Processing math: 100%
Research article

Energy solutions to the bi-harmonic parabolic equations

  • Received: 21 October 2024 Revised: 28 November 2024 Accepted: 02 December 2024 Published: 17 December 2024
  • MSC : 35K30, 35K25

  • This study explores the threshold of global existence and exponential decay versus finite-time blow-up for solutions to an inhomogeneous nonlinear bi-harmonic heat problem. The novelty is to consider the inhomogeneous source term. The method uses some standard stable sets under the flow of the fourth-order parabolic problem, due to Payne-Sattynger.

    Citation: Saleh Almuthaybiri, Tarek Saanouni. Energy solutions to the bi-harmonic parabolic equations[J]. AIMS Mathematics, 2024, 9(12): 35264-35273. doi: 10.3934/math.20241675

    Related Papers:

    [1] Saleh Almuthaybiri, Tarek Saanouni . Inhomogeneous NLS with partial harmonic confinement. AIMS Mathematics, 2025, 10(4): 9832-9851. doi: 10.3934/math.2025450
    [2] Abdulghani R. Alharbi . Numerical solutions to two-dimensional fourth order parabolic thin film equations using the Parabolic Monge-Ampere method. AIMS Mathematics, 2023, 8(7): 16463-16478. doi: 10.3934/math.2023841
    [3] Yashar Mehraliyev, Seriye Allahverdiyeva, Aysel Ramazanova . On one coefficient inverse boundary value problem for a linear pseudoparabolic equation of the fourth order. AIMS Mathematics, 2023, 8(2): 2622-2633. doi: 10.3934/math.2023136
    [4] Fengfei Jin, Baoqiang Yan . Existence and global behavior of the solution to a parabolic equation with nonlocal diffusion. AIMS Mathematics, 2021, 6(5): 5292-5315. doi: 10.3934/math.2021313
    [5] Chaeyoung Lee, Seokjun Ham, Youngjin Hwang, Soobin Kwak, Junseok Kim . An explicit fourth-order accurate compact method for the Allen-Cahn equation. AIMS Mathematics, 2024, 9(1): 735-762. doi: 10.3934/math.2024038
    [6] Kedong Wang, Xianguo Geng, Mingming Chen, Ruomeng Li . Long-time asymptotics for the generalized Sasa-Satsuma equation. AIMS Mathematics, 2020, 5(6): 7413-7437. doi: 10.3934/math.2020475
    [7] Yuejiao Feng . Regularity of weak solutions to a class of fourth order parabolic variational inequality problems arising from swap option pricing. AIMS Mathematics, 2023, 8(6): 13889-13897. doi: 10.3934/math.2023710
    [8] Costică Moroşanu . Modeling of the continuous casting process of steel via phase-field transition system. Fractional steps method. AIMS Mathematics, 2019, 4(3): 648-662. doi: 10.3934/math.2019.3.648
    [9] Saulo Orizaga, Maurice Fabien, Michael Millard . Efficient numerical approaches with accelerated graphics processing unit (GPU) computations for Poisson problems and Cahn-Hilliard equations. AIMS Mathematics, 2024, 9(10): 27471-27496. doi: 10.3934/math.20241334
    [10] Ahmed Himadan . Well defined extinction time of solutions for a class of weak-viscoelastic parabolic equation with positive initial energy. AIMS Mathematics, 2021, 6(5): 4331-4344. doi: 10.3934/math.2021257
  • This study explores the threshold of global existence and exponential decay versus finite-time blow-up for solutions to an inhomogeneous nonlinear bi-harmonic heat problem. The novelty is to consider the inhomogeneous source term. The method uses some standard stable sets under the flow of the fourth-order parabolic problem, due to Payne-Sattynger.



    This note investigates the initial value problem for the inhomogeneous non-linear fourth-order parabolic equation

    {tu+Δ2u+u=|x|ϱ|u|p1u;u(0,)=u0.(IBNLH)

    The wave function is u:(t,x)R+×RNR for some integer number N3. The inhomogeneous nonlinear source term satisfies p>1 and ϱ>0.

    The fourth-order parabolic problem models a variety of physical processes, such as phase transition, thin-film theory, and lubrication theory. In particular, it can be used to describe the evolution process of nanoscale thin films, with epitaxial growth; see, for instance, [7,10,13,20].

    In recent years, fourth-order parabolic equations have been studied extensively. We refer the reader to the survey paper [2], where Section 14 includes some higher-order parabolic problems. The global well-posedness and finite-time blow-up properties of solutions have been investigated by many authors. See [4,5,8,14,15,17,21] and the references therein for the background for the study of bi-harmonic parabolic problems.

    This note aims to obtain a threshold of global existence and exponential decay versus finite time blow-up of energy solutions to the inhomogeneous nonlinear bi-harmonic parabolic problem (IBNLH). The novelty is to consider the inhomogeneous regime ϱ0, which complements the results in [19]. The method uses the standard stable sets under the flow of (IBNLH), due to Payne-Sattynger [12].

    The plan of this note is as follows: Section 2 contains the main result and some standard estimates needed in the sequel. Section 3 proves the main result.

    Let us recall the standard Lebesgue space

    Lr:=Lr(RN):={u:RNC,measurable function, such thatRN|u(x)|rdx<}.

    For r1, the usual Lebesgue norm reads

    ur:=uLr:=(RN|u(x)|rdx)1r.

    Finally, letting the standard Laplacian operator Δ:=Nk=12x2k, we denote the following Sobolev space and its usual norm

    H2:={fL2,ΔfL2};H2:=(2+Δ2)12.

    This section contains the main contribution of this note and some useful standard estimates.

    Let us denote the free bi-harmonic heat kernel

    etΔ2u:=F1(et||4Fu), (2.1)

    where F is the Fourrier transform. Thanks to the Duhamel formula, solutions to (IBNLH) satisfy the integral equation

    u=eΔ2u0+0e(s)Δ2(|x|ϱ|u|p1u)ds. (2.2)

    If u resolves the equation (IBNLH), then so does the family uκ:=κ4ϱp1u(κ4,κ),κ>0. Moreover, there is only one invariant Sobolev norm under the above dilatation, precisely

    uκ(t)˙Hsc=u(κ4t)˙Hsc,sc:=N24ϱp1.

    So, the heat problem (IBNLH) is said to be energy-sub-critical if

    sc<2p<pc:=1+2(4ϱ)N4, (2.3)

    where, we take pc= if 1N4. Let us denote the so-called action and constraint

    S(u):=12Δu2+12u211+pRN|x|ϱ|u|1+pdx; (2.4)
    K(u):=Δu2+u2RN|x|ϱ|u|1+pdx. (2.5)

    A solution to (IBNLH) formally satisfies

    tS(u(t))=tu2; (2.6)
    2K(u(t))=tu(t)2. (2.7)

    Let us denote the minimization problem

    m:=inf0uH2{S(u)s . tK(u)=0}. (2.8)

    Then, it is known [18, Theorem 2.17] that m>0 is reached in a so-called ground state

    Q+Δ2Q|x|ϱ|Q|p1Q=0,0QH2. (2.9)

    In the spirit of [12], one defines some stable sets under the flow of (IBNLH).

    PS+:={uH2s. tK(u)>0andS(u)<m}; (2.10)
    PS:={uH2s. tK(u)<0andS(u)<m}. (2.11)

    The so-called Strichartz estimates will be useful.

    Definition 2.1. A couple of real numbers (q,r) is said to be admissible if

    2r<2NN4,2q,randN(121r)=4q.

    Denote the set of admissible pairs by Λ. If I is a time slab, one denotes the Strichartz spaces

    Ω(I):=(q,r)ΛLq(I,Lr).

    The Strichartz estimates read as follows.

    Proposition 2.1. Let N1 and T>0. Then,

    sup(q,r)ΛeΔ2fLqT(Lr)f; (2.12)
    sup(q,r)ΛueΔ2u0LqT(Lr)inf(˜q,˜r)Λtu+Δ2uL˜qT(L˜r); (2.13)
    sup(q,r)ΛΔuLqT(Lr)Δu0+tu+Δ2uL2T(˙W1,2N2+N),N3. (2.14)

    Proof. Let the free fourth order heat equation

    (t+Δ2)u=0,u(0,)=u0.

    Taking the Fourrier part of u, yields

    u(t,x)=F1(yet|y|4)u0:=etΔ2u0.

    It's known [1] that F1(yet|y|4)(x)=1tN4h(xt14) for a certain function h satisfying |h(y)|ed|y|43 for some d>0. This implies that

    etΔ2u0LtN4u0L1andetΔ2u0L2u0L2.

    By interpolation, yields etΔ2u0LrtN4(12p)u0Lr for all r2. Thus, applying [6, Theorem 1.2], we get (2.12) and (2.13). Finally, (2.14) follows arguing as in [11, (3.19)].

    Using a contraction argument via Proposition 2.1 and following lines in [3, Theorem 1.2], we obtain the existence of energy solutions to (IBNLH).

    Proposition 2.2. Let N3, 0<ϱ<min{4,N2}, max{1,2(1ϱ)N}<p<pc and u0H2. Then, there exist T:=TN,ϱ,p,u0H2>0, and a unique local solution of (IBNLH), in the space

    C([0,T],H2)(q,r)ΛLqT(W2,r).

    We end this sub-section with a useful ordinary differential inequality result [9, Lemma 4.2].

    Lemma 2.1. Letting a real decreasing function on [0,) such that

    (g)2A+Bg2+1ϵ, (2.15)

    for certain A>0,B>0. Then, there exists T>0 such that

    limtTg(t)=0; (2.16)
    Tϵ21+3ϵ2ϵA12(AB1)2+1ϵ(1(1+(AB1)2+1ϵg(0))12ϵ). (2.17)

    From now on, we hide the time variable t for simplicity, spreading it out only when necessary.

    The contribution of this note is the next threshold of global existence and exponential decay versus finite time blow-up of solutions to (IBNLH).

    Theorem 2.1. Let N3, 0<ϱ< min {4,N2}, max {1,2(1ϱ)N}<p<pc and u0H2. Take the maximal solution of (IBNLH), denoted by uC([0,T+),H2).

    1. If u0PS, then T+< and

    limtT+t0u(s)2ds=. (2.18)

    2. If u0PS+, then T+= and there is α>0 such that

    u(t)u0eαt,t0. (2.19)

    In view of the results stated in the above theorem, some comments are in order.

    ● The existence of the energy solution to (IBNLH) is given by Proposition 2.2.

    ● The global solution with data in PS+ decays exponentially.

    ● Arguing as in [16, Lemma 5.1], it follows that PS± are stable sets under the flow of (IBNLH).

    ● The above result complements [19] in the inhomogeneous regime, namely ϱ0.

    In this section, we prove Theorem 2.1. Let us define, for λ>0,τ>0, the real function on t[0,T+),

    φ(t):=t0u(s)2ds+(T+t)u02+λ(τ+t)2. (3.1)

    Taking account of (2.7), we compute the derivatives

    φ(t)=u(t)2u02+2λ(τ+t); (3.2)
    φ(t)=2K(u(t))+2λ. (3.3)

    Thus, by (2.4), (2.6), and (3.3), we obtain for λ>(1+p)S(u0),

    φ(t)=2(u2H2RN|x|ϱ|u|1+pdx)+2λ=2(u2H2+(1+p)(S(u)12u2H2))+2λ=2(p12u2H2(1+p)S(u))+2λ2(1+p)S(u0)+2(1+p)(t0ut(s)2ds+λ)2pλ>0. (3.4)

    So, (3.4) implies that

    min{φ,φ,φ}>0,on[0,T+). (3.5)

    Let us denote the quantities

    a:=t0u(s)2ds+λ(τ+t)2; (3.6)
    b:=12φ(t)=12t0su(s)2ds+λ(τ+t); (3.7)
    c:=t0tu(s)2ds+λ. (3.8)

    Compute for XR, the polynomial

    aX22bX+c=t0Xu(s)2ds+λ(Xτ+tX)2X(t0su(s)2ds+2λ(τ+t))+t0tu(s)2ds+λt0(Xu(s)tu(s))2ds+λ(X(τ+t)1)20. (3.9)

    So, (3.9) implies that

    b2ac0. (3.10)

    Moreover, taking account of (3.4), we write

    φφ1+p2(φ)2a(2(1+p)S(u0)+2(1+p)c2pλ)2(1+p)b2=2(1+p)(acb2)2a((1+p)S(u0)+pλ). (3.11)

    Take the real function

    g:=φp12, (3.12)

    with a derivative

    g=p12φφ1+p2<0. (3.13)

    Moreover, by (3.11), we have

    g=p12(φφ1+p2p+12(φ)2φ3+p2)=p12g3+pp1(φφp+12(φ)2)(p1)g3+pp1((1+p)(acb2)a((1+p)S(u0)+pλ)). (3.14)

    Integrating (3.14) in time after testing with g, it follows that

    (g)2(g(0))2(p1)21+p(g2(1+p)p1g2(1+p)p1(0))((1+p)(acb2)a((1+p)S(u0)+pλ))=(g(0))2+g2(1+p)p1(0)(p1)21+p((1+p)(acb2)a((1+p)S(u0)+pλ)(p1)21+p((1+p)(acb2)a((1+p)S(u0)+pλ))g2(1+p)p1:=A+Bg2(1+p)p1. (3.15)

    Moreover,

    A=(g(0))2+g2(1+p)p1(0)(p1)21+p((1+p)(acb2)a((1+p)S(u0)+pλ))λ2τ2(p1)2(T+u02+λτ)(1+p)a(p1)21+p(T+u02+λτ)(1+p)((1+p)S(u0)+pλ)=(p1)2(T+u02+λτ)(1+p)(λ2τ2a1+p((1+p)S(u0)+pλ)). (3.16)

    So, (3.16) implies that

    A>0,forλ>>1. (3.17)

    Thus, applying (2.16), we get T+< and limtT+t0u(s)2ds=. This proves the finite time blow-up (2.18). Now, if u0PS+, then,

    2m>u2H221+pRN|x|ϱ|u|1+pdx>(121+p)u2H2. (3.18)

    So, (3.18) implies that supt[0,T+)u(t)H2<2m(1+p)p1 and u is global. Thus, by the stability of PS+ under the flow of (IBNLH) we get

    u(t)PS+,t0. (3.19)

    Let us define for γ>0 some modified functional and sets as follows:

    Kγ(u):=γu2H2RN|x|ϱ|u|1+pdx; (3.20)
    mγ:=inf0uH2{S(u),Kγ(u)=0}; (3.21)
    PS+γ:={uH2s. tKγ(u)>0andS(u)<mγ}; (3.22)
    PSγ:={uH2s. tKγ(u)0andS(u)<m}. (3.23)

    The next auxiliary result follows lines in [8, Preliminaries].

    Lemma 3.1. The next properties hold.

    1. limγ0+mγ=0,limγ+mγ=;

    2. γmγ is increasing on [0,1] and decreasing otherwise, and m1=m;

    3. Let uH2 satisfy S(u)<m and γ1<1<γ2 be roots of mγ=S(u); then, Kγ(u) has a constant sign in (γ1,γ2).

    Now, by (2.7) via the last point in Lemma 3.1, we write for γ(γ1,1),

    12tu2=K(u)=u2H2+RN|x|ϱ|u|1+pdx=(1γ)u2H2γu2H2+RN|x|ϱ|u|1+pdx=(1γ)u2H2Kγ(u)<(1γ)u2. (3.24)

    Finally, (3.24) gives the requested estimate (2.19). This ends the proof of Theorem 2.1.

    This note gives a threshold of global existence and exponential decay versus finite time blow-up of energy solutions to the inhomogeneous nonlinear bi-harmonic parabolic problem (IBNLH). The novelty is to consider the inhomogeneous regime ϱ0, which complements the results in [19]. The method uses the standard stable sets under the flow of (IBNLH), due to Payne-Sattynger [12].

    Saleh Almuthaybiri: Formal analysis, funding acquisition; Tarek Saanouni: Project administration, resources, supervision, validation, review. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024).

    The authors declare no conflict of interest.



    [1] V. A. Galaktionov, Critical global asymptotics in higher-order semilinear parabolic equations, Int. J. Math. Math. Sci., 60 (2003), 3809–3825. https://doi.org/10.1155/S0161171203210176 doi: 10.1155/S0161171203210176
    [2] V. A. Galaktionov, J. L. Vázquez, The problem of blow-up in nonlinear parabolic equations, Discrete Cont. Dyn., 8, (2002), 399–433. https://doi.org/10.3934/dcds.2002.8.399
    [3] C. M. Guzmán, A. Pastor, On the inhomogeneous bi-harmonic nonlinear schrödinger equation: Local, global and stability results, Nonlinear Anal. Real, 56 (2020), 103–174. https://doi.org/10.1016/j.nonrwa.2020.103174 doi: 10.1016/j.nonrwa.2020.103174
    [4] Y. Z. Han, A class of fourth-order parabolic equation with arbitrary initial energy, Nonlinear Anal. Real, 43 (2018), 451–66. https://doi.org/10.1016/j.nonrwa.2018.03.009 doi: 10.1016/j.nonrwa.2018.03.009
    [5] Y. Z. Han, Blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity, J. Dyn. Control Syst., 27 (2021), 261–270. https://doi.org/10.1007/s10883-020-09495-1 doi: 10.1007/s10883-020-09495-1
    [6] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955–980. Available from: https://www.jstor.org/stable/25098630.
    [7] B. B. King, O. Stein, M. Winkler, A fourth-order parabolic equation modeling epitaxial thin film growth, J. Math. Anal. Appl., 286 (2003), 459–490. https://doi.org/10.1016/S0022-247X(03)00474-8 doi: 10.1016/S0022-247X(03)00474-8
    [8] Q. Li, W. Gao, Y. Han, Global existence blow up and extinction for a class of thin-film equation, Nonlinear Anal. Theor., 147 (2016), 96–109. https://doi.org/10.1016/j.na.2016.08.021 doi: 10.1016/j.na.2016.08.021
    [9] M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, Nonlinear Anal. Theor., 54 (2003), 1397–1415. https://doi.org/10.1016/S0362-546X(03)00192-5 doi: 10.1016/S0362-546X(03)00192-5
    [10] M. Ortiz, E. A. Repetto, H. Si, A continuum model of kinetic roughening and coarsening in thin films, J. Mech. Phys. Solids, 47 (1999), 697–730. https://doi.org/10.1016/S0022-5096(98)00102-1 doi: 10.1016/S0022-5096(98)00102-1
    [11] B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dynam. Part. Differ. Eq., 4 (2007), 197–225. https://dx.doi.org/10.4310/DPDE.2007.v4.n3.a1 doi: 10.4310/DPDE.2007.v4.n3.a1
    [12] L. E. Payne, D. H. Sattinger, Saddle points and instability of non-linear hyperbolic equations, Isr. J. Math., 22 (1976), 273–303. https://doi.org/10.1007/BF02761595 doi: 10.1007/BF02761595
    [13] L. Peletier, W. C. Troy, Higher order models in physics and mechanics, Boston-Berlin: Birkh Auser, 2001.
    [14] G. A. Philippin, Blow-up phenomena for a class of fourth-order parabolic problems, P. Am. Math. Soc., 143 (2015), 2507–2513. https://doi.org/10.1090/S0002-9939-2015-12446-X doi: 10.1090/S0002-9939-2015-12446-X
    [15] C. Y. Qu, W. S. Zhou, Blow-up and extinction for a thin-film equation with initial-boundary value conditions, J. Math. Anal. Appl., 436 (2016), 796–809. https://doi.org/10.1016/j.jmaa.2015.11.075 doi: 10.1016/j.jmaa.2015.11.075
    [16] T. Saanouni, Global well-posedness of some high-order focusing semilinear evolution equations with exponential nonlinearity, Adv. Nonlinear Anal., 7 (2018), 67–84. https://doi.org/10.1515/anona-2015-0108 doi: 10.1515/anona-2015-0108
    [17] T. Saanouni, Global well-posedness and finite-time blow-up of some heat-type equations, P. Edinburgh Math. Soc., 2 (2017), 481–497. https://doi.org/10.1017/S0013091516000213 doi: 10.1017/S0013091516000213
    [18] T. Saanouni, R. Ghanmi, A note on the inhomogeneous fourth-order Schrödinger equation, J. Pseudo-Differ. Oper., 13 (2022). https://doi.org/10.1007/s11868-022-00489-0
    [19] R. Xu, T. Chen, C. Liu, Y. Ding, Global well-posedness and global attractor of fourth order semilinear parabolic equation, Math. Method. Appl. Sci., 38 (2015), 1515–1529. https://doi.org/10.1002/mma.3165 doi: 10.1002/mma.3165
    [20] A. Zangwill, Some causes and a consequence of epitaxial roughening, J. Cryst. Growth, 163 (1996), 8–21. https://doi.org/10.1016/0022-0248(95)01048-3 doi: 10.1016/0022-0248(95)01048-3
    [21] J. Zhou, Blow-up for a thin-film equation with positive initial energy, J. Math. Anal. Appl., 446 (2017), 1133–1138. https://doi.org/10.1016/j.jmaa.2016.09.026 doi: 10.1016/j.jmaa.2016.09.026
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(598) PDF downloads(52) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog