
In the context of deterministic discrete-time control systems, we examined the implementation of value iteration (VI) and policy (PI) algorithms in Markov decision processes (MDPs) situated within Borel spaces. The deterministic nature of the system's transfer function plays a pivotal role, as the convergence criteria of these algorithms are deeply interconnected with the inherent characteristics of the probability function governing state transitions. For VI, convergence is contingent upon verifying that the cost difference function stabilizes to a constant k ensuring uniformity across iterations. In contrast, PI achieves convergence when the value function maintains consistent values over successive iterations. Finally, a detailed example demonstrates the conditions under which convergence of the algorithm is achieved, underscoring the practicality of these methods in deterministic settings.
Citation: Haifeng Zheng, Dan Wang. A study of value iteration and policy iteration for Markov decision processes in Deterministic systems[J]. AIMS Mathematics, 2024, 9(12): 33818-33842. doi: 10.3934/math.20241613
[1] | Ailing Zhu, Yixin Wang, Qiang Xu . A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274 |
[2] | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876 |
[3] | Sumbal Ahsan, Rashid Nawaz, Muhammad Akbar, Saleem Abdullah, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . Numerical solution of system of fuzzy fractional order Volterra integro-differential equation using optimal homotopy asymptotic method. AIMS Mathematics, 2022, 7(7): 13169-13191. doi: 10.3934/math.2022726 |
[4] | Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925 |
[5] | Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299 |
[6] | Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140 |
[7] | Lakhlifa Sadek, Tania A Lazǎr, Ishak Hashim . Conformable finite element method for conformable fractional partial differential equations. AIMS Mathematics, 2023, 8(12): 28858-28877. doi: 10.3934/math.20231479 |
[8] | Yanhua Gu . High-order numerical method for the fractional Korteweg-de Vries equation using the discontinuous Galerkin method. AIMS Mathematics, 2025, 10(1): 1367-1383. doi: 10.3934/math.2025063 |
[9] | Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846 |
[10] | Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kamele Nassiri Pirbazari, Stanford Shateyi . A pseudo-spectral approach for optimal control problems of variable-order fractional integro-differential equations. AIMS Mathematics, 2024, 9(9): 23692-23710. doi: 10.3934/math.20241151 |
In the context of deterministic discrete-time control systems, we examined the implementation of value iteration (VI) and policy (PI) algorithms in Markov decision processes (MDPs) situated within Borel spaces. The deterministic nature of the system's transfer function plays a pivotal role, as the convergence criteria of these algorithms are deeply interconnected with the inherent characteristics of the probability function governing state transitions. For VI, convergence is contingent upon verifying that the cost difference function stabilizes to a constant k ensuring uniformity across iterations. In contrast, PI achieves convergence when the value function maintains consistent values over successive iterations. Finally, a detailed example demonstrates the conditions under which convergence of the algorithm is achieved, underscoring the practicality of these methods in deterministic settings.
Fractional differential inclusions (FDIs), as an extension of fractional differential equations (FDEs), have gained popularity among mathematical researchers due to their importance and value in optimization and stochastic processes in economics [1,2] and finance [3]. In addition to their applications in understanding engineering [4] and dynamic systems [5,6] in biological [7,8], medical [9], physics [10] and chemical sciences [11], FDIs are also relevant in various other scientific fields [12].
Sousa and Oliveira [13] introduced the new fractional derivative ς-Hilfer to unify different types of fractional derivatives into a single operator, expanding fractional derivatives to the types of operators with potentially applicable value. After that, Asawasamrit et al. [14] investigated the following Hilfer-FDE under nonlocal integral boundary conditions (BCs):
{HDr1,r2ϰ(υ)=ℷ(υ,ϰ(υ)),1<r1<2,0≤r2≤1,υ∈℧:=[˜s,˜b],ϰ(˜s)=0,ϰ(˜b)=m∑i=1δiRLIςiϰ(˜ξi),φi>0,δi∈R,˜ξi∈℧. | (1.1) |
In [15], an existence outcome was shown by employing the FPTs (fixed-point theorems) for a sequential FDE of the type,
{(HDr1,r2,ς(CDr3,ςϰ))(s)=ℷ(s,ϰ(s),RLIr5,ςϰ(υ),∫˜b0ϰ(v)dv),υ∈B:=[0,˜b],ϰ(0)+η1ϰ(˜b)=0,CDr4+r3−1,ςϰ(0)+ηC2Dδ+r3−1,ςϰ(˜b)=0, |
where ri∈(0,1), i=1,2,3, r4=r1+r2(1−r1), r4+r3>1, η1,η2∈R, r5>0, and ℷ∈C(B×R3) is a nonlinear function. In 2024, Ahmed et al. [16] investigated a class of separated boundary value problems of the form
{(HDr1,r2q(CDr3qϰ))(υ)=ℷ(υ,ϰ(υ)),q∈(0,1),υ∈B,ϰ(0)+λC1Dr3+r4−1qϰ(0)=ϰ(˜b)+λC2Dr3+r4−1qϰ(˜b)=0,λ1,λ2∈R, |
where 0<r1,r3<1, r2∈[0,1] with r4=r1+r2(1−r1), r3+r4>1 and ℷ∈C(B×R). Lachouri et al., in [17], established the existence of solutions to the nonlinear neutral FDI involving ς-Caputo fractional derivative with ς-Riemann–Liouville (RL) fractional integral boundary conditions:
{CDr1,ς(CDr2,ςϰ(υ)−y(υ,ϰ(υ)))∈ℷ(υ,ϰ(υ)),υ∈[0,˜b),ϰ(a)=RLIr3,ςϰ(˜b)=0,a∈(0,˜b), |
where ℷ:B×R→P(R) is a set-valued map. Surang et al., in [18], studied the ς-Hilfer type sequential FDEs and FDIs subject to integral multi-point BCs of the form
{(HDr1,r2,ς+kHDr1−1,r2,ς)ϰ(υ)=ℷ(υ,ϰ(υ)),υ∈℧,ϰ(˜s)=0,ϰ(˜b)=n∑i=1μi∫ηi˜sψ′(s)ϰ(s)ds+m∑j=1θjϰ(ξj), | (1.2) |
where r1∈(1,2), r2∈[0,1], ℷ∈C(℧×R), k,μi,θj∈R, and ηi,ξj∈(˜s,˜b], i=¯1,n, j=¯1,m. Etemad et al. [19] introduced and studied a novel existence technique based on some special set-valued maps (SVMs) to guarantee the existence of a solution for the following fractional jerk inclusion problem involving the derivative operator in the sense of Caputo–Hadamard
{(CHDr11+(CHDr21+(CHDr31+ϰ)))(υ)∈ℷ(υ,ϰ(υ),CHDr31+ϰ(υ),(CHDr21+(CHDr31+ϰ))(υ)),ϰ(1)+ϰ(exp(1))=CHDr31+ϰ(η)=(CHDr21+(CHDr31+ϰ))(exp(1))=0, |
for υ∈[1,exp(1)], where ri∈(0,1], i=1,2,3, η∈(1,exp(1)), and the operator ℷ:[1,exp(1)]×R3→P(R) is an SVM, where P(R) denotes all nonempty subsets of R.
The boundary conditions (BCs) used in (1.1) and (1.2), share a common feature: the requirement of a zero initial condition, which is essential for the solution to be well-defined. Consequently, certain classes of Hilfer FDEs cannot be addressed, including cases with BCs such as,
● ϰ(0)=−ϰ(˜b), ϰ′(0)=−ϰ′(˜b) (anti-periodic),
● ϰ(0)+η1ϰ′(0)=0, ϰ(˜b)+η2ϰ′(˜b)=0 (separated),
● ϰ(0)+η1ϰ(˜b)=0, ϰ′(0)+η2ϰ′(˜b)=0 (non-separated), etc.
To address this limitation and study Hilfer FDEs with such BCs, regardless of whether they are anti-periodic, separated, or non-separated, we propose a novel approach in this research. Specifically, we combine the Hilfer and Caputo fractional derivatives, enabling the study of boundary value problems under these conditions. More specifically, we aimed to analyze a class of FDEs for FDI, subject to non-separated BCs of the form,
{HDr1,r2,ς(CDr3,ςϰ(υ)−y(υ,ϰ(υ)))∈ℷ(υ,ϰ(υ)),υ∈B,ϰ(0)+η1ϰ(˜b)=0,CDδ+r3−1,ςϰ(0)+ηC2Dδ+r3−1,ςϰ(˜b)=0, | (1.3) |
where ri∈(0,1), i=1,2,3, δ=r1+r2(1−r1), δ+r3>1, η1,η2∈R, y∈C(B×R) and ℷ:B×R→P(R) denotes a SVM, with power set P(R) of R.
The paper is structured as follows. Section 2 is devoted to discussing the fundamental concepts fractional calculus and set-valued analysis, while Section 3 presents important findings on the qualitative properties of solutions to the ς-Hilfer inclusion FDI (1.3) utilizing FPTs. Finally, Section 4, includes three illustrative examples.
We outline the background material that is pertinent to our study. We consider the Banach spaces E=C(B) and L1(B) of the Lebesgue integrable functions equipped with the norms ‖ϰ‖=sup{|ϰ(υ)|:υ∈B} and
‖ϰ‖L1=∫B|ϰ(υ)|dυ, |
respectively. Let ς∈Cn(B) be an increasing function such that ς′(υ)≠0, for any υ∈B.
Definition 2.1 ([20]). The ς-RL fractional integral and derivative of order r1 for a given function ϰ are expressed by
RLIr1,ςϰ(υ)=∫υ0ς′(u)Γ(r1)(ςu(υ))r1−1ϰ(u)du,ςu(υ):=ς(υ)−ς(u), |
and
RLDr1,ςϰ(υ)=D[n]ςRLIn−r1,ςϰ(υ),D[n]ς:=(1ς′(υ)ddυ)n, |
where n=[r1]+1, n∈N, respectively.
Definition 2.2 ([21,22]). The Caputo sense of ς-fractional derivative of the ϰ∈Cn(B) of order r1 is given as,
CDr1,ςϰ(s)=RLI(n−r1),ςϰ[n](s),ϰ[n](s)=(1ς′(s)dds)nϰ(s). |
Lemma 2.3 ([20,22]). Let r1,r2>0. Then
i)RLIr1,ς(ς0(υ))r2−1=Γ(r2)Γ(r1+r2)(ς0(υ))r1+r2−1,ii)CDr1,ς(ς0(υ))r2−1=Γ(r2)Γ(r2−r1)(ς0(υ))r1+r2−1. |
Lemma 2.4 ([20]). For ϰ∈Cn(B), we have
RLIr1,ςCDr1,ςϰ(s)=ϰ(s)−n−1∑k=0ϰ[n](0+)k!(ς0(s))k,n−1<r1<n, |
and 0<r2<1. Furthermore, if r1∈(0,1), then RLIr1,ςCDr1,ς ϰ(υ)=ς0(υ).
Definition 2.5 ([13]). The ς-Hilfer fractional derivative for ϰ∈Cn(B), of order n−1<r1<n and type 0≤r2≤1, is defined by
HDr1,r2,ςϰ(υ)=(RLIr2(n−r1),ς(D[n]ς(RLI(1−r2)(n−r1),ςϰ)))(υ). |
Lemma 2.6 ([13,23]). Let r1,r2,μ>0. Then
i)RLIr1,ςRLIr2,ςϰ(υ)=RLIr1+r2,ςϰ(υ),ii)RLIr1,ς(ς0(υ))μ−1=Γ(μ)Γ(r1+μ)(ς0(υ))r1+μ−1. |
Lemma 2.7 ([13]). For μ>0, r1∈(n−1,n), and 0≤r2≤1,
HDr1,r2,ς(ς0(υ))μ−1=Γ(μ)Γ(μ−r1)(ς0(υ))μ−r1−1,μ>n. |
In particular, if r1∈(1,2) and 1<μ≤2, then HDr1,r2,ς(ς0(υ))μ−1=0.
Lemma 2.8 ([13]). If ϰ∈Cn(B), n−1<r1<n and type 0<r2<1, then
i)RLIr1,ςHDr1,r2,ςϰ(υ)=ϰ(υ)−n∑k=1(ς0(υ))δ−kΓ(δ−k+1)D[n−k]ςRLI(1−r2)(n−r1),ςϰ(0),ii)HDr1,r2,ςRLIr1,ςϰ(υ)=ϰ(υ). |
Consider the Banach space (E,‖⋅‖) and SVM Θ:E→P(E). Θ is a) closed (convex), b) bounded and c) measurable, whenever Θ(ϰ) is closed (convex) for every ϰ∈E, Θ(B)=∪ϰ∈BΘ(ϰ) is bounded for any bounded set B⊆E, that is
supϰ∈B{sup|ρ|:ρ∈Θ(ϰ)}<∞, |
and ∀ρ∈R, the function
υ→d(ρ,Θ(υ))=inf{|ρ−λ|:λ∈Θ(υ)}, |
is measurable, respectively. One can find the definitions of completely continuous and upper semi-continuous in [24]. Additionally, the set of selections of ℷ is described as
Rℷ,ρ={σ∈L1(B):σ(υ)∈ℷ(υ,ρ),∀υ∈B}. |
Next, we take
Pβ(E)={Ω∈P(E):Ω≠∅ with has a property β}, |
where Pcl, Pc, Pb, and Pcp represent the classes of every compact, bounded, closed, and convex subset of E, respectively.
Definition 2.9 ([25]). An SVM ℷ:B×R→P(R) is called Carathéodory if the mapping υ→ℷ(υ,ϰ) is measurable for all ϰ∈R, and ϰ→ℷ(υ,ϰ) is upper semicontinuous for almost every υ∈B. Additionally, we say ℷ is L1-Carathéodory whenever for all m>0, exists z∈L1(B,R+) such that for a.e. υ∈B,
‖ℷ(υ,ϰ)‖=sup{|σ|:σ∈ℷ(υ,ϰ)}≤z(υ),∀‖z‖≤m. |
To achieve the intended outcomes in this search, the following lemmas are necessary.
Lemma 2.10 ([25], Proposition 1.2). Consider SVM Θ:E→Pcl(Z) with the graph, Gr(Θ)={(ϰ,ρ)∈E×Z:ρ∈Θ(ϰ)}. Gr(Θ) is a closed subset of E×Z whenever Θ is upper semi-continuous. Conversely, Θ is upper semi-continuous, when it has a closed graph and is completely continuous.
Lemma 2.11 ([26]). Consider a separable Banach space E along with a L1-Carathéodory SVM ℷ:B×R→Pcp,c(E) and a linear continuous map Υ:L1(B,E)→C(B,E). Then, the composition
{Υ∘Rℷ:C(B,E)→Pcp,c(C(B,E)),ϰ→(Υ∘Rℷ)(ϰ)=Υ(Rℷ,ϰ), |
is a closed graph map in C(B,E)×C(B,E).
In relation to the FDI (1.3), the auxiliary Lemma 3.1 is required.
Lemma 3.1. For y,ℷ∈C(B), the solution of linear-type problem
{HDr1,r2,ς(CDr3,ςϰ(υ)−y(υ))=ℷ(υ),υ∈B∖{˜b},ϰ(0)+η1ϰ(˜b)=0,CDδ+r3−1,ςϰ(0)+ηC2Dδ+r3−1,ςϰ(˜b)=0, | (3.1) |
is obtained as follows:
ϰ(υ)=RLIr3,ςy(υ)+RLIr1+r3,ςℷ(υ)+[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1](RLI1−δ,ςy(˜b)+RLIr1−δ+1,ςℷ(˜b))−Λ2(RLIr3,ςy(˜b)+RLIr1+r3,ςℷ(˜b)), | (3.2) |
where for η1,η2≠−1,
Λ1=η2(η2+1)Γ(r3+δ),Λ2=η1η1+1,Λ3=η1η2(η2+1)Γ(r3+δ). | (3.3) |
Proof. Applying the ς-fractional integral RLIr1,ς to the first equation of (1.3), and using Lemma 2.4, we get
CDr3,ςϰ(υ)=y(υ)+RLIr1,ςℷ(υ)+c1(ς0(υ))δ−1,υ∈B,c1∈R, | (3.4) |
where δ=r1+r2(1−r1). Now, by taking RLIr3,ς in (3.4) from Lemma 2.3, we get
ϰ(υ)=RLIr3,ςy(υ)+RLIr1+r3,ςℷ(υ)+c1Γ(δ)Γ(r3+δ)(ς0(υ))r3+δ−1+c2,c2∈R. | (3.5) |
According to Lemma 2.3, we can obtain
CDδ+r3−1,ςϰ(υ)=RLI1−δ,ςy(υ)+RLIr1−δ+1,ςℷ(υ)+c1Γ(δ). | (3.6) |
Next, by combining the BCs ϰ(0)+η1ϰ(˜b)=0 and
CDδ+r3−1,ςϰ(0)+ηC2Dδ+r3−1,ςϰ(˜b)=0 |
with (3.6), we get
c2(1+η1)+ηRL1Ir3,ςy(˜b)+ηRL1Ir1+r3,ςℷ(υ)+c1η1Γ(δ)Γ(r3+δ)(ς0(˜b))r3+δ−1=0, | (3.7) |
c1(1+η2)Γ(δ)+ηRL2I1−δ,ςy(˜b)+ηRL2Ir1−δ+1,ςℷ(˜b)=0. | (3.8) |
From (3.7) and (3.8), we find
c1=−η2(1+η2)Γ(δ)(RLI1−δ,ςy(˜b)+RLIr1−δ+1,ςℷ(˜b)),c2=η1η2(1+η2)Γ(r3+δ)(ς0(υ))r3+δ−1(RLI1−δ,ςy(ς0(υ))+RLIr1−δ+1,ςℷ(˜b))−η1(1+η1)(RLIr3,ςy(˜b)+RLIr1+r3,ςℷ(υ)). |
By substituting the values of c1 and c2 into (3.5), we arrive at the fractional integral equation (3.2).
Definition 3.2. An element ϰ∈C1(B) can be a solution of (1.3), if there is σ∈L1(B) with σ(υ)∈ℷ(υ,ϰ) for every υ∈B fulfilling the non-separated BC's, ϰ(0)+η1ϰ(˜b)=0,
CDδ+r3−1,ζϰ(0)+ηC2Dδ+r3−1,ζϰ(˜b)=0, |
and
ϰ(υ)=RLIr3,ςy(υ,ϰ(υ))+RLIr1+r3,ςσ(υ)+[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1](RLI1−δ,ςy(˜b,ϰ(˜b))+RLIr1−δ+1,ςσ(˜b))−Λ2(RLIr3,ςy(˜b,ϰ(˜b))+RLIr1+r3,ςσ(˜b)). | (3.9) |
The first consequence addresses the convex-valued ℷ using the nonlinear alternative for contractive maps [27].
Theorem 3.3. Suppose that
P1) ℷ:B×R→Pcp,c(R) is a L1-Carathéodory SVM;
P2) There is a exist ˜ϖ1∈C(B,R+) and a nondecreasing ˜ϖ2∈C(R+,R+) with,
‖ℷ(υ,ϰ)‖P=sup{|ρ|:ρ∈ℷ(υ,ϰ)}≤˜ϖ1(υ)˜ϖ2(‖ϰ‖),∀(υ,ϰ)∈B×R; |
P3) There is a constant ly<λ−12 such that |y(υ,ϰ1)−y(υ,ϰ2)|≤ly|ϰ1−ϰ2|;
P4) There is a exist ϑy∈C(B,R+) such that |y(υ,ϰ)|≤ϑy(υ), for each (υ,ϰ)∈B×R;
P5) There is an N>0 satisfying
Nλ1‖˜ϖ1‖˜ϖ2(N)+λ2‖ϑy‖>1, | (3.10) |
where
λ1=(ς0(˜b))r3+r1[|Λ3|+|Λ1|Γ(r1−δ+2)+1+|Λ2|Γ(r1+r3+1)],λ2=(ς0(˜b))r3[|Λ3|+|Λ1|Γ(2−δ)+1+|Λ2|Γ(r3+1)]. | (3.11) |
Then, (1.3) admits a solution of B.
Proof. At first, to convert the sequential-type FDI (1.3) into a problem of the FP type, we write Θ:E→P(E) as follows:
Θ(ϰ)={z∈C(B):z(υ)={RLIr3,ςy(υ,ϰ(υ))+RLIr1+r3,ςσ(υ)+(Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1)×(RLI1−δ,ςy(˜b,ϰ(˜b))+RLIr1−δ+1,ςσ(˜b))−Λ2(RLIr3,ςy(˜b,ϰ(˜b))+RLIr1+r3,ςσ(˜b))}, | (3.12) |
for σ∈Rℷ,ϰ. Consider two operators Ψ1:E→E and Ψ2:E→P(E) as follows:
Ψ1ϰ(υ)=[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]RLI1−δ,ςy(˜b,ϰ(˜b))+RLIr3,ςy(υ,ϰ(υ))−ΛRL2Ir3,ςy(˜b,ϰ(˜b)), |
and
Ψ2(ϰ)={z∈E:z(υ)={[Λ3(ς0(˜b))r3+δ−1−Λ1(ς0(υ))r3+δ−1]RLIr1−δ+1,ςσ(˜b)+RLIr1+r3,ςσ(υ)−ΛRL2Ir1+r3,ςσ(˜b)}. |
Obviously, Θ=Ψ1+Ψ2. In the following, we demonstrate that Ψ1 and Ψ2 fulfill the conditions of the nonlinear alternative for contractive maps [27, Corollary 3.8]. Initially, we consider the set,
Ωγ∗={ϰ∈E:‖ϰ‖≤γ∗},γ∗>0, | (3.13) |
which is bounded, and show that Ψȷ˚ define the SVMs \Psi_{\mathring{ \jmath}} : \Omega _{\mathtt{γ}^{\ast }} \to \mathcal{P}_{\mathrm{cp}, \mathrm{c}} \left(\mathbb{E}\right) , \mathring{\jmath} = 1, 2 . To achieve this, we need to prove that \Psi_1 and \Psi _2 are compact and convex-valued. The proof will proceed in five steps.
Step 1. \Psi _2 is bounded on bounded sets of \mathbb{E} . Let \Omega _{\mathtt{γ}^{\ast }} be a bounded set in \mathbb{E} . Then for every z\in \Psi_2 \left(\varkappa \right) and \varkappa \in \Omega_{\mathtt{γ}^{\ast}} , \sigma \in \mathcal{R}_{\gimel, \varkappa} exists such that,
\begin{align*} z\left( \upsilon \right) & = \left[ \Lambda_3 \left( \varsigma_0 \big( \tilde{b}\big) \right)^{r_3 + \delta -1 } - \Lambda _1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1}\right] ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 - \delta +1,\varsigma } \sigma \big( \tilde{b}\big) \\ &\quad +^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_ 1+ r _3,\varsigma } \sigma \left( \upsilon \right) - \Lambda _2 ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3 , \varsigma } \sigma \big( \tilde{b}\big). \end{align*} |
Let (P1) holds. For any \upsilon \in \mathfrak{B} , we obtain,
\begin{align*} \left\vert z\left( \upsilon \right) \right\vert & \leq \left[ \left\vert \Lambda _3 \right\vert \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3 +\delta -1 } + \left\vert \Lambda _1 \right\vert \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1}\right] ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 - \delta +1, \varsigma} \left\vert \sigma \big( \tilde{b} \big) \right\vert \\ & \quad +^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3 , \varsigma }\left\vert \sigma \left( \upsilon \right) \right\vert +\left\vert \Lambda _2 \right\vert ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3 , \varsigma }\left\vert \sigma \big( \tilde{b} \big)\right\vert \\ & \leq \left\Vert \widetilde{\varpi }_1 \right\Vert \widetilde{\varpi } _2 \left( \mathtt{γ}^{\ast }\right) \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3 + r_1 } \left[ \tfrac{ \left\vert \Lambda _3 \right\vert +\left\vert \Lambda _1 \right\vert }{ \Gamma \left( r_1 - \delta +2\right) } + \tfrac{ 1+\left\vert \Lambda _{2}\right\vert}{ \Gamma \left( r_1 + r_3 + 1 \right) }\right]. \end{align*} |
Indeed, \left\Vert z\right\Vert \leq \lambda _1 \left\Vert \widetilde{\varpi } _1\right\Vert \widetilde{\varpi }_2 \left(\mathtt{γ}^{ \ast }\right) .
Step 2. \Psi _{2} maps bounded sets of \mathbb{E} into equicontinuous sets. Let \varkappa \in \Omega _{\mathtt{γ}^{\ast }} and z\in \Psi_2 \left(\varkappa \right) . In this case, an element \sigma\in \mathcal{R}_{\gimel, \varkappa } exists such that
\begin{align*} z\left( \upsilon \right) & = \left[ \Lambda _3 \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3 + \delta-1 } - \Lambda _1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1}\right] ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 - \delta +1, \varsigma } \sigma \big( \tilde{b}\big) \\ & \quad + ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3, \varsigma } \sigma \left( \upsilon \right) - \Lambda _2 ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3,\varsigma } \sigma \big( \tilde{b}\big), \qquad \upsilon \in \mathfrak{B}. \end{align*} |
Let \upsilon _1, \upsilon _2 \in \mathfrak{B} , \upsilon _1 < \upsilon _2 . Then
\begin{align*} \left\vert z(\upsilon _2) - z(\upsilon _1 ) \right\vert & \leq \tfrac{ \left\Vert \widetilde{\varpi }_1 \right\Vert \widetilde{\varpi }_2 \left( \mathtt{γ}^{ \ast }\right) \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_1 - \delta +1} }{ \Gamma \left( r_1 - \delta +2 \right) }\left( \left\vert \Lambda _1 \right\vert \left(\varsigma_0 (\upsilon_2 )\right) ^{r_{3} + \delta -1}-\left(\varsigma_0 (\upsilon _1) \right) ^{r_3 + \delta -1} \right) \\ & \quad + \tfrac{ \left\Vert \widetilde{ \varpi }_1 \right\Vert \widetilde{\varpi }_2 \left( \mathtt{γ}^{\ast }\right) }{ \Gamma \left( r_1 + r_3 +1\right) }\left[ \left( \varsigma_0 (\upsilon_2 )\right) ^{r_1+ r_3} - \left(\varsigma_0 (\upsilon _1) \right) ^{r_1 + r_3 }\right]. \end{align*} |
As \upsilon _1 \to \upsilon _2 , we obtain, \left\vert z(\upsilon _2) - z(\upsilon _1) \right\vert \to 0 . Therefore, \Psi_2 \left(\Omega _{\mathtt{γ}^{ \ast }}\right) is equicontinuous. Combining the results from Steps 1 and 2, and employing the theorem of Arzelà-Ascoli, we can confirm the completely continuity of \Psi_2 .
Step 3. \Psi_2 \left(\varkappa \right) is convex for all \varkappa \in \mathbb{E} . Let z_1, z_2\in \Psi _2 \left(\varkappa \right) . Then \sigma _1, \sigma _2 \in \mathcal{R}_{\gimel, \varkappa } exist such that for each \upsilon \in \mathfrak{B}
\begin{align*} z_j \left( \upsilon \right) & = \left[ \Lambda _3 \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3 + \delta -1}-\Lambda _1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1}\right] ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{ r_1 - \delta +1,\varsigma } \sigma_j \big( \tilde{b}\big) \\ & \quad +^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3, \varsigma } \sigma _j \left( \upsilon \right) - \Lambda _2 ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_ 1 + r_3 , \varsigma} \sigma _j \big( \tilde{b}\big), \qquad j = 1,2. \end{align*} |
Let \mu \in \left[ 0, 1\right] . Then for any \upsilon \in \mathfrak{B} ,
\begin{align*} \big( \mu z_1 (\upsilon ) & + \left( 1- \mu \right) z_2 \left( \upsilon \right) \big) = \Big[ \Lambda _3 \left(\varsigma_0 \big( \tilde{b}\big) \right)^{r_3 +\delta -1} \\ & \quad - \Lambda _1 \left(\varsigma_0 (\upsilon ) \right)^{r_3+ \delta -1}\Big] ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 - \delta +1, \varsigma } \left( \mu \sigma _1 \big( \tilde{b}\big) +\left( 1 - \mu \right) \sigma_2 \big( \tilde{b} \big) \right)\\ & \quad +^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1+ r_3, \varsigma }\left( \mu \sigma _1 \left( \upsilon \right) + \left( 1- \mu \right) \sigma _2 \left( \upsilon \right) \right) - \Lambda _2 ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3, \varsigma } \left( \mu \sigma _1 \big( \tilde{b} \big) +\left( 1 - \mu \right) \sigma _2 \big( \tilde{b} \big) \right). \end{align*} |
Since \gimel has convex values, \mathcal{R}_{\gimel, \varkappa } is convex, and for \mu \in \lbrack 0, 1] , \left(\mu \sigma _1 \left(\upsilon \right) +\left(1- \mu \right) \sigma _2 \left(\upsilon \right) \right) \in \mathcal{R}_{\gimel, \varkappa } . Therefore, \mu z_1 (\upsilon) + \left(1- \mu \right) z_2 \left(\upsilon \right) \in \Psi _2 \left(\varkappa \right) , which shows that \Psi_2 is convex-valued. Moreover, \Psi_1 is compact and convex-valued.
Step 4. We prove that \operatorname{Gr} \left(\Psi _2 \right) is closed. Let \varkappa _n \to \varkappa_{\ast } , z_n \in \Psi _2 \left(\varkappa _n \right) and z_{n} \to z_{ \ast } . We show that z_{\ast } \in \Psi_2 \left(\varkappa _{ \ast }\right) . Since z_n \in \Psi _2 \left(\varkappa _n \right) , there is a \sigma_n \in \mathcal{R}_{ \gimel, \varkappa _n } such that,
\begin{align*} z_n \left( \upsilon \right) & = \left[ \Lambda_3 \left( \varsigma_0 \big( \tilde{b} \big) \right)^{ r_3 + \delta -1} - \Lambda_1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1} \right] ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 -\delta +1, \varsigma } \sigma _n \big( \tilde{b} \big) \\ &\quad +^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3, \varsigma} \sigma _n \left( \upsilon \right) - \Lambda _2 ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3 , \varsigma } \sigma _n \big( \tilde{b} \big). \end{align*} |
Therefore, we need to prove the existence of \sigma _{ \ast }\in \mathcal{R}_{\gimel, \varkappa _{\ast }} such that for each \upsilon \in \mathfrak{B} ,
\begin{align*} z_{\ast } \left( \upsilon \right) & = \left[ \Lambda _3 \left( \varsigma_0 \big( \tilde{b} \big) \right)^{r_3 + \delta - 1 }- \Lambda_1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1}\right] ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 - \delta +1, \varsigma} \sigma _{ \ast } \big( \tilde{b} \big) \\ &\quad +^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3 , \varsigma } \sigma _{ \ast } ( \upsilon ) -\Lambda _2 ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3 , \varsigma } \sigma _{ \ast } \big( \tilde{b} \big), \qquad \upsilon \in \mathfrak{B}. \end{align*} |
Let \Upsilon : L^1 \left(\mathfrak{B}, \mathbb{R} \right) \to C\left(\mathfrak{B}, \mathbb{R}\right) be a continuous linear operator defined as follows:
\begin{align*} \sigma & \to \Upsilon \left( \sigma \right) \left( \upsilon \right) = \left[ \Lambda _3 \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3 + \delta - 1 } - \Lambda _1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1} \right] I^{a_{1}-\delta +1,\varsigma }\mathfrak{\sigma } \big( \tilde{b} \big) \\ & \quad + ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3 , \varsigma } \sigma \left( \upsilon \right) - \Lambda _2 ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1+ r_3, \varsigma } \sigma \big( \tilde{b}\big), \qquad \upsilon \in \mathfrak{B}. \end{align*} |
Notice that
\begin{align*} \left\Vert z_{n}-z_{\ast }\right\Vert & = \Big\Vert \Big[ \Lambda _3 \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3 + \delta -1} - \Lambda _1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1} \Big] ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 - \delta +1, \varsigma }\left( \sigma _n \big( \tilde{b} \big) - \sigma _{\ast } \big( \tilde{b} \big) \right) \\ & \quad +^{\mathrm{RL}\!}{}{\mathfrak{I}}^{ r_1 + r_3 , \varsigma }\left( \sigma _n \left( \upsilon \right) - \sigma _{\ast } ( \upsilon ) \right) - \Lambda _2 ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3, \varsigma } \left( \sigma _n \big( \tilde{b} \big) -\sigma _{\ast } \big( \tilde{b} \big) \right) \Big\Vert \to 0, \end{align*} |
when n \to \infty . Therefore, by Lemma 2.11, \Upsilon \circ \mathcal{R}_{\gimel, \varkappa } is a closed graph operator. Additionally, z_n \in \Upsilon \left(\mathcal{R}_{\gimel, \varkappa_n} \right) . Since \varkappa_n \to \varkappa _{\ast } , Lemma 2.11 gives
\begin{align*} z_{\ast }\left( \upsilon \right) & = \left[ \Lambda _3 \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3 + \delta -1} - \Lambda _1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1}\right] ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 - \delta +1, \varsigma} \sigma_{\ast } \big( \tilde{b} \big) \\ & \quad + ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3 , \varsigma } \sigma _{ \ast } \left( \upsilon\right) -\Lambda _2 ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{ r_1 + r_3,\varsigma } \sigma _{\ast } \big( \tilde{b} \big), \end{align*} |
for some \sigma _{\ast }\in \mathcal{R}_{\gimel, \varkappa _{\ast }} . Thus, the graph of \Psi _2 is closed. As a result, \Psi_2 is compact and upper semi-continuous.
Step 5. We prove that \Psi _1 is a contraction in \mathbb{E} . Let \varkappa _1, \varkappa _2 \in \mathbb{E} . By using the assumption (P3), we get,
\begin{align*} \left\vert \Psi _1 \varkappa _1 \left( \upsilon \right) -\Psi_1 \varkappa _2 \left( \upsilon \right) \right\vert & \leq l_{ \mathbb{y}} \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3 } \left( \tfrac{ \left\vert \Lambda_3 \right\vert + \left\vert \Lambda_1 \right\vert }{\Gamma \left( 2 - \delta \right) } + \tfrac{ 1 + \left\vert \Lambda _2 \right\vert }{\Gamma \left( r_3 +1 \right) } \right) \left\Vert \varkappa _1 - \varkappa _2 \right\Vert. \end{align*} |
Thus, \left\Vert \Psi _1\varkappa _1- \Psi _1 \varkappa _2\right\Vert \leq l_{\mathbb{y}} \lambda _2 \left\Vert \varphi - \overline{\varphi } \right\Vert . As l_{\mathbb{y}} \lambda _2 < 1 , we conclude that \Psi _1 is a contraction. Thus, the operators \Psi _1 and \Psi _2 meet the theorem [27] hypotheses. As a result, we conclude that either of the two following conditions holds, (a) \Theta has an FP in \overline{\mathbb{E}} , (b) we have \varkappa \in \partial \mathbb{E} and \xi \in \left(0, 1\right) with \varkappa \in \xi F\left(\varkappa \right) . We show that conclusion (b) is not possible. If \varkappa \in \xi \Psi _1 \left(\varkappa \right) + \xi \Psi _2 \left(\varkappa \right) for \xi \in \left(0, 1\right) . Then, \sigma \in \mathcal{R}_{\gimel, \varkappa } exists such that
\begin{align*} \left\vert \varkappa \left( \upsilon \right) \right\vert & = \Big\vert \xi ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{ r_3 , \varsigma } \mathbb{y} \left( \upsilon , \varkappa \left( \upsilon \right) \right) + \xi ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3, \varsigma } \sigma \left( \upsilon \right) + \xi \Big[ \Lambda _3 \left( \varsigma_0 \big( \tilde{b} \big) \right)^{r_3 + \delta -1} \\ & \quad - \Lambda _1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1} \Big]\left( ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{ 1 - \delta ,\varsigma } \mathbb{y} \left( \tilde{b} , \varkappa \big( \tilde{b} \big) \right) + ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 - \delta +1, \varsigma } \sigma \big( \tilde{b} \big) \right)\\ &\quad - \xi \Lambda _2 \left( ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_3 , \varsigma } \mathbb{y} \left( \tilde{b} , \varkappa \big( \tilde{b} \big) \right) +^{\mathrm{RL}\!}{ }{\mathfrak{I}}^{r_1 + r_3 , \varsigma } \sigma \big( \tilde{b} \big) \right) \Big\vert \leq \lambda _1 \left\Vert \widetilde{\varpi }_1 \right\Vert \widetilde{\varpi }_2 \left( \varkappa \right) +\lambda _2 \left\Vert \vartheta _{\mathbb{y}} \right\Vert, \end{align*} |
which implies that \left\vert \varkappa \left(\upsilon \right) \right\vert \leq \lambda _1 \left\Vert \widetilde{\varpi }_1 \right\Vert \widetilde{\varpi } _2 \left(\varkappa \right) +\lambda _2 \left\Vert \vartheta _{\mathbb{y} } \right\Vert , for each \upsilon \in \mathfrak{B} . If criterion of [27, Theorem-(b)] is true, then \xi \in \left(0, 1\right) and \varkappa \in \partial \mathbb{E} with \varkappa = \xi \Theta \left(\varkappa \right) exist. Therefore, \varkappa is a solution of (1.3) with \left\Vert \varkappa \right\Vert = \mathcal{N} . Now, thanks to \left\vert \varkappa \left(\upsilon \right) \right\vert \leq \lambda _1 \left\Vert \widetilde{\varpi }_1 \right\Vert \widetilde{\varpi } _2 \left(\varkappa \right) +\lambda _2 \left\Vert \vartheta _{\mathbb{y} } \right\Vert , we get
\begin{equation*} \tfrac{\mathcal{N}}{\lambda _1 \left\Vert \widetilde{ \varpi }_1 \right\Vert \widetilde{\varpi}_2 \left( \mathcal{N} \right) +\lambda_2 \left\Vert \vartheta _{\mathbb{y}} \right\Vert }\leq 1, \end{equation*} |
which contradicts (3.10). Thus, it follows from the theorem [27] that \Theta admits an FP, and it is a solution of (1.3).
We try to establish a more general existence criterion for the FDI (1.3) under new hypotheses. Specifically, we demonstrate the desired existence result for a nonconvex-valued right-hand side using the theorem of Covitz and Nadler [28]. For a metric space \big(\mathbb{E}, \varrho \big) , we define
\begin{equation*} \left\{ \begin{array}{ll} \mathscr{H}^{\varrho} : \mathcal{P} \left( \mathbb{E} \right) \times \mathcal{P} \left( \mathbb{E} \right) \to \mathbb{R}^+ \cup \left\{ \infty \right\}, & \\ \mathscr{H}^{\varrho} \big( \widetilde{R}_1, \widetilde{R}_2 \big) = \max \bigg\{ \sup\limits_{ \widetilde{r}_1 \in \widetilde{R}_1} \varrho \big( \widetilde{r}_1 , \widetilde{R}_2 \big) , \, \sup\limits_{ \widetilde{r}_2 \in \widetilde{R}_2 } \varrho \big( \widetilde{R}_1, \widetilde{r}_2 \big) \bigg\}, & \end{array}\right. \end{equation*} |
where \varrho \big(\widetilde{R}_1, \widetilde{r}_2 \big) = \inf_{ \widetilde{r}_1 \in \widetilde{R}_1 } \varrho \left(\widetilde{r}_1, \varrho_2 \right) and \varrho \big(\widetilde{r}_1, \widetilde{R}_2 \big) = \inf_{ \widetilde{r}_2 \in \widetilde{R}_2 } \varrho \left(\widetilde{r}_1, \widetilde{r}_2 \right) . Then \left(\mathcal{P}_{ \mathrm{b}, \mathrm{cl} } (\mathbb{E}), \mathscr{H}^{\varrho} \right) forms a metric space [29].
Definition 3.4. An SVM \Omega : \mathbb{E} \to \mathcal{P}_{\mathrm{cl}} (\mathbb{E}) is a \widetilde{\eta } -Lipschitz if and only if \widetilde{\eta } > 0 exists such that
\begin{equation*} \mathscr{H}^{\varrho} \left( \Omega \left( \varkappa_1 \right), \Omega \left( \varkappa_2 \right) \right) \leq \widetilde{\eta } \varrho \left( \varkappa _1, \varkappa _2 \right), \qquad \forall \varkappa_1, \varkappa_2 \in { \mathbb{E}.} \end{equation*} |
In particular, \Omega is a contraction whenever \widetilde{\eta } < 1 .
Theorem 3.5. Assume that (P3) and the following conditions hold:
{\rm P6)} The map \gimel : \mathfrak{B} \times \mathbb{R} \to \mathcal{P}_{ \mathrm{cp}} \left(\mathbb{R}\right) is such that \gimel \left(\cdot, \varphi \right) : \mathfrak{B} \to \mathcal{P}_{\mathrm{cp}} (\mathbb{R}) is measurable for any \varkappa \in \mathbb{R} ;
{\rm P7)} The condition \mathscr{H}^{\varrho} \left(\gimel \left(\upsilon, \varkappa _1 \right), \gimel \left(\upsilon, \varkappa _2 \right) \right) \leq \mathfrak{n} (\upsilon) \left\vert \varkappa_1 - \varkappa_2 \right\vert holds for a.e. \upsilon \in \mathfrak{B} and \varkappa _1, \varkappa _2 \in \mathbb{R} with \mathfrak{n} \in C \left(\mathfrak{B}, \mathbb{R} ^+ \right) and \varrho \left(0, \gimel \left(\upsilon, 0 \right) \right) \leq \mathfrak{n} (\upsilon) for a.e. \upsilon \in \mathfrak{B} .
Then FDI (1.3) has at least one solution for \mathfrak{B} whenever \left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{ \mathbb{y} } \lambda_2 < 1 , where \lambda _1, \lambda _2 are given in (3.11).
Proof. By assumption (P6) and [30, Theorem III.6], \gimel has a measurable selection \sigma : \mathfrak{B} \to \mathbb{R} , with \sigma \in L^1 (\mathfrak{B}) , which implies that \gimel is integrability bounded. Therefore, \mathcal{R}_{ \gimel, \varkappa } \neq \varnothing . We demonstrate that the operator \Omega: \mathbb{E} \to \mathcal{P}(\mathbb{E}) described in (3.12) meets the conditions required by Nadler and Covitz's FPT. Specifically, we prove that \Omega (\varkappa) is closed for each \varkappa \in \mathbb{E} . Assume a sequence such that \left\{ u_{n} \right\} _{n\geq 0}\in \Omega (\varkappa) and u_n \to u \; (n \to \infty) in \mathbb{E} . Then u\in \mathbb{E} and \sigma_n \in \mathcal{R}_{ \mathcal{G}, \varkappa_n } exists such that
\begin{align*} u_n \left( \upsilon \right) & = ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_3, \varsigma } \mathbb{y} ( \upsilon , \varkappa ( \upsilon ) ) + ^{\mathrm{RL}\!}{ }{ \mathfrak{I}}^{r_1 + r_3, \varsigma} \sigma _n \left( \upsilon \right) +\Big[ \Lambda _3 \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3 + \delta -1} \\ &\quad - \Lambda _1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1} \Big] \left( ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{ 1 - \delta , \varsigma } \mathbb{y} \left( \tilde{b} , \varkappa \big( \tilde{b} \big) \right) + ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_{1} - \delta +1, \varsigma } \sigma _n \big( \tilde{b} \big) \right) \\ &\quad - \Lambda _2 \left( ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_3 , \varsigma } \mathbb{y} \left( \tilde{b} , \varkappa \big( \tilde{b}\big) \right) + ^{\mathrm{RL}\!}{ }{\mathfrak{I}}^{r_1+ r _3, \varsigma } \sigma _n \big( \tilde{b} \big) \right). \end{align*} |
So there is a subsequence \sigma _n that converges to \sigma in L^1 \left(\mathfrak{B}\right) , because \gimel has compact values. As a result, \sigma \in \mathcal{R}_{ \gimel, \varkappa } , and we get
\begin{align*} u_n ( \upsilon ) \to u\left( \upsilon \right) & = ^{\mathrm{RL}\!}{ }{\mathfrak{I}}^{r_3 , \varsigma } \mathbb{y} \left( \upsilon ,\varkappa ( \upsilon ) \right) + ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3, \varsigma } \sigma \left( \upsilon \right)+ \Big[ \Lambda _3 \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3 + \delta -1} \\ & \quad - \Lambda _1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1 } \Big] \left(^{\mathrm{RL}\!}{}{\mathfrak{I}}^{ 1 - \delta ,\varsigma } \mathbb{y} \left( \tilde{b} , \varkappa \big( \tilde{b} \big) \right) + ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1- \delta +1, \varsigma } \sigma \big( \tilde{b} \big) \right) \\ & \quad -\Lambda _2 \left( ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_3, \varsigma } \mathbb{y} \left( \tilde{b} , \varkappa \big( \tilde{b} \big) \right) + ^{\mathrm{RL}\!}{ }{\mathfrak{I}}^{r_1 + r_3 , \varsigma } \sigma \big( \tilde{b} \big) \right). \end{align*} |
Hence u \in \Omega (\varkappa) . Next, we show that a \Delta \in (0, 1) , \left(\Delta = \left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{ \mathbb{y} } \lambda_2 \right) exists such that
\begin{equation*} \mathscr{H}^{\varrho} \left( \Omega \left( \varkappa _1 \right), \Omega \left( \varkappa _2 \right) \right) \leq \Delta \left\Vert \varkappa _1 - \varkappa _2 \right\Vert, \qquad \forall \varkappa _1 , \varkappa _2 \in \mathbb{E}. \end{equation*} |
Let \varkappa _1, \varkappa _2 \in \mathbb{E} and v_1 \in \Omega \left(\varkappa _1 \right) . Then \sigma _1 \left(\upsilon \right) \in \gimel \left(\upsilon, \varkappa _1 \left(\upsilon \right) \right) exists such that for all \upsilon \in \mathfrak{B} and
\begin{align*} v_1 \left( \upsilon \right) & = ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_3, \varsigma } \mathbb{y} \left( \upsilon , \varkappa _1 \left( \upsilon \right) \right) + ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3, \varsigma } \sigma _1 ( \upsilon ) + \Big[ \Lambda _3 \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3 + \delta -1} \\ &\quad -\Lambda _1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1} \Big] \left( ^{\mathrm{RL}\!}{}{\mathfrak{I}}^ {1 - \delta ,\varsigma } \mathbb{y} \left( \tilde{b} , \varkappa _1 \big( \tilde{b}\big) \right) +^{\mathrm{RL}\!}{}{\mathfrak{I}} ^{r_1 - \delta +1, \varsigma } \sigma _1 \big( \tilde{b} \big) \right) \\ &\quad - \Lambda _2 \left( ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_3, \varsigma }\mathbb{y} \left( \tilde{b} , \varkappa _1 \big( \tilde{b}\big) \right) +^{\mathrm{RL}\!}{}{\mathfrak{I}}^{ r_1 + r_3, \varsigma } \sigma _1 \big( \tilde{b} \big) \right). \end{align*} |
By (P7), we have
\begin{equation*} \mathscr{H}^{\varrho} \left( \gimel \left( \upsilon ,\varkappa _1 \left( \upsilon \right) \right), \gimel \left( \upsilon , \varkappa _2 ( \upsilon ) \right) \right) \leq \mathfrak{n} ( \upsilon ) \left\vert \varkappa _1 ( \upsilon ) -\varkappa _2 ( \upsilon ) \right\vert. \end{equation*} |
Thus, \chi (\upsilon) \in \gimel \left(\upsilon, \varkappa _2 \right) exists such that \left\vert \sigma _1 \left(\upsilon \right) -\chi \right\vert \leq \mathfrak{n} (\upsilon) \left\vert \varkappa _1 (\upsilon) -\varkappa _2 (\upsilon) \right\vert , for each \upsilon \in \mathfrak{B} . We build an SVM, \mathcal{O} : \mathfrak{B} \to \mathcal{P} (\mathbb{R}) as follows:
\begin{equation*} \mathcal{O} ( \upsilon ) = \Big\{ \chi \in \mathbb{R} : \left\vert \sigma _1 \left( \upsilon \right) -\chi \right\vert \leq \mathfrak{n} ( \upsilon ) \left\vert \varkappa _1 (\upsilon ) - \varkappa _2 ( \upsilon ) \right\vert \Big\}. \end{equation*} |
Notice that \sigma _1 and \omega = \mathfrak{n} \left\vert \varkappa _1 - \varkappa _2 \right\vert are measurable, so it follows that \mathcal{O} (\upsilon) \cap \gimel \left(\upsilon, \varkappa _2 \right) is measurable. Next, we select the function \sigma _2 (\upsilon) \in \gimel \left(\upsilon, \varkappa _2 \right) such that,
\begin{equation*} \left\vert \sigma _1 ( \upsilon ) - \sigma _2 ( \upsilon ) \right\vert \leq \mathfrak{n} ( \upsilon ) \left\vert \varkappa _1 ( \upsilon ) -\varkappa _2 ( \upsilon ) \right\vert ,\qquad \forall \upsilon \in \mathfrak{B}. \end{equation*} |
Define
\begin{align*} v_2 ( \upsilon ) & = ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_3, \varsigma } \mathbb{y} \left( \upsilon , \varkappa _2 ( \upsilon ) \right) + I^{\mathrm{RL}\!}{ }{\mathfrak{I} }^{ r_1 + r_3, \varsigma } \sigma _2 ( \upsilon ) + \Big[ \Lambda _3 \left(\varsigma_0 \big( \tilde{b}\big) \right)^{ r_3 + \delta -1} \\ &\quad - \Lambda _1 \left(\varsigma_0 (\upsilon ) \right) ^{r_3 + \delta -1} \Big] \left( ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{ 1 - \delta , \varsigma } \mathbb{y} \left( \tilde{b} , \varkappa _2 \big( \tilde{b} \big) \right) + ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{ r_1 - \delta +1, \varsigma } \sigma _2 \big( \tilde{b} \big) \right) \\ & \quad -\Lambda _2 \left( ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_3, \varsigma } \mathbb{y} \left( \tilde{b} , \varkappa _2 \big( \tilde{b} \big) \right) + ^{\mathrm{RL}\!}{}{\mathfrak{I}}^{r_1 + r_3, \varsigma} \sigma _2 (\tilde{b} ) \right). \end{align*} |
As a results, we arrive at,
\begin{equation*} \left\vert v_1 ( \upsilon ) -v_2 ( \upsilon ) \right\vert \leq \left( \left\Vert \mathfrak{n}\right\Vert \lambda_1 + l_{\mathbb{y}} \lambda _2 \right) \left\Vert \varkappa _1 - \varkappa _2 \right\Vert, \end{equation*} |
which implies \left\Vert v_1 - v_2 \right\Vert \leq \left(\left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{\mathbb{y}} \lambda _2 \right) \left\Vert\varkappa _1 - \varkappa _2 \right\Vert . Now, by interchanging the roles of \varkappa _1 and \varkappa _2 , we obtain,
\begin{equation*} \mathscr{H}^{\varrho} \left( \Omega \left( \varkappa _1 \right) ,\Omega \left( \varkappa _2 \right) \right) \leq \left( \left\Vert \mathfrak{n} \right\Vert \lambda_1 + l_{\mathbb{y}} \lambda _2 \right) \left\Vert \varkappa _1 - \varkappa _2 \right\Vert. \end{equation*} |
Since \Omega is a contraction, it follows that the Covitz and Nadler theorem that \Omega has an FP, which is a solution of the FDI (1.3).
In order to validate the theoretical findings, we provide specific cases of FDIs in this section. In fact, we focus on the FDI with the following form:
\begin{equation} \left\{ \begin{array}{ll} ^{\mathrm{H}\!}{}{\mathfrak{D}}^{ r_1, r_2,\varsigma } \left( ^{\mathrm{C}\!}{}{\mathfrak{D}}^{r_3, \varsigma }\varkappa ( \upsilon ) -\mathbb{y} \left( \upsilon , \varkappa (\upsilon ) \right) \right) \in \gimel \left( \upsilon ,\varkappa ( \upsilon ) \right), & \upsilon \in \mathfrak{B}, \\ \varkappa ( 0 ) +\eta _1 \varkappa \big( \tilde{b} \big) = 0, & \\ ^{\mathrm{C}\!}{}{\mathfrak{D}}^{ \delta + r_3 - 1, \varsigma } \varkappa ( 0 ) +\eta _2 ^{\mathrm{C}\!}{}{\mathfrak{D}} ^{\delta + r_3 -1, \varsigma } \varkappa \big( \tilde{b} \big) = 0. & \end{array}\right. \end{equation} | (4.1) |
The examples below are special cases of FDIs given by (4.1).
Example 4.1. Using the FDIs defined by (4.1) and taking r_1 \in \big\{ \frac{1}{2}, \frac{2}{3}, \frac{5}{6} \big\} , r_2 = \frac{1}{3} , r_3 = \frac{1}{5} , \varsigma (\upsilon) = \upsilon^2 , \eta _1 = \frac{1}{4} , \eta _2 = \frac{1}{6} , \delta = 0.666, 0.777, 0.888 , and \tilde{b} = 1 , the problem (4.1) is reduced to
\begin{equation} \left\{ \begin{array}{ll} ^{\mathrm{H}\!}{}{\mathfrak{D}}^{ 1 / 2, 1 / 3, \upsilon ^2} \left( ^{\mathrm{C}\!}{}{\mathfrak{D}} ^{ 1 / 5 , \upsilon ^2} \varkappa ( \upsilon ) - \mathbb{y} \left( \upsilon , \varkappa ( \upsilon ) \right) \right) \in \gimel \left( \upsilon , \varkappa ( \upsilon ) \right), & \\ \varkappa \left( 0\right) + \tfrac{1}{4}\varkappa \left( 1\right) = 0, & \\ ^{\mathrm{C}\!}{}{\mathfrak{D}}^{ - 2 / 15, \upsilon ^2} \varkappa ( 0) + \tfrac{1}{6} ^{\mathrm{C}\!}{}{ \mathfrak{D}}^{ - 2 / 15, \upsilon ^2} \varkappa ( 1 ) = 0, & \end{array}\right. \end{equation} | (4.2) |
for \upsilon \in \mathfrak{B} . With these data, it follows from (3.3), that we have
\begin{align*} \Lambda_1 & = \tfrac{\eta _2}{\left( \eta _2+1\right) \Gamma \left( r_3 + \delta \right)}\simeq \left\{ \begin{array}{rl} 0.1302, & r_1 = 1 / 2, \\ 0.1409, & r_1 = 2 / 3, \\ 0.1494, & r_1 = 5 / 6, \end{array} \right. \\ \Lambda_2 & = \tfrac{\eta _1}{ \eta _1+ 1 }\simeq \left\{ \begin{array}{rl} 0.2000, & r_1 = 1 / 2, \\ 0.2000, & r_1 = 2 / 3, \\ 0.2000, & r_1 = 5 / 6, \end{array}\right. \\ \Lambda _3 & = \tfrac{\eta _1 \eta _2}{ \left( \eta _2+ 1\right) \Gamma \left( r_3+ \delta \right) }\simeq \left\{ \begin{array}{rl} 0.0325, & r_1 = 1 / 2, \\ 0.0352, & r_1 = 2 / 3, \\ 0.0373, & r_1 = 5 / 6. \end{array} \right. \end{align*} |
We define the function \mathbb{y} and the SVM \gimel : \mathfrak{B} \times \mathbb{R}\to \mathcal{P} (\mathbb{R}) as follows:
\begin{equation} \mathbb{y} \left( \upsilon ,\varkappa \right) = \tfrac{ \cos ( \upsilon ) }{ \upsilon ^2+2}\left( \tfrac{ \left\vert \varkappa \right\vert }{ \left\vert \varkappa \right\vert +1 } \right), \qquad \forall \, (\upsilon ,\varkappa ) \in \mathfrak{B} \times \mathbb{R}, \end{equation} | (4.3) |
and
\begin{equation} \gimel \left( \upsilon ,\varkappa \right) = \left[ \tfrac{1}{\left( 5 \upsilon ^2 + 7 \exp ( \upsilon ) \right) } \tfrac{\varkappa }{ 5 \left( \varkappa +3 \right) },\ \tfrac{1}{ \sqrt{ \upsilon ^2 + 16 } } \tfrac{ \left\vert \varkappa \right\vert }{ \left\vert \varkappa \right\vert +1} \right]. \end{equation} | (4.4) |
For \varkappa, \overline{\varkappa }\in \mathbb{R} , we have
\begin{align} \left\vert \mathbb{y} \left( \upsilon ,\varkappa \right) - \mathbb{y} \left( \upsilon ,\overline{\varkappa }\right) \right\vert & = \left\vert \tfrac{\cos ( \upsilon ) }{\upsilon ^2+2}\left( \tfrac{ \left\vert \varkappa \right\vert }{ \left\vert \varkappa \right\vert +1} - \tfrac{\left\vert \overline{\varkappa }\right\vert }{ \left\vert \overline{\varkappa } \right\vert +1} \right) \right\vert \leq \tfrac{1}{ \upsilon ^2+2} \left( \tfrac{\left\vert \varkappa -\overline{\varkappa }\right\vert }{ \left( 1+\left\vert \varkappa \right\vert \right)\left( 1+\left\vert \overline{\varkappa } \right\vert \right) }\right) \leq l_{\mathbb{y}} \left\vert \varkappa - \overline{\varkappa } \right\vert, \end{align} | (4.5) |
with l_{\mathbb{y}} = \tfrac{1}{2} and also,
\begin{equation*} \mathbb{y} \left( \upsilon ,\varkappa \right) \leq \tfrac{1}{ \exp \left( \upsilon ^2 \right) +1} = \vartheta_{\mathbb{y}} ( \upsilon ) , \qquad \forall (\upsilon ,\varkappa )\in \mathfrak{B} \times \mathbb{R}. \end{equation*} |
Thus, the assumptions (P3) and (P4) hold. It is also clear that the SVM \gimel satisfies the assumption (P1) and
\begin{equation*} \left\Vert \gimel\left( \upsilon ,\varkappa \right) \right\Vert _{ \mathcal{P}} = \sup \Big\{ \left\vert \eta \right\vert \, : \, \eta \in \gimel ( \upsilon ,\varkappa ) \Big\} \leq \tfrac{1}{ \sqrt{\upsilon ^2 + 16} } = \widetilde{\varpi }_1 ( \upsilon ) \widetilde{\varpi }_2 \left( \left\Vert \varkappa \right\Vert \right), \end{equation*} |
where \left\Vert \widetilde{\varpi }_1\right\Vert = \frac{1}{4} and \widetilde{\varpi }_2 \left(\left\Vert \varkappa \right\Vert \right) = 1 . Thus, (P2) holds, and by (P5),
\begin{align*} \lambda _1& = \left(\varsigma_0 \big( \tilde{b}\big) \right)^{r_3+ r_1 } \left[ \tfrac{ \left\vert \Lambda _3 \right\vert +\left\vert \Lambda _1 \right\vert }{ \Gamma \left( r_1 - \delta + 2 \right) } + \tfrac{ 1+\left\vert \Lambda _2 \right\vert }{\Gamma \left( r_1 + r_3 + 1 \right) } \right] \simeq \left\{ \begin{array}{rl} 1.494, & r_1 = 1 / 2, \\ 1.446, & r_1 = 2 / 3, \\ 1.374, & r_1 = 5 / 6, \end{array} \right. \notag \\ \lambda_2 & = \left(\varsigma_0 \big( \tilde{b}\big) \right)^{r_3 } \left[ \tfrac{ \left\vert \Lambda_3 \right\vert + \left\vert \Lambda_1 \right\vert}{ \Gamma \left( 2-\delta \right) } + \tfrac{ 1+\left\vert \Lambda_2 \right\vert }{ \Gamma \left( r_3 + 1 \right) } \right]\simeq \left\{ \begin{array}{rl} 1.489, & r_1 = 1 / 2, \\ 1.500, & r_1 = 2 / 3, \\ 1.504, & r_1 = 5 / 6, \end{array}\right. \end{align*} |
for which the curves are shown in Figure 1, Moreover,
\begin{equation*} \mathcal{N} > \lambda _1 \left\Vert \widetilde{ \varpi }_1 \right\Vert \widetilde{\varpi}_2 \left( \mathcal{N}\right) +\lambda _2 \left\Vert \vartheta _{\mathbb{y}} \right\Vert\simeq \left\{ \begin{array}{rl} 1.140, & r_1 = 1 / 2, \\ 1.117, & r_1 = 2 / 3, \\ 1.086, & r_1 = 5 / 6, \end{array}\right. \end{equation*} |
whenever \mathcal{N} = 1.15 , which it is shown in Figure 2. As seen in Table 1, the effect of the order of the derivative r_1 is very insignificant. So all assumptions of Theorem 3.3 are valid. Hence the FDI (4.2) has a solution for \mathfrak{B} .
\upsilon | \pmb{r_1=\frac{1}{2}} | \pmb{r_1=\frac{2}{3}} | \pmb{r_1=\frac{5}{6}} | ||||||||
\lambda_1 | \lambda_2 | \mathcal{N > ... } | \lambda_1 | \lambda_2 | \mathcal{ N > ... } | \lambda_1 | \lambda_2 | \mathcal{N > ... } | |||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.10 | 0.059 | 0.593 | 0.316 | 0.027 | 0.597 | 0.307 | 0.012 | 0.599 | 0.303 | ||
0.20 | 0.157 | 0.782 | 0.443 | 0.089 | 0.788 | 0.423 | 0.049 | 0.790 | 0.411 | ||
0.30 | 0.277 | 0.920 | 0.552 | 0.179 | 0.927 | 0.523 | 0.114 | 0.929 | 0.502 | ||
0.40 | 0.414 | 1.032 | 0.653 | 0.295 | 1.040 | 0.618 | 0.207 | 1.043 | 0.590 | ||
0.50 | 0.566 | 1.129 | 0.751 | 0.435 | 1.137 | 0.712 | 0.328 | 1.140 | 0.678 | ||
0.60 | 0.731 | 1.214 | 0.849 | 0.597 | 1.223 | 0.809 | 0.478 | 1.226 | 0.771 | ||
0.70 | 0.907 | 1.291 | 0.945 | 0.779 | 1.301 | 0.908 | 0.657 | 1.304 | 0.869 | ||
0.80 | 1.093 | 1.362 | 1.042 | 0.982 | 1.372 | 1.011 | 0.866 | 1.376 | 0.974 | ||
0.90 | 1.289 | 1.428 | 1.140 | 1.205 | 1.438 | 1.117 | 1.105 | 1.442 | 1.086 | ||
1.00 | 1.494 | 1.489 | 1.238 | 1.446 | 1.500 | 1.228 | 1.374 | 1.504 | 1.206 |
In the next example, we check the changes in the derivative order r_2 .
Example 4.2. Using the FDI defined by (4.1) and taking r_1 = \frac{1}{2} , r_2 \in \big\{ \frac{1}{15}, \frac{1}{7}, \frac{1}{3} \big\} , r_3 = \frac{1}{5} , \varsigma \left(\upsilon \right) = \upsilon , \eta_1 = \frac{1}{4} , \eta _2 = \frac{1}{6} , \delta = 0.533, 0.571, 0.666 , and \tilde{b} = 1 , 4.1 is reduced to
\begin{equation} \left\{ \begin{array}{ll} ^{\mathrm{H}\!}{}{\mathfrak{D}}^{ 1 / 2, 1 / 3, \upsilon }\left( ^{\mathrm{C}\!}{}{\mathfrak{D}}^{ 1 / 5, \upsilon } \varkappa ( \upsilon ) - \mathbb{y} \left( \upsilon,\varkappa ( \upsilon ) \right) \right) \in \gimel \left( \upsilon ,\varkappa ( \upsilon ) \right), & \upsilon \in \mathfrak{B}, \\ \varkappa ( 0) + \tfrac{1}{4}\varkappa ( 1) = 0, & \\ ^{\mathrm{C}\!}{}{\mathfrak{D}}^{ -2 / 15, \upsilon } \varkappa ( 0) + \tfrac{1}{6} ^{\mathrm{C}\!}{}{\mathfrak{D}}^{ - 2 / 15, \upsilon } \varkappa ( 1 ) = 0. & \end{array}\right. \end{equation} | (4.6) |
With these data, we find
\begin{equation*} \Lambda _1\simeq \left\{ \begin{array}{rl} 0.114, & r_2 = 1 / 15, \\ 0.119, & r_2 = 1 / 7, \\ 0.130, & r_2 = 1 / 3, \end{array}\right.\quad \Lambda_2\simeq \left\{ \begin{array}{rl} 0.200, & r_2 = 1 / 15, \\ 0.200, & r_2 = 1 / 7, \\ 0.200, & r_2 = 1 / 3, \end{array}\right. \quad \Lambda_3 \simeq \left\{ \begin{array}{rl} 0.028, & r_2 = 1 / 15, \\ 0.029, & r_2 = 1 / 7, \\ 0.032, & r_2 = 1 / 3. \end{array}\right. \end{equation*} |
Consider the SVM \gimel: \mathfrak{B} \times \mathbb{R} \to \mathcal{P} (\mathbb{R}) is defined by, \varphi \to \gimel\left(\upsilon, \varkappa \right) = \left[ 0, \, \frac{ \sin \left(\varkappa \right) }{ 5 \sqrt{\upsilon ^2+4}} + \frac{1}{12} \right] , and the function \mathbb{y} defined in (4.3). From (4.5), we see that the assumption (P3) is satisfied with l_{\mathbb{y}} = \frac{1}{2} . Next, we have \mathscr{H}^{\varrho} \left(\gimel \left(\upsilon, \varkappa \right), \gimel \left(\upsilon, \overline{ \varkappa } \right) \right) \leq \mathfrak{n} (\upsilon) \left\vert \varkappa - \overline{\varkappa }\right\vert , where \mathfrak{n}\left(\upsilon \right) = \frac{1}{5 \sqrt{\upsilon ^2+4}} and \varrho \left(0, \gimel \left(\upsilon, 0\right) \right) = \frac{1}{12}\leq \mathfrak{n} (\upsilon) for a.e. \upsilon \in \mathfrak{B} . Figure 3 shows the curves of \lambda_i , i = 1, 2 , whenever r_2 varies in the interval \mathfrak{B} . By comparing the curves and data in Table 2, it can be clearly seen that as r_2 approaches zero, \lambda_i decreases.
\upsilon | \pmb{r_2=\frac{1}{15}} | \pmb{r_2=\frac{1}{7}} | \pmb{r_2=\frac{1}{3}} | ||||||||
\lambda_1 | \lambda_2 | \left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{\mathbb{y}}\lambda_2 | \lambda_1 | \lambda_2 | \left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{\mathbb{y}}\lambda_2 | \lambda_1 | \lambda_2 | \left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{\mathbb{y}}\lambda_2 | |||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.10 | 0.292 | 0.927 | 0.493 | 0.294 | 0.931 | 0.495 | 0.298 | 0.940 | 0.500 | ||
0.20 | 0.475 | 1.064 | 0.580 | 0.478 | 1.069 | 0.582 | 0.484 | 1.079 | 0.588 | ||
0.30 | 0.631 | 1.154 | 0.640 | 0.635 | 1.159 | 0.643 | 0.643 | 1.171 | 0.650 | ||
0.40 | 0.772 | 1.223 | 0.688 | 0.776 | 1.228 | 0.692 | 0.787 | 1.240 | 0.699 | ||
0.50 | 0.902 | 1.278 | 0.729 | 0.907 | 1.284 | 0.733 | 0.919 | 1.296 | 0.740 | ||
0.60 | 1.025 | 1.326 | 0.765 | 1.031 | 1.332 | 0.769 | 1.045 | 1.345 | 0.777 | ||
0.70 | 1.142 | 1.367 | 0.798 | 1.148 | 1.374 | 0.802 | 1.164 | 1.387 | 0.810 | ||
0.80 | 1.254 | 1.404 | 0.828 | 1.261 | 1.411 | 0.831 | 1.278 | 1.424 | 0.840 | ||
0.90 | 1.361 | 1.438 | 0.855 | 1.369 | 1.444 | 0.859 | 1.388 | 1.458 | 0.868 | ||
1.00 | 1.466 | 1.468 | 0.881 | 1.474 | 1.475 | 0.885 | 1.494 | 1.489 | 0.894 |
Furthermore, we obtain \left\Vert \mathfrak{n}\right\Vert = \frac{1}{10} , resulting in
\begin{equation} \left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{\mathbb{y}}\lambda_2 \simeq \left\{ \begin{array}{rl} 0.881, & r_2 = 1 / 15, \\ 0.885, & r_2 = 1 / 7, \\ 0.894, & r_2 = 1 / 3. \end{array}\right\} < 1. \end{equation} | (4.7) |
These results are shown in Table 2. Furthermore, the curves of Eq (4.7) for three cases of r_2 are shown in Figure 4.
Therefore, all the assumptions of Theorem 3.5 are satisfied, which implies that at least one solution to the problem (4.6) for \mathfrak{B} .
In Example 4.3, we examine our proven theorems for changes of function \varsigma (\upsilon) .
Example 4.3. Using the FDIs defined by (4.1) and taking r_1 \in \frac{2}{3} , r_2 = \frac{1}{3} , r_3 = \frac{1}{5} ,
\begin{equation} \varsigma_1( \upsilon ) = \upsilon^2,\quad \varsigma_2( \upsilon ) = \upsilon, \quad \varsigma_3( \upsilon ) = \sqrt{\upsilon}, \quad \varsigma_4( \upsilon ) = \ln (\upsilon+0.01), \end{equation} | (4.8) |
\eta _1 = \frac{1}{4} , \eta _2 = \frac{1}{6} , \delta = 0.777 , \tilde{b} = 1 , the problem (4.1) is reduced to
\begin{equation} \left\{ \begin{array}{ll} ^{\mathrm{H}\!}{}{\mathfrak{D}}^{ 2 / 3, 1 / 3, \varsigma_j( \upsilon )} \left( ^{\mathrm{C}\!}{}{ \mathfrak{D}}^{ 1 / 5, \varsigma_j( \upsilon )} \varkappa ( \upsilon ) - \mathbb{y} \left( \upsilon , \varkappa ( \upsilon ) \right) \right) \in \gimel \left( \upsilon , \varkappa ( \upsilon ) \right), &\\ \varkappa \left( 0\right) + \tfrac{1}{4}\varkappa \left( 1\right) = 0, & \\ ^{\mathrm{C}\!}{}{\mathfrak{D}}^{ - 2 / 15, \varsigma_j( \upsilon )} \varkappa ( 0) + \tfrac{1}{6} ^{\mathrm{C} \!}{}{\mathfrak{D}}^{ - 2 / 15, \varsigma_j( \upsilon )} \varkappa ( 1 ) = 0, & \end{array}\right. \end{equation} | (4.9) |
for \upsilon \in \mathfrak{B} . With these data, it follows from (3.3) that
\begin{equation*} \Lambda_1 = \tfrac{\eta _2}{\left( \eta _2+1\right) \Gamma \left( r_3 + \delta \right)} \simeq 0.1409, \quad \Lambda_2 = \tfrac{\eta _1}{ \eta _1+ 1 } \simeq 0.2000, \quad \Lambda _3 = \tfrac{\eta _1 \eta _2}{ \left( \eta _2+ 1\right) \Gamma \left( r_3+ \delta \right) }\simeq 0.0352. \end{equation*} |
We define the function \mathbb{y} and the SVM \gimel : \mathfrak{B} \times \mathbb{R}\to \mathcal{P} (\mathbb{R}) as follows:
\begin{equation*} \mathbb{y} \left( \upsilon ,\varkappa \right) = \tfrac{ \cos ( \upsilon ) }{ \upsilon ^2+2}\left( \tfrac{ \left\vert \varkappa \right\vert }{ \left\vert \varkappa \right\vert +1 } \right), \qquad \forall \, (\upsilon ,\varkappa ) \in \mathfrak{B} \times \mathbb{R}, \end{equation*} |
and
\begin{equation*} \gimel \left( \upsilon ,\varkappa \right) = \left[ \tfrac{1}{\left( 5 \upsilon ^2 + 7 \exp ( \upsilon ) \right) } \tfrac{\varkappa }{ 5 \left( \varkappa +3 \right) },\ \tfrac{1}{ \sqrt{ \upsilon ^2 + 16 } } \tfrac{ \left\vert \varkappa \right\vert }{ \left\vert \varkappa \right\vert +1} \right]. \end{equation*} |
For \varkappa, \overline{ \varkappa } \in \mathbb{R} , we have
\begin{equation*} \left\vert \mathbb{y} \left( \upsilon ,\varkappa \right) - \mathbb{y} \left( \upsilon ,\overline{\varkappa }\right) \right\vert = \left\vert \tfrac{\cos ( \upsilon ) }{\upsilon ^2+2}\left( \tfrac{ \left\vert \varkappa \right\vert }{ \left\vert \varkappa \right\vert +1} - \tfrac{\left\vert \overline{ \varkappa }\right\vert }{ \left\vert \overline{\varkappa } \right\vert +1} \right) \right\vert \leq \tfrac{ 1}{ \upsilon ^2+2} \left( \tfrac{\left\vert \varkappa -\overline{\varkappa }\right\vert }{ \left( 1+\left\vert \varkappa \right\vert \right)\left( 1+\left\vert \overline{\varkappa } \right\vert \right) }\right) \leq l_{\mathbb{y}} \left\vert \varkappa - \overline{ \varkappa } \right\vert, \end{equation*} |
with l_{\mathbb{y}} = \tfrac{1}{2} , as well as \mathbb{y} \left(\upsilon, \varkappa \right) \leq \tfrac{1}{ \exp \left(\upsilon ^2 \right) +1} = \vartheta_{\mathbb{y}} (\upsilon) , for each (\upsilon, \varkappa)\in \mathfrak{B} \times \mathbb{R} . Thus, the assumptions (P3) and (P4) hold. It is also clear that the SVM \gimel satisfies the assumption (P1) and
\begin{equation*} \left\Vert \gimel\left( \upsilon ,\varkappa \right) \right\Vert _{ \mathcal{P }} = \sup \Big\{ \left\vert \eta \right\vert \, : \, \eta \in \gimel ( \upsilon ,\varkappa ) \Big\} \leq \tfrac{1}{ \sqrt{\upsilon ^2 + 16} } = \widetilde{\varpi }_1 ( \upsilon ) \widetilde{\varpi }_2 \left( \left\Vert \varkappa \right\Vert \right), \end{equation*} |
where \left\Vert \widetilde{\varpi }_1\right\Vert = \frac{1}{4} and \widetilde{\varpi }_2 \left(\left\Vert \varkappa \right\Vert \right) = 1 . Thus, (P2) holds, and by (P5)
\begin{align*} \lambda _1& = \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3+ r_1 } \left[ \tfrac{ \left\vert \Lambda _3 \right\vert +\left\vert \Lambda _1 \right\vert }{ \Gamma \left( r_1 - \delta + 2 \right) } + \tfrac{ 1+\left\vert \Lambda _2 \right\vert }{\Gamma \left( r_1 + r_3 + 1 \right) } \right] \simeq \left\{ \begin{array}{rl} 1.494, & \varsigma_1( \upsilon ) = \upsilon^2, \\ 1.446, & \varsigma_2( \upsilon ) = \upsilon, \\ 1.374, & \varsigma_3( \upsilon ) = \sqrt{\upsilon}, \\ 1.374, & \varsigma_4( \upsilon ) = \ln (\upsilon+0.01), \end{array} \right. \notag \\ \lambda_2 & = \left(\varsigma_0 \big( \tilde{b} \big) \right)^{r_3 } \left[ \tfrac{ \left\vert \Lambda_3 \right\vert + \left\vert \Lambda_1 \right\vert}{ \Gamma \left( 2-\delta \right) } + \tfrac{ 1+\left\vert \Lambda_2 \right\vert }{ \Gamma \left( r_3 + 1 \right) } \right]\simeq \left\{ \begin{array}{rl} 1.494, & \varsigma_1( \upsilon ) = \upsilon^2, \\ 1.446, & \varsigma_2( \upsilon ) = \upsilon, \\ 1.374, & \varsigma_3( \upsilon ) = \sqrt{\upsilon}, \\ 1.374, & \varsigma_4( \upsilon ) = \ln (\upsilon+0.01), \end{array}\right. \end{align*} |
for which the curves are shown in Figure 5. Moreover
\begin{equation*} \mathcal{N} > \lambda _1 \left\Vert \widetilde{ \varpi }_1 \right\Vert \widetilde{\varpi}_2 \left( \mathcal{N}\right) +\lambda _2 \left\Vert\vartheta _{\mathbb{y}} \right\Vert\simeq \left\{ \begin{array}{rl} 1.117, & \varsigma_1( \upsilon ) = \upsilon^2, \\ 1.114, & \varsigma_2( \upsilon ) = \upsilon, \\ 1.138, & \varsigma_3( \upsilon ) = \sqrt{\upsilon}, \\ 1.142, & \varsigma_4( \upsilon ) = \ln (\upsilon+0.01), \end{array}\right. \end{equation*} |
whenever \mathcal{N} = 1.15 , which is shown in Figure 6. As seen in Table 3, the effect of \varsigma(\upsilon) is very remarkable.
\upsilon | \pmb{\varsigma_1(\upsilon) =\upsilon^2} | \pmb{\varsigma_2(\upsilon) =\upsilon} | \pmb{\varsigma_3(\upsilon) =\sqrt{\upsilon}} | \pmb{\varsigma_4(\upsilon)=\ln (\upsilon+0.01)} | |||||||||||
\lambda_1 | \lambda_2 | \mathcal{N > ... } | \lambda_1 | \lambda_2 | \mathcal{ N > ... } | \lambda_1 | \lambda_2 | \mathcal{N > ... } | \lambda_1 | \lambda_2 | \mathcal{N > \dots } | ||||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
0.10 | 0.027 | 0.597 | 0.307 | 0.197 | 0.946 | 0.530 | 0.533 | 1.192 | 0.739 | 3.086 | 1.787 | 1.008 | |||
0.20 | 0.089 | 0.788 | 0.423 | 0.358 | 1.087 | 0.647 | 0.720 | 1.277 | 0.832 | 3.795 | 1.874 | 1.078 | |||
0.30 | 0.179 | 0.927 | 0.523 | 0.509 | 1.179 | 0.736 | 0.858 | 1.330 | 0.895 | 4.213 | 1.920 | 1.116 | |||
0.40 | 0.295 | 1.040 | 0.618 | 0.654 | 1.249 | 0.812 | 0.972 | 1.369 | 0.945 | 4.508 | 1.950 | 1.142 | |||
0.50 | 0.435 | 1.137 | 0.712 | 0.793 | 1.306 | 0.881 | 1.071 | 1.400 | 0.987 | 4.737 | 1.973 | 1.162 | |||
0.60 | 0.597 | 1.223 | 0.809 | 0.929 | 1.354 | 0.944 | 1.159 | 1.425 | 1.023 | 4.923 | 1.990 | 1.178 | |||
0.70 | 0.779 | 1.301 | 0.908 | 1.062 | 1.397 | 1.004 | 1.239 | 1.447 | 1.056 | 5.081 | 2.005 | 1.191 | |||
0.80 | 0.982 | 1.372 | 1.011 | 1.192 | 1.435 | 1.060 | 1.313 | 1.467 | 1.085 | 5.216 | 2.017 | 1.202 | |||
0.90 | 1.205 | 1.438 | 1.117 | 1.320 | 1.469 | 1.114 | 1.382 | 1.484 | 1.113 | 5.336 | 2.027 | 1.212 | |||
1.00 | 1.446 | 1.500 | 1.228 | 1.446 | 1.500 | 1.166 | 1.446 | 1.500 | 1.138 | 5.443 | 2.037 | 1.220 |
So all the assumptions of Theorem 3.3 are valid. Hence the FDI (4.9) has a solution for \mathfrak{B} .
In the investigation of FDEs and FDIs that contain Hilfer fractional derivative operators, a zero initial condition is typically required. To address this limitation, we proposed a novel approach that combines Hilfer and Caputo fractional derivatives. In this research, we applied this method to study a class of FDEs for FDIs with non-separated BCs, incorporating both Hilfer and Caputo fractional derivative operators. The existence results are established by examining cases where the set-valued map has either convex or nonconvex values. For convex SVMs, the Leray-Schauder FPT was applied, whereas Nadler's and Covitz's FPTs are used for nonconvex SVMs. The findings are well demonstrated with two relevant illustrative examples. The findings of this study contribute significantly to the emerging field of FDIs. In future work, we aim to apply this method to study other types of FDEs with nonzero initial conditions, as well as coupled systems of FDEs that incorporate both Hilfer and Caputo FDs.
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
Adel Lachouri: Actualization, methodology, formal analysis, validation, investigation, initial draft and a major contribution to writing the manuscript. Naas Adjimi: Actualization, methodology, formal analysis, validation, investigation and review. Mohammad Esmael Samei: Actualization, methodology, formal analysis, validation, investigation, software, simulation, review and a major contribution to writing the manuscript. Manuel De la Sen: Validation, review, funding. All authors read and approved the final manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was funded by the Basque Government, Grant IT1555-22.
The authors declare that they have no competing interests.
[1] | R. Bellman, The theory of dynamic programming, Bull. Amer. Math. Soc., 1954, 503–515. |
[2] | O. Hernández-Lerma, J. B. Lasserre, Discrete-time Markov control processes: basic optimality criteria, Vol. 30, New York: Springer Science & Business Media, 2012. |
[3] | O. Hernández-Lerma, J. B. Lasserre, Further topics on discrete-time Markov control processes, Vol. 42, New York: Springer Science & Business Media, 2012. |
[4] |
O. Hernández-Lerma, L. R. Laura-Guarachi, S. Mendoza-Palacios, A survey of AC problems in deterministic discrete-time control systems, J. Math. Anal. Appl., 522 (2023), 126906. https://doi.org/10.1016/j.jmaa.2022.126906 doi: 10.1016/j.jmaa.2022.126906
![]() |
[5] | S. P. Meyn, R. L. Tweedie, Markov chains and stochastic stability, 1 Ed., New York: Springer London, 1993. https://doi.org/10.1007/978-1-4471-3267-7 |
[6] |
W. A. Brock, L. J. Mirman, Optimal economic growth and uncertainty: the discounted case, J. Econ. Theory, 4 (1979), 479–513. https://doi.org/10.4337/9781782543046.00008 doi: 10.4337/9781782543046.00008
![]() |
[7] |
W. A. Brock, L. J. Mirman, Optimal economic growth and uncertainty: the no discounting case, Int. Econ. Rev., 14 (1973), 560–573. https://doi.org/10.2307/2525969 doi: 10.2307/2525969
![]() |
[8] | V. Gaitsgory, A. Parkinson, I. Shvartsman, Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time, arXiv Preprint, 2017. https://doi.org/10.48550/arXiv.1711.00801 |
[9] |
O. L. V. Costa, F. Dufour, Average control of Markov decision processes with Feller transition probabilities and general action spaces, J. Math. Anal. Appl., 396 (2012), 58–69. https://doi.org/10.1016/j.jmaa.2012.05.073 doi: 10.1016/j.jmaa.2012.05.073
![]() |
[10] |
S. P. Meyn, The policy iteration algorithm for average reward Markov decision processes with general state space, IEEE Trans. Automat. Control, 42 (1997), 1663–1680. https://doi.org/10.1109/9.650016 doi: 10.1109/9.650016
![]() |
[11] | R. Bellman, Dynamic programming, Science, 153 (1966), 34–37. https://doi.org/10.1126/science.153.3731.34 |
[12] | R. A. Howard, Dynamic programming and markov processes, MIT Press, 1960, 46–69. https://doi.org/10.1086/258477 |
[13] |
S. Dai, O. Menoukeu-Pamen, An algorithm based on an iterative optimal stopping method for Feller processes with applications to impulse control, perturbation, and possibly zero random discount problems, J. Comput. Appl. Mathe., 421 (2023), 114864. https://doi.org/10.1016/j.cam.2022.114864 doi: 10.1016/j.cam.2022.114864
![]() |
[14] |
E. A. Feinberg, Y. Liang, On the optimality equation for average cost Markov decision processes and its validity for inventory control, Ann. Ope. Res., 317 (2022), 569–586. https://doi.org/10.1007/s10479-017-2561-9 doi: 10.1007/s10479-017-2561-9
![]() |
[15] |
Z. Yu, X. Guo, L. Xia, Zero-sum semi-Markov games with state-action-dependent discount factors, Discrete Event Dyn. Syst., 32 (2022), 545–571. https://doi.org/10.1007/s10626-022-00366-4 doi: 10.1007/s10626-022-00366-4
![]() |
[16] |
S. He, H. Fang, M. Zhang, F. Liu, Z. Ding, Adaptive optimal control for a class of nonlinear systems: the online policy iteration approach, IEEE Trans. Neural Netw. Learn. Syst., 31 (2019), 549–558. https://doi.org/10.1109/TNNLS.2019.2905715 doi: 10.1109/TNNLS.2019.2905715
![]() |
[17] |
H. Fang, M. Zhang, S. He, X. Luan, F. Liu, Z. Ding, Solving the zero-sum control problem for tidal turbine system: an online reinforcement learning approach, IEEE Trans. Cybern., 53 (2023), 7635–7647. https://doi.org/10.1109/TCYB.2022.3186886 doi: 10.1109/TCYB.2022.3186886
![]() |
[18] |
H. Fang, Y. Tu, H. Wang, S. He, F. Liu, Z. Ding, et al., Fuzzy-based adaptive optimization of unknown discrete-time nonlinear Markov jump systems with off-policy reinforcement learning, IEEE Trans. Fuzzy Syst., 30 (2022), 5276–5290. https://doi.org/10.1109/TFUZZ.2022.3171844 doi: 10.1109/TFUZZ.2022.3171844
![]() |
\upsilon | \pmb{r_1=\frac{1}{2}} | \pmb{r_1=\frac{2}{3}} | \pmb{r_1=\frac{5}{6}} | ||||||||
\lambda_1 | \lambda_2 | \mathcal{N > ... } | \lambda_1 | \lambda_2 | \mathcal{ N > ... } | \lambda_1 | \lambda_2 | \mathcal{N > ... } | |||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.10 | 0.059 | 0.593 | 0.316 | 0.027 | 0.597 | 0.307 | 0.012 | 0.599 | 0.303 | ||
0.20 | 0.157 | 0.782 | 0.443 | 0.089 | 0.788 | 0.423 | 0.049 | 0.790 | 0.411 | ||
0.30 | 0.277 | 0.920 | 0.552 | 0.179 | 0.927 | 0.523 | 0.114 | 0.929 | 0.502 | ||
0.40 | 0.414 | 1.032 | 0.653 | 0.295 | 1.040 | 0.618 | 0.207 | 1.043 | 0.590 | ||
0.50 | 0.566 | 1.129 | 0.751 | 0.435 | 1.137 | 0.712 | 0.328 | 1.140 | 0.678 | ||
0.60 | 0.731 | 1.214 | 0.849 | 0.597 | 1.223 | 0.809 | 0.478 | 1.226 | 0.771 | ||
0.70 | 0.907 | 1.291 | 0.945 | 0.779 | 1.301 | 0.908 | 0.657 | 1.304 | 0.869 | ||
0.80 | 1.093 | 1.362 | 1.042 | 0.982 | 1.372 | 1.011 | 0.866 | 1.376 | 0.974 | ||
0.90 | 1.289 | 1.428 | 1.140 | 1.205 | 1.438 | 1.117 | 1.105 | 1.442 | 1.086 | ||
1.00 | 1.494 | 1.489 | 1.238 | 1.446 | 1.500 | 1.228 | 1.374 | 1.504 | 1.206 |
\upsilon | \pmb{r_2=\frac{1}{15}} | \pmb{r_2=\frac{1}{7}} | \pmb{r_2=\frac{1}{3}} | ||||||||
\lambda_1 | \lambda_2 | \left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{\mathbb{y}}\lambda_2 | \lambda_1 | \lambda_2 | \left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{\mathbb{y}}\lambda_2 | \lambda_1 | \lambda_2 | \left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{\mathbb{y}}\lambda_2 | |||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.10 | 0.292 | 0.927 | 0.493 | 0.294 | 0.931 | 0.495 | 0.298 | 0.940 | 0.500 | ||
0.20 | 0.475 | 1.064 | 0.580 | 0.478 | 1.069 | 0.582 | 0.484 | 1.079 | 0.588 | ||
0.30 | 0.631 | 1.154 | 0.640 | 0.635 | 1.159 | 0.643 | 0.643 | 1.171 | 0.650 | ||
0.40 | 0.772 | 1.223 | 0.688 | 0.776 | 1.228 | 0.692 | 0.787 | 1.240 | 0.699 | ||
0.50 | 0.902 | 1.278 | 0.729 | 0.907 | 1.284 | 0.733 | 0.919 | 1.296 | 0.740 | ||
0.60 | 1.025 | 1.326 | 0.765 | 1.031 | 1.332 | 0.769 | 1.045 | 1.345 | 0.777 | ||
0.70 | 1.142 | 1.367 | 0.798 | 1.148 | 1.374 | 0.802 | 1.164 | 1.387 | 0.810 | ||
0.80 | 1.254 | 1.404 | 0.828 | 1.261 | 1.411 | 0.831 | 1.278 | 1.424 | 0.840 | ||
0.90 | 1.361 | 1.438 | 0.855 | 1.369 | 1.444 | 0.859 | 1.388 | 1.458 | 0.868 | ||
1.00 | 1.466 | 1.468 | 0.881 | 1.474 | 1.475 | 0.885 | 1.494 | 1.489 | 0.894 |
\upsilon | \pmb{\varsigma_1(\upsilon) =\upsilon^2} | \pmb{\varsigma_2(\upsilon) =\upsilon} | \pmb{\varsigma_3(\upsilon) =\sqrt{\upsilon}} | \pmb{\varsigma_4(\upsilon)=\ln (\upsilon+0.01)} | |||||||||||
\lambda_1 | \lambda_2 | \mathcal{N > ... } | \lambda_1 | \lambda_2 | \mathcal{ N > ... } | \lambda_1 | \lambda_2 | \mathcal{N > ... } | \lambda_1 | \lambda_2 | \mathcal{N > \dots } | ||||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
0.10 | 0.027 | 0.597 | 0.307 | 0.197 | 0.946 | 0.530 | 0.533 | 1.192 | 0.739 | 3.086 | 1.787 | 1.008 | |||
0.20 | 0.089 | 0.788 | 0.423 | 0.358 | 1.087 | 0.647 | 0.720 | 1.277 | 0.832 | 3.795 | 1.874 | 1.078 | |||
0.30 | 0.179 | 0.927 | 0.523 | 0.509 | 1.179 | 0.736 | 0.858 | 1.330 | 0.895 | 4.213 | 1.920 | 1.116 | |||
0.40 | 0.295 | 1.040 | 0.618 | 0.654 | 1.249 | 0.812 | 0.972 | 1.369 | 0.945 | 4.508 | 1.950 | 1.142 | |||
0.50 | 0.435 | 1.137 | 0.712 | 0.793 | 1.306 | 0.881 | 1.071 | 1.400 | 0.987 | 4.737 | 1.973 | 1.162 | |||
0.60 | 0.597 | 1.223 | 0.809 | 0.929 | 1.354 | 0.944 | 1.159 | 1.425 | 1.023 | 4.923 | 1.990 | 1.178 | |||
0.70 | 0.779 | 1.301 | 0.908 | 1.062 | 1.397 | 1.004 | 1.239 | 1.447 | 1.056 | 5.081 | 2.005 | 1.191 | |||
0.80 | 0.982 | 1.372 | 1.011 | 1.192 | 1.435 | 1.060 | 1.313 | 1.467 | 1.085 | 5.216 | 2.017 | 1.202 | |||
0.90 | 1.205 | 1.438 | 1.117 | 1.320 | 1.469 | 1.114 | 1.382 | 1.484 | 1.113 | 5.336 | 2.027 | 1.212 | |||
1.00 | 1.446 | 1.500 | 1.228 | 1.446 | 1.500 | 1.166 | 1.446 | 1.500 | 1.138 | 5.443 | 2.037 | 1.220 |
\upsilon | \pmb{r_1=\frac{1}{2}} | \pmb{r_1=\frac{2}{3}} | \pmb{r_1=\frac{5}{6}} | ||||||||
\lambda_1 | \lambda_2 | \mathcal{N > ... } | \lambda_1 | \lambda_2 | \mathcal{ N > ... } | \lambda_1 | \lambda_2 | \mathcal{N > ... } | |||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.10 | 0.059 | 0.593 | 0.316 | 0.027 | 0.597 | 0.307 | 0.012 | 0.599 | 0.303 | ||
0.20 | 0.157 | 0.782 | 0.443 | 0.089 | 0.788 | 0.423 | 0.049 | 0.790 | 0.411 | ||
0.30 | 0.277 | 0.920 | 0.552 | 0.179 | 0.927 | 0.523 | 0.114 | 0.929 | 0.502 | ||
0.40 | 0.414 | 1.032 | 0.653 | 0.295 | 1.040 | 0.618 | 0.207 | 1.043 | 0.590 | ||
0.50 | 0.566 | 1.129 | 0.751 | 0.435 | 1.137 | 0.712 | 0.328 | 1.140 | 0.678 | ||
0.60 | 0.731 | 1.214 | 0.849 | 0.597 | 1.223 | 0.809 | 0.478 | 1.226 | 0.771 | ||
0.70 | 0.907 | 1.291 | 0.945 | 0.779 | 1.301 | 0.908 | 0.657 | 1.304 | 0.869 | ||
0.80 | 1.093 | 1.362 | 1.042 | 0.982 | 1.372 | 1.011 | 0.866 | 1.376 | 0.974 | ||
0.90 | 1.289 | 1.428 | 1.140 | 1.205 | 1.438 | 1.117 | 1.105 | 1.442 | 1.086 | ||
1.00 | 1.494 | 1.489 | 1.238 | 1.446 | 1.500 | 1.228 | 1.374 | 1.504 | 1.206 |
\upsilon | \pmb{r_2=\frac{1}{15}} | \pmb{r_2=\frac{1}{7}} | \pmb{r_2=\frac{1}{3}} | ||||||||
\lambda_1 | \lambda_2 | \left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{\mathbb{y}}\lambda_2 | \lambda_1 | \lambda_2 | \left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{\mathbb{y}}\lambda_2 | \lambda_1 | \lambda_2 | \left\Vert \mathfrak{n} \right\Vert \lambda _1 + l_{\mathbb{y}}\lambda_2 | |||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.10 | 0.292 | 0.927 | 0.493 | 0.294 | 0.931 | 0.495 | 0.298 | 0.940 | 0.500 | ||
0.20 | 0.475 | 1.064 | 0.580 | 0.478 | 1.069 | 0.582 | 0.484 | 1.079 | 0.588 | ||
0.30 | 0.631 | 1.154 | 0.640 | 0.635 | 1.159 | 0.643 | 0.643 | 1.171 | 0.650 | ||
0.40 | 0.772 | 1.223 | 0.688 | 0.776 | 1.228 | 0.692 | 0.787 | 1.240 | 0.699 | ||
0.50 | 0.902 | 1.278 | 0.729 | 0.907 | 1.284 | 0.733 | 0.919 | 1.296 | 0.740 | ||
0.60 | 1.025 | 1.326 | 0.765 | 1.031 | 1.332 | 0.769 | 1.045 | 1.345 | 0.777 | ||
0.70 | 1.142 | 1.367 | 0.798 | 1.148 | 1.374 | 0.802 | 1.164 | 1.387 | 0.810 | ||
0.80 | 1.254 | 1.404 | 0.828 | 1.261 | 1.411 | 0.831 | 1.278 | 1.424 | 0.840 | ||
0.90 | 1.361 | 1.438 | 0.855 | 1.369 | 1.444 | 0.859 | 1.388 | 1.458 | 0.868 | ||
1.00 | 1.466 | 1.468 | 0.881 | 1.474 | 1.475 | 0.885 | 1.494 | 1.489 | 0.894 |
\upsilon | \pmb{\varsigma_1(\upsilon) =\upsilon^2} | \pmb{\varsigma_2(\upsilon) =\upsilon} | \pmb{\varsigma_3(\upsilon) =\sqrt{\upsilon}} | \pmb{\varsigma_4(\upsilon)=\ln (\upsilon+0.01)} | |||||||||||
\lambda_1 | \lambda_2 | \mathcal{N > ... } | \lambda_1 | \lambda_2 | \mathcal{ N > ... } | \lambda_1 | \lambda_2 | \mathcal{N > ... } | \lambda_1 | \lambda_2 | \mathcal{N > \dots } | ||||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
0.10 | 0.027 | 0.597 | 0.307 | 0.197 | 0.946 | 0.530 | 0.533 | 1.192 | 0.739 | 3.086 | 1.787 | 1.008 | |||
0.20 | 0.089 | 0.788 | 0.423 | 0.358 | 1.087 | 0.647 | 0.720 | 1.277 | 0.832 | 3.795 | 1.874 | 1.078 | |||
0.30 | 0.179 | 0.927 | 0.523 | 0.509 | 1.179 | 0.736 | 0.858 | 1.330 | 0.895 | 4.213 | 1.920 | 1.116 | |||
0.40 | 0.295 | 1.040 | 0.618 | 0.654 | 1.249 | 0.812 | 0.972 | 1.369 | 0.945 | 4.508 | 1.950 | 1.142 | |||
0.50 | 0.435 | 1.137 | 0.712 | 0.793 | 1.306 | 0.881 | 1.071 | 1.400 | 0.987 | 4.737 | 1.973 | 1.162 | |||
0.60 | 0.597 | 1.223 | 0.809 | 0.929 | 1.354 | 0.944 | 1.159 | 1.425 | 1.023 | 4.923 | 1.990 | 1.178 | |||
0.70 | 0.779 | 1.301 | 0.908 | 1.062 | 1.397 | 1.004 | 1.239 | 1.447 | 1.056 | 5.081 | 2.005 | 1.191 | |||
0.80 | 0.982 | 1.372 | 1.011 | 1.192 | 1.435 | 1.060 | 1.313 | 1.467 | 1.085 | 5.216 | 2.017 | 1.202 | |||
0.90 | 1.205 | 1.438 | 1.117 | 1.320 | 1.469 | 1.114 | 1.382 | 1.484 | 1.113 | 5.336 | 2.027 | 1.212 | |||
1.00 | 1.446 | 1.500 | 1.228 | 1.446 | 1.500 | 1.166 | 1.446 | 1.500 | 1.138 | 5.443 | 2.037 | 1.220 |