
Consider a tree graph G with edge set E(G). The notation dG(x) represents the degree of vertex x in G. Let f be a symmetric real-valued function defined on the Cartesian square of the set of all distinct elements of the degree sequence of G. A graphical edge-weight-function index for the graph G, denoted by If(G), is defined as If(G)=∑st∈E(G)f(dG(s),dG(t)). This paper establishes the best possible bounds for If(G) in terms of the order of G and parameter p, subject to specific conditions on f. Here, p can be one of the following three graph parameters: (ⅰ) matching number, (ⅱ) the count of pendent vertices, and (ⅲ) maximum degree. We also characterize all tree graphs that achieve these bounds. The constraints considered for f are satisfied by several well-known indices. We specifically illustrate our findings by applying them to the recently introduced Euler-Sombor index.
Citation: Akbar Ali, Sneha Sekar, Selvaraj Balachandran, Suresh Elumalai, Abdulaziz M. Alanazi, Taher S. Hassan, Yilun Shang. Graphical edge-weight-function indices of trees[J]. AIMS Mathematics, 2024, 9(11): 32552-32570. doi: 10.3934/math.20241559
[1] | Shaoliang Yuan, Lin Cheng, Liangyong Lin . Existence and uniqueness of solutions for the two-dimensional Euler and Navier-Stokes equations with initial data in H1. AIMS Mathematics, 2025, 10(4): 9310-9321. doi: 10.3934/math.2025428 |
[2] | Yasir Nadeem Anjam . The qualitative analysis of solution of the Stokes and Navier-Stokes system in non-smooth domains with weighted Sobolev spaces. AIMS Mathematics, 2021, 6(6): 5647-5674. doi: 10.3934/math.2021334 |
[3] | Kaile Chen, Yunyun Liang, Nengqiu Zhang . Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2023, 8(11): 27712-27724. doi: 10.3934/math.20231418 |
[4] | Xiaoxia Wang, Jinping Jiang . The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363 |
[5] | Berhail Amel, Rezzoug Imad . Identification of the source term in Navier-Stokes system with incomplete data. AIMS Mathematics, 2019, 4(3): 516-526. doi: 10.3934/math.2019.3.516 |
[6] | Jae-Myoung Kim . Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Mathematics, 2021, 6(12): 13423-13431. doi: 10.3934/math.2021777 |
[7] | Krunal B. Kachhia, Jyotindra C. Prajapati . Generalized iterative method for the solution of linear and nonlinear fractional differential equations with composite fractional derivative operator. AIMS Mathematics, 2020, 5(4): 2888-2898. doi: 10.3934/math.2020186 |
[8] | Manoj Singh, Ahmed Hussein, Msmali, Mohammad Tamsir, Abdullah Ali H. Ahmadini . An analytical approach of multi-dimensional Navier-Stokes equation in the framework of natural transform. AIMS Mathematics, 2024, 9(4): 8776-8802. doi: 10.3934/math.2024426 |
[9] | Qasim Khan, Anthony Suen, Hassan Khan, Poom Kumam . Comparative analysis of fractional dynamical systems with various operators. AIMS Mathematics, 2023, 8(6): 13943-13983. doi: 10.3934/math.2023714 |
[10] | Jan Nordström, Fredrik Laurén, Oskar Ålund . An explicit Jacobian for Newton's method applied to nonlinear initial boundary value problems in summation-by-parts form. AIMS Mathematics, 2024, 9(9): 23291-23312. doi: 10.3934/math.20241132 |
Consider a tree graph G with edge set E(G). The notation dG(x) represents the degree of vertex x in G. Let f be a symmetric real-valued function defined on the Cartesian square of the set of all distinct elements of the degree sequence of G. A graphical edge-weight-function index for the graph G, denoted by If(G), is defined as If(G)=∑st∈E(G)f(dG(s),dG(t)). This paper establishes the best possible bounds for If(G) in terms of the order of G and parameter p, subject to specific conditions on f. Here, p can be one of the following three graph parameters: (ⅰ) matching number, (ⅱ) the count of pendent vertices, and (ⅲ) maximum degree. We also characterize all tree graphs that achieve these bounds. The constraints considered for f are satisfied by several well-known indices. We specifically illustrate our findings by applying them to the recently introduced Euler-Sombor index.
Most physical or chemical phenomena are governed by partial differential equations that describe the evolution of the constituents of the problem under study. If all the parameters of the system are known (the geometry of the domain, the boundary and initial conditions, and the coefficients of the equations), the model to be solved is a direct problem. On the other hand, if certain parameters in the equation are unknown, these parameters can be determined from experimental data or from the values at the final time in an evolution problem. The identification of such a parameter in the partial differential equation represents an inverse problem.
When experimental measurements are made on the boundary to determine a coefficient in a partial differential equation, there is always measurement error, which can mean a very large error in identification. For this reason, most inverse problems are ill-posed (we refer the reader to [1], for further details on the results found and the methods developed).
Many papers in this area deal with elliptic problems, see for example [2,3,4,5]. On the other hand, the literature on applications governed by elliptic, parabolic and hyperbolic, linear and nonlinear systems is rather limited. Theoretical results for the latter case can be found, for example, in [6,7,8].
We are interested in studying the state-constrained optimal control problem of the steady-state Navier-Stokes equations. In this area, several applications have been proposed to solve optimal control problems [9,10,11,12]. The elliptic optimization problem was first discussed theoretically by Reyes and R. Griesse [13]. Research on numerical methods for optimal control of the Navier-Stokes equations has made significant advancements over the years. The initial approaches for optimal control of the Navier-Stokes equations employed classical optimization methods such as the conjugate gradient method, quasi-Newton method, or augmented Lagrangian method. These methods yielded promising results, but they were often limited by the nonlinearity of the Navier-Stokes equations and the presence of constraints. Then came the domain decomposition methods, which are used to divide the computational domain into smaller subdomains in order to solve the Navier-Stokes equations more efficiently. In the context of optimal control, these methods help reduce the problem size by partitioning the domain into regions that can be solved independently. This facilitates parallel computations and leads to faster results [14]. The adjoint-based optimization methods, on the other hand, are commonly used to solve optimal control problems. These methods leverage the principle of dynamic programming by calculating an adjoint variable that provides information about the system's sensitivity with respect to the control. This information is then used to adjust the control optimally. Adjoint-based optimization methods have been successfully applied to the Navier-Stokes equations, enabling the solution of complex optimal control problems [15,16]. Also worth mentioning are the methods based on genetic algorithms, which are optimization methods inspired by principles of natural selection. In the context of the Navier-Stokes equations, these methods have been used to solve optimal control problems by generating a population of potential solutions and evolving them over generations. Genetic algorithms have the advantage of being able to explore a larger search space, but they may require a large number of iterations to converge to an optimal solution. It should be noted that the comparison of different approaches will depend on the specific context of the optimal control problem for the Navier-Stokes equations. Each method has its own advantages and limitations, and the choice of method will depend on computational constraints, control objectives and available resources [17]. The approach presented in this paper is a powerful technique for solving this and many other such nonlinear problems. We have applied a new method to construct a new family of numerical schemes that convert the inverse problem into a direct problem, which helps us to solve numerical problems easily. We construct an algorithm that can solve this problem. We use spectral methods to find approximate solutions through the preconditioned GMRES method. The stability and convergence of the method are analyzed [18,19].
The flow of an in-compressible viscous fluid in a domain Ω of R2 is characterized by two variables velocity u and pressure p, given functions f=(fx,fy) in (L2(Ω))2 and a control force g which is the optimization variable.
The problem posed in this paper is to find a solution pair (u,g) solving the functional J defined by.
J(g)=12∫Ω|u(g)−ud|2dx+α2∫Ω|g|2dx, | (Jg) |
where u is the solution to the problem
−νΔu+(u.∇)u+∇p=f+g in Ω,divu=0 in Ω,u=0 on Γ=∂Ω, | (Pg) |
where ud and f are the data and ν is the viscosity. Our work is based on a simple computation of the gradient J which leads to the coupled problem which is the main subject of this study. This paper is organized as follows:
∙ In Section 2, we introduce the optimal control problem under constraints (Pg) [20]. We also prove the existence of a global optimal solution for the optimal control problem (S) [21].
∙ In Section 3, after linearization, we study the existence and uniqueness of weak solutions of (Pn). We prove the convergence of un solutions of (Pn) to the u solution of (Pg). We then derive an optimal system of equations from which the optimal solution can be computed.
∙ In Section 4, We propose a numerical algorithm for solving coupled systems of equations, where the numerical solution is generated by spectral methods [22,23].
Let Ω be a bounded domain of R2 with Lipschitz-continuous boundary Γ. Additionally, V={v∈X,divv=0}, where X=H10(Ω)2={v∈H1(Ω)2;v|∂Ω=0}.
We set M=L20(Ω)={v∈L2(Ω);∫Ωvdx=0}, Y=X×M and W=V×M.
Remark 1. The symbol E↪G denotes the continuous and dense embedding of E into G.
The symbol E⇀G denotes the weak convergence of E to G.
The symbol E→G denotes the strong convergence of E to G.
In this section, we are concerned with the following state-constrained optimal control problem. Find (u∗,g∗)∈W×L2(Ω)2 which solves
minJ(g)=12∫Ω|u(g)−ud|2dx+γ2∫Ω|g|2dx,such that |
νΔu+(u.∇)u+∇p=f+g in Ω,divu=0 in Ω,u=0 on Γ,u∈C, | (S) |
where the state u is sought in the space W=H2(Ω)2∩V.
● C is a closed convex subset of C0(Ω)={ω∈C(ˉΩ);ω|Γ=0}, the space of continuous functions on Ω vanishing on Γ.
● g is a distributed control function.
● The function ud∈L2(Ω)2 denotes the desired state.
● The parameter γ>0 stands for the control cost coefficient.
State constraints are relevant in practical applications to suppress backward flow in channels. Next, we derive necessary optimal conditions for (S).
We have two types of constraint sets C. The first one is
C1={v∈C0;ya(x)≤v(x)≤yb(x),∀x∈˜Ω⊂Ω}, |
which covers point-wise constraints on each component of the velocity vector field, i.e., v(x)≤yb(x) gives vi(x)≤yb,i(x) for i=1,...,d, on a sub-domain ˜Ω⊂Ω.
The set of feasible solutions is defined as:
Tad={(u,g)∈W×L2(Ω)2;u satisfies the state equation in (Pg) andu∈C}. | (2.1) |
The weak formulation of the first and third equations of (Pg) is defined as follows Find u∈V knowing that
∫Ω∇u∇vdx+∫Ω((u.∇)u)vdx=∫Ω(f+g)vdx∀v∈V. | (2.2) |
Before we study the problem of optimal control we start with the following proposition.
Proposition 2. [13] Let Ω be a bounded domain of R2 of class C2 and f and g∈L2(Ω)2. Then every solution of (2.2) satisfies u∈H2(Ω)2 and p∈L20(Ω)∩H1(Ω) for the corresponding pressure. Moreover, there exists a constant c(ν,Ω)>0 such that
∥u∥H2(Ω)2+∥∇p∥L2(Ω)2≤c(1+∥f∥3L2(Ω)2+∥g∥3L2(Ω)2). | (2.3) |
Theorem 3. If Tad is non-empty, then there exists a global optimal solution for the optimal control problem (S).
Proof. Since the problem has at least one feasible pair, and J is bounded by zero, we can take the minimization sequence (uk,gk) in Tad. We obtain
γ2‖gk‖2≤J(uk,gk)<∞, |
which implies that {gk} is uniformly bounded in L2(Ω)2. Then we may extract a weakly convergent sub-sequence, also denoted by {gk}, such that
gk⇀g∗∈L2(Ω)2. | (2.4) |
Using 2.3, it follows that the sequence {uk} is also uniformly bounded in W and, consequently, we may extract a weakly convergent sub-sequence, also denoted by {uk} such that
uk⇀u∗∈W. | (2.5) |
In order to proof that (u∗,g∗) is a solution of the Navier-Stokes equations, the only problem is to pass to the limit in the nonlinear form ∫Ω(uk.∇uk)vdx. Due to the compact embedding W↪V and the continuity of ∫Ω(uk.∇uk)vdx, it follows that
∫Ω(uk.∇uk)vdx→∫Ω(u∗.∇u∗)vdx. | (2.6) |
Consequently, taking into account the linearity and continuity of all terms involved, the limit (u∗,g∗) satisfies the state equations.
Since C is convex and closed, it is weakly closed, so uk⇀u∗ in W and the embedding H2(Ω)∩(H10(Ω))↪C0(Ω) implies that u∗∈C. Taking into consideration that J(g) is weakly lower semi-continuous, the result follows via [13].
To solve (Pg), we construct a sequence of linear problems. Starting from an arbitrary u0∈X, we consider the iterative scheme
−νΔun+(un−1⋅∇)un+∇pn=f+gnin Ω,divun=0in Ω,u=0on Γ,un∈C. | (Pn) |
The variational formulation of (Pn) is
Find (un,pn) ∈ Y such that
a0(un,v)+an(un,v)+b(pn,v)=⟨f+gn,v⟩∀v∈V,b(q,un)=0∀q∈M. | (PVn) |
The bilinear forms a0, an and b are given by ∀p∈M and v∈X
a0(u,v)=ν∫Ω∇u∇vdx,an(u,v)=∫Ω(un−1⋅∇u)vdx,b(p,v)=∫Ω∇pvdx=−∫Ωpdivvdx, | (3.1) |
with f∈H−1(Ω).
Using Green's Theorem and divv=0, we have b(p,v)=0. Then, we associate with the problem (PVn), the following problem
Findun∈Vsuch that,a0(un,v)+an(un,v)=⟨f+gn,v⟩∀v∈V. | (PVn) |
For each n and for f,gn∈L2(Ω)2, the problem (PVn) has a unique solution un∈V [13].
The sequence (un)n∈N satisfies the following inequality:
ν2‖un‖2X≤a(un,un)=L(un)=∫Ω(f+gn)undx. |
Using the continuity of the linear form L(.) and Schwarz's inequality, we obtain the following inequality
‖un‖X≤2ν‖f+gn‖L2(Ω)2∀n≥1, | (3.2) |
which implies that the sequence (un)n∈N is bounded in X=(H10(Ω))2. Hence, there is a subsequence that converges weakly to ϕ in X on the one hand. However, on the other hand, it converges strongly in L2(Ω)2.
Lemma 4. If u0∈H2(Ω)2∩H10(Ω)2, f∈L2(Ω)2, and gn∈L2(Ω)2, then
lim |
Proof. If \mathbf{u}^{0} \in H^{2}(\Omega)^{2} \cap H_{0}^{1}(\Omega)^{2} , \mathbf{f} \in L_{2}(\Omega)^{2} and \mathbf{g}^{n} \in L_2 (\Omega)^{2} , then a regularity theorem gives: \mathbf{u}^{n} and \phi are in H^{2}(\Omega)^{2} \cap H_{0}^{1}(\Omega)^{2}. Furthermore,
\begin{array}{l} \frac{ \nu}{2} \| \nabla \mathbf{u}^{n} - \nabla \phi \|_{L_{2} (\Omega)^{2}} \leq a_0({\mathbf{u}^{n} - \phi , \mathbf{u}^{n} - \phi }) , \end{array} | (3.3) |
with
\begin{array}{l} a_0({\mathbf{u}^{n} - \phi , \mathbf{u}^{n} - \phi }) = a_0({\mathbf{u}^{n} - \phi , \mathbf{u}^{n} }) - a_0({\mathbf{u}^{n} - \phi , \phi }), \end{array} | (3.4) |
and
\begin{array}{l} a_0(\mathbf{u}^{n} - \phi , \mathbf{u}^{n}) - a_{0}(\mathbf{u}^{n} - \phi , \phi ) = \nu \int_{\Omega} \nabla \mathbf{u}^{n} \nabla (\mathbf{u}^{n} - \phi ) \, dx - \nu \int_{\Omega} \nabla \phi \nabla (\mathbf{u}^{n} - \phi ) \, dx, \end{array} | (3.5) |
and
\begin{eqnarray*} | a_0(\mathbf{u}^{n}- \phi , \mathbf{u}^{n} ) - a_{0}(\mathbf{u}^{n} - \phi , \phi ) | &\leq& \nu \left| \int_{\Omega} \Delta \mathbf{u}^{n} (\mathbf{u}^{n} - \phi ) \, dx \right| + \nu \left| \int_{\Omega} \Delta \phi (\mathbf{u}^{n} - \phi ) \, dx \right| \\ &\leq& \nu \| \Delta \mathbf{u}^{n} \|_{L_{2}(\Omega)^{2}} \| \mathbf{u}^{n} - \phi \|_{L_{2}(\Omega)^{2}} \\ & +& \nu \| \Delta \phi \|_{L_{2}(\Omega)^{2}} \| \mathbf{u}^{n}- \phi \|_{L_{2}(\Omega)^{2}} \\ &\leq& \nu \| \mathbf{u}^{n} - \phi \|_{L_{2}(\Omega)^{2}} (\| \Delta \mathbf{u}^{n} \|_{L_{2}(\Omega)^{2}} + \| \Delta \phi \|_{L_{2}(\Omega)^{2}}). \end{eqnarray*} |
Using (3.3) we obtain
\begin{equation*} \frac{ \nu}{2} \| \nabla \mathbf{u}^{n} - \nabla \phi \|^{2}_{L_{2} (\Omega)^{2}} \leq { \nu} \| \mathbf{u}^{n} - \phi \|_{L_{2}(\Omega)^{2}} ( \|\Delta \mathbf{u}^{n} \|_{L_{2}(\Omega)^{2}} + \| \Delta \phi \|_{L_{2}(\Omega)^{2}}. \end{equation*} |
Then we increase the regularity of \mathbf{u} using the method of singular perturbation, we conclude via [11] that \mathbf{u}^{n} is bounded in H_0^{2}(\Omega) , then we extract a sequence still denoted by \mathbf{u}^{n} , which converges weakly to \mathbf{u} in H_0^{2}(\Omega) since the injection of H_0^{2}(\Omega) into H_0^{1}(\Omega) is compact, there is a subsequence still denoted by \mathbf{u}^{n} which converges strongly to \mathbf{u} in H_0^{1}(\Omega) , we prove via [11]
\begin{array}{l} \lim\limits_{n \rightarrow \infty} \| \nabla \mathbf{u}^{n} - \nabla \phi \|_{L_{2}(\Omega)^{2}} = 0. \end{array} | (3.6) |
We need this result.
Lemma 5. 1) \lim_{{n \rightarrow \infty}} a_0(\mathbf{u}^{n}, \mathbf{v}) = a_0(\phi , \mathbf{v}).
2) \lim_{{n \rightarrow \infty}} a_{n}(\mathbf{u}^{n}, \mathbf{v}) = a_{\infty}(\phi , \mathbf{v}) = \int_{\Omega} (\phi \cdot \nabla) \phi \cdot \mathbf{v} \, dx.
Proof. On the one hand, we have,
\begin{array}{l} 1) \quad |a_0(\mathbf{u}^{n}, \mathbf{v}) - a_0(\phi , \mathbf{v})| \leq \int_{\Omega} |\nabla \mathbf{u}^{n} - \nabla \phi | \cdot \nabla \mathbf{v} \, dx \leq \|\nabla \mathbf{u}^{n} - \nabla \phi \|_{L_{2}(\Omega)^{2}} \|\nabla \mathbf{v}\|_{L_{2}(\Omega)^{2}}. \end{array} | (3.7) |
Using Lemma 4, we obtain the result.
2) On the other hand, we have
\begin{array}{l} |a_{n}(\mathbf{u}^{n} , \mathbf{v} ) - a_{\infty}(\phi , \mathbf{v})| = \int_{\Omega} \{ (\mathbf{u}^{n-1}.\nabla)\mathbf{u}^{n} - (\phi .\nabla) \phi \} \mathbf{v} dx. \end{array} | (3.8) |
Setting
\begin{array}{l} (\mathbf{u}^{n-1}. \nabla)\mathbf{u}^{n}- (\phi . \nabla)\phi = ((\mathbf{u}^{n-1} - \phi ) . \nabla)\mathbf{u}^{n} + (\phi . \nabla)(\mathbf{u}^{n} -\phi ). \end{array} | (3.9) |
By using the continuity of the bi-linear form a_{n}(\mathbf{u}^{n}, \mathbf{v}) , it gives the following
\begin{array}{l} |a_{n}(\mathbf{u}^{n} , \mathbf{v} ) - a_{\infty}(\phi , \mathbf{v} )| \leq C (\|\mathbf{u}^{n-1} - \phi \|_{X} \|\mathbf{u}^{n}\|_{X} + \|\phi \|_{X} \| \mathbf{u}^{n} - \phi \|_{X}) \|\mathbf{v} \|_{X}. \end{array} | (3.10) |
Theorem 6. The sequence \left(\mathbf{u}^{n}\right)_{n\in\mathbb{N} } of solutions of problem (\mathcal{P}_{n}) converges to the solution \Phi of problem (P_{\mathbf{g}}) .
Proof. It follows from Lemma 5 that
\lim\limits_{{n \rightarrow \infty}} a_0(\mathbf{u}^{n}, \mathbf{v}) + a_{n}(\mathbf{u}^{n},\mathbf{v}) = a_{0}(\phi, \mathbf{v}) + a_{\infty}(\phi , \mathbf{v}). |
The problem (\mathcal{P}V_{n}) gives
\begin{array}{l} a_0(\mathbf{u}^{n} , \mathbf{v}) + a_{n}(\mathbf{u}^{n},\mathbf{v}) = \langle \mathbf{f}+\mathbf{g}^{n}, \mathbf{v} \rangle \; \forall \mathbf{v} \in V, \end{array} | (3.11) |
and we have \frac{\gamma}{2} \|\mathbf{g}^{n}\|^{2} \leq J(\mathbf{v}^{n}, \mathbf{g}^{n}) < \infty, which implies that \mathbf{g}^{n} is uniformly bounded in (L^{2}(\Omega))^{2} . Hence, we can extract a weakly convergent sub-sequence, denoted by \mathbf{g}^{n} , such that \mathbf{g}^{n} \rightharpoonup \breve{\mathbf{g}} \in (L^{2}(\Omega))^{2} .
Then, using Lemma 5, we obtain
a_0(\phi , \mathbf{v}) + a_{\infty}(\phi , \mathbf{v}) = \langle \mathbf{f}+\breve{\mathbf{g}}, \mathbf{v} \rangle \qquad \forall \mathbf{v} \in V. |
Here we used Rham's Theorem. Let \Omega be a bounded regular domain of \mathbb{R}^{2} and \mathcal{L} be a continuous linear form on H_{0}^{1}(\Omega)^{2} , then the linear form \mathcal{L} vanishes on V if and only if there exists a unique function \varphi \in L^{2}(\Omega)/\mathbb{R} such that
\forall \mathbf{v} \in H_{0}^{1}(\Omega)^{2},\qquad \mathcal{L}(\mathbf{v}) = \int_{\Omega} \varphi \; div \; \mathbf{v} \; dx. |
Now let \mathcal{L}(\mathbf{v}) = a_0(\phi , \mathbf{v}) + a_{\infty}(\phi , \mathbf{v}) - \langle \mathbf{f}+\breve{\mathbf{g}}, \mathbf{v} \rangle , therefore the form \mathcal{L}(\mathbf{v}) = 0 for all \mathbf{v} \in V , then Rham' theorem implies the existence of a unique function p \in \mathrm{L}^{2}(\Omega)/\mathbb{R} such that
\begin{array}{l} a_0(\phi , \mathbf{v}) + a_{\infty}(\phi , \mathbf{v}) - \langle \mathbf{f} + \breve{\mathbf{g}}, \mathbf{v} \rangle = \int_{\Omega} p \, \text{div} \, \mathbf{v} \, dx \quad \forall \quad \mathbf{v} \in X, \end{array} | (3.12) |
which gives
\begin{array}{l} \nu \int_{\Omega} \nabla \phi \nabla \mathbf{v} \, dx + \int_{\Omega} (\phi \cdot \nabla) \phi \mathbf{v} \, dx - \int_{\Omega} p \, \text{div} \, \mathbf{v} \, dx = \int_{\Omega}(\mathbf{f}+\breve{\mathbf{g}}) \mathbf{v} \, dx \quad \forall \quad \mathbf{v} \in X, \end{array} | (3.13) |
\begin{array}{l} \int_{\Omega} \left( - \nu \Delta \phi + (\phi \cdot \nabla) \phi + \nabla p - (\mathbf{f}+\breve{\mathbf{g}}) \right) \mathbf{v} \, dx = 0 \quad \forall \quad \mathbf{v} \in X, \end{array} | (3.14) |
then in \mathcal{D}'(\Omega) :
\begin{array}{l} - \nu \Delta \phi + (\phi .\nabla) \phi + \nabla p -(\mathbf{f}+\breve{\mathbf{g}}) = 0. \end{array} | (3.15) |
Since \phi \in V and (\phi , \breve{\mathbf{g}}) satisfies Eqs (1) and (2) of (P_{\mathbf{g}}) , we conclude that \phi is a solution of (P_{\mathbf{g}}) and the result follows.
Consider the problem (S_n) , defined as follows
\begin{equation*} \min J(\mathbf{g}^{n}),\quad (\mathbf{u}^{n},\mathbf{g}^{n})\in \mathfrak{U}_{ad} ,\;\text{where } (\mathbf{u}^{n},\mathbf{g}^{n})\text{ solves }~~ (P_n), \end{equation*} | (S_n) |
where we define the functional
\begin{equation*} J(\mathbf{g}^{n}) = \frac{1}{2}\int_{\Omega }|\mathbf{u}^{n}(\mathbf{g}^{n})-\mathbf{u} _{d}|^{2}\;dx+c\int_{\Omega }|\mathbf{g}^{n}|^{2}\;dx. \end{equation*} |
The set of admissible solutions is defined as follows:
\begin{equation*} \mathfrak{U}_{ad} = \{(\mathbf{u}^{n},\mathbf{g}^{n}) \in \mathcal{W} \times L^{2}(\Omega)^{2} ; \mathbf{u}^{n} \;\text{satisfies the state equation in} \; (P_{n})\; \text{and} \;\mathbf{u} \in \mathbf{C} \}. \end{equation*} |
The method to calculate the gradient is defined by
\begin{array}{l} \lim\limits_{\epsilon\rightarrow 0} \frac{J\mathbf{(}\mathbf{g}^{n}+\varepsilon \mathbf{w})-J( \mathbf{g}^{n})}{\varepsilon } = (J\text{'}(\mathbf{g}^{n}),\mathbf{w} ) = \int J\text{'}(\mathbf{g}^{n})\mathbf{w}dx. \end{array} | (3.16) |
By linearity, \mathbf{u}^{n}(\mathbf{g}^{n}+\varepsilon \mathbf{w}) = \mathbf{u}^{n}(\mathbf{g}^{n})\mathbf{+}\varepsilon \tilde{\mathbf{ u}^{n}}(\mathbf{w}) with
\begin{array}{l} \begin{array}{rlll} -\nu \;\Delta \tilde{\mathbf{u}}^{n}\mathbf{(w)}+ (\mathbf{u}^{n-1}.\nabla)\tilde{\mathbf{u}^{n}} + \nabla \tilde{q}^{n}(\mathbf{w}) & = &\mathbf{w} &\text{ in }\;\Omega, \\ div\text{ }\tilde{\mathbf{u}^{n}} & = & 0 &\text{in }\;\Omega, \\ \tilde{\mathbf{u}^{n}} & = & 0 &\text{on }\Gamma. \end{array} \end{array} | (3.17) |
Otherwise, \tilde{\mathbf{u}}^{n}(\mathbf{w}) = ((\mathbf{u}^{n} (\mathbf{g}^{n}))^{'}, \mathbf{w}).
As J(\mathbf{g}^{n}) is quadratic, we obtain
\begin{equation*} \int J\text{'}(\mathbf{g}^{n})\mathbf{w}dx = \int ((\mathbf{u}^{n}( \mathbf{\mathbf{g}^{n}})\mathbf{-u}_{d}).\tilde{\mathbf{u}^{n}}(\mathbf{w})+c \mathbf{g}^{n}.\mathbf{w})dx. \end{equation*} |
To simplify the expression of the gradient, we use the following system where p is defined as the unique solution in H_{0}^{1}(\Omega)
\begin{array}{l} \begin{array}{rlll} -\nu \;\Delta p^{n} - (\mathbf{{u}^{n-1}}.\nabla)\mathbf {p}^{n} + \nabla \eta^{n} & = & \mathbf{u^{n}-u}_{d} &\text{in }\Omega, \\ \nabla\text{ }p^{n} & = & 0 &\text{in }\Omega, \\ p^{n} & = & 0 &\text{on }\Gamma. \end{array} \end{array} | (3.18) |
Multiplying the first equation of (3.17) by p^{n} and the first equation of (3.18) by \tilde{\mathbf{u}}^{n}(\mathbf{w}) and integrate by parts, we obtain
\begin{equation*} \nu \int_{\Omega }\nabla p^{n}.\nabla \tilde{\mathbf{u}}^{n} dx + \int_{\Omega } ((\mathbf{{u}^{n-1}}.\nabla )\tilde{\mathbf u}^{n})p^{n} dx +\int_{\Omega }\tilde{q}^{n}\text{ }\nabla\text{ }p^{n} = \int_{\Omega } \mathbf{w} p^{n}dx. \end{equation*} |
\begin{equation*} \nu \int_{\Omega }\nabla \tilde{\mathbf{u}^{n}.}\nabla p^{n} dx - \int_{\Omega } ((\mathbf{u}^{n-1}.\nabla) p^{n})\tilde{\mathbf{u}}^{n} dx +\int_{\Omega }\eta^{n} \text{ }\nabla.\tilde{\mathbf{u}}^{n} = \int_{\Omega }( \mathbf{u}^{n} -\mathbf{u}_{d}).\tilde{\mathbf{u}}^{n}dx. \end{equation*} |
As
\begin{equation*} \int_{\Omega } ((\mathbf{{u}^{n-1}}.\nabla )\tilde{\mathbf u}^{n})p^{n} dx = - \int_{\Omega } ((\mathbf{u}^{n-1}.\nabla) p^{n})\tilde{\mathbf{u}}^{n} dx. \end{equation*} |
Indeed
\begin{equation*} \int_{\Omega } ((\mathbf{{u}^{n-1}}.\nabla )\tilde{\mathbf u}^{n})p^{n} dx = \sum\limits_{i}\sum\limits_{j}\int_{\Omega } \mathbf{u}_{i}^{n-1}\frac{\partial\tilde{\mathbf u}_{j}^{n}}{\partial x_{i}}p_{j}^{n}dx \end{equation*} |
\begin{equation*} = - \sum\limits_{i}\sum\limits_{j}\int_{\Omega } \tilde{\mathbf u}_{j}^{n} \frac{\partial (\mathbf{u}_{i}^{n-1}p_{j}^{n})}{\partial x_{i}}dx \end{equation*} |
\begin{equation*} = - \sum\limits_{i}\sum\limits_{j}\int_{\Omega } \tilde{\mathbf u}_{j}^{n} \frac{\partial \mathbf{u}_{i}^{n-1}}{\partial x_{i}}p_{j}^{n}dx - \sum\limits_{i}\sum\limits_{j}\int_{\Omega } \tilde{\mathbf u}_{j}^{n-1} \frac{\partial p_{j}^{n}}{\partial x_{i}}\mathbf{u}_{i}^{n-1} dx \end{equation*} |
\begin{equation*} -\int_{\Omega } (\tilde{\mathbf{u}}^{n}.p^{n}) \nabla^{2} \mathbf{u}^{n-1} dx - \int_{\Omega } ((\mathbf{u}^{n-1}.\nabla)p^{n}) \tilde{\mathbf{u}}^{n} dx \end{equation*} |
\begin{equation*} = - \int_{\Omega } ((\mathbf{u}^{n-1}.\nabla)p^{n}) \tilde{\mathbf{u}}^{n} dx \end{equation*} |
Hence,
\begin{equation*} \int_{\Omega }\mathbf{w}p^{n} dx = \int_{\Omega }(\mathbf{u}^{n}- \mathbf{u}_{d}).\tilde{ \mathbf{u}}^{n}dx. \end{equation*} |
Consequently
\begin{equation*} \int J\text{'}(\mathbf{g}^{n})\mathbf{w}dx = \int_{\Omega }(\mathbf{ p}^{n}+c\mathbf{ g}^{n}).\mathbf{w}dx. \end{equation*} |
So J ' (\mathbf{g}) = p^{n}+c\mathbf{g}^{n} = 0 , implies p^{n} = -c\mathbf{g}^{n} and \Delta p^{n} = -c\Delta \mathbf{g}^{n} , we then obtain the two systems defined as follows
\begin{array}{l} \begin{array}{rlll} - \nu \Delta \mathbf{u}^{n} + (\mathbf{u}^{n-1}.\nabla)\mathbf{u}^{n} + div q^{n} & = & \mathbf{f} +\mathbf{g}^{n} &\mbox{in } \Omega\\ div\mathbf{u}^{n} & = & 0 &\mbox{in } \Omega\\ \mathbf{u}^{n} & = & 0 &\mbox{on } \Gamma, \end{array} \end{array} | (3.19) |
\begin{array}{l} \begin{array}{rlll} c \nu \;\Delta \mathbf{g}^{n} + c (\mathbf{u}^{n-1}.\nabla)\mathbf{g}^{n} + \nabla \eta^{n} & = &\mathbf{u}^{n} - \mathbf{u}_{d} &\text{in }\Omega, \\ div\text{ }\mathbf{g}^{n} & = & 0 &\text{in }\Omega, \\ \mathbf{g}^{n} & = & 0 &\text{on }\Gamma. \end{array} \end{array} | (3.20) |
We now consider the variational formulation related to both problems (3.19) and (3.20).
Find (\mathbf{u}^{n}, q^{n}, \mathbf{g}^{n}, \eta^{n}) in V\times M \times V \times M such as:
\begin{align} &\forall \;\mathbf{v} \in V,\; \nu \int_{\Omega} \nabla \mathbf{u}^{n} \nabla \mathbf{v} \, d\mathbf{x} + \int_{\Omega} ( (\mathbf{u}^{n-1} \cdot \nabla) \mathbf{u}^{n} )\, \mathbf{v} \, d\mathbf{x} - \int_{\Omega} q^{n} \, \text{div}\,\mathbf{v} \, d\mathbf{x} \\ &- \int_{\Omega} \mathbf{v} \cdot \mathbf{g}^{n} \, d \mathbf{x} = \langle \mathbf{f}, \mathbf{v} \rangle_{\Omega},\\ &\forall \;\phi \in M, \; -\int_{\Omega} \phi\, \text{div}\, \mathbf{u}^{n} \, d\mathbf{x} = 0,\\ &\forall \;\mathbf{S} \in V,\;c \nu \int_{\Omega} \nabla \mathbf{g}^{n} \nabla \mathbf{S} \, d\mathbf{x} - c\int_{\Omega} ( (\mathbf{u}^{n-1} \cdot \nabla) \mathbf{g}^{n} )\, \mathbf{S} \, d\mathbf{x} + \int_{\Omega} \eta^{n} \, \text{div}\,\mathbf{S} \, d\mathbf{x} \\ &+ \int_{\Omega} \mathbf{S} \cdot \mathbf{u}^{n} \, d\mathbf{x} = \langle \mathbf{u}_{d}, \mathbf{S} \rangle_{\Omega}, \\ &\forall\; \varphi \in M,\; \int_{\Omega} \varphi\, \text{div}\,\mathbf{g}^{n} \, d\mathbf{x} = 0. \end{align} | (3.21) |
where \langle\; \; \rangle_{\Omega} represents the duality product between H^{-1}(\Omega) and H_{0}^{1}(\Omega) . The following result is a consequence of the density of D(\Omega) in L^{2}(\Omega) and H_{0}^{1}(\Omega) .
Proposition 7. The problem S is equivalent to the problem (3.21) in the sense that for all triples (\mathbf{u}, p, \mathbf{g}) in H_{0}^{1}(\Omega)^{2}\times L_{0}^{2}(\Omega)\times L^{2}(\Omega)^{2} is a solution of the system (S) in the distribution sense if and only if it is a solution of the problem (3.21).
We are now interested in the discretization of problem (PV_{n}) in the case where \Omega = ]-1, 1[^{2}.
In dimension d = 2 , for any integers n, m \geq 0 , we define \mathbb {P}_{l, m} (\Omega) as the the space of polynomials on \mathbb {R} .
We denote by \mathbb {P}_{l, m} (\Omega) the space of the restrictions of functions on \Omega of the set \mathbb {P}_ {l, m} of degree \leq l respectively x and \leq m y respectively.
In dimension d = 2 , denoting by \mathbb{P}_{N}(\Omega) the space of restrictions to ]-1\; \; 1[^{2} of polynomials with degree \leq N . The space \mathbb{P}_{N}^{0}(\Omega) which approximates H_{0}^{1}(\Omega) is the space of polynomials of \mathbb{P}_{N}(\Omega) vanishing at \mp 1 .
Setting \xi _{0} = -1 and \xi _{N} = 1 , we introduce the N-1 nodes \xi _{j} , 1\leq j\leq N-1 , and the N+1 weights \rho _{j} , 0\leq j\leq N , of the Gauss-Lobatto quadrature formula. We recall that the following equality holds
\begin{array}{l} \int_{-1}^{1}\phi (\zeta )d\zeta = \sum\limits_{j = 0}^{N}\phi (\xi_{j})\rho_{j}. \end{array} | (3.22) |
We also recall ([24], form. (13.20)) the following property, which is useful in what follows.
\begin{array}{l} \forall\;\varphi_{N}\;\in \mathbb{P}_{N}(-1\;,\; 1)\;\;\; \| \varphi_{N}\|^{2}_{L^{2}(]-1\;\; 1[)} \leq \sum\limits_{j = 0}^{N}\varphi_{N}^{2}(\zeta)\rho_{j} \leq 3 \| \varphi_{N}\|^{2}_{L^{2}(]-1\;\; 1[)}. \end{array} | (3.23) |
Relying on this formula, we introduce the discrete product, defined for continuous functions u and v by
\begin{array}{l} (u ,v )_{N} = \left\{ \begin{array}{ll} \sum\limits_{i = 0}^{ N}\sum\limits_{j = 0}^{N} u(\xi_{i},\xi_{j})v(\xi_{i},\xi_{j})\rho_{i}\rho_{j}, & \hbox{si d = 2}. \end{array} \right. \end{array} | (3.24) |
It follows from (3.23) that this is a scalar product on \mathbb{P}_{N}(\Omega) .
Finally, let \mathcal{I}_{N} denote the Lagrange interpolation operator at the nodes \xi _{i}, 0\leq i\leq N , with values in \mathbb{P}_{N}(\Omega) .
To approximate L_{0}^{2}(\Omega) , we consider the space
\begin{array}{l} \mathbb{M}_{N} = L_{0}^{2}(\Omega) \cap P_{N-2}(\Omega). \end{array} | (3.25) |
The space that approximates H_{0}^{1}(\Omega) is
\begin{array}{l} \mathbb{X}_{N} = (P_{N}^{0}(\Omega))^{2}. \end{array} | (3.26) |
We now assume that the functions f and g_{n} are continuous on \overline{\Omega } . Thus, the discrete problem is constructed from (PV_{n}) by using the Galerkin method combined with numerical integration and is defined as follows
Find (\mathbf{u}^{n}_{N}, p^{n}_{N}) \in \mathbb{X}_{N} \times \mathbb{M}_{N} such that
\begin{equation} \begin{array}{rlll} \forall \mathbf{v}_{N} \in \mathbb{X}_{N}, \;(\nu \nabla \mathbf{u}^{n}_{N}, \nabla \mathbf{v}_{N})_{N} \; + ( (\mathbf{u}^{n-1}_{N}.\nabla) \mathbf{u}^{n}_{N}, \mathbf{v}_{N} )_{N} &-& (\nabla \mathbf{v}_{N}, p^{n}_{N})_{N}\\ &=& ( \mathbf{ f}_{N} +\mathbf{g}^{n}_{N} , \mathbf{v}_{N} )_{N} \\ \forall q_{N} \in \mathbb{M}_{N},\; -(\nabla \mathbf{u}^{n}_{N} , q_{N}) &=& 0 \quad \end{array} \end{equation} | ((PV_{n})_{N}) |
where \mathbf{ f}_{N} = \mathcal{I}_{N} f.
The existence and uniqueness of the solution (\mathbf{u}^{n}_{N}, p^{n}_{N}) is proved in [25], see also Brezzi approach and Rappaz Raviart for more details [26]. Thus, the discrete problem deduced from (3.21) is
\mbox{Find} \quad (\mathbf{u}^{n}_{N}, q^{n}_{N}, \mathbf{g}^{n}_{N}, \eta^{n}_{N}) \in \mathbb{X}_{N}\times\mathbb{M}_{N}\times\mathbb{X}_{N}\times\mathbb{M}_{N}\nonumber \; \mbox{such as}
\begin{array}{l} \begin{array}{l} \forall \mathbf{v}_{N}\in \mathbb{X}_{N},\ \left( \nu \nabla \mathbf{u} _{N}^{n},\nabla \mathbf{v}_{N}\right) _{N}+\left( \left( \mathbf{u} _{N}^{n-1}.\nabla \right) \mathbf{u}_{N}^{n},\mathbf{v}_{N}\right) _{N}-\left( \nabla \mathbf{v}_{N},q_{N}\right) _{N} \\ -\left( \mathbf{g}_{N}^{n},\mathbf{v}_{N}\right) _{N} = \left( \mathbf{f}_{N}, \mathbf{v}_{N}\right) _{N} \\ \forall \phi _{N}\in \mathbb{M}_{N},\ -\left( \nabla \mathbf{u}_{N}^{n},\phi _{N}\right) _{N} = 0 \\ \forall \mathbf{S}_{N}\in \mathbb{X}_{N},\ c\nu \left( \nabla \mathbf{g} _{N}^{n},\nabla \mathbf{S}_{N}\right) _{N}-c\left( \left( \mathbf{u} _{N}^{n-1}.\nabla \right) \mathbf{g}_{N}^{n},\mathbf{S}_{N}\right) _{N}+\left( div\mathbf{S}_{N},q_{N}\right) _{N} \\ +\left( \mathbf{u}_{N}^{n},\mathbf{S}_{N}\right) _{N} = \left( \mathbf{u}_{dN}, \mathbf{S}_{N}\right) _{N} \\ \forall \varphi _{N}\in \mathbb{M}_{N},\ -\left( \nabla \mathbf{g}_{N}^{n},\varphi _{N}\right) _{N} = 0, \end{array} \end{array} | (3.27) |
where \mathcal{I}_{N}\mathbf{u}_{d} = \mathbf{u}_{dN} .
Proposition 8. The problem (3.27) has a unique solution (\mathbf{u}^{n}_{N}, q^{n}_{N}, \mathbf{g}^{n}_{N}, \eta^{n}_{N}) in \mathbb{X}_{N}\times\mathbb{M}_{N}\times\mathbb{X}_{N}\times\mathbb{M}_{N} .
In this part, we will implement some tests illustrating the effectiveness of the proposed algorithm. We choose MATLAB as the programming tool for the numerical simulations.
The matrix system deduced from (3.21) and (3.27) has the following form
\begin{equation*} \begin{array}{rrc} (\nu A+C)\mathbf{u}^{n}+Bq-I_{d}\mathbf{g}^{n} & = & \mathbf{ f} \\ B^{T}\mathbf{u}^{n} & = & 0 \\ c (\nu A-C)\mathbf{g}^{n}+B\eta^{n} +I_{d}\mathbf{u}^{n} & = & \mathbf{u}_{d} \\ B^{T}\mathbf{g}^{n} & = & 0, \end{array} \end{equation*} |
Which can be represented as follows
\begin{equation*} \left( \begin{array}{cccc} (\nu A+C) & B & -I_{d} & 0 \\ B^{T} & 0 & 0 & 0 \\ I_{d} & 0 & c (\nu A-C) & -B \\ 0 & 0 & B^{T} & 0 \end{array} \right) \left( \begin{array}{c} \mathbf{u}^{n} \\ q^{n} \\ \mathbf{g}^{n} \\ \eta^{n} \end{array} \right) = \left( \begin{array}{c} \mathbf{ f} \\ 0 \\ \mathbf{u}_{d} \\ 0 \end{array} \right). \end{equation*} |
Therefore we obtain a linear system with the form \mathbf{EX = F} , where \mathbf{E} is a non-symmetric invertible matrix. This linear system is solved by a preconditioned GMRES method. To simplify we assume that c = \nu = 1 . In the first and second tests the pair (\mathbf{u}_{d}, p) is a solution of problem P_{g} with g = 0 . Theoretically, the solution \mathbf{u} must be equal to \mathbf{u}_{d} and \mathbf{g} must be zero in this case. Moreover, this case is among the rare cases where the pair (\mathbf{u}, \mathbf{g}) can be provided and J(\mathbf{g}) must be zero.
First test: Let \mathbf{u}_{d} = \left(\begin{array}{c} 0.5\sin (\pi x)^{2}sin(2\pi y) \\ -0.5\sin (2\pi x)sin(\pi y)^{2} \end{array} \right) , an analytic function which vanishes on the edge \partial \Omega and p = x+y . In Figure 1, we present the graphs of the solutions \mathbf{u} and \mathbf{g} for N = 32 . Note that J(\mathbf{g}) reaches 10^{-12\text{ }} when N = 15 ( N is the a number of nodes in the spectral discretization of the problem).
Second test: We now choose \mathbf{u}_{d} = \left(\begin{array}{c} y(1-x^{2})^{\frac{7}{2}}(1-y^{2})^{\frac{5}{2}} \\ -x(1-x^{2})^{\frac{5}{2}}(1-y^{2})^{\frac{7}{2}} \end{array} \right) , a singular function that vanishes on the edge \partial \Omega and p = y.\cos (\pi x) . In Figure 2, we present the graphs of solutions \mathbf{u} and \mathbf{g} (for N = 32). In Table 1, we illustrate the variation of J(\mathbf{g}) with respect to the value of N .
N | 10 | 14 | 18 | 24 | 32 | 36 | 40 |
J(\mathbf{g}) | 1.10^{-8} | 4.10^{-10} | 3.10^{-11} | 2.10^{-12} | 9.10^{-14} | 3.10^{-14} | 10^{-16} |
In both validation tests, \mathbf{u} converges to \mathbf{u}_{d} and \mathbf{g} converges to \mathbf{0} .
The convergence of J(\mathbf{g}) is perfectly shown in the first case because of the choice of the function \mathbf{u}_{d} which is an analytic function. However in the second case \mathbf{u} _{d} is a singular function. In this case, J(\mathbf{g}) reached a good convergence for N = 40.
In the third test, the solution (\mathbf{u, g}) is unknown. We solve the problem (3.27) with \mathbf{u}_{d} = \left(\begin{array}{c} y\left(1-x^{2}\right) ^{2}\left(1-y^{2}\right) \\ -x\left(1-x^{2}\right) \left(1-y^{2}\right) ^{2} \end{array} \right) and \mathbf{f} = \left(f_{x}, f_{y}\right) where f_{x} = f_{y} = 10^{3}xy^{2} .
Figure 3 presents the solutions \mathbf{u} and \mathbf{g} . In Table 2, we give the approximate values of J(\mathbf{g}) as a function of the parameter N . This case shows that the algorithm converges. Without knowing the real solution, we note that J(\mathbf{g}) converges to a particular number every time N increases.
J(\mathbf{g}) | N |
27.305410002457329 | 10 |
27.312223356317649 | 14 |
27.312231333141991 | 18 |
27.312231829834353 | 24 |
27.312231825367355 | 32 |
27.312231824107311 | 36 |
27.312231823788572 | 40 |
To better estimate this convergence, Figure 4 presents the difference between two successive values of J(\mathbf{g}) in the function of the average of two associated values of N .
The aim of this paper is to develop a numerical method that solves an optimal control problem by transforming it into a coupled problem. We have tried to simplify the theoretical part as much as possible, and we have even preferred not to add the part related to the discretization of the method since it risks becoming too long. We have considered two examples to illustrate the efficiency of the proposed algorithm. The results given show a good convergence of the algorithm, in particular, a high degree of convergence of J(\mathbf{g}) (thanks to the spectral method, which is known for its precision) as a function of the variation of N. We can also use this method for other types of similar nonlinear problems. However, it should be noted that one must always be careful when linearizing the nonlinear term, for example, in our case, if we take the term (\mathbf{u}^{n+1}.\nabla \mathbf{u}^n) un instead of (\mathbf{u}^n.\nabla) \mathbf{u}^n or (\mathbf{u}^n.\nabla) \mathbf{u}^{n+1} , the algorithm does not converge.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
We would like to thank you for following the instructions above very closely in advance. It will definitely save us lot of time and expedite the process of your paper's publication.
The authors declare no conflict of interest.
[1] |
D. Adiyanyam, E. Azjargal, L. Buyantogtokh, Bond incident degree indices of stepwise irregular graphs, AIMS Math., 7 (2022), 8685–8700. https://doi.org/10.3934/math.2022485 doi: 10.3934/math.2022485
![]() |
[2] |
A. M. Albalahi, A. Ali, A. M. Alanazi, A. A. Bhatti, A. E. Hamza, Harmonic-arithmetic index of (molecular) trees, Contrib. Math., 7 (2023), 41–47. https://doi.org/10.47443/cm.2023.008 doi: 10.47443/cm.2023.008
![]() |
[3] |
A. Ali, A. M. Albalahi, A. M. Alanazi, A. A. Bhatti, A. E. Hamza, On the maximum sigma index of k-cyclic graphs, Discrete Appl. Math., 325 (2023), 58–62. https://doi.org/10.1016/j.dam.2022.10.009 doi: 10.1016/j.dam.2022.10.009
![]() |
[4] |
A. Ali, K. C. Das, D. Dimitrov, B. Furtula, Atom-bond connectivity index of graphs: a review over extremal results and bounds, Discrete Math. Lett., 5 (2021), 68–93. http://dx.doi.org/10.47443/dml.2020.0069 doi: 10.47443/dml.2020.0069
![]() |
[5] | A. Ali, B. Furtula, I. Gutman, Inverse sum indeg index: bounds and extremal results, Rocky Mountain J. Math., 2024, In press. |
[6] |
A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, J. Math. Chem., 60 (2022), 2081–2093. https://doi.org/10.1007/s10910-022-01403-1 doi: 10.1007/s10910-022-01403-1
![]() |
[7] | A. Ali, I. Gutman, B. Furtula, A. M. Albalahi, A. E. Hamza, On chemical and mathematical characteristics of generalized degree-based molecular descriptors, submitted for publication, 2024. |
[8] |
A. Ali, I. Gutman, B. Furtula, I. Redžepović, T. Došlić, Z. Raza, Extremal results and bounds for atom-bond sum-connectivity index, MATCH Commun. Math. Comput. Chem., 92 (2024), 271–314. https://doi.org/10.46793/match.92-2.271A doi: 10.46793/match.92-2.271A
![]() |
[9] |
A. Ali, I. Gutman, I. Redžepović, A. M. Albalahi, Z. Raza, A. E. Hamza, Symmetric division deg index: extremal results and bounds, MATCH Commun. Math. Comput. Chem., 90 (2023), 263–299. https://doi.org/10.46793/match.90-2.263A doi: 10.46793/match.90-2.263A
![]() |
[10] |
A. Ali, I. Gutman, H. Saber, A. M. Alanazi, On bond incident degree indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem., 87 (2022), 89–96. https://doi.org/10.46793/match.87-1.089A doi: 10.46793/match.87-1.089A
![]() |
[11] | A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalization: extremal results and bounds, MATCH Commun. Math. Comput. Chem., 81 (2019), 249–311. |
[12] | A. Bickle, Zagreb indices of maximal k-degenerate graphs, Australas. J. Comb., 89 (2024), 167–178. |
[13] | J. A. Bondy, U. S. R. Murty, Graph theory, Springer, 2008. |
[14] | B. Borovicanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem., 78 (2017), 17–100. |
[15] |
R. A. Brualdi, J. L. Goldwasser, Permanent of the Laplacian matrix of trees and bipartite graphs, Discrete Math., 48 (1984), 1–21. https://doi.org/10.1016/0012-365X(84)90127-4 doi: 10.1016/0012-365X(84)90127-4
![]() |
[16] | G. Chartrand, L. Lesniak, P. Zhang, Graphs & digraphs, New York: Chapman and Hall/CRC, 2015. https://doi.org/10.1201/b19731 |
[17] |
H. L. Chen, W. H. Li, J. Wang, Extremal values on the Sombor index of trees, MATCH Commun. Math. Comput. Chem., 87 (2022), 23–49. https://doi.org/10.46793/match.87-1.023C doi: 10.46793/match.87-1.023C
![]() |
[18] |
D. Desmecht, V. Dubois, Correlation of the molecular cross-sectional area of organic monofunctional compounds with topological descriptors, J. Chem. Inform. Model., 64 (2024), 3248–3259. https://doi.org/10.1021/acs.jcim.3c01787 doi: 10.1021/acs.jcim.3c01787
![]() |
[19] | J. Devillers, A. T. Balaban, Topological indices and related descriptors in QSAR and QSPR, Gordon and Breach Science Publishers, 1999. |
[20] |
D. Dimitrov, Z. B. Du, The ABC index conundrum's complete solution, MATCH Commun. Math. Comput. Chem., 91 (2024), 5–38. https://doi.org/10.46793/match.91-1.005D doi: 10.46793/match.91-1.005D
![]() |
[21] |
J. W. Du, X. L. Sun, On symmetric division deg index of trees with given parameters, AIMS Math., 6 (2021), 6528–6541. https://doi.org/10.3934/math.2021384 doi: 10.3934/math.2021384
![]() |
[22] |
Z. B. Du, B. Zhou, N. Trinajstic, Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number, J. Math. Chem., 47 (2010), 842–855. https://doi.org/10.1007/s10910-009-9604-7 doi: 10.1007/s10910-009-9604-7
![]() |
[23] | S. Fajtlowicz, On conjectures of Graffiti. Ⅱ, Congr. Num., 60 (1987), 189–197. |
[24] | B. Furtula, I. Gutman, Ž. K. Vukićević, G. Lekishvili, G. Popivoda, On an old/new degree-based topological index, Bull. Acad. Serbe Sci. Arts, 40 (2015), 19–31. |
[25] |
I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351–361. http://dx.doi.org/10.5562/cca2294 doi: 10.5562/cca2294
![]() |
[26] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. |
[27] | I. Gutman, B. Furtula, Novel molecular structure descriptors-theory and applications I, University of Kragujevac, 2010. |
[28] | J. L. Gross, J. Yellen, Graph theory and its applications, 2 Eds., Chapman and Hall/CRC, 2005. |
[29] |
I. Gutman, B. Furtula, M. S. Oz, Geometric approach to vertex-degree-based topological indices–Elliptic Sombor index, theory and application, Int. J. Quantum Chem., 124 (2024), e27346. https://doi.org/10.1002/qua.27346 doi: 10.1002/qua.27346
![]() |
[30] |
L. S. G. Leite, S. Banerjee, Y. H. Wei, J. Elowitt, A. E. Clark, Modern chemical graph theory, WIREs Comput. Mol. Sci., 14 (2024), e1729. https://doi.org/10.1002/wcms.1729 doi: 10.1002/wcms.1729
![]() |
[31] |
X. L. Li, J. X. Liu, L. P. Zhong, Trees with a given order and matching number that have maximum general Randić index, Discrete Math., 310 (2010), 2249–2257. https://doi.org/10.1016/j.disc.2010.04.028 doi: 10.1016/j.disc.2010.04.028
![]() |
[32] |
X. L. Li, D. N. Peng, Extremal problems for graphical function-indices and f-weighted adjacency matrix, Discrete Math. Lett., 9 (2022), 57–66. https://doi.org/10.47443/dml.2021.s210 doi: 10.47443/dml.2021.s210
![]() |
[33] |
H. C. Liu, I. Gutman, L. H. You, Y. F. Huang, Sombor index: review of extremal results and bounds, J. Math. Chem., 60 (2022), 771–798. https://doi.org/10.1007/s10910-022-01333-y doi: 10.1007/s10910-022-01333-y
![]() |
[34] |
M. Lu, L. Z. Zhang, F. Tian, On the Randić index of acyclic conjugated molecules, J. Math. Chem., 38 (2005), 677–684. https://doi.org/10.1007/s10910-005-6892-4 doi: 10.1007/s10910-005-6892-4
![]() |
[35] | J. B. Lv, J. Li, On the harmonic index and the matching number of a tree, Ars Combin., 116 (2014), 407–416. |
[36] |
I. Ž. Milovanović, A. Ali, Z. Raza, On the modified misbalance rodeg index, Contrib. Math., 9 (2024), 33–37. https://doi.org/10.47443/cm.2024.005 doi: 10.47443/cm.2024.005
![]() |
[37] |
I. Nadeem, S. Siddique, Y. L. Shang, Some inequalities between general Randić-type graph invariants, J. Math., 2024 (2024), 8204742. https://doi.org/10.1155/2024/8204742 doi: 10.1155/2024/8204742
![]() |
[38] |
S. Noureen, R. Batool, A. M. Albalahi, Y. L. Shang, T. Alraqad, A. Ali, On tricyclic graphs with maximum atom-bond sum-connectivity index, Heliyon, 10 (2024), e33841. https://doi.org/10.1016/j.heliyon.2024.e33841 doi: 10.1016/j.heliyon.2024.e33841
![]() |
[39] |
M. Randić, Characterization of molecular branching, J. Amer. Chem. Soc., 97 (1975), 6609–6615. https://doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001
![]() |
[40] |
B. A. Rather, H. A. Ganie, Y. L. Shang, On the signless Laplacian ABC-spectral properties of a graph, Mathematics, 12 (2024), 1–23. https://doi.org/10.3390/math12152366 doi: 10.3390/math12152366
![]() |
[41] |
Z. Raza, S. Akhter, Y. L. Shang, Expected value of first Zagreb connection index in random cyclooctatetraene chain, random polyphenyls chain, and random chain network, Front. Chem., 10 (2023), 1067874. https://doi.org/10.3389/fchem.2022.1067874 doi: 10.3389/fchem.2022.1067874
![]() |
[42] |
Y. L. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881 doi: 10.1016/j.amc.2021.126881
![]() |
[43] |
E. Swartz, T. Vetrík, Survey on the general Randic index: extremal results and bounds, Rocky Mountain J. Math., 52 (2022), 1177–1203. http://dx.doi.org/10.1216/rmj.2022.52.1177 doi: 10.1216/rmj.2022.52.1177
![]() |
[44] |
Z. K. Tang, Y. P. Li, H. Y. Deng, Elliptic Sombor index of trees and unicyclic graphs, Electron. J. Math., 7 (2024), 19–34. https://doi.org/10.47443/ejm.2024.009 doi: 10.47443/ejm.2024.009
![]() |
[45] |
Z. K. Tang, Y. P. Li, H. Y. Deng, The Euler Sombor index of a graph, Int. J. Quantum Chem., 124 (2024), e27387. https://doi.org/10.1002/qua.27387 doi: 10.1002/qua.27387
![]() |
[46] |
I. Tomescu, Maximum bond incident degree indices of trees with given independence number, MATCH Commun. Math. Comput. Chem., 93 (2025), 567–574. https://doi.org/10.46793/match.93-2.567T doi: 10.46793/match.93-2.567T
![]() |
[47] | I. Tomescu, M. K. Jamil, Maximum general sum-connectivity index for trees with given independence number, MATCH Commun. Math. Comput. Chem., 72 (2014), 715–722. |
[48] | N. Trinajstić, Chemical graph theory, 2 Eds., Boca Raton: CRC Press, 1992. https://doi.org/10.1201/9781315139111 |
[49] | D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010), 243–260. |
[50] | S. Wagner, H. Wang, Introduction to chemical graph theory, New York: Chapman and Hall/CRC, 2018. https://doi.org/10.1201/9780429450532 |
[51] |
P. C. Wei, M. H. Liu, I. Gutman, On (exponential) bond incident degree indices of graphs, Discrete Appl. Math., 336 (2023), 141–147. https://doi.org/10.1016/j.dam.2023.04.011 doi: 10.1016/j.dam.2023.04.011
![]() |
[52] |
R. L. Zheng, P. F. Su, X. A. Jin, Arithmetic-geometric matrix of graphs and its applications, Appl. Math. Comput., 442 (2023), 127764. https://doi.org/10.1016/j.amc.2022.127764 doi: 10.1016/j.amc.2022.127764
![]() |
[53] |
T. Zhou, Z. Lin, L. Y. Miao, The extremal Sombor index of trees and unicyclic graphs with given matching number, J. Discrete Math. Sci. Cryptogr., 2022, 1–12. https://doi.org/10.1080/09720529.2021.2015090 doi: 10.1080/09720529.2021.2015090
![]() |
[54] |
B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z doi: 10.1007/s10910-008-9515-z
![]() |
N | 10 | 14 | 18 | 24 | 32 | 36 | 40 |
J(\mathbf{g}) | 1.10^{-8} | 4.10^{-10} | 3.10^{-11} | 2.10^{-12} | 9.10^{-14} | 3.10^{-14} | 10^{-16} |
J(\mathbf{g}) | N |
27.305410002457329 | 10 |
27.312223356317649 | 14 |
27.312231333141991 | 18 |
27.312231829834353 | 24 |
27.312231825367355 | 32 |
27.312231824107311 | 36 |
27.312231823788572 | 40 |