.011172 0
    x50 2 27 0.007787 0 2 27 0.007068 0 25 180 0.032925 3.7E-11 6 60 0.013848 0 4 49 0.011364 0
    x60 2 27 0.007486 0 2 27 0.008 0 9 69 0.013732 0 5 50 0.011986 0 1 14 0.006459 0
    x70 2 27 0.007729 0 2 27 0.008037 0 25 180 0.029996 3.7E-11 6 60 0.012398 0 4 50 0.012351 0
    x80 1 3 0.004163 0 1 3 0.003858 0 1 3 0.003841 0 1 3 0.003691 0 8 26 0.005912 1.88E-11
    1000 x10 1 14 0.006594 0 1 14 0.006499 0 33 76 0.025403 7.79E-11 23 58 0.022122 4.28E-11 4 49 0.012041 0
    x20 2 27 0.00899 0 2 27 0.008246 0 21 161 0.0376 6.85E-11 6 66 0.017943 0 4 49 0.00792 0
    x30 1 14 0.006662 0 1 14 0.005875 0 31 63 0.022674 8.72E-11 23 49 0.021127 4.27E-11 1 14 0.02137 0
    x40 2 27 0.009007 0 2 27 0.009575 0 25 179 0.041317 5.58E-11 5 46 0.014358 0 4 50 0.06797 0
    x50 2 27 0.009047 0 2 27 0.008923 0 25 180 0.042117 4.65E-11 6 59 0.016748 0 8 26 0.039395 5.95E-11
    x60 2 27 0.00939 0 2 27 0.009113 0 9 69 0.018797 0 5 50 0.014086 0 4 49 0.057746 0
    x70 2 27 0.009503 0 2 27 0.009876 0 25 180 0.041626 4.65E-11 6 59 0.015995 0 4 49 0.041586 0
    x80 1 3 0.004261 0 1 3 0.004402 0 1 3 0.003657 0 1 3 0.003832 0 1 14 0.072798 0
    10000 x10 1 14 0.023061 0 1 14 0.023074 0 35 80 0.129582 6.03E-11 24 60 0.097674 4.11E-11 4 50 0.164054 0
    x20 2 27 0.035898 0 2 27 0.037322 0 21 164 0.216364 5.35E-11 6 66 0.08125 0 9 28 0.160535 2.63E-12
    x30 1 14 0.021199 0 1 14 0.021082 0 33 67 0.10905 6.76E-11 24 51 0.085409 4.15E-11 4 49 0.196973 0
    x40 2 27 0.037109 0 2 27 0.037459 0 26 189 0.235984 4.6E-11 6 59 0.076381 0 4 49 0.249326 0
    x50 2 27 0.036095 0 2 27 0.036294 0 26 190 0.221085 4.43E-11 6 59 0.074121 0 1 14 0.093946 0
    x60 2 27 0.036085 0 2 27 0.03981 0 9 69 0.085623 0 5 50 0.06211 0 4 50 0.543017 0
    x70 2 27 0.038158 0 2 27 0.041666 0 26 190 0.240258 4.43E-11 6 59 0.075446 0 9 28 0.202887 3.72E-12
    x80 1 3 0.007806 0 1 3 0.007687 0 1 3 0.007488 0 1 3 0.007325 0 4 49 0.526138 0
    50000 x10 1 14 0.081922 0 1 14 0.083414 0 36 82 0.541356 6.68E-11 24 60 0.416089 9.4E-11 4 49 0.368258 0
    x20 2 27 0.140326 0 2 27 0.144851 0 21 162 0.807446 7.06E-11 6 66 0.337831 0 1 14 0.003984 0
    x30 1 14 0.075495 0 1 14 0.075355 0 34 69 0.486584 7.48E-11 24 51 0.423295 9.67E-11 4 50 0.008395 0
    x40 2 27 0.144768 0 2 27 0.144126 0 26 189 0.999566 9.44E-11 6 59 0.332809 0 7 24 0.004468 7.44E-11
    x50 2 27 0.142742 0 2 27 0.142328 0 27 196 1.025835 3.04E-11 6 59 0.32261 0 4 50 0.007229 0
    x60 2 27 0.146161 0 2 27 0.141539 0 9 69 0.363751 0 5 50 0.252642 0 4 49 0.003732 0
    x70 2 27 0.137162 0 2 27 0.142295 0 27 196 1.075529 3.04E-11 6 59 0.320723 0 1 14 0.004157 0
    x80 1 3 0.022052 0 1 3 0.022394 0 1 3 0.020302 0 1 3 0.021952 0 4 50 0.008577 0
    100000 x10 1 14 0.170899 0 1 14 0.159038 0 36 82 1.047394 9.47E-11 25 62 0.808989 4.06E-11 7 24 0.005938 8.03E-11
    x20 2 27 0.27101 0 2 27 0.276769 0 21 163 1.65595 6.97E-11 6 66 0.673843 0 4 50 0.003566 0
    x30 1 14 0.155212 0 1 14 0.154447 0 35 71 0.963394 5.24E-11 25 53 0.722074 4.23E-11 4 49 0.006346 0
    x40 2 27 0.283305 0 2 27 0.298966 0 27 194 2.086407 5.26E-11 6 59 0.630216 0 1 14 0.005198 0
    x50 2 27 0.28082 0 2 27 0.284577 0 27 194 2.034998 5.36E-11 6 59 0.632952 0 4 50 0.003295 0
    x60 2 27 0.275107 0 2 27 0.283492 0 9 69 0.73778 0 5 50 0.534591 0 7 24 0.006763 8.59E-11
    x70 2 27 0.266159 0 2 27 0.284258 0 27 194 2.066981 5.36E-11 6 59 0.631261 0 4 50 0.004407 0
    x80 1 3 0.039855 0 1 3 0.039435 0 1 3 0.043968 0 1 3 0.041767 0 4 49 0.005924 0

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25], and MPRPA algorithms [24].
    Problem 4 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 1 14 0.006826 0 1 14 0.007826 0 1 14 0.006633 0 2 26 0.019218 0 1 14 0.00379 0
    x20 1 14 0.006307 0 1 14 0.006454 0 2 27 0.009176 0 2 24 0.008969 0 1 14 0.007432 0
    x30 1 14 0.007101 0 1 14 0.007151 0 1 14 0.006891 0 2 24 0.00945 0 1 14 0.004323 0
    x40 1 14 0.00711 0 1 14 0.007319 0 2 27 0.010489 0 5 63 0.019216 0 1 14 0.004346 0
    x50 1 14 0.006932 0 1 14 0.00683 0 1 14 0.00652 0 5 63 0.020158 0 1 14 0.004034 0
    x60 1 14 0.007527 0 1 14 0.007411 0 1 14 0.005606 0 2 24 0.009091 0 1 14 0.009196 0
    x70 1 14 0.007439 0 1 14 0.007114 0 1 14 0.006337 0 5 63 0.018762 0 1 14 0.004103 0
    x80 2 27 0.049849 0 2 27 0.01603 0 1 12 0.006616 0 1 9 0.005235 0 1 14 0.008791 0
    1000 x10 1 14 0.009025 0 1 14 0.009648 0 1 14 0.008993 0 2 26 0.014945 0 1 14 0.003916 0
    x20 1 14 0.008027 0 1 14 0.007585 0 2 27 0.011886 0 2 24 0.011934 0 1 14 0.009405 0
    x30 1 14 0.009139 0 1 14 0.009137 0 1 14 0.008549 0 2 24 0.013415 0 1 14 0.026243 0
    x40 1 14 0.009153 0 1 14 0.008709 0 2 27 0.013689 0 5 63 0.029391 0 1 14 0.032894 0
    x50 1 14 0.00978 0 1 14 0.009065 0 1 14 0.010278 0 5 63 0.029139 0 1 14 0.020722 0
    x60 1 14 0.007148 0 1 14 0.008364 0 1 14 0.007888 0 2 24 0.011702 0 1 14 0.037939 0
    x70 1 14 0.008703 0 1 14 0.010072 0 1 14 0.008224 0 5 63 0.028993 0 1 14 0.033949 0
    x80 2 27 0.023566 0 2 27 0.0236 0 1 12 0.007582 0 1 9 0.007211 0 1 14 0.116722 0
    10000 x10 1 14 0.035678 0 1 14 0.035677 0 1 14 0.034545 0 2 26 0.059988 0 1 14 0.125283 0
    x20 1 14 0.033449 0 1 14 0.032304 0 2 27 0.058071 0 2 24 0.052061 0 1 14 0.096024 0
    x30 1 14 0.035411 0 1 14 0.037456 0 1 14 0.033769 0 2 24 0.057893 0 1 14 0.136805 0
    x40 1 14 0.03611 0 1 14 0.037482 0 2 27 0.073244 0 5 63 0.149776 0 1 14 0.096786 0
    x50 1 14 0.037252 0 1 14 0.038376 0 2 27 0.062793 0 5 63 0.149361 0 1 14 0.292711 0
    x60 1 14 0.03319 0 1 14 0.034843 0 1 14 0.029509 0 2 24 0.052367 0 1 14 0.209517 0
    x70 1 14 0.035739 0 1 14 0.035515 0 2 27 0.061489 0 5 63 0.144616 0 1 14 0.300057 0
    x80 2 27 0.097333 0 2 27 0.091716 0 1 12 0.030227 0 1 9 0.023266 0 1 14 0.208775 0
    50000 x10 1 14 0.153393 0 1 14 0.158395 0 1 14 0.143519 0 2 26 0.264726 0 1 14 0.332781 0
    x20 1 14 0.131391 0 1 14 0.127049 0 2 27 0.239204 0 2 24 0.215807 0 1 14 0.003875 0
    x30 1 14 0.149158 0 1 14 0.153346 0 1 14 0.138068 0 2 24 0.255097 0 1 14 0.003652 0
    x40 1 14 0.148252 0 1 14 0.146291 0 2 27 0.285022 0 5 63 0.634745 0 1 14 0.00406 0
    x50 1 14 0.149375 0 1 14 0.14397 0 2 27 0.284079 0 5 63 0.656865 0 1 14 0.00492 0
    x60 1 14 0.134224 0 1 14 0.133645 0 1 14 0.127057 0 2 24 0.217751 0 1 14 0.003563 0
    x70 1 14 0.142002 0 1 14 0.141666 0 2 27 0.287637 0 5 63 0.646074 0 1 14 0.004908 0
    x80 2 27 0.383604 0 2 27 0.388343 0 1 12 0.117212 0 1 9 0.093164 0 1 14 0.004126 0
    100000 x10 1 14 0.290397 0 1 14 0.278313 0 1 14 0.275099 0 2 26 0.572796 0 1 14 0.004362 0
    x20 1 14 0.258255 0 1 14 0.251781 0 2 27 0.496492 0 2 24 0.515692 0 1 14 0.003318 0
    x30 1 14 0.284833 0 1 14 0.289966 0 1 14 0.270982 0 2 24 0.557129 0 1 14 0.003945 0
    x40 1 14 0.296112 0 1 14 0.283181 0 4 42 0.847157 0 5 63 1.408381 0 1 14 0.003111 0
    x50 1 14 0.282097 0 1 14 0.286251 0 2 27 0.546095 0 5 63 1.457335 0 1 14 0.003803 0
    x60 1 14 0.249396 0 1 14 0.256651 0 1 14 0.254254 0 2 24 0.489583 0 1 14 0.00303 0
    x70 1 14 0.281713 0 1 14 0.294178 0 2 27 0.547392 0 5 63 1.384502 0 1 14 0.004455 0
    x80 2 27 0.761841 0 2 27 0.780406 0 1 12 0.239859 0 1 9 0.182963 0 1 14 0.002743 0

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25], and MPRPA algorithms [24].
    Problem 5 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 2 27 0.031742 0 2 27 0.04209 0 5 61 0.041802 0 7 73 0.059792 0 2 27 0.033139 0
    x20 2 27 0.008489 0 2 27 0.025384 0 3 30 0.026171 0 4 45 0.017053 0 3 40 0.026812 0
    x30 2 27 0.004682 0 2 27 0.006594 0 7 84 0.010716 0 6 69 0.010229 0 3 40 0.00564 0
    x40 3 40 0.009244 0 3 40 0.008962 0 4 35 0.006085 0 5 57 0.011329 0 4 53 0.006817 0
    x50 2 27 0.006779 0 2 27 0.007919 0 94 1214 0.155333 9.21E-11 5 56 0.011371 0 3 40 0.006959 0
    x60 2 27 0.006728 0 2 27 0.008041 0 4 38 0.00796 0 6 72 0.013581 0 2 27 0.004568 0
    x70 2 27 0.006478 0 2 27 0.006652 0 94 1214 0.170393 9.21E-11 5 56 0.01192 0 3 40 0.008646 0
    x80 5 66 0.013512 0 5 66 0.012999 0 2 16 0.005321 0 2 17 0.006361 0 3 40 0.011563 0
    1000 x10 2 27 0.009778 0 2 27 0.009275 0 4 48 0.012698 0 8 84 0.023033 0 4 53 0.011952 0
    x20 2 27 0.009892 0 2 27 0.008778 0 3 30 0.009737 0 4 45 0.012158 0 3 40 0.011994 0
    x30 2 27 0.009887 0 2 27 0.009648 0 6 71 0.016186 0 9 78 0.019961 0 2 27 0.036469 0
    x40 3 40 0.012129 0 3 40 0.011647 0 4 34 0.010774 0 5 56 0.015291 0 3 40 0.04434 0
    x50 2 27 0.009335 0 2 27 0.009274 0 5 51 0.013627 0 5 56 0.014255 0 3 40 0.042221 0
    x60 2 27 0.00897 0 2 27 0.014394 0 4 38 0.010787 0 6 72 0.017204 0 4 53 0.062818 0
    x70 2 27 0.009645 0 2 27 0.008467 0 5 51 0.013366 0 5 56 0.016387 0 3 40 0.046493 0
    x80 5 66 0.017462 0 5 66 0.018425 0 2 16 0.006788 0 2 17 0.007563 0 2 27 0.126165 0
    10000 x10 2 27 0.037271 0 2 27 0.039634 0 4 48 0.061572 0 8 65 0.114416 0 3 40 0.22902 0
    x20 2 27 0.037149 0 2 27 0.061507 0 3 30 0.041141 0 4 45 0.070161 0 3 40 0.17597 0
    x30 2 27 0.040859 0 2 27 0.044393 0 5 56 0.076301 0 9 68 0.104997 0 4 53 0.298447 0
    x40 3 40 0.05355 0 3 40 0.069205 0 4 33 0.046029 0 5 56 0.087023 0 3 40 0.18673 0
    x50 2 27 0.048185 0 2 27 0.049425 0 4 34 0.058705 0 5 56 0.086953 0 2 27 0.319727 0
    x60 2 27 0.043537 0 2 27 0.046542 0 4 38 0.063938 0 6 72 0.106673 0 3 40 0.295781 0
    x70 2 27 0.047107 0 2 27 0.048886 0 4 34 0.060947 0 5 56 0.084679 0 3 40 0.496922 0
    x80 5 66 0.106679 0 5 66 0.1112 0 2 16 0.030821 0 3 30 0.046564 0 4 53 0.461636 0
    50000 x10 2 27 0.209091 0 2 27 0.206392 0 4 48 0.343347 0 10 89 0.61594 0 3 40 0.697509 0
    x20 2 27 0.188112 0 2 27 0.188834 0 3 30 0.223882 0 4 45 0.316733 0 2 27 0.002348 0
    x30 2 27 0.201281 0 2 27 0.201688 0 5 56 0.391772 0 7 71 0.493416 0 3 40 0.004563 0
    x40 3 40 0.296775 0 3 40 0.287346 0 4 33 0.259131 0 5 56 0.39824 0 3 40 0.007643 0
    x50 2 27 0.19805 0 2 27 0.198322 0 4 33 0.247166 0 5 56 0.395003 0 3 40 0.00774 0
    x60 2 27 0.186891 0 2 27 0.188475 0 4 38 0.277752 0 6 72 0.490119 0 3 40 0.005804 0
    x70 2 27 0.210921 0 2 27 0.201636 0 4 33 0.250694 0 5 56 0.397919 0 2 27 0.004488 0
    x80 5 66 0.497911 0 5 66 0.476101 0 2 16 0.131588 0 3 30 0.211239 0 3 40 0.005869 0
    100000 x10 2 27 0.424607 0 2 27 0.401009 0 4 48 0.672367 0 9 67 1.027705 0 3 40 0.004747 0
    x20 2 27 0.388978 0 2 27 0.391899 0 3 30 0.448241 0 4 45 0.689342 0 3 40 0.006402 0
    x30 2 27 0.394533 0 2 27 0.401115 0 5 56 0.80191 0 11 124 1.801222 0 3 40 0.004984 0
    x40 3 40 0.571176 0 3 40 0.615386 0 4 33 0.507612 0 5 56 0.86444 0 2 27 0.003807 0
    x50 2 27 0.404814 0 2 27 0.389485 0 4 33 0.499288 0 5 56 0.869131 0 3 40 0.004945 0
    x60 2 27 0.360131 0 2 27 0.405794 0 4 38 0.583693 0 6 72 1.080131 0 3 40 0.006149 0
    x70 2 27 0.380321 0 2 27 0.382274 0 4 33 0.558948 0 5 56 0.898111 0 3 40 0.007208 0
    x80 5 66 0.940601 0 5 66 0.972183 0 2 16 0.258353 0 3 30 0.494071 0 3 40 0.006065 0

     | Show Table
    DownLoad: CSV

    When compared to the MPRP, STCGM, and DFSP algorithms, the proposed approach solved the Problem 1 with the lowest number of ITER and FVAL. However, for the computing time, the MPRP algorithm won initially and failed to STCGM as the dimension increases. Likewise for Problems 2–5. Moreover, it is remarkable to note that the MPRP algorithm is competing with the STCGM algorithm for computing time with respect to all the considered test problems. Finally, the proposed algorithm outperforms the MPRPA, STCGM, and DFSP algorithms for ITER, and FVAL, but competes with the STCGM algorithm with respect to TIME.

    Furthermore, we used the well-known Dolan and Moreˊ [28] performance profile to produce a more exact numerical comparison using the bulk data in all the tables. Figure 1 three subfigures indicate that the SPRPCG algorithm with two directions reflects the upper left curves with regards to 1a and 1b. However, for the 1c, the SPRPCG initially won in the fractions of 0 to approximately 0.9, and later failed to STCGM algorithm. As a result, when compared to the MPRPA, STCGM, and DFSP algorithms, the SPRPCG algorithm has fewer iterations, and function evaluations on average and competes with the STCGM algorithm for CPU time.

    Figure 1.  Comparison of the proposed algorithm with the two directions versus MPRPA and DFSP algorithms.

    IIn this part, we will tackle the motion control of a two-joint planar robotic manipulator using the SPRP projection-based algorithm. The following discrete-time kinematics equation describes the position level of the two-joint planar robot manipulator

    \begin{equation} f(\eta_k) = \sigma_k, \end{equation} (4.1)

    where the kinematics function f(.) is defined by

    \begin{equation} f(\eta) = \left(\begin{array}{cc}m_1p_1 & m_2p_2 \\ m_1r_1 & m_2r_2 \end{array}\right), \end{equation} (4.2)

    in which, m_j for j = 1, 2 is the length of the j-th rod, p_1 = \cos(\eta_1) , r_1 = \sin(\eta_1) , p_2 = \cos(\eta_1 + \eta_2) , and r_2 = \sin(\eta_1 + \eta_2) . Also, the vector \sigma_k\in\mathbb{R}^2 stands for the end effector position vector, and the joint angle vector is represented by \eta_k\in\mathbb{R}^2 , for more detail about the kinematics equation we refer readers to [29] and the references therein. In our experiment we aimed at solving the series of optimization problems at a time interval t_k\in\left[0, t_f\right] defined as follows:

    \begin{equation} \min\limits_{\sigma_k\in\mathbb{R}^2}\frac{1}{2}\left\|\sigma_k-\sigma_{dk}\right\|^2. \end{equation} (4.3)

    In this experiment, m_j = 1 is assigned for j = 1, 2 , and the end effector is regulated to trace a Lissajous curve as provided by

    \begin{equation} \sigma_{dk} = \left(\begin{array}{l}1.5 +0.2\sin\frac{\pi t_k}{5} \\ \frac{\sqrt{3}}{2}+0.2\sin\left(\frac{\pi t_k}{5}+\frac{\pi}{3}\right)\end{array}\right). \end{equation} (4.4)

    For SPRP algorithm, we initialized b = 0.2 , a = 0.08 , \theta = 0.2 , \tau = 1 , \omega_{\min} = 0.0001 , \omega_{\max} = 10^4 , \eta_0 = \left[0, \frac{\pi}{3}\right] , and the end task duration t_f = 10s . We further divided the task duration [0, 10] into 200 equal parts.

    Figure 2 depicts the experimental findings generated by the SPRP algorithm, including the robot trajectories synthesized by the SPRP algorithm, the end plots of the effector trajectory and the intended route, and the error of the SPRP algorithm on both the vertical x and y axes. It is not difficult to see from Figures 2a and 2b that the SPRP algorithm completes the specified task satisfactorily. Furthermore, Figures 2c and 2d show that the resultant error is around 10^{-5} .

    Figure 2.  Numerical results generated by SPRP algorithm for the motion control of a two-joint planar robotic manipulator problem.

    A robust descent-scaled PRP projection-based technique for solving monotone nonlinear problems with convex constraints was given. The monotone and Lipschitz continuous assumptions are applied to accomplish the proposed algorithm's global convergence. A detailed numerical comparison with the related algorithms indicated that the proposed technique is much more efficient than the existing algorithms. Furthermore, the proposed technique is used to solve the motion control problem of a two-joint planar robotic manipulator with extremely little error. Finally, the provided technique may be used for various problems, including solving unconstrained optimization problems, generic algebraic nonlinear systems, and so on.

    This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, (grant number B05F650018).

    The authors declare no conflict of interest.



    [1] S. Chakraborty, K. Mali, An overview of biomedical image analysis from the deep learning perspective, Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention, 2023, 43–59. https://doi.org/10.4018/978-1-6684-7544-7.ch003 doi: 10.4018/978-1-6684-7544-7.ch003
    [2] N. S. Punn, S. Agarwal, Modality specific U-Net variants for biomedical image segmentation: a survey, Artif. Intell. Rev., 55 (2022), 5845–5889. https://doi.org/10.4018/978-1-6684-7544-7.ch003 doi: 10.4018/978-1-6684-7544-7.ch003
    [3] M. Yeung, L. Rundo, Y. Nan, E. Sala, C.B. Schönlieb, G. Yang, Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation, J. Digit. Imaging, 36 (2023), 739–752. https://doi.org/10.1007/s10278-022-00735-3 doi: 10.1007/s10278-022-00735-3
    [4] A. Lou, S. Guan, M. Loew, Cfpnet-m: A lightweight encoder-decoder-based network for multimodal biomedical image real-time segmentation, Comput. Biol. Med., 154 (2023), 106579. https://doi.org/10.1016/j.compbiomed.2023.106579 doi: 10.1016/j.compbiomed.2023.106579
    [5] K. A. Davamani, C. R. Robin, S. Amudha, L. J. Anbarasi, Biomedical image segmentation by deep learning methods, Computational Analysis and Deep Learning for Medical Care: Principles, Methods, and Applications, 2021,131–154. https://doi.org/10.1002/9781119785750.ch6
    [6] A. Shrivastava, M. Chakkaravathy, M. A. Shah, A Comprehensive Analysis of Machine Learning Techniques in Biomedical Image Processing Using Convolutional Neural Networks, In: 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), 2022, 1363–1369. IEEE. https://doi.org/10.1109/IC3I56241.2022.10072911
    [7] A. Iqbal, M. Sharif, M. A. Khan, W. Nisar, M. Alhaisoni, FF-UNet: A U-shaped deep convolutional neural network for multimodal biomedical image segmentation, Cogn. Comput., 14 (2022.), 1287–1302. https://doi.org/10.1007/s12559-022-10038-y
    [8] N. S. Punn, S. Agarwal, BT-Unet: A self-supervised learning framework for biomedical image segmentation using barlow twins with U-net models. Machine Learning, 111 (2022), 4585–4600. https://doi.org/10.1007/s10994-022-06219-3
    [9] A. J. Larrazabal, C. Martínez, J. Dolz, E. Ferrante, Orthogonal ensemble networks for biomedical image segmentation, In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part Ⅲ 24,594–603. Springer International Publishing. https://doi.org/10.1007/978-3-030-87199-4_56
    [10] Q. Liu, H. Jiang, T. Liu, Z. Liu, S. Li, W. Wen, Y. Shi, Defending deep learning-based biomedical image segmentation from adversarial attacks: A low-cost frequency refinement approach. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part IV 23,342–351. Springer International Publishing. https://doi.org/10.1007/978-3-030-59719-1_34
    [11] J. Zhang, Y. Zhang, Y. Jin, J. Xu, X. Xu, MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation, Health Information Science and Systems, 11 (2023), 13. https://doi.org/10.1007/978-3-030-59719-1_34
    [12] S. Pan, X. Liu, N. Xie, Y. Chong, EG-TransUNet: A transformer-based U-Net with enhanced and guided models for biomedical image segmentation, BMC Bioinformatics, 24 (2023), 85. https://doi.org/10.1007/978-3-030-59719-1_34 doi: 10.1007/978-3-030-59719-1_34
    [13] N. K. Tomar, D. Jha, M. A. Riegler, H. D. Johansen, D. Johansen, J. Rittscher, et al., Fanet: A feedback attention network for improved biomedical image segmentation, IEEE Transactions on Neural Networks and Learning Systems, 2022. https://doi.org/10.1109/TNNLS.2022.3159394
    [14] M. B. Shuvo, R. Ahommed, S. Reza, M. M. A. Hashem, CNL-UNet: A novel lightweight deep learning architecture for multimodal biomedical image segmentation with false output suppression, Biomed. Signal Proces., 70 (2021), 102959. https://doi.org/10.1016/j.bspc.2021.102959 doi: 10.1016/j.bspc.2021.102959
    [15] A. Srivastava, D. Jha, S. Chanda, U. Pal, H. D. Johansen, D. Johansen, et al., MSRF-Net: a multi-scale residual fusion network for biomedical image segmentation, IEEE J. Biomed. Health, 26 (2021), 2252–2263. https://doi.org/10.1109/JBHI.2021.3138024
    [16] Z. Zhao, Z. Zeng, K. Xu, C. Chen, C. Guan, Dsal: Deeply supervised active learning from strong and weak labelers for biomedical image segmentation, IEEE J. Biomed. Health, 25 (2021), 3744–3751. https://doi.org/10.1109/JBHI.2021.3052320 doi: 10.1109/JBHI.2021.3052320
    [17] Y. Meng, M. Wei, D. Gao, Y. Zhao, X. Yang, X. Huang, et al., CNN-GCN aggregation enabled boundary regression for biomedical image segmentation, In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part IV 23,352–362. Springer International Publishing. https://doi.org/10.1109/JBHI.2021.3052320
    [18] N. Ibtehaz, M. S. Rahman, MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation, Neural networks, 121 (2020), 74–87. https://doi.org/10.1109/JBHI.2021.3052320 doi: 10.1109/JBHI.2021.3052320
    [19] T. Ma, A. V. Dalca, M. R. Sabuncu, Hyper-convolution networks for biomedical image segmentation, In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, 1933–1942.
    [20] H. Song, Y. Wang, S. Zeng, X. Guo, Z. Li, OAU-net: Outlined Attention U-net for biomedical image segmentation, Biomed. Signal Proces. Control, 79 (2023), 104038. https://doi.org/10.1109/JBHI.2021.3052320
    [21] M. P. Schilling, T. Scherr, F. R. Münke, O. Neumann, M. Schutera, R. Mikut, et al., Automated annotator variability inspection for biomedical image segmentation, IEEE Access, 10 (2022), 2753–2765. https://doi.org/10.1109/ACCESS.2022.3140378
    [22] R. F. Mansour, N. M. Alfar, S. Abdel‐Khalek, M. Abdelhaq, R. A. Saeed, R. Alsaqour, Optimal deep learning based fusion model for biomedical image classification, Expert Syst., 39 (2022), e12764. https://doi.org/10.1111/exsy.12764
    [23] F. Xie, G. Li, W. Hu, Q. Fan, S. Zhou, Intelligent Fault Diagnosis of Variable-Condition Motors Using a Dual-Mode Fusion Attention Residual, J. Mar. Sci. Eng., 11 (2023), 1385. https://doi.org/10.1111/exsy.12764 doi: 10.1111/exsy.12764
    [24] W. Tang, D. Zou, S. Yang, J. Shi, J. Dan, G. Song, A two-stage approach for automatic liver segmentation with Faster R-CNN and DeepLab, Neural Comput. Appl., 32 (2020), 6769–6778. https://doi.org/10.1007/s00521-019-04700-0 doi: 10.1007/s00521-019-04700-0
    [25] S. N. Makhadmeh, M. A. Al-Betar, K. Assaleh, S. Kassaymeh, A Hybrid White Shark Equilibrium Optimizer for Power Scheduling Problem Based IoT, IEEE Access, 10 (2022), 132212–132231. https://doi.org/10.1007/s00521-019-04700-0 doi: 10.1007/s00521-019-04700-0
    [26] https://datasets.simula.no/kvasir-seg/
    [27] https://challenge.isic-archive.com/data/#2018
    [28] https://drive.grand-challenge.org/
    [29] https://blogs.kingston.ac.uk/retinal/chasedb1/
  • This article has been cited by:

    1. Saman Babaie–Kafaki, Zohre Aminifard, An augmented memoryless Davidon–Fletcher–Powell method based on the Dai–Liao approach, 2024, 0233-1934, 1, 10.1080/02331934.2024.2395432
    2. Qun Li, Guolin Chen, Maolin Liang, An efficient spectral three-term derivative-free projection algorithm for a large-scale system of monotone nonlinear equations, 2025, 44, 2238-3603, 10.1007/s40314-025-03103-3
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1562) PDF downloads(100) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog