
Choosing an optimal artificial intelligence (AI) provider involves multiple factors, including scalability, cost, performance, and dependability. To ensure that decisions align with organizational objectives, multi-attribute decision-making (MADM) approaches aid in the systematic evaluation and comparison of AI vendors. Therefore, in this article, we propose a MADM technique based on the framework of the complex intuitionistic fuzzy rough model. This approach effectively manages the complex truth grade and complex false grade along with lower and upper approximation. Furthermore, we introduced aggregation operators based on Dombi t-norm and t-conorm, including complex intuitionistic fuzzy rough (CIFR) Dombi weighted averaging (CIFRDWA), CIFR Dombi ordered weighted averaging (CIFRDOWA), CIFR Dombi weighted geometric (CIFRDWG), and CIFR Dombi ordered weighted geometric (CIFRDOWG) operators, which were integrated into our MADM technique. We then demonstrated the application of this technique in a case study on AI provider selection. To highlight its advantages, we compared our proposed method with other approaches, showing its superiority in handling complex decision-making scenarios.
Citation: Tahir Mahmood, Ahmad Idrees, Majed Albaity, Ubaid ur Rehman. Selection of artificial intelligence provider via multi-attribute decision-making technique under the model of complex intuitionistic fuzzy rough sets[J]. AIMS Mathematics, 2024, 9(11): 33087-33138. doi: 10.3934/math.20241581
[1] | Farah Liyana Azizan, Saratha Sathasivam, Nurshazneem Roslan, Ahmad Deedat Ibrahim . Logic mining with hybridized 3-satisfiability fuzzy logic and harmony search algorithm in Hopfield neural network for Covid-19 death cases. AIMS Mathematics, 2024, 9(2): 3150-3173. doi: 10.3934/math.2024153 |
[2] | Nadiyah Hussain Alharthi, Mdi Begum Jeelani . Analyzing a SEIR-Type mathematical model of SARS-COVID-19 using piecewise fractional order operators. AIMS Mathematics, 2023, 8(11): 27009-27032. doi: 10.3934/math.20231382 |
[3] | Said Gounane, Jamal Bakkas, Mohamed Hanine, Gyu Sang Choi, Imran Ashraf . Generalized logistic model with time-varying parameters to analyze COVID-19 outbreak data. AIMS Mathematics, 2024, 9(7): 18589-18607. doi: 10.3934/math.2024905 |
[4] | Mohammad Hamidi, Florentin Smarandache . Valued-inverse Dombi neutrosophic graph and application. AIMS Mathematics, 2023, 8(11): 26614-26631. doi: 10.3934/math.20231361 |
[5] | Deniz UÇAR, Elçin ÇELİK . Analysis of Covid 19 disease with SIR model and Taylor matrix method. AIMS Mathematics, 2022, 7(6): 11188-11200. doi: 10.3934/math.2022626 |
[6] | Xiaoying Pan, Longkun Tang . A new model for COVID-19 in the post-pandemic era. AIMS Mathematics, 2024, 9(8): 21255-21272. doi: 10.3934/math.20241032 |
[7] | Tahir Khan, Fathalla A. Rihan, Muhammad Bilal Riaz, Mohamed Altanji, Abdullah A. Zaagan, Hijaz Ahmad . Stochastic epidemic model for the dynamics of novel coronavirus transmission. AIMS Mathematics, 2024, 9(5): 12433-12457. doi: 10.3934/math.2024608 |
[8] | M. J. Huntul . Inverse source problems for multi-parameter space-time fractional differential equations with bi-fractional Laplacian operators. AIMS Mathematics, 2024, 9(11): 32734-32756. doi: 10.3934/math.20241566 |
[9] | Ishtiaq Ali, Sami Ullah Khan . Dynamics and simulations of stochastic COVID-19 epidemic model using Legendre spectral collocation method. AIMS Mathematics, 2023, 8(2): 4220-4236. doi: 10.3934/math.2023210 |
[10] | CW Chukwu, S. Y. Tchoumi, Z. Chazuka, M. L. Juga, G. Obaido . Assessing the impact of human behavior towards preventative measures on COVID-19 dynamics for Gauteng, South Africa: a simulation and forecasting approach. AIMS Mathematics, 2024, 9(5): 10511-10535. doi: 10.3934/math.2024514 |
Choosing an optimal artificial intelligence (AI) provider involves multiple factors, including scalability, cost, performance, and dependability. To ensure that decisions align with organizational objectives, multi-attribute decision-making (MADM) approaches aid in the systematic evaluation and comparison of AI vendors. Therefore, in this article, we propose a MADM technique based on the framework of the complex intuitionistic fuzzy rough model. This approach effectively manages the complex truth grade and complex false grade along with lower and upper approximation. Furthermore, we introduced aggregation operators based on Dombi t-norm and t-conorm, including complex intuitionistic fuzzy rough (CIFR) Dombi weighted averaging (CIFRDWA), CIFR Dombi ordered weighted averaging (CIFRDOWA), CIFR Dombi weighted geometric (CIFRDWG), and CIFR Dombi ordered weighted geometric (CIFRDOWG) operators, which were integrated into our MADM technique. We then demonstrated the application of this technique in a case study on AI provider selection. To highlight its advantages, we compared our proposed method with other approaches, showing its superiority in handling complex decision-making scenarios.
In the mid-19th century, the English physician John Snow [9] refused to accept the theories of cholera infection prevailing at that time. Both the sharing of clothing and transmission through the air seemed to him to be insufficient explanations for what was happening in London, under an epidemic that was undermining the entire population of any social class. He established a famous practical example of spatial epidemiology, measuring the distances of each patient to the nearest water source.
Not only Covid-19 [11,22], but many other infectious diseases [6] are forcing us, in general, to rethink new techniques for describing and discovering spatial epidemiology, that is, "the description and analysis of geographic variations in disease with respect to demographic, environmental, behavioral, socioeconomic, genetic, and infectious risk factors" [10]. To this end, we can draw on data that reflect human behavior in terms of spatial location and movement. In particular, geolocation data [24], which includes geographical location information associated with the hosting device (e.g., mobile phone), is key for modeling the spread and evolution of infectious diseases in space and time.
Using this kind of data, we cannot only track the movement patterns of individuals, but also derive general mobility patterns for the population over time. They give insight into, e.g., "the prediction of future moves, detecting modes of transport, mining trajectory patterns and recognizing location-based activities" [13]. That is, geolocation data is key data computational spatial empidemiologic models and simulations.
The idea that a microscopic coronavirus in the city of Wuhan has caused an economic crisis in Europe reminds us of Edward Lorenz's famous speech at MIT, where he raised how the flapping of a butterfly in Brazil could cause a tornado in Texas. That is, the well-known butterfly effect and its repercussions on chaos theory.
In this work, data about spatial population movement such as geolocation data are used as key sources of insight in the way infectious diseases spread in space and time among individuals. To this end, this work proposes a mathematical foundation following an inverse methodology on the chaotic bases [18] since it raises the search of the starting attractor or "patient zero". This procedure collects the ideas of reverse engineering, as a way of establishing the unknown initial parameters of a problem whose solutions and effects are known.
In particular, tracking and analyzing population movements are key to get insights about patterns of propagation of environmentally-transmitted pathogens. For example in the case of Covid-19, "[...] changing geography of migration, the diversification of jobs taken by migrants, the rapid growth of tourism and business trips, and the longer distance taken by people for family reunion are what make the spread of COVID-19 so differently from that of SARS" [19].
To this end, we introduce a graph-based approach to model population movements in space and time, including a health status of individuals that allows us to classify risks for individuals as well as spatial locations and temporal periods.
The main methods to be used will be differential geometry of curves adapted to the symptomatology of the disease and graph theory for its representation and monitoring [16]. In its inverse reasoning, we can establish algorithms that, e.g., facilitate finding a "patient zero", classify possible originators of the contagion [1,3,12,17,20], or classify spatial locations with respect to the spread of pathogens.
As a key source of human mobility patterns, we consider mobile phone location data. The high penetration of mobile phones in the population allows a very representative survey of mobility dynamics [14].
The trajectories on which we base the monitoring of population movements are those recorded by the smartphones devices with GPS. We know that both smartphones and social networks [23] have the ability to store the paths followed by their owners, just as telephone companies can track that path followed by their customers [7,8]. This information is collected both by these devices and by the telephone companies, and can be represented geospatially by the different navigation systems. As an example we can see the path followed by an smartphone and represented in Figure 1 using Google Maps software:
Definition 2.1. For every patient P we distinguish three disjointed and sequential time intervals (as can be seen in the medical graphs in Figure 2) that we will note by:
1. H: where the person is "healthy". In the timeline it will be distinguished by a simple line and during this interval [5] (before infection) the value of the state variable will be 1.
2. C: where the person is "contagious" (incubation period). This interval or latency period will be estimated, given the patient's symptoms, based on the maximum and minimum time it could take to become "ill". It will be represented by a double line and its state variable will be 2. Currently this period is from 0 to 7 days aproximately.
3. I: where the patient is "ill". It will be represented by a triple line, together with the previous one completes the incubation time [21] and its state variable will be 3.
Definition 2.2. To establish the path we use the notation of differential geometry by using Cartesian coordinates, incorporating the state variable over time ρ(t)∈{1,2,3} remaining:
→α(t)=(x(t),y(t),ρ(t))witht∈{H∪C∪I} |
and whose graph is represented in Figure 3.
Definition 2.3. We will say that a contagion has occurred if, given two patients Pi and Pj it is fulfilled:
● the paths cross in a sufficiently close environment, i.e. there is a maximum transmission distance M such that:
foraninstanttitisfulfilledthat√(xi(t)−xj(t))2+(yi(t)−yj(t))2≤M |
To simplify the calculation, without loss of generality, we will consider that this distance M is null, or what is the same, they are in the same place. With this we have:
foraninstanttitisfulfilledthat(xi(t),yi(t))=(xj(t),yj(t)) |
● one patient's status must be "contagious" and the other patient's status must be "ill", i.e., t∈C for Pi and t∈I for Pj or vice versa. This is simplified as ρi(t)⋅ρj(t)=6 (product of a state that is "contagious" by another "ill").
We will note the contagion between both patients as Pi∼Pj.
Notation 2.4. The point of infection of each patient P will be identified with the symbol ⊗ and its coordinates will be →⊗=(x,y,n,t) where:
● x and y are the cartesian coordinates of the place of infection
● n is the variable where the number of infections produced in this place is accumulated.
● t is the variable that indicates the furthest moment in which the contagion occurred in this place.
It can be seen in the contagion graph of Figure 4 that a different situation occurs at each confluence ⊗i since in
⊗1 Both patients are healthy
⊗2 The second patient P2 has been infected by the first P1
⊗3 The first patient P1 is still "healthy" after meeting the second P2 who is ill. They may not have coincided in time at this intersection and the first one was not in a "contagious" state.
⊗4 Here both patients are already "ill"
Procedure 3.1 (Intersections analysis). Given two different paths, →αi and →αj, these can be subdivided into segments, being considered therefore as polygonal *. Hence, the analysis of intersections is restricted to the calculation of common points between two segments of different paths [16]. Let us consider the segments between points:
*A polygonal sufficiently close to the curve is considered. Its existence is assured by Schoenflies theorem for polygonal Jordan curves. This concept also appears in the formulation of the length of a parametric curve, making use of the approximations by sufficiently small segments and its use in the Riemann integral.
Sip=¯(xip(t1),yip(t1))(xip+1(t2),yip+1(t2))∈→αi |
Sjq=¯(xjq(t3),yjq(t3))(xjq+1(t4),yjq+1(t4))∈→αj |
1. We check for the existence of temporal (one-dimensional) intersection, that is, time concurrence:
(t1,t2)∩(t3,t4)≠Ø⇔t1≤t4∧t3≤t2 |
2. We check for geometric (two-dimensional) intersection:
(a) It can be done by solving the system, as long as it is well-conditioned:
{xip(t1)+λ(xip+1(t2)−xip(t1))=xjq(t3)+μ(xjq+1(t4)−xjq(t3))yip(t1)+λ(yip+1(t2)−yip(t1))=yjq(t3)+μ(yjq+1(t4)−yjq(t3)) |
If there are 0≤λ≤1 and 0≤μ≤1 that fulfill both equations or are collinear, that is:
|xip+1(t2)−xip(t1)xjq+1(t4)−xjq(t3)yip+1(t2)−yip(t1)yjq+1(t4)−yjq(t3)|=0 |
where contagion could occur if they are coincidental:
xip+1(t2)−xip(t1)yip+1(t2)−yip(t1)=xjq+1(t4)−xjq(t3)yjq+1(t4)−yjq(t3)=xip(t1)−xjq(t3)yip(t1)−yjq(t3) |
In any other situation, as there are no points in common between the segments, the minimum distances between each point and the opposite segment are calculated. Finally, it is checked whether the minimum of them is below the maximum transmission distance, so that there is a possibility of contagion (as Figure 5):
min{d1,d2,d3,d4}≤M |
In this case the execution time for n segments would be
Θ(n2) |
(b) Or using Bentley's & Ottmann algorithm [4], whose execution time for n segments with s points of intersection is
Θ(nlog(n)+slog(n)) |
Procedure 3.2 (Establishing Contagion). The big data algorithm must fulfill the following phases:
1. Analyze the intersections of patient trajectories by pairs (→αi and →αj) where contagion may occur [15]:
findtsuchthat(xi(t),yi(t))=(xj(t),yj(t))withρi(t)⋅ρj(t)=6 |
2. In each analysis, establish the possible point of contagion (if any) and increase both its contagion index and its most remote time variable in which a contagion occurred
For→⊗=(x,y,n,t),isexecutedn=n+1 |
3. Patients are classified according to the sum of the indexes of all the points of contagion contained in their trajectory. In this way, we will order the patients from the one that has caused the most infections to the one that has caused the least.
4. Patients are classified according to the lowest value of t contained in their points of contagion. With this we can establish patient zero.
With this procedure, we calculate the distribution of contagion points of known patients →⊗k, and the final number of contagions in each one of them →⊗k, which gives us an image of the city as shown in Figure 6:
Once the possible cut-off points between known patient routes have been established, we ask ourselves whether there are any undetected patients who can be deduced from the possible points of contagion. This question involves a probabilistic analysis of what the possible path of the unknown patient would look like.
Let us suppose that there is an unknown patient that has been causing an uncontrolled contagion, which we will call Px.
1. If the contagion has occurred at an intersection →⊗ij of two "contagious" patients Pi and Pj, that is, ρi(t)⋅ρj(t)=4, it could be that:
(a) one of them was already really ill: This forces a recalculation of the C and I intervals for both. In this case, if the one who was already ill had been Pi, he must have been previously infected by a stranger, and therefore there was a cross with Px. Similarly for Pj.
(b) neither of them infected the other: In this case there is a coincidence of the path of both with the one of Px at the point of infection.
In both cases we assign a new contagion in the point →⊗ij, although in the first assumption we also know that there is some point in the path of Pi or Pj in the state C where it must have crossed with that of Px in the state I. Therefore, if we call t(→⊗ij,C0i) and t(→⊗ij,C0j) the time from the crossing point to the place where Pi and Pj met Px respectively, which are C0i and C0j, then the crossing probabilities (CP) with Px of each interval are set as:
PC(x,i)=t(→⊗ij,C0i)[Ci] |
PC(x,j)=t(→⊗ij,C0j)[Cj] |
where [Ci] and [Cj] are the times at which Pi and Pj have been contagious.
2. If the infection has occurred in the C range of any patient Pi, the path of Px matches that of Pi with ρi(t)=2 and ρx(t)=3. In this case it is known that there is some point in the path of Pi in the state C where it should have crossed with that of Px in the state I. Here the probability of the whole C interval is equal to 1.
The zone graph, in these cases, is represented by Figure 7
Procedure 4.1 (Inverse graphs by big data). The big data algorithm will then be based on finding, of all existing paths of citizens that go through this area, those that achieve a higher sum of probabilities at the intersections of the N intervals of known contagion [12].
1. To do this, the route followed by each citizen's smartphone Px is analysed and its intersections with the probable paths, assuming that this citizen was permanently ill:
→αx(t)=(x(t),y(t),3) |
2. This would cause a contagion at each intersection and would add probabilities to its final value.
N∑i=1PC(x,i)conPx∼Pi |
3. Those candidates with the highest score will be studied to see if they are carriers or not. A new set of patients will be deducted from the patients prior to the existing ones. Using the procedure recursively, we will reach patient zero.
After the theoretical development of the Inverse Graph method, the general geolocation algorithm has been programmed using a Computer Algebra System (CAS) as MatLab †. The developed algorithm has a quadratic execution time, i.e. Θ(n2) and its pseudo-code ‡ would be as follows:
†Algorithms and functions programmed in MatLab version R2020b and tested on a MacBook with processor 1.3 GHz Intel Core m7
‡All that appears between braces are comments
begin Read kml compress files from Google Maps timeline for each
user i. Build matrix Mi of coordinates and its convex hull.
Analyzes only disjunct concentrations of convex hulls (Figure 8)
M=[]; for i:1:users do M=[M;Mi] end for
Times = intervals(M); {Build matrix time interval for all users}
I = sort(Times) {Sort the intervals as a function of time}
point = []; inter = size(I, 1);
for j = 2:inter
for i = 1:j-1 {Check the space-time match}
if fit(Times(i), Times(j))
point = cuts(I, Times, M); {Found intersection points}
end if
end for
end for
end
Next Table 1 and Figures below (Figures 9 and 10) show execution times (in seconds) and the number of contact points that occurred between different people, based on user graph intersections for the last twelve days, with an average of 388 vertexes at their polygonal paths for each user
Users | Time | Points |
10 | 0.29 | 837 |
20 | 0.41 | 1755 |
30 | 0.72 | 2565 |
40 | 0.94 | 3595 |
50 | 1.20 | 4954 |
100 | 3.60 | 10746 |
150 | 7.68 | 15397 |
The capacity of Big Data to solve the problem will depend on the reduction that is made on the population to be analyzed for the search of the patient zero [20].
This reduction is conditioned by the need for temporal and geometric coincidence of the routes with those of the probable intervals. Therefore, it is a priority to establish the condition of temporal coincidence, which will considerably reduce the set of candidates (Figure 11), and then analyze the intersections in the plane.
Each element aij of a dispersed matrix of contagions A=(aij) would represent with values 0 or 1 the possibility that the patient Pi has infected the patient Pj, with i,j∈{1,…,N}
With this representation the rows i, whose sum of terms is greater N∑j=1aij, will correspond to the index of the most dangerous patients. The number of infections of the most dangerous patient will be indicated by
||A||∞=maxiN∑j=1aij |
The application of Markov Chains on arrays, whose elements represent the mesh of an area, will allow us to see to which position each individual moves in a unit of time and to which state of health he can evolve [3,17].
Neural networks can provide a trained system for the pre-selection of possible candidates for asymptomatic or unknown patients [1].
We thank the support of this paper from University of Málaga and CBUA (funding for open access charge: Universidad de Málaga / CBUA) and we thank also the anonymous reviewers whose suggestions helped improve and clarify this manuscript.. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
The authors declare that there are no conflicts of interest.
[1] |
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[2] |
Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
![]() |
[3] |
D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–209. https://doi.org/10.1080/03081079008935107 doi: 10.1080/03081079008935107
![]() |
[4] |
B. C. Bizzo, R. R. Almeida, M. H. Michalski, T. K. Alkasab, Artificial intelligence and clinical decision support for radiologists and referring providers, J. Amer. Coll. Radio., 16 (2019), 1351–1356. https://doi.org/10.1016/j.jacr.2019.06.010 doi: 10.1016/j.jacr.2019.06.010
![]() |
[5] |
S. Yu, C. Guo, Service design under asymmetric service provider competition: applications of AI services, Transport. Res. E: Log., 182 (2024), 103424. https://doi.org/10.1016/j.tre.2024.103424 doi: 10.1016/j.tre.2024.103424
![]() |
[6] |
M. I. Khaleel, M. Safran, S. Alfarhood, M. Zhu, Workflow scheduling scheme for optimized reliability and end-to-end delay control in cloud computing using AI-based modeling, Mathematics, 11 (2023), 4334. https://doi.org/10.3390/math11204334 doi: 10.3390/math11204334
![]() |
[7] |
Y. Wu, Z. Zhang, G. Kou, H. Zhang, X. Chao, C. C. Li, et al., Distributed linguistic representations in decision making: Taxonomy, key elements and applications, and challenges in data science and explainable artificial intelligence, Inform. Fusion, 65 (2021), 165–178. https://doi.org/10.1016/j.inffus.2020.08.018 doi: 10.1016/j.inffus.2020.08.018
![]() |
[8] | A. S. Dukyil, Artificial intelligence and multiple criteria decision-making approach for a cost-effective RFID-enabled tracking management system, phD thesis, Brunel University, London, 2018. |
[9] |
K.-H. Hu, F.-H. Chen, M.-F. Hsu, G.-H. Tzeng, Governance of artificial intelligence applications in a business audit via a fusion fuzzy multiple rule-based decision-making model, Financ. Innova., 9 (2023), 117. https://doi.org/10.1186/s40854-022-00436-4 doi: 10.1186/s40854-022-00436-4
![]() |
[10] |
P. Wang, Y. Fu, P. Liu, B. Zhu, F. Wang, D. Pamucar, Evaluation of ecological governance in the Yellow River basin based on Uninorm combination weight and MULTIMOORA-Borda method, Expert Syst. Appl., 235 (2024), 121227. https://doi.org/10.1016/j.eswa.2023.121227 doi: 10.1016/j.eswa.2023.121227
![]() |
[11] |
Z.-Y. Zhuang, A. Hocine, N. Kouaissah, G. A. Kiker, Optimising sustainable renewable energy portfolios using a multi-tolerance fuzzy goal programming approach, Int. J. Green Energy, 20 (2023), 640–655. https://doi.org/10.1080/15435075.2022.2080502 doi: 10.1080/15435075.2022.2080502
![]() |
[12] |
Z. Wen, H. Liao, E. K. Zavadskas, J. Antuchevičienė, Applications of fuzzy multiple criteria decision-making methods in civil engineering: a state-of-the-art survey, J. Civ. Eng. Manag., 27 (2021), 358–371. https://doi.org/10.3846/jcem.2021.15252 doi: 10.3846/jcem.2021.15252
![]() |
[13] |
Z. Zhang, H. Liao, A. Tang, Renewable energy portfolio optimization with public participation under uncertainty: a hybrid multi-attribute multi-objective decision-making method, Appl. Energ., 307 (2022), 118267. https://doi.org/10.1016/j.apenergy.2021.118267 doi: 10.1016/j.apenergy.2021.118267
![]() |
[14] |
A. Hocine, Z.-Y. Zhuang, N. Kouaissah, D.-C. Li, Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions, Eur. J. Oper. Res., 285 (2020), 642–654. https://doi.org/10.1016/j.ejor.2020.02.009 doi: 10.1016/j.ejor.2020.02.009
![]() |
[15] |
F. Shen, Q. Huang, H. Su, Z. Xu, An outranking approach for multi-attribute group decision-making with interval-valued hesitant fuzzy information, Eng. Appl. Artif. Intel., 137 (2024), 109120. https://doi.org/10.1016/j.engappai.2024.109120 doi: 10.1016/j.engappai.2024.109120
![]() |
[16] |
Z.-Y. Zhuang, C. R. Su, S. C. Chang, The effectiveness of IF-MADM (intuitionistic-fuzzy multi-attribute decision-making) for group decisions: methods and an empirical assessment for the selection of a senior centre, Technol. Econ. Dev. Eco., 25 (2019), 322–364. https://doi.org/10.3846/tede.2019.8399 doi: 10.3846/tede.2019.8399
![]() |
[17] |
M. Javed, S. Javeed, T. Senapati, Multi-attribute group decision-making with T-spherical fuzzy Dombi power Heronian mean-based aggregation operators, Granul. Comput., 9 (2024), 71. https://doi.org/10.1007/s41066-024-00487-1 doi: 10.1007/s41066-024-00487-1
![]() |
[18] |
P. S. Kumar, An efficient approach for solving type-2 intuitionistic fuzzy solid transportation problems with their equivalent crisp solid transportation problems, Int. J. Syst. Assur. Eng. Manag., 15 (2024), 4370–4403. https://doi.org/10.1007/s13198-024-02433-5 doi: 10.1007/s13198-024-02433-5
![]() |
[19] |
Z.-Y. Zhuang, L.-W. Yang, M.-H. Lee, C.-Y. Wang, 'MEAN+ R': implementing a web-based, multi-participant decision support system using the prevalent MEAN architecture with R based on a revised intuitionistic-fuzzy multiple attribute decision-making model, Microsyst. Technol., 24 (2018), 4291–4309. https://doi.org/10.1007/s00542-018-3755-z doi: 10.1007/s00542-018-3755-z
![]() |
[20] |
J. Ye, Multiple attribute group decision-making methods with unknown weights in intuitionistic fuzzy setting and interval-valued intuitionistic fuzzy setting, Int. J. Gen. Syst., 42 (2013), 489–502. https://doi.org/10.1080/03081079.2013.775127 doi: 10.1080/03081079.2013.775127
![]() |
[21] |
M. Beccali, M. Cellura, D. Ardente, Decision making in energy planning: the ELECTRE multicriteria analysis approach compared to a FUZZY-SETS methodology, Energ. Convers. Manage., 39 (1998), 1869–1881. https://doi.org/10.1016/S0196-8904(98)00053-3 doi: 10.1016/S0196-8904(98)00053-3
![]() |
[22] |
D. Bigaud, F. Thibault, L. Gobert, Decision-making through a fuzzy hybrid AI system for selection of a third-party operations and maintenance provider, International Journal of Multicriteria Decision Making, 6 (2016), 35–65. https://doi.org/10.1504/IJMCDM.2016.075630 doi: 10.1504/IJMCDM.2016.075630
![]() |
[23] |
S. Abdullah, Saifullah, A. O. Almagrabi, An integrated group decision-making framework for the evaluation of artificial intelligence cloud platforms based on fractional fuzzy sets, Mathematics, 11 (2023), 4428. https://doi.org/10.3390/math11214428 doi: 10.3390/math11214428
![]() |
[24] |
K.-H. Hu, F.-H. Chen, M.-F. Hsu, G.-H. Tzeng, Identifying key factors for adopting artificial intelligence-enabled auditing techniques by joint utilization of fuzzy-rough set theory and MRDM technique, Technol. Econ. Dev. Eco., 27 (2021), 459–492. https://doi.org/10.3846/tede.2020.13181 doi: 10.3846/tede.2020.13181
![]() |
[25] |
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
![]() |
[26] |
Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
![]() |
[27] |
Z. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
![]() |
[28] |
M. I. Ali, F. Feng, T. Mahmood, I. Mahmood, H. Faizan, A graphical method for ranking Atanassov's intuitionistic fuzzy values using the uncertainty index and entropy, Int. J. Intell. Syst., 34 (2019), 2692–2712. https://doi.org/10.1002/int.22174 doi: 10.1002/int.22174
![]() |
[29] |
Y. He, H. Chen, Z. He, L. Zhou, Multi-attribute decision making based on neutral averaging operators for intuitionistic fuzzy information, Appl. Soft Comput., 27 (2015), 64–76. https://doi.org/10.1016/j.asoc.2014.10.039 doi: 10.1016/j.asoc.2014.10.039
![]() |
[30] |
Y. He, H. Chen, L, Zhou, J. Liu, Z. Tao, Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making, Inform. Sciences, 259 (2014), 142–159. https://doi.org/10.1016/j.ins.2013.08.018 doi: 10.1016/j.ins.2013.08.018
![]() |
[31] |
H. Zhao, Z. Xu, M. Ni, S. Liu, Generalized aggregation operators for intuitionistic fuzzy sets, Int. J. Intell. Syst., 25 (2010), 1–30. https://doi.org/10.1002/int.20386 doi: 10.1002/int.20386
![]() |
[32] |
W. Wang, X. Liu, Intuitionistic fuzzy geometric aggregation operators based on Einstein operations, Int. J. Intell. Syst., 26 (2011), 1049–1075. https://doi.org/10.1002/int.20498 doi: 10.1002/int.20498
![]() |
[33] |
M. R. Seikh, U. Mandal, Intuitionistic fuzzy Dombi aggregation operators and their application to multiple attribute decision-making, Granul. Comput., 6 (2021), 473–488. https://doi.org/10.1007/s41066-019-00209-y doi: 10.1007/s41066-019-00209-y
![]() |
[34] |
J.-Y. Huang, Intuitionistic fuzzy Hamacher aggregation operators and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 27 (2014), 505–513. https://doi.org/10.3233/IFS-131019 doi: 10.3233/IFS-131019
![]() |
[35] |
W. Yang, Z. Chen, The quasi-arithmetic intuitionistic fuzzy OWA operators, Knowl.-Based Syst., 27 (2012), 219–233. https://doi.org/10.1016/j.knosys.2011.10.009 doi: 10.1016/j.knosys.2011.10.009
![]() |
[36] |
D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
![]() |
[37] |
D. E. Tamir, L. Jin, A. Kandel, A new interpretation of complex membership grade, Int. J. Intell. Syst., 26 (2011), 285–312. https://doi.org/10.1002/int.20454 doi: 10.1002/int.20454
![]() |
[38] |
C. Li, T.-W. Chiang, Function approximation with complex neuro-fuzzy system using complex fuzzy sets–a new approach, New Gener. Comput., 29 (2011), 261–276. https://doi.org/10.1007/s00354-011-0302-1 doi: 10.1007/s00354-011-0302-1
![]() |
[39] |
L. Bi, S. Dai, B. Hu, Complex fuzzy geometric aggregation operators, Symmetry, 10 (2018), 251. https://doi.org/10.3390/sym10070251 doi: 10.3390/sym10070251
![]() |
[40] |
L. Bi, S. Dai, B. Hu, S. Li, Complex fuzzy arithmetic aggregation operators, J. Intell. Fuzzy Syst., 36 (2019), 2765–2771. https://doi.org/10.3233/JIFS-18568 doi: 10.3233/JIFS-18568
![]() |
[41] |
B. Hu, L. Bi, S. Dai, Complex fuzzy power aggregation operators, Math. Prob. Eng., 2019 (2019), 9064385. https://doi.org/10.1155/2019/9064385 doi: 10.1155/2019/9064385
![]() |
[42] |
C. Cornelis, M. De Cock, E. E. Kerre, Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge, Expert Syst., 20 (2003), 260–270. https://doi.org/10.1111/1468-0394.00250 doi: 10.1111/1468-0394.00250
![]() |
[43] |
L. Zhou, W.-Z. Wu, W.-X. Zhang, On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators, Inform. Sciences, 179 (2009), 883–898. https://doi.org/10.1016/j.ins.2008.11.015 doi: 10.1016/j.ins.2008.11.015
![]() |
[44] |
C. Jane, M. Pal, G. Wei, Multiple attribute decision making method based on intuitionistic Dombi operators and its application in mutual fund evaluation, Arch. Control Sci., 30 (2020), 437–470. https://doi.org/10.24425/acs.2020.134673 doi: 10.24425/acs.2020.134673
![]() |
[45] |
A. Alnoor, A. A. Zaidan, S. Qahtan, H. A. Alsattar, R. T. Mohammed, K. W. Khaw, et al., Toward a sustainable transportation industry: oil company benchmarking based on the extension of linear diophantine fuzzy rough sets and multicriteria decision-making methods, IEEE Trans. Fuzzy Syst., 31 (2023), 449–459. https://doi.org/10.1109/TFUZZ.2022.3182778 doi: 10.1109/TFUZZ.2022.3182778
![]() |
[46] |
A. Tan, W.-Z. Wu, Y. Qian, J. Liang, J. Chen, J. Li, Intuitionistic fuzzy rough set-based granular structures and attribute subset selection, IEEE Trans. Fuzzy Syst., 27 (2019), 527–539. https://doi.org/10.1109/TFUZZ.2018.2862870 doi: 10.1109/TFUZZ.2018.2862870
![]() |
[47] |
A. Hussain, T. Mahmood, F. Smarandache, S. Ashraf, TOPSIS approach for MCGDM based on intuitionistic fuzzy rough Dombi aggregation operations, Comp. Appl. Math., 42 (2023), 176. https://doi.org/10.1007/s40314-023-02266-1 doi: 10.1007/s40314-023-02266-1
![]() |
[48] |
Z. Zhang, Generalized intuitionistic fuzzy rough sets based on intuitionistic fuzzy coverings, Inform. Sciences, 198 (2012), 186–206. https://doi.org/10.1016/j.ins.2012.02.054 doi: 10.1016/j.ins.2012.02.054
![]() |
[49] |
T. Mahmood, J. Ahmmad, Z. Ali, M. S. Yang, Confidence level aggregation operators based on intuitionistic fuzzy rough sets with application in medical diagnosis, IEEE Access, 11 (2023), 8674–8688. https://doi.org/10.1109/ACCESS.2023.3236410 doi: 10.1109/ACCESS.2023.3236410
![]() |
[50] |
J. Yi, J. Ahmmad, T. Mahmood, U. ur Rehman S. Zeng, Complex fuzzy rough set: an application in digital marketing for business growth, IEEE Access, 12 (2024), 66453–66465. https://doi.org/10.1109/ACCESS.2024.3397699 doi: 10.1109/ACCESS.2024.3397699
![]() |
[51] |
W. Emam, J. Ahmmad, T. Mahmood, U. ur Rehman, S. Yin, Classification of artificial intelligence tools for civil engineering under the notion of complex fuzzy rough Frank aggregation operators, Sci. Rep., 14 (2024), 11892. https://doi.org/10.1038/s41598-024-60561-1 doi: 10.1038/s41598-024-60561-1
![]() |
[52] |
T. Mahmood, A. Idrees, K. Hayat, M. Ashiq, U. ur Rehman, Selection of AI architecture for autonomous vehicles using complex intuitionistic fuzzy rough decision making, World Electr. Veh. J., 15 (2024), 402. https://doi.org/10.3390/wevj15090402 doi: 10.3390/wevj15090402
![]() |
[53] |
R. Chinram, A. Hussain, T. Mahmood, M. I. Ali, EDAS method for multi-criteria group decision making based on intuitionistic fuzzy rough aggregation operators, IEEE Access, 9 (2021), 10199–10216. https://doi.org/10.1109/ACCESS.2021.3049605 doi: 10.1109/ACCESS.2021.3049605
![]() |
[54] |
J. Dombi, A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators, Fuzzy Set. Syst., 8 (1982), 149–163. https://doi.org/10.1016/0165-0114(82)90005-7 doi: 10.1016/0165-0114(82)90005-7
![]() |
[55] | P.-J. Chen, P.-C. Chen, Z.-Y. Zhuang, AHP can be applied to construction topics, too, In: Analytic hierarchy process–an overview, IntechOpen, 2024. https://doi.org/10.5772/intechopen.1006376 |
[56] |
Z.-Y. Zhuang, C.-H. Fu, Housing preference structures in East Asia: an empirical study and non-paradigmatic shifts between nearby metropoles, Int. J. Strateg. Prop. Manag., 27 (2023), 1–20. https://doi.org/10.3846/ijspm.2023.18628 doi: 10.3846/ijspm.2023.18628
![]() |
[57] |
L.-P. Chi, C.-H. Fu, J.-P. Chyng, Z.-Y. Zhuang, J.-H. Huang, A post-training study on the budgeting criteria set and priority for MALE UAS design, Sustainability, 11 (2019), 1798. https://doi.org/10.3390/su11061798 doi: 10.3390/su11061798
![]() |
[58] |
M. Yahya, M. Naeem, S. Abdullah, M. Qiyas, M. Aamir, A novel approach on the intuitionistic fuzzy rough frank aggregation operator-based EDAS method for multicriteria group decision-making, Complexity, 2021 (2021), 5534381. https://doi.org/10.1155/2021/5534381 doi: 10.1155/2021/5534381
![]() |
[59] |
T. Mahmood, U. ur Rehman, A novel approach towards bipolar complex fuzzy sets and their applications in generalized similarity measures, Int. J. Intell. Syst., 37 (2022), 535–567. https://doi.org/10.1002/int.22639 doi: 10.1002/int.22639
![]() |
[60] |
T. Mahmood, U. ur Rehman, M. Naeem, Prioritization of strategies of digital transformation of supply chain employing bipolar complex fuzzy linguistic aggregation operators, IEEE Access, 11 (2023), 3402–3415. https://doi.org/10.1109/ACCESS.2023.3234117 doi: 10.1109/ACCESS.2023.3234117
![]() |
[61] | U. ur Rehman, Selection of database management system by using multi-attribute decision-making approach based on probability complex fuzzy aggregation operators, Journal of Innovative Research in Mathematical and Computational Sciences, 2 (2023), 1–16. |
[62] |
M. Akram, H. Garg, K. Zahid, Extensions of ELECTRE-I and TOPSIS methods for group decision-making under complex Pythagorean fuzzy environment, Iran. J. Fuzzy Syst., 17 (2020), 147–164. https://doi.org/10.22111/IJFS.2020.5522 doi: 10.22111/IJFS.2020.5522
![]() |
[63] |
P. Wang, B. Zhu, Y. Yu, Z. Ali, B. Almohsen, Complex intuitionistic fuzzy DOMBI prioritized aggregation operators and their application for resilient green supplier selection, Facta Univ. Ser. Mech. Eng., 21 (2023), 339–357. https://doi.org/10.22190/FUME230805029W doi: 10.22190/FUME230805029W
![]() |
1. | Dennis Opoku Boadu, Justice Kwame Appati, Joseph Agyapong Mensah, Exploring the Effectiveness of Graph-based Computational Models in COVID-19 Research, 2024, 5, 2662-2556, 10.1007/s43069-024-00362-4 |
Users | Time | Points |
10 | 0.29 | 837 |
20 | 0.41 | 1755 |
30 | 0.72 | 2565 |
40 | 0.94 | 3595 |
50 | 1.20 | 4954 |
100 | 3.60 | 10746 |
150 | 7.68 | 15397 |