The objective of this study was to analyze the complex dynamics of a discrete-time predator-prey system by using the piecewise constant argument technique. The existence and stability of fixed points were examined. It was shown that the system experienced period-doubling (PD) and Neimark-Sacker (NS) bifurcations at the positive fixed point by using the center manifold and bifurcation theory. The management of the system's bifurcating and fluctuating behavior may be controlled via the use of feedback and hybrid control approaches. Both methods were effective in controlling bifurcation and chaos. Furthermore, we used numerical simulations to empirically validate our theoretical findings. The chaotic behaviors of the system were recognized through bifurcation diagrams and maximum Lyapunov exponent graphs. The stability of the positive fixed point within the optimal prey growth rate range A1<a<A2 was highlighted by our observations. When the value of a falls below a certain threshold A1, it becomes challenging to effectively sustain prey populations in the face of predation, thereby affecting the survival of predators. When the growth rate surpasses a specific threshold denoted as A2, it initiates a phase of rapid expansion. Predators initially benefit from this phase because it supplies them with sufficient food. Subsequently, resource depletion could occur, potentially resulting in long-term consequences for populations of both the predator and prey. Therefore, a moderate amount of prey's growth rate was beneficial for both predator and prey populations.
Citation: Saud Fahad Aldosary, Rizwan Ahmed. Stability and bifurcation analysis of a discrete Leslie predator-prey system via piecewise constant argument method[J]. AIMS Mathematics, 2024, 9(2): 4684-4706. doi: 10.3934/math.2024226
[1] | Aliya Fahmi, Fazli Amin, Sayed M Eldin, Meshal Shutaywi, Wejdan Deebani, Saleh Al Sulaie . Multiple attribute decision-making based on Fermatean fuzzy number. AIMS Mathematics, 2023, 8(5): 10835-10863. doi: 10.3934/math.2023550 |
[2] | Shichao Li, Zeeshan Ali, Peide Liu . Prioritized Hamy mean operators based on Dombi t-norm and t-conorm for the complex interval-valued Atanassov-Intuitionistic fuzzy sets and their applications in strategic decision-making problems. AIMS Mathematics, 2025, 10(3): 6589-6635. doi: 10.3934/math.2025302 |
[3] | Muhammad Qiyas, Muhammad Naeem, Saleem Abdullah, Neelam Khan . Decision support system based on complex T-Spherical fuzzy power aggregation operators. AIMS Mathematics, 2022, 7(9): 16171-16207. doi: 10.3934/math.2022884 |
[4] | Aliya Fahmi, Rehan Ahmed, Muhammad Aslam, Thabet Abdeljawad, Aziz Khan . Disaster decision-making with a mixing regret philosophy DDAS method in Fermatean fuzzy number. AIMS Mathematics, 2023, 8(2): 3860-3884. doi: 10.3934/math.2023192 |
[5] | Muhammad Akram, Sumera Naz, Feng Feng, Ghada Ali, Aqsa Shafiq . Extended MABAC method based on 2-tuple linguistic T-spherical fuzzy sets and Heronian mean operators: An application to alternative fuel selection. AIMS Mathematics, 2023, 8(5): 10619-10653. doi: 10.3934/math.2023539 |
[6] | Muhammad Naeem, Muhammad Qiyas, Lazim Abdullah, Neelam Khan, Salman Khan . Spherical fuzzy rough Hamacher aggregation operators and their application in decision making problem. AIMS Mathematics, 2023, 8(7): 17112-17141. doi: 10.3934/math.2023874 |
[7] | Aziz Khan, Shahzaib Ashraf, Saleem Abdullah, Muhammad Ayaz, Thongchai Botmart . A novel decision aid approach based on spherical hesitant fuzzy Aczel-Alsina geometric aggregation information. AIMS Mathematics, 2023, 8(3): 5148-5174. doi: 10.3934/math.2023258 |
[8] | Tahir Mahmood, Azam, Ubaid ur Rehman, Jabbar Ahmmad . Prioritization and selection of operating system by employing geometric aggregation operators based on Aczel-Alsina t-norm and t-conorm in the environment of bipolar complex fuzzy set. AIMS Mathematics, 2023, 8(10): 25220-25248. doi: 10.3934/math.20231286 |
[9] | Shahid Hussain Gurmani, Zhao Zhang, Rana Muhammad Zulqarnain . An integrated group decision-making technique under interval-valued probabilistic linguistic T-spherical fuzzy information and its application to the selection of cloud storage provider. AIMS Mathematics, 2023, 8(9): 20223-20253. doi: 10.3934/math.20231031 |
[10] | Muhammad Naeem, Aziz Khan, Shahzaib Ashraf, Saleem Abdullah, Muhammad Ayaz, Nejib Ghanmi . A novel decision making technique based on spherical hesitant fuzzy Yager aggregation information: application to treat Parkinson's disease. AIMS Mathematics, 2022, 7(2): 1678-1706. doi: 10.3934/math.2022097 |
The objective of this study was to analyze the complex dynamics of a discrete-time predator-prey system by using the piecewise constant argument technique. The existence and stability of fixed points were examined. It was shown that the system experienced period-doubling (PD) and Neimark-Sacker (NS) bifurcations at the positive fixed point by using the center manifold and bifurcation theory. The management of the system's bifurcating and fluctuating behavior may be controlled via the use of feedback and hybrid control approaches. Both methods were effective in controlling bifurcation and chaos. Furthermore, we used numerical simulations to empirically validate our theoretical findings. The chaotic behaviors of the system were recognized through bifurcation diagrams and maximum Lyapunov exponent graphs. The stability of the positive fixed point within the optimal prey growth rate range A1<a<A2 was highlighted by our observations. When the value of a falls below a certain threshold A1, it becomes challenging to effectively sustain prey populations in the face of predation, thereby affecting the survival of predators. When the growth rate surpasses a specific threshold denoted as A2, it initiates a phase of rapid expansion. Predators initially benefit from this phase because it supplies them with sufficient food. Subsequently, resource depletion could occur, potentially resulting in long-term consequences for populations of both the predator and prey. Therefore, a moderate amount of prey's growth rate was beneficial for both predator and prey populations.
Let ϕ:I⊆R→R be a convex function and α,β∈I with α<β, then the following inequality holds,
ϕ(α+β2)≤1β−α∫βαϕ(x)dx≤ϕ(α)+ϕ(β)2, | (1.1) |
which is well known as Hermite-Hadamard's inequality [1] for convex functions. Both inequalities hold in the reversed direction if ϕ is concave.
Convex function is an important function in mathematical analysis and has been applied in many aspects [2,3]. With the extension of the definition of convex function, Hermite-Hadamard's inequality has been deeply studied. Some improvement and generalizations for Hermite-Hadamard's inequality (1.1) can been found in the references [4,5,6,7,8,9,10,11,12].
In [11], İşcan gave the definition of harmonically convexity as follows:
Definition 1. Let I⊂R∖{0} be a real interval. A function ϕ:I→R is said to be harmonically convex, if
ϕ(xytx+(1−t)y)≤tϕ(y)+(1−t)ϕ(x) | (1.2) |
for all x,y∈I and t∈[0,1]. If the inequality in (1.2) is reversed, then ϕ is said to be harmonically concave.
In recent years, many researchers presented many kinds of fractional calculus by different methods and explored their applications. For example, Riemann-Liouville fractional integrals and its applications in inequalities [13,14,15,16]. Recently, Yang stated the theory of local fractional calculus on Yang's fractal sets systematically in [17,18,19]. Local fractional calculus can explain the behavior of continuous but nowhere differentiable function. In view of the special advantages of local fractional calculus, more and more researchers extended their studies to Yang's fractal space, see [20,21,22,23,24,25,26,27,28,29].
In [22], Sun introduced the definition of the generalized harmonically convex function on Yang's fractal sets as follows:
Definition 2. Let I⊂R∖{0} be a real interval. A function ϕ:I→Rϵ(0<ϵ≤1) is said to be generalized harmonically convex, if
ϕ(xytx+(1−t)y)≤tϵϕ(y)+(1−t)ϵϕ(x) | (1.3) |
for all x,y∈I and t∈[0,1]. If the inequality in (1.3) is reversed, then ϕ is said to be generalized harmonically concave. The sign ϵ represents the fractal dimension.
Example 1. Let ϕ:(0,∞)→Rϵ and ψ:(−∞,0)→Rϵ, then ϕ(x)=xϵ is a generalized harmonically convex function and ψ(x)=xϵ is a generalized harmonically concave function.
The following result related to Hermite-Hadamard's inequalities holds.
Theorem 1. [22] Let ϕ:I⊂R∖{0}→Rϵ be a generalized harmonically convex function on fractal space and α,β∈I with α<β. If ϕ(x)∈I(ϵ)x[α,β], then
1Γ(1+ϵ)ϕ(2αβα+β)≤αϵβϵ(β−α)ϵαI(ϵ)βϕ(x)x2ϵ≤Γ(1+ϵ)Γ(1+2ϵ)[ϕ(α)+ϕ(β)]. | (1.4) |
Based on the theory of local fractional calculus and the definition of the generalized harmonically convex function on Yang's fractal sets, the main aim of this paper is using a new integral identity and monotonicity of functions to establish some new Hermite-Hadamard type inequalities involving local fractional calculus.
Let Rϵ(0<ϵ≤1) be ϵ-type set of the real line numbers on Yang's fractal sets, and give the following operation rules, see[17,18]. The sign ϵ represents the fractal dimension, not the exponential sign.
If αϵ,βϵ,γϵ∈Rϵ, then addition and multiplication operations satisfy
(a) αϵ+βϵ∈Rϵ, αϵβϵ∈Rϵ,
(b) αϵ+βϵ=βϵ+αϵ=(α+β)ϵ=(β+α)ϵ,
(c) αϵ+(βϵ+γϵ)=(α+β)ϵ+γϵ,
(d) αϵβϵ=βϵαϵ=(αβ)ϵ=(βα)ϵ,
(e) αϵ(βϵγϵ)=(αϵβϵ)γϵ,
(f) αϵ(βϵ+γϵ)=αϵβϵ+αϵγϵ,
(g) αϵ+0ϵ=αϵ, αϵ+(−α)ϵ=0ϵ and αϵ1ϵ=1ϵαϵ=αϵ,
(h) (α−β)ϵ=αϵ−βϵ.
Definition 3. [18,19] If there exists the relation
|ϕ(x)−ϕ(x0)|<εϵ |
with |x−x0|<δ, for ε,δ>0 and ε,δ∈R.Then the function ϕ(x) is called local fractional continuous at x0. If ϕ(x) is local fractional continuous on (α,β), we denote by ϕ(x)∈Cϵ(α,β).
Definition 4. [17,19] Supposing that ϕ(x)∈Cϵ(α,β), the local fractional derivative of ϕ(x) of order ϵ at x=x0 is defined by
ϕ(ϵ)(x0)=dϵϕ(x)dxϵ|x=x0=limx→x0Γ(ϵ+1)(ϕ(x)−ϕ(x0))(x−x0)ϵ. |
For any x∈(α,β), there exists ϕ(ϵ)(x)=D(ϵ)x, denoted by ϕ(ϵ)(x)∈D(ϵ)x(α,β). Dϵ(α,β) is called ϵ-local fractional derivative set. If there exits ϕ((n+1)ϵ)(x)=(n+1)times⏞Dϵx⋅⋅⋅Dϵxϕ(x) for any x∈I⊆R, then we denote ϕ∈D(n+1)ϵ(I), where n=0,1,2,⋅⋅⋅
Definition 5. [17,19] Let ϕ(x)∈Cϵ[α,β]. The local fractional integral of function ϕ(x) of order ϵ is defined by
αI(ϵ)βϕ(x)=1Γ(ϵ+1)∫βαϕ(t)(dt)ϵ=1Γ(ϵ+1)limΔt→0N−1∑j=0f(tj)(Δtj)ϵ, |
where α=t0<t1<⋅⋅⋅<tN−1<tN=β,[tj,tj+1] is a partition of the interval [α,β], Δtj=tj+1−tj,Δt=max{Δt0,Δt1⋅⋅⋅ΔtN−1}.
Note that αI(ϵ)αϕ(x)=0, and αI(ϵ)βϕ(x)=−βI(ϵ)αϕ(x) if α<β. We denote ϕ(x)∈I(ϵ)x[α,β] if there exits αI(ϵ)xϕ(x) for any x∈(α,β).
Lemma 1. [17]
(1) Suppose that ϕ(x)=φ(ϵ)(x)∈Cϵ[α,β], then
αI(ϵ)βϕ(x)=φ(β)−φ(α). |
(2) (Local fractional integration by parts)
Suppose that ϕ(x),φ(x)∈Dϵ(α,β), and ϕ(ϵ)(x),φ(ϵ)(x)∈Cϵ[α,β], then
αI(ϵ)βϕ(x)φ(ϵ)(x)=[ϕ(x)φ(x)]|βα−αI(ϵ)βϕ(ϵ)(x)φ(x). |
Lemma 2. [17] Suppose that ϕ(x)∈Cϵ[α,β] and α<γ<β, then
αI(ϵ)βϕ(x)=αI(ϵ)γϕ(x)+γI(ϵ)βϕ(x). |
Lemma 3. [17]
dϵxkϵdxϵ=Γ(1+kϵ)Γ(1+(k−1)ϵ)x(k−1)ϵ; |
1Γ(ϵ+1)∫βαxkϵ(dx)ϵ=Γ(1+kϵ)Γ(1+(k+1)ϵ)(β(k+1)ϵ−α(k+1)ϵ),k>0. |
Lemma 4. [18,30] (Generalized Hölder's inequality) Let ϕ,φ∈Cϵ[α,β],p,q>1, with 1p+1q=1, then
1Γ(ϵ+1)∫βα|ϕ(x)φ(x)|(dx)ϵ≤(1Γ(ϵ+1)∫βα|ϕ(x)|p(dx)ϵ)1/p(1Γ(ϵ+1)∫βα|φ(x)|q(dx)ϵ)1/q. |
Lemma 5. [17]
αI(ϵ)β1ϵ=(β−α)ϵΓ(1+ϵ). |
Let us introduce the special functions on Yang's fractal sets as follows:
(1) The generalized Beta function is given by
Bϵ(x,y)=1Γ(1+ϵ)∫10t(x−1)ϵ(1−t)(y−1)ϵ(dt)ϵ,x>0,y>0, |
(2) The generalized hypergeometric function is given by
2Fϵ1(α,β;γ;z)=1Bϵ(β,γ−β)1Γ(1+ϵ)∫10t(β−1)ϵ(1−t)(γ−β−1)ϵ(1−zt)−αϵ(dt)ϵ,γ>β>0,|z|<1. |
For convenience, we use the symbol At to denote tα+(1−t)β in the following sections.
Lemma 6. Let I⊂(0,∞) be an interval, ϕ:I∘→Rϵ (I∘ is the interior of I) such that ϕ∈Dϵ(I∘) and ϕ(ϵ)∈Cϵ(α,β) for α,β∈I∘ with α<β. Then the following equality holds
ϕ(2αβα+β)−Γ(1+ϵ)αϵβϵ(β−α)ϵαI(ϵ)βϕ(x)x2ϵ=I1+I2+I3, | (3.1) |
where
I1=αϵβϵ(β−α)ϵ2ϵ1Γ(1+ϵ)∫1/20ϕ(ϵ)(αβAt)(dt)ϵ(At)2ϵ,I2=−αϵβϵ(β−α)ϵ2ϵ1Γ(1+ϵ)∫11/2ϕ(ϵ)(αβAt)(dt)ϵ(At)2ϵ,I3=−αϵβϵ(β−α)ϵ2ϵ1Γ(1+ϵ)∫10(1−2t)ϵϕ(ϵ)(αβAt)(dt)ϵ(At)2ϵ. |
Proof. Calculating I1,I2, from Lemma 1(1), we get
I1=αϵβϵ(β−α)ϵ2ϵ1Γ(1+ϵ)∫1/20ϕ(ϵ)(αβAt)(dt)ϵ(At)2ϵ=1ϵ2ϵϕ(αβAt)|1/20=1ϵ2ϵ[ϕ(2αβα+β)−ϕ(α)] |
and
I2=−αϵβϵ(β−α)ϵ2ϵ1Γ(1+ϵ)∫11/2ϕ(ϵ)(αβAt)(dt)ϵ(At)2ϵ=−1ϵ2ϵϕ(αβAt)|11/2=1ϵ2ϵ[ϕ(2αβα+β)−ϕ(β)]. |
Calculating I3, by the local fractional integration by parts, we have
I3=αϵβϵ(α−β)ϵ2ϵ1Γ(1+ϵ)∫10(1−2t)ϵ(At)2ϵϕ(ϵ)(αβAt)(dt)ϵ=(2t−1)ϵ2ϵϕ(αβAt)|10−1Γ(1+ϵ)∫10Γ(1+ϵ)ϕ(αβAt)(dt)ϵ=ϕ(α)+ϕ(β)2ϵ−Γ(1+ϵ)Γ(1+ϵ)∫10ϕ(αβtα+(1−t)β)(dt)ϵ. |
Using changing variable with x=αβAt, we have
I3=ϕ(α)+ϕ(β)2ϵ−Γ(1+ϵ)(αββ−α)ϵ1Γ(1+ϵ)∫βαϕ(x)x2ϵ(dx)ϵ=ϕ(α)+ϕ(β)2ϵ−Γ(1+ϵ)αϵβϵ(β−α)ϵαI(ϵ)βϕ(x)x2ϵ. |
Adding I1−I3, the desired result is obtained. This completes the proof.
Theorem 2. Let I⊂(0,∞) be an interval, ϕ:I∘→Rϵ (I∘ is the interior of I) is an increasing function on I∘ such that ϕ∈Dϵ(I∘) and ϕ(ϵ)∈Cϵ[α,β] for α,β∈I∘ with α<β. If |ϕ(ϵ)|q is generalized harmonically convex on [α,β] for some fixed q>1, then for all x∈[α,β], the following local fractional integrals inequality holds,
|ϕ(2αβα+β)−Γ(1+ϵ)αϵβϵ(β−α)ϵαI(ϵ)βϕ(x)x2ϵ|≤ϕ(β)−ϕ(α)2ϵ+αϵβϵ(β−α)ϵ2ϵ(Kϵ1(α,β))1−1q(Kϵ2(α,β)|ϕ(ϵ)(α)|q+Kϵ3(α,β)|ϕ(ϵ)(β)|q)1q, | (3.2) |
where
Kϵ1(α,β)=β−2ϵ[2Fϵ1(2,1;3;12(1−αβ))Γ(1+ϵ)Γ(1+2ϵ)+2Fϵ1(2,2;3;1−αβ)2ϵΓ(1+ϵ)Γ(1+2ϵ)−2Fϵ1(2,1;2;1−αβ)Γ(1+ϵ)],Kα2(α,β)=β−2ϵ[12ϵ2Fϵ1(2,2;4;12(1−αβ))(Γ(1+ϵ)Γ(1+2ϵ)−Γ(1+2ϵ)Γ(1+3ϵ))+2ϵ2Fϵ1(2,3;4;1−αβ)Γ(1+2ϵ)Γ(1+3ϵ)−2Fϵ1(2,2;3;1−αβ)Γ(1+ϵ)Γ(1+2ϵ)],Kϵ3(α,β)=β−2ϵ[2Fϵ1(2,1;3;12(1−αβ))Γ(1+ϵ)Γ(1+2ϵ)+2ϵ2Fϵ1(2,2;4;1−αβ)(Γ(1+ϵ)Γ(1+2ϵ)−Γ(1+2ϵ)Γ(1+3ϵ))−2Fϵ1(2,1;3;1−αβ)Γ(1+ϵ)Γ(1+2ϵ)]. |
Proof. Since ϕ is an increasing function on I∘, and 0<α<2αβα+β<β, we can obtain
ϕ(α)<ϕ(2αβα+β)<ϕ(β). |
From the proof of Lemma 6, we have
|I1|+|I2|=ϕ(β)−ϕ(α)2ϵ. | (3.3) |
Taking modulus in equality (3.1), we obtain
|ϕ(2αβα+β)−Γ(1+ϵ)αϵβϵ(β−α)ϵαI(ϵ)βϕ(x)x2ϵ|≤|I1|+|I2|+|I3|=ϕ(β)−ϕ(α)2ϵ+|I3|. | (3.4) |
From Lemma 6, using the property of the modulus and the generalized Hölder's inequality, we have
|I3|=|αϵβϵ(β−α)ϵ2ϵ1Γ(1+ϵ)∫10(1−2t)ϵϕ(ϵ)(αβAt)(dt)ϵ(At)2ϵ|≤αϵβϵ(β−α)ϵ2ϵ1Γ(1+ϵ)∫10|(1−2t)ϵA2ϵt||ϕ(ϵ)(αβAt)|(dt)ϵ=αϵβϵ(β−α)ϵ2ϵ1Γ(1+ϵ)∫10|(1−2t)ϵA2ϵt|(1−1q)+1q|ϕ(ϵ)(αβAt)|(dt)ϵ≤αϵβϵ(β−α)ϵ2ϵ[1Γ(1+ϵ)∫10|(1−2t)ϵA2ϵt|(dt)ϵ]1−1q[1Γ(1+ϵ)∫10|(1−2t)ϵA2ϵt||ϕ(ϵ)(αβAt)|q(dt)ϵ]1q. | (3.5) |
Since |ϕ(ϵ)|q is generalized harmonically convex on [α,β], thus
1Γ(1+ϵ)∫10|(1−2t)ϵA2ϵt||ϕ(ϵ)(αβAt)|q(dt)ϵ≤1Γ(1+ϵ)∫10|(1−2t)ϵA2ϵt|(tϵ|ϕ(ϵ)(β)|q+(1−t)ϵ|ϕ(ϵ)(α)|q)(dt)ϵ=(1Γ(1+ϵ)∫10|1−2t|ϵtϵA2ϵt(dt)ϵ)|ϕ(ϵ)(α)|q+(1Γ(1+ϵ)∫10|1−2t|ϵ(1−t)ϵA2ϵt(dt)ϵ)|ϕ(ϵ)(β)|q. | (3.6) |
By calculating, we get
1Γ(1+ϵ)∫10|1−2t|ϵA2ϵt(dt)ϵ=1Γ(1+ϵ)∫120(1−2t)ϵA2ϵt(dt)ϵ+1Γ(1+ϵ)∫112(2t−1)ϵA2ϵt(dt)ϵ=2ϵΓ(1+ϵ)∫120(1−2t)ϵA2ϵt(dt)ϵ+1Γ(1+ϵ)∫10(2t)ϵA2ϵt(dt)ϵ−1Γ(1+ϵ)∫101ϵA2ϵt(dt)ϵ=β−2ϵ[1Γ(1+ϵ)∫10(1−u)ϵ(1−u2(1−αβ))−2ϵ(du)ϵ+2ϵΓ(1+ϵ)∫10tϵ(1−(1−αβ)t)−2ϵ(dt)ϵ−1Γ(1+ϵ)∫10(1−(1−αβ)t)−2ϵ(dt)ϵ]=β−2ϵ[2Fϵ1(2,1;3;12(1−αβ))Bϵ(1,2)+2ϵ2Fϵ1(2,2;3;1−αβ)Bϵ(2,1)−2Fϵ1(2,1;2;1−αβ)Bϵ(1,1)]=β−2ϵ[2Fϵ1(2,1;3;12(1−αβ))Γ(1+ϵ)Γ(1+2ϵ)+2Fϵ1(2,2;3;1−αβ)2ϵΓ(1+ϵ)Γ(1+2ϵ)−2Fϵ1(2,1;2;1−αβ)Γ(1+ϵ)]=Kϵ1(α,β). | (3.7) |
Similarly, we get
1Γ(1+ϵ)∫10|1−2t|ϵtϵA2ϵt(dt)ϵ=1Γ(1+ϵ)∫120(1−2t)ϵtϵA2ϵt(dt)ϵ+1Γ(1+ϵ)∫112(2t−1)ϵtϵA2ϵt(dt)ϵ=2ϵΓ(1+ϵ)∫120tϵ(1−2t)ϵA2ϵt(dt)ϵ+1Γ(1+ϵ)∫102ϵt2ϵA2ϵt(dt)ϵ−1Γ(1+ϵ)∫10tϵA2ϵt(dt)ϵ=β−2ϵ[12ϵ1Γ(1+ϵ)∫10uϵ(1−u)ϵ(1−u2(1−αβ))−2ϵ(du)ϵ+2ϵΓ(1+ϵ)∫10t2ϵ(1−(1−αβ)t)−2ϵ(dt)ϵ−1Γ(1+ϵ)∫10tϵ(1−(1−αβ)t)−2ϵ(dt)ϵ]=β−2ϵ[12ϵ2Fϵ1(2,2;4;12(1−αβ))(Γ(1+ϵ)Γ(1+2ϵ)−Γ(1+2ϵ)Γ(1+3ϵ))+2ϵ2Fϵ1(2,3;4;1−αβ)Γ(1+2ϵ)Γ(1+3ϵ)−2Fϵ1(2,2;3;1−αβ)Γ(1+ϵ)Γ(1+2ϵ)]=Kϵ2(α,β), | (3.8) |
and
1Γ(1+ϵ)∫10|1−2t|ϵ(1−t)ϵA2ϵt(dt)ϵ=2ϵΓ(1+ϵ)∫120(1−2t)ϵ(1−t)ϵA2ϵt(dt)ϵ+1Γ(1+ϵ)∫10(2t−1)ϵ(1−t)ϵA2ϵt(dt)ϵ≤2ϵΓ(1+ϵ)∫120(1−2t)ϵA2ϵt(dt)ϵ+1Γ(1+ϵ)∫102ϵtϵ(1−t)ϵA2ϵt(dt)ϵ−1Γ(1+ϵ)∫10(1−t)ϵA2ϵt(dt)ϵ=β−2ϵ[1Γ(1+ϵ)∫10(1−u)ϵ(1−u2(1−αβ))−2ϵ(du)ϵ+2ϵΓ(1+ϵ)∫10tϵ(1−t)ϵ(1−(1−αβ)t)−2ϵ(dt)ϵ−1Γ(1+ϵ)∫10(1−t)ϵ(1−(1−αβ)t)−2ϵ(dt)ϵ]=β−2ϵ[2Fϵ1(2,1;3;12(1−αβ))Γ(1+ϵ)Γ(1+2ϵ)+2ϵ2Fϵ1(2,2;4;1−αβ)(Γ(1+ϵ)Γ(1+2ϵ)−Γ(1+2ϵ)Γ(1+3ϵ))−2Fϵ1(2,1;3;1−αβ)Γ(1+ϵ)Γ(1+2ϵ)]=Kϵ3(α,β). | (3.9) |
From (3.4)–(3.9), we get inequality (3.2). This completes the proof.
Theorem 3. Let I⊂(0,∞) be an interval, ϕ:I∘→Rϵ is an increasing function on I∘ such that ϕ∈Dϵ(I∘) and ϕ(ϵ)∈Cϵ[α,β] for α,β∈I∘ with α<β. If |ϕ(ϵ)|q is generalized harmonically convex on [α,β], q>1,1p+1q=1, then for all x∈[α,β], the following local fractional integrals inequality holds.
|ϕ(2αβα+β)−Γ(1+ϵ)αϵβϵ(β−α)ϵαI(ϵ)βϕ(x)x2ϵ|≤ϕ(β)−ϕ(α)2ϵ+αϵ(β−α)ϵ2ϵβϵ[Γ(1+pϵ)Γ(1+(p+1)ϵ)]1p(Γ(1+ϵ)Γ(1+2ϵ))1q×[2Fϵ1(2q,2;3;1−αβ)|ϕ(ϵ)(α)|q+2Fϵ1(2q,1;3;1−αβ)|ϕ(ϵ)(β)|q]1q. | (3.10) |
Proof. From inequality (3.4), we have
|ϕ(2αβα+β)−Γ(1+ϵ)αϵβϵ(β−α)ϵαI(ϵ)βϕ(x)x2ϵ|≤ϕ(β)−ϕ(α)2ϵ+|I3|. | (3.11) |
From Lemma 6, using the property of the modulus and the generalized Hölder's inequality, we have
|I3|≤αϵβϵ(β−α)ϵ2ϵ1Γ(1+ϵ)∫10|1−2t|ϵ|1A2ϵtϕ(ϵ)(αβAt)|(dt)ϵ≤αϵβϵ(β−α)ϵ2ϵ[1Γ(1+ϵ)∫10|1−2t|ϵp(dt)ϵ]1p[1Γ(1+ϵ)∫101A2ϵqt|ϕ(ϵ)(αβAt)|q(dt)ϵ]1q. | (3.12) |
Since |ϕ(ϵ)|q is generalized harmonically convex on [α,β], we can get
1Γ(1+ϵ)∫101A2ϵqt|ϕ(ϵ)(αβAt)|q(dt)ϵ≤1Γ(1+ϵ)∫101A2qϵt(tϵ|ϕ(ϵ)(β)|q+(1−t)ϵ|ϕ(ϵ)(α)|q)(dt)ϵ=(1Γ(1+ϵ)∫10tϵA2qϵt(dt)ϵ)|ϕ(ϵ)(β)|q+(1Γ(1+ϵ)∫10(1−t)ϵA2qϵt(dt)ϵ)|ϕ(ϵ)(α)|q. | (3.13) |
By calculating, we have
1Γ(1+ϵ)∫10tϵA2qϵt(dt)ϵ=β−2qϵ1Γ(1+ϵ)∫10tϵ(1−(1−αβ)t)−2qϵ(dt)ϵ=β−2qϵ2Fϵ1(2q,2;3;1−αβ)Bϵ(2,1),=Γ(1+ϵ)β2qϵΓ(1+2ϵ)2Fϵ1(2q,2;3;1−αβ), | (3.14) |
1Γ(1+ϵ)∫10(1−t)ϵA2qϵt(dt)ϵ=β−2qϵ1Γ(1+ϵ)∫10(1−t)ϵ(1−(1−αβ)t)−2qϵ(dt)ϵ=β−2qϵ2Fϵ1(2q,1;3;1−αβ)Bϵ(1,2),=Γ(1+ϵ)β2qϵΓ(1+2ϵ)2Fϵ1(2q,1;3;1−αβ), | (3.15) |
and
1Γ(1+ϵ)∫10|1−2t|ϵp(dt)ϵ=Γ(1+pϵ)Γ(1+(p+1)ϵ). | (3.16) |
Thus, combining (3.11)–(3.16), we obtain the required inequality. The proof is completed.
Theorem 4. Let I⊂(0,∞) be an interval, ϕ:I∘→Rϵ is an increasing function on I∘ such that ϕ∈Dϵ(I∘) and ϕ(ϵ)∈Cϵ[α,β] for α,β∈I∘ with α<β. If |ϕ(ϵ)|q is generalized harmonically convex on [α,β], q>1,1p+1q=1, then for all x∈[α,β], the following local fractional integrals inequality holds.
|ϕ(2αβα+β)−Γ(1+ϵ)αϵβϵ(β−α)ϵαI(ϵ)βϕ(x)x2ϵ|≤ϕ(β)−ϕ(α)2ϵ+αϵ(β−α)ϵ2ϵβϵ[2Fϵ1(2p,1;2;1−αβ)Γ(1+ϵ)]1p(Γ(1+qϵ)2ϵΓ(1+(q+1)ϵ))1q×[|ϕ(ϵ)(α)|q+|ϕ(ϵ)(β)|q]1q. | (3.17) |
Proof. From Lemma 6, using the generalized Hölder's inequality and the generalized harmonically convexity of |ϕ(ϵ)|q, we have
|I3|≤αϵβϵ(β−α)ϵ2ϵ1Γ(1+ϵ)∫10|1−2t|ϵ1A2ϵt|ϕ(ϵ)(αβAt)|(dt)ϵ≤αϵβϵ(β−α)ϵ2ϵ[1Γ(1+ϵ)∫101A2ϵpt(dt)ϵ]1p[1Γ(1+ϵ)∫10|1−2t|ϵq|ϕ(ϵ)(αβAt)|q(dt)ϵ]1q≤αϵβϵ(β−α)ϵ2ϵ[1Γ(1+ϵ)∫101A2ϵpt(dt)ϵ]1p×[1Γ(1+ϵ)∫10|1−2t|ϵq(tϵ|ϕ(ϵ)(β)|q+(1−t)ϵ|ϕ(ϵ)(α)|q)(dt)ϵ]1q. | (3.18) |
By calculating, we have
1Γ(1+ϵ)∫101A2pϵt(dt)ϵ=β−2pϵ1Γ(1+ϵ)∫10(1−(1−αβ)t)−2pϵ(dt)ϵ=β−2pϵ2Fϵ1(2p,1;2;1−αβ)Bϵ(1,1),=2Fϵ1(2p,1;2;1−αβ)β2pϵΓ(1+ϵ), | (3.19) |
1Γ(1+ϵ)∫10|1−2t|ϵqtϵ(dt)ϵ=1Γ(1+ϵ)∫1/20(1−2t)ϵqtϵ(dt)ϵ+1Γ(1+ϵ)∫11/2(2t−1)ϵqtϵ(dt)ϵ=Γ(1+qϵ)2ϵΓ(1+(q+1)ϵ), | (3.20) |
and
1Γ(1+ϵ)∫10|1−2t|ϵq(1−t)ϵ(dt)ϵ=1Γ(1+ϵ)∫1/20(1−2t)ϵq(1−t)ϵ(dt)ϵ+1Γ(1+ϵ)∫11/2(2t−1)ϵq(1−t)ϵ(dt)ϵ=Γ(1+qϵ)2ϵΓ(1+(q+1)ϵ). | (3.21) |
From (3.11) in Theorem 3, combining (3.18)–(3.21), we obtain the required inequality. The proof is completed.
Theorem 5. Let I⊂(0,∞) be an interval, ϕ:I∘→Rϵ is an increasing function on I∘ such that ϕ∈Dϵ(I∘) and ϕ(ϵ)∈Cϵ[α,β] for α,β∈I∘ with α<β. If |ϕ(ϵ)|q is generalized harmonically convex on [α,β], q>1,1p+1q=1, then for all x∈[α,β], the following local fractional integrals inequality holds.
|ϕ(2αβα+β)−Γ(1+ϵ)αϵβϵ(β−α)ϵαI(ϵ)βϕ(x)x2ϵ|≤ϕ(β)−ϕ(α)2ϵ+αϵ(β−α)ϵ2ϵβϵ[Γ(1+pϵ)Γ(1+(p+1)ϵ)]1p[(2Fϵ1(2p,1;p+2;1−αβ))1p+(2Fϵ1(2p,p+1;p+2;1−αβ))1p](Γ(1+ϵ)Γ(1+2ϵ))1q[|ϕ(ϵ)(α)|q+|ϕ(ϵ)(β)|q]1q. | (3.22) |
Proof. Note that (α−β)ϵ=αϵ−βϵ. From Lemma 6, using the generalized Hölder's inequality and the generalized harmonically convexity of |ϕ(ϵ)|q, we have
|I3|≤αϵβϵ(β−α)ϵ2ϵ1Γ(1+ϵ)∫10|1−2t|ϵA2ϵt|ϕ(ϵ)(αβAt)|(dt)ϵ=αϵβϵ(β−α)ϵ2ϵ1Γ(1+ϵ)∫10|(1−t)ϵ−tϵ|A2ϵt|ϕ(ϵ)(αβAt)|(dt)ϵ≤αϵβϵ(β−α)ϵ2ϵ[1Γ(1+ϵ)∫10(1−t)ϵA2ϵt|ϕ(ϵ)(αβAt)|(dt)ϵ+1Γ(1+ϵ)∫10tϵA2ϵt|ϕ(ϵ)(αβAt)|(dt)ϵ]≤αϵβϵ(β−α)ϵ2ϵ[(1Γ(1+ϵ)∫10(1−t)ϵpA2ϵpt(dt)ϵ)1/p(1Γ(1+ϵ)∫10|ϕ(ϵ)(αβAt)|q(dt)ϵ)1/q+(1Γ(1+ϵ)∫10tϵpA2ϵpt(dt)ϵ)1/p(1Γ(1+ϵ)∫10|ϕ(ϵ)(αβAt)|q(dt)ϵ)1/q]=αϵβϵ(β−α)ϵ2ϵ[(1Γ(1+ϵ)∫10(1−t)ϵpA2ϵpt(dt)ϵ)1/p+(1Γ(1+ϵ)∫10tϵpA2ϵpt(dt)ϵ)1/p]×(1Γ(1+ϵ)∫10|ϕ(ϵ)(αβAt)|q(dt)ϵ)1/q≤αϵβϵ(β−α)ϵ2ϵ[(1Γ(1+ϵ)∫10(1−t)ϵpA2ϵpt(dt)ϵ)1/p+(1Γ(1+ϵ)∫10tϵpA2ϵpt(dt)ϵ)1/p]×(1Γ(1+ϵ)∫10[tϵ|ϕ(ϵ)(β)|q+(1−t)ϵ|ϕ(ϵ)(α)|q](dt)ϵ)1/q. | (3.23) |
By calculating, we have
1Γ(1+ϵ)∫10(1−t)ϵpA2ϵpt(dt)ϵ=β−2pϵ1Γ(1+ϵ)∫10(1−t)ϵp[1−(1−αβ)t]−2pϵ(dt)ϵ=β−2pϵ2Fϵ1(2p,1;p+2;1−αβ)Bϵ(1,p+1)=β−2pϵΓ(1+pϵ)Γ(1+(p+1)ϵ)2Fϵ1(2p,1;p+2;1−αβ). | (3.24) |
Similarly,
1Γ(1+ϵ)∫10tϵpA2ϵpt(dt)ϵ=β−2pϵ2Fϵ1(2p,p+1;p+2;1−αβ)Bϵ(p+1,1)=β−2pϵΓ(1+pϵ)Γ(1+(p+1)ϵ)2Fϵ1(2p,p+1;p+2;1−αβ). | (3.25) |
And
1Γ(1+ϵ)∫10tϵ(dt)ϵ=1Γ(1+ϵ)∫10(1−t)ϵ(dt)ϵ=Γ(1+ϵ)Γ(1+2ϵ). | (3.26) |
From (3.11) in Theorem 3, combining (3.23)–(3.26), we obtain the required inequality. The proof is completed.
We consider the following ϵ-type generalized special means of the real line numbers αϵ,βϵ with α<β on Yang's fractal sets.
(1) The generalized arithmetic mean
Aϵ(α,β)=αϵ+βϵ2ϵ; |
(2) The generalized p-logarithmic mean
Lpϵ(α,β)=[Γ(1+pϵ)Γ(1+(p+1)ϵ)β(p+1)ϵ−α(p+1)ϵ(β−α)ϵ]1/p,p∈R∖{−1,0}; |
(3) The generalized geometric mean
Gϵ(α,β)=(αϵβϵ)12; |
(4) The generalized harmonic mean
Hϵ(α,β)=(2αβ)ϵαϵ+βϵ. |
Consider the function ϕ:(0,∞)→Rϵ, ϕ(x)=Γ(1+kϵ)Γ(1+(k+1)ϵ)x(k+1)ϵ, x>0,k≥1 and q≥1. Because the function φ(x)=|ϕ(ϵ)(x)|q=xkqϵ is generalized convex and nondecreasing on (0,∞), by Proposition 3.3 in [22], the function φ(x) is generalized harmonically convex on (0,∞).
Let ϕ(x)=Γ(1+kϵ)Γ(1+(k+1)ϵ)x(k+1)ϵ, x>0,k>1 and q>1. Then
ϕ(2αβα+β)=Γ(1+kϵ)Γ(1+(k+1)ϵ)Hk+1ϵ(α,β), |
αϵβϵ(β−α)ϵαI(ϵ)βϕ(x)x2ϵ=Γ(1+kϵ)Γ(1+(k+1)ϵ)Lk−1(k−1)ϵ(α,β)G2ϵ(α,β), |
ϕ(β)−ϕ(α)2ϵ=(β−α)ϵ2ϵLkkϵ(α,β). |
Proposition 1. From Theorem 2, we obtain the following inequality
|Hk+1ϵ(α,β)−Γ(1+ϵ)Lk−1(k−1)ϵ(α,β)G2ϵ(α,β)|≤(β−α)ϵΓ(1+(k+1)ϵ)2ϵΓ(1+kϵ)[Lkkϵ(α,β)+αϵβϵ(Kϵ1(α,β))1−1q(Kϵ2(α,β)αkqϵ+Kϵ3(α,β)βkqϵ)1q], |
where Kϵ1(α,β),Kϵ2(α,β) and Kϵ3(α,β) as in Theorem 2.
Proposition 2. From Theorem 3, we obtain the following inequality
|Hk+1ϵ(α,β)−Γ(1+ϵ)Lk−1(k−1)ϵ(α,β)G2ϵ(α,β)|≤(β−α)ϵΓ(1+(k+1)ϵ)2ϵΓ(1+kϵ)[Lkkϵ(α,β)+αϵβϵ(Γ(1+pϵ)Γ(1+(p+1)ϵ))1p(Γ(1+ϵ)Γ(1+2ϵ))1q×(2Fϵ1(2q,2;3;1−αβ)αkqϵ+2Fϵ1(2q,1;3;1−αβ)βkqϵ)1q], |
where 1p+1q=1,q>1.
Proposition 3. From Theorem 4, we obtain the following inequality
|Hk+1ϵ(α,β)−Γ(1+ϵ)Lk−1(k−1)ϵ(α,β)G2ϵ(α,β)|≤(β−α)ϵΓ(1+(k+1)ϵ)2ϵΓ(1+kϵ)[Lkkϵ(α,β)+αϵβϵ(2Fϵ1(2p,1;2;1−αβ)Γ(1+ϵ))1p(Γ(1+qϵ)2ϵΓ(1+(q+1)ϵ))1q×(αkqϵ+βkqϵ)1q], |
where 1p+1q=1,q>1.
Proposition 4. From Theorem 5, we obtain the following inequality
|Hk+1α(α,β)−Γ(1+ϵ)Lk−1(k−1)ϵ(α,β)G2ϵ(α,β)|≤(β−α)ϵΓ(1+(k+1)ϵ)2ϵΓ(1+kϵ){Lkkϵ(α,β)+αϵβϵ(Γ(1+pϵ)Γ(1+(p+1)ϵ))1p[(2Fϵ1(2p,1;p+2;1−αβ))1p+(2Fϵ1(2p,p+1;p+2;1−αβ))1p](Γ(1+ϵ)Γ(1+2ϵ))1q(αkqϵ+βkqϵ)1q}, |
where 1p+1q=1,q>1.
In this paper, the research on Hermite-Hadamard type inequalities is extended to Yang's fractal space. By using the definitions of generalized harmonically convex function and the theory of local fractional calculus, we construct some new Hermite-Hadamard type integral inequalities for monotonically increasing functions with generalized harmonically convexity. Some applications related to the special mean are established by using the obtained inequalities, which shows that our results have certain application significance. Our research may inspire more scholars to further explore Hermite-Hadamard type integral inequalities on Yang's fractal sets.
This work is supported by the Natural Science Foundation of Hunan Province (No. 2020JJ4554) and Scientific Research Project of Hunan Provincial Education Department (No. 18B433).
This work does not have any conflicts of interest.
[1] |
A. Kashyap, Q. Zhu, H. Sarmah, D. Bhattacharjee, Dynamical study of a predator-prey system with Michaelis-Menten type predator-harvesting, Int. J. Biomath., 16 (2023), 2250135. http://dx.doi.org/10.1142/S1793524522501352 doi: 10.1142/S1793524522501352
![]() |
[2] |
M. Ghori, P. Naik, J. Zu, Z. Eskandari, M. Naik, Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate, Math. Method. Appl. Sci., 45 (2022), 3665–3688. http://dx.doi.org/10.1002/mma.8010 doi: 10.1002/mma.8010
![]() |
[3] |
W. Lu, Y. Xia, Multiple periodicity in a predator-prey model with prey refuge, Mathematics, 10 (2022), 421. http://dx.doi.org/10.3390/math10030421 doi: 10.3390/math10030421
![]() |
[4] |
A. Matouk, Chaos and bifurcations in a discretized fractional model of quasi-periodic plasma perturbations, Int. J. Nonlin. Sci. Num., 23 (2022), 1109–1127. http://dx.doi.org/10.1515/ijnsns-2020-0101 doi: 10.1515/ijnsns-2020-0101
![]() |
[5] |
E. González-Olivares, A. Rojas-Palma, Limit cycles in a Gause-type predator-prey model with sigmoid functional response and weak Allee effect on prey, Math. Method. Appl. Sci., 35 (2012), 963–975. http://dx.doi.org/10.1002/mma.2509 doi: 10.1002/mma.2509
![]() |
[6] |
A. Elsadany, Q. Din, S. Salman, Qualitative properties and bifurcations of discrete-time Bazykin-Berezovskaya predator-prey model, Int. J. Biomath., 13 (2020), 2050040. http://dx.doi.org/10.1142/S1793524520500400 doi: 10.1142/S1793524520500400
![]() |
[7] |
D. Sen, S. Ghorai, M. Banerjee, A. Morozov, Bifurcation analysis of the predator-prey model with the allee effect in the predator, J. Math. Biol., 84 (2022), 7. http://dx.doi.org/10.1007/s00285-021-01707-x doi: 10.1007/s00285-021-01707-x
![]() |
[8] |
A. Suleman, R. Ahmed, F. Alshammari, N. Shah, Dynamic complexity of a slow-fast predator-prey model with herd behavior, AIMS Mathematics, 8 (2023), 24446–24472. http://dx.doi.org/10.3934/math.20231247 doi: 10.3934/math.20231247
![]() |
[9] |
A. Lotka, Elements of physical biology, Nature, 116 (1925), 461. http://dx.doi.org/10.1038/116461b0 doi: 10.1038/116461b0
![]() |
[10] |
V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. http://dx.doi.org/10.1038/118558a0 doi: 10.1038/118558a0
![]() |
[11] |
P. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213–245. http://dx.doi.org/10.2307/2332342 doi: 10.2307/2332342
![]() |
[12] |
P. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16–31. http://dx.doi.org/10.2307/2333042 doi: 10.2307/2333042
![]() |
[13] | N. Britton, Essential mathematical biology, London: Springer, 2003. http://dx.doi.org/10.1007/978-1-4471-0049-2 |
[14] |
M. Zhao, C. Li, J. Wang, Complex dynamic behaviors of a discrete-time predator-prey system, J. Appl. Anal. Comput., 7 (2017), 478–500. http://dx.doi.org/10.11948/2017030 doi: 10.11948/2017030
![]() |
[15] |
S. Rana, Dynamics and chaos control in a discrete-time ratio-dependent Holling-Tanner model, J. Egypt. Math. Soc., 27 (2019), 48. http://dx.doi.org/10.1186/s42787-019-0055-4 doi: 10.1186/s42787-019-0055-4
![]() |
[16] |
P. Baydemir, H. Merdan, E. Karaoglu, G. Sucu, Complex dynamics of a discrete-time prey-predator system with Leslie type: Stability, bifurcation analyses and chaos, Int. J. Bifurcat. Chaos, 30 (2020), 2050149. http://dx.doi.org/10.1142/s0218127420501497 doi: 10.1142/s0218127420501497
![]() |
[17] |
S. Akhtar, R. Ahmed, M. Batool, N. Shah, J. Chung, Stability, bifurcation and chaos control of a discretized Leslie prey-predator model, Chaos Soliton. Fract., 152 (2021), 111345. http://dx.doi.org/10.1016/j.chaos.2021.111345 doi: 10.1016/j.chaos.2021.111345
![]() |
[18] |
P. Naik, Z. Eskandari, H. Shahraki, Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model, Mathematical Modelling and Numerical Simulation with Applications, 1 (2021), 95–101. http://dx.doi.org/10.53391/mmnsa.2021.01.009 doi: 10.53391/mmnsa.2021.01.009
![]() |
[19] | Z. Eskandari, Z. Avazzadeh, R. Ghaziani, B. Li, Dynamics and bifurcations of a discrete-time Lotka-Volterra model using nonstandard finite difference discretization method, Math. Method. Appl. Sci., in press. http://dx.doi.org/10.1002/mma.8859 |
[20] |
P. Naik, Z. Eskandari, Z. Avazzadeh, J. Zu, Multiple bifurcations of a discrete-time prey-predator model with mixed functional response, Int. J. Bifurcat. Chaos, 32 (2022), 2250050. http://dx.doi.org/10.1142/s021812742250050x doi: 10.1142/s021812742250050x
![]() |
[21] |
P. Naik, Z. Eskandari, A. Madzvamuse, Z. Avazzadeh, J. Zu, Complex dynamics of a discrete-time seasonally forced SIR epidemic model, Math. Method. Appl. Sci., 46 (2023), 7045–7059. http://dx.doi.org/10.1002/mma.8955 doi: 10.1002/mma.8955
![]() |
[22] |
W. Liu, D. Cai, Bifurcation, chaos analysis and control in a discrete-time predator-prey system, Adv. Differ. Equ., 2019 (2019), 11. http://dx.doi.org/10.1186/s13662-019-1950-6 doi: 10.1186/s13662-019-1950-6
![]() |
[23] |
Y. Li, F. Zhang, X. Zhuo, Flip bifurcation of a discrete predator-prey model with modified Leslie-Gower and Holling-type iii schemes, Math. Biosci. Eng., 17 (2020), 2003–2015. http://dx.doi.org/10.3934/mbe.2020106 doi: 10.3934/mbe.2020106
![]() |
[24] |
Rajni, B. Ghosh, Multistability, chaos and mean population density in a discrete-time predator-prey system, Chaos Soliton. Fract., 162 (2022), 112497. http://dx.doi.org/10.1016/j.chaos.2022.112497 doi: 10.1016/j.chaos.2022.112497
![]() |
[25] |
A. Yousef, A. Algelany, A. Elsadany, Codimension one and codimension two bifurcations in a discrete Kolmogorov type predator-prey model, J. Comput. Appl. Math., 428 (2023), 115171. http://dx.doi.org/10.1016/j.cam.2023.115171 doi: 10.1016/j.cam.2023.115171
![]() |
[26] |
A. Khan, I. Alsulami, Complicate dynamical analysis of a discrete predator-prey model with a prey refuge, AIMS Mathematics, 8 (2023), 15035–15057. http://dx.doi.org/10.3934/math.2023768 doi: 10.3934/math.2023768
![]() |
[27] |
A. Tassaddiq, M. Shabbir, Q. Din, H. Naaz, Discretization, bifurcation, and control for a class of predator-prey interactions, Fractal Fract., 6 (2022), 31. http://dx.doi.org/10.3390/fractalfract6010031 doi: 10.3390/fractalfract6010031
![]() |
[28] |
S. Lin, F. Chen, Z. Li, L. Chen, Complex dynamic behaviors of a modified discrete Leslie-Gower predator-prey system with fear effect on prey species, Axioms, 11 (2022), 520. http://dx.doi.org/10.3390/axioms11100520 doi: 10.3390/axioms11100520
![]() |
[29] |
P. Naik, Z. Eskandari, M. Yavuz, J. Zu, Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect, J. Comput. Appl. Math., 413 (2022), 114401. http://dx.doi.org/10.1016/j.cam.2022.114401 doi: 10.1016/j.cam.2022.114401
![]() |
[30] |
R. Ahmed, M. Rafaqat, I. Siddique, M. Arefin, Complex dynamics and chaos control of a discrete-time predator-prey model, Discrete Dyn. Nat. Soc., 2023 (2023), 8873611. http://dx.doi.org/10.1155/2023/8873611 doi: 10.1155/2023/8873611
![]() |
[31] |
A. Khan, I. Alsulami, Discrete Leslie's model with bifurcations and control, AIMS Mathematics, 8 (2023), 22483–22506. http://dx.doi.org/10.3934/math.20231146 doi: 10.3934/math.20231146
![]() |
[32] | A. Luo, Regularity and complexity in dynamical systems, New York: Springer, 2012. http://dx.doi.org/10.1007/978-1-4614-1524-4 |
[33] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, New York: Springer, 1983. http://dx.doi.org/10.1007/978-1-4612-1140-2 |
[34] | S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, New York: Springer, 1990. http://dx.doi.org/10.1007/978-1-4757-4067-7 |
[35] | G. Chen, X. Dong, From chaos to order: methodologies, perspectives and applications, Singapore: World Scientific, 1998. http://dx.doi.org/10.1142/3033 |
[36] |
C. Lei, X. Han, W. Wang, Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor, Math. Biosci. Eng., 19 (2022), 6659–6679. http://dx.doi.org/10.3934/mbe.2022313 doi: 10.3934/mbe.2022313
![]() |
[37] |
X. Luo, G. Chen, B. Wang, J. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos Soliton. Fract., 18 (2003), 775–783. http://dx.doi.org/10.1016/s0960-0779(03)00028-6 doi: 10.1016/s0960-0779(03)00028-6
![]() |