Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

Change point detection for a skew normal distribution based on the Q-function

  • In this paper, we enhanced change point detection in skew normal distribution models by integrating the EM algorithm's Q-function with the modified information criterion (MIC). The new QMIC framework improves sensitivity and accuracy in detecting changes, outperforming the modified information criterion (MIC) and the traditional Bayesian information criterion (BIC). Due to the complexity of deriving analytic asymptotic distributions, bootstrap simulations were used to determine critical values at various significance levels. Extensive simulations demonstrate that QMIC offers superior detection capabilities. We applied the QMIC method to two stock market datasets, successfully identifying multiple change points, and highlighting its effectiveness for real-world financial data analysis.

    Citation: Yang Du, Weihu Cheng. Change point detection for a skew normal distribution based on the Q-function[J]. AIMS Mathematics, 2024, 9(10): 28698-28721. doi: 10.3934/math.20241392

    Related Papers:

    [1] Chaudry Masood Khalique, Oke Davies Adeyemo, Kentse Maefo . Symmetry solutions and conservation laws of a new generalized 2D Bogoyavlensky-Konopelchenko equation of plasma physics. AIMS Mathematics, 2022, 7(6): 9767-9788. doi: 10.3934/math.2022544
    [2] Ziying Qi, Lianzhong Li . Lie symmetry analysis, conservation laws and diverse solutions of a new extended (2+1)-dimensional Ito equation. AIMS Mathematics, 2023, 8(12): 29797-29816. doi: 10.3934/math.20231524
    [3] M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625
    [4] Harivan R. Nabi, Hajar F. Ismael, Nehad Ali Shah, Wajaree Weera . W-shaped soliton solutions to the modified Zakharov-Kuznetsov equation of ion-acoustic waves in (3+1)-dimensions arise in a magnetized plasma. AIMS Mathematics, 2023, 8(2): 4467-4486. doi: 10.3934/math.2023222
    [5] Imran Siddique, Khush Bukht Mehdi, Sayed M Eldin, Asim Zafar . Diverse optical solitons solutions of the fractional complex Ginzburg-Landau equation via two altered methods. AIMS Mathematics, 2023, 8(5): 11480-11497. doi: 10.3934/math.2023581
    [6] Qaiser Khan, Muhammad Arif, Bakhtiar Ahmad, Huo Tang . On analytic multivalent functions associated with lemniscate of Bernoulli. AIMS Mathematics, 2020, 5(3): 2261-2271. doi: 10.3934/math.2020149
    [7] Sharief Deshmukh, Mohammed Guediri . Some new characterizations of spheres and Euclidean spaces using conformal vector fields. AIMS Mathematics, 2024, 9(10): 28765-28777. doi: 10.3934/math.20241395
    [8] Ziyu Dong, Zhengjun Zhao . An application of p-adic Baker method to a special case of Jeśmanowicz' conjecture. AIMS Mathematics, 2023, 8(5): 11617-11628. doi: 10.3934/math.2023588
    [9] Farzaneh Alizadeh, Samad Kheybari, Kamyar Hosseini . Exact solutions and conservation laws for the time-fractional nonlinear dirac system: A study of classical and nonclassical lie symmetries. AIMS Mathematics, 2025, 10(5): 11757-11782. doi: 10.3934/math.2025532
    [10] Huizhang Yang, Wei Liu, Yunmei Zhao . Lie symmetry reductions and exact solutions to a generalized two-component Hunter-Saxton system. AIMS Mathematics, 2021, 6(2): 1087-1100. doi: 10.3934/math.2021065
  • In this paper, we enhanced change point detection in skew normal distribution models by integrating the EM algorithm's Q-function with the modified information criterion (MIC). The new QMIC framework improves sensitivity and accuracy in detecting changes, outperforming the modified information criterion (MIC) and the traditional Bayesian information criterion (BIC). Due to the complexity of deriving analytic asymptotic distributions, bootstrap simulations were used to determine critical values at various significance levels. Extensive simulations demonstrate that QMIC offers superior detection capabilities. We applied the QMIC method to two stock market datasets, successfully identifying multiple change points, and highlighting its effectiveness for real-world financial data analysis.



    The Boussinesq equation received a lot of attention in recent years. Originally, it was used to describe long waves in shallow water [1] in 1871. The peculiar behavior of the Boussinesq equation's soliton solutions explains our newfound interest in the equation. Solitons in integrable systems are commonly thought to be stable objects that interact trivially with altering only phase as a result of the interaction. Some recent studies on solitons solution to different partial differential equations (PDEs) can be found in [2,3,4,5,6]. The behavior of solitons in the Boussinesq equation, on the other hand, defies this stereotype. The Boussinesq equation aroused the interest of academics in both mathematics and physics [7,8,9,10,11,12,13,14] due to its profound importance and enticing mathematical properties, despite the fact that its solitons may decay under perturbations and cause a singularity in finite time [15].

    Nonlinear evolution equations [16] play an important role in nonlinear science, particularly in plasma physics, ferromagnetic chains, water wave tanks, meta-materials, nonlinear wave propagation [17,18,19,20], Bose-Einstein condensates, and nonlinear optical fibers. In this article, we look at the extension of generalized Boussinesq equation [21] to (N+1) dimensions. Thus, we can write the (N+1)-dimensional Boussinesq equation as:

    utt=auxx+b(u2)xx+cuxxxx+N1j=1djuyjyj,b0, (1.1)

    where the scalars dj denote the coefficients of dissipation terms in yj directions and u(t,x,y1,,yN1) is a field function of spatial and temporal components. Equation (1.1) is similar to the (N+1)-dimensional Boussinesq equation [22] for n=2 and dj=1j=1,,N1.

    For N=1, Eq (1.1) reduces to generalized (1+1)-dimensional Boussinesq equation [23]

    utt=auxx+b(u2)xx+cuxxxx, (1.2)

    while for N=2, Eq (1.1) exhibits generalized (2+1)-dimensional Boussinesq equation [24]

    utt=auxx+b(u2)xx+cuxxxx+duyy. (1.3)

    In addition, the (3+1)-dimensional Boussinesq equation considered in [21,25], is

    utt=auxx+b(u2)xx+cuxxxx+d1uyy+d2uzz. (1.4)

    For arbitrary parameter values, many special instances of Eq (1.1) for different dimensions are investigated [26,27,28,29,30,31,32].

    Differential equations are unavoidable when dealing with numerous abnormalities in applied math, physical research, and design. A detailed grasp of the dynamic cycles portrayed in these scenarios is required in many branches of study. In financial, monetary, and sociological concerns, these conditions are utilized to mimic a wide range of nonlinear cycles. We can look at a variety of actual properties connected with these nonlinear circumstances thanks to their arrangements. An overall hypothesis clarifying the viability of numerous circumstances linked with them is utterly impracticable. As a result, a lot of focus has recently been paid to establishing various organizational techniques for these nonlinear situations. Researchers have devised many strategies for solving nonlinear partial differential equations.

    In any nonlinear media, detailing with nonlinear PDEs and their exact solutions is an essential job. These solutions might help with a superior comprehension of intricate cycles and give knowledge into the actual attributes of the nonlinear models viable. This is mainly because they can supply a lot of physical information and help us understand how these physical models work. Many researchers focused on nonlinear elements, creating and applying an assortment of mathematical techniques for producing new exact analytical solutions for nonlinear differential equations. These methods include the Simplest equation method [33], the extended Trial equation method [34], the extended (1/G) method [35], the direct extended algebraic method [36,37,38], the Hirota bilinear method [39], the extended sinh-Gordon equation expansion method [40], the meshless radial basis function method [41], the exp(ϕ(ξ)) expansion method [42], the Painlevé-expansion method [43], modified Khater method [44], Jacobi elliptic function expansion method [45], etc. These analytical techniques proved significantly more trustworthy and efficient for obtaining solutions to many PDEs.

    Numerous speculations meaning to distinguish procedures for getting explicit exact solutions went to the Lie group of transformation method of differential equations [46,47]. The Lie group strategy is a standard methodology for deciding a nonlinear complex system's Lie symmetries. The method, specifically, permits us to reduce the dimension of the equation by one after only one application. Hence, the Lie symmetry technique is a typical, compelling, and exceptionally strong strategy with a variety of applications [48,49,50,51,52,53,54].

    Any physical system's conservation laws play a critical role in characterizing its dynamics. These laws provide insight into the system's physical meaning. Conserved quantities such as energy, mass, and momentum are special cases of these laws. These are used to investigate integrability and linearization of mappings [55]. Many scholars contributed to the advancement of various method to construct conservation law for PDEs [56], making them a prominent research topic for mathematicians and physicists [57,58,59,60].

    The rest of the manuscript is organized as follows. In Section 2, there is a brief review of some basic concepts and definitions used in this study. Lie point symmetries and group invariant solutions of considered Eq (1.1) are presented in Section 3. Section 5 contains the symmetry reduction and various exact solutions of Eq (1.1) along with their graphical portrays. In Section 6, nonlinear self-adjoint classification of Eq (1.1) is accomplished. Section 4 is devoted to the computation of nonlocal conserved vectors for lower dimensional Boussinesq equation. The study comes to an end with concluding remarks in Section 7.

    In this portion, we'll look at N. H. Ibragimov's method for constructing a conserved vector for a system of partial differential equations.

    Consider a system containing ˜m partial differential equations:

    U˜ρ(˜x,˜u,˜u(1),˜u(2),,˜u(r))=0,(˜ρ=1,,˜m), (2.1)

    where U˜ρV, V being the vector space of all differential functions of finite order.

    In Eq (2.1), ˜x=(x1,x2,,x˜n) denotes the ˜n independent variables and ˜u=(u1,u2,,u˜m) are the ˜m dependent variables, while ˜ui represents the partial derivative of ˜u w.r.t. the ith component of ˜x.

    Definition 1. The conservation law for the system of PDEs (2.1) is defined as:

    [Dj(Tj)]U˜ρ=0=0, (2.2)

    where Dj represents the total derivative operators w.r.t. xj (1j˜n), given by:

    Dj=xj+u˜ρju˜ρ+u˜ρjku˜ρk+u˜ρjku˜ρk+,˜ρ=1,,˜m. (2.3)

    The repeated indices in Eq (2.2) denotes the standard summation convention.

    Theorem 1. If the system (2.1) is invariant due to an infinitesimal generator

    X=ξj(˜x,˜u)xj+η˜ρ(˜x,˜u)u˜ρ, (2.4)

    then the components of the conserved vector T=(T1,T2,,T˜n) for the system (2.1) satisfying the conservation law (2.2) are determined as follows:

    Tj=ξjL+W˜ρ[LujDk(Lujk)+DkD(Lujk)]+Dk(W˜ρ)[LujkD(L ujk)+]+DkD(W˜ρ)[Lujk]+, (2.5)

    where W˜ρ=η˜ρξiu˜ρi(˜ρ=1,2,,˜m),andL=P˜ρU˜ρ represents the formal Lagrangian.

    Remark: Since the components of a conserved vector of system (2.1) depend on the nonlocal variables P˜ρ,˜ρ=1,,˜m, therefore (2.2) is also refered as the nonlocal conservation law for the system (2.1).

    The choice of nonlocal variables P˜ρ for the construction of formal lagrangian leads to a concept of nonlinear selfadjointness.

    In this portion, we present some basic definitions related to the concept of nonlinear self-adjointness [61].

    Definition 2. The adjoint system of equations corresponding to the Eq (2.1) is determined by taking the variational derivatives as:

    U˜ρ(˜x,˜u,˜P,˜u(1),˜P(1),˜u(2),˜P(2),,˜u(r),˜P(r))=δLδu˜ρ=0,(˜ρ=1,,˜m), (2.6)

    where ˜P=(P1,P2,,P˜m) are the new dependent variables termed as nonlocal variables, and the subscripts of ˜P denotes the order of partial derivatives w.r.t. independent variables in ˜x. Moreover, L=PϱUϱ is the formal Lagrangian while δ/δu˜ρ is the Euler-Lagrange operator given by:

    δδu˜ρ=u˜ρ+i=1(1)i Dj1Dji u˜ρj1ji (2.7)

    The total differentiation (2.3) is now extended to new variables (P1,,P˜m) as:

    Dj=xj+u˜ρju˜ρ+P˜ρjP˜ρ+u˜ρjku˜ρk+P˜ρjkP˜ρk+u˜ρjku˜ρk+P˜ρjkP˜ρk+,˜ρ=1,,˜m. (2.8)

    Definition 3. The system of PDEs (2.1) is said to be nonlinearly self-adjoint, if for some ˜ρ=1,,˜m, the substitution P˜ρ=Ψ˜ρ(˜x,˜u)0, to the adjoint system yields:

    Uρ(˜x,˜u,˜Ψ(˜x,˜u),,u(r),˜Ψ(r))=λϱρUϱ(˜x,˜u,,˜u(r)),ρ=1,,m, (2.9)

    where λϱρV are the undetermined coefficients and, P and Ψ are ˜m dimensional vectors.

    Note that, if ˜m>m, then system (2.1) is over-determined, while the corresponding adjoint system is sub-definite. Similarly, if m>˜m, then the system (2.1) is sub-definite, while its corresponding adjoint system is over-determined.

    Definition 4. The system of PDEs (2.1) is said to be quasi self-adjoint, if the substitution to the adjoint system defined by a continuously differentiable mapping P˜ρ=Ψ˜ρ(˜u) from ˜m-dimensional space of variables ˜u into ˜m-dimensional space of variables ˜P, satisfies

    U˜ρ(˜x,˜u,˜Ψ,,u(r),˜Ψ(r))=λϱ˜ρUϱ(˜x,˜u,,˜u(r)),˜ρ=1,,˜m, (2.10)

    where the coefficients λϱ˜ρV are undetermined while the components Ψ˜ρ(˜u) of ˜Ψ are not all equals to zero simultaneously.

    Definition 5. The system (2.1) of partial differential equations is called strictly self-adjoint, if the substitution ˜P=˜u to its adjoint system fulfills:

    U˜ρ(˜x,˜u,˜Ψ,,u(r),˜Ψ(r))=λϱ˜ρUϱ(˜x,˜u,,˜u(r)),˜ρ=1,,˜m,λϱ˜ρV. (2.11)

    However, the substitution ˜P=˜u is not uniquely determined in the case of more than one dependent variables. For example in case of ˜m dependent variables it is possible that (P1,P2,,P˜m)=(u˜m,u˜m1,,u1) yields Eq (2.11). Thus, in this case there is one out of ˜m! possible arrangements of the components of ˜u, which satisfies Eq (2.11) upon substitution. In the situation of a single dependent variable, this definition is ideal.

    Similarly, M. L. introduced the concept of weak selfadjointness [62]. However, it is important to note that Definitions 3 is the most generic, as it encompasses all of the other definitions related to the concept of self-adjointness. It's worth noting that all of the preceding Definitions 1–5 are applicable to the case of a single partial differential equation having only one dependent variable.

    Remark: After determining the non-local variables by utilizing the knowledge of nonlinear self-adjointness, one will able to construct a formal Lagrangian and hence the components of the conserved vector for the system (2.1) by using Eq (2.5).

    Consider a nonlinear partial differential equation for u(t,x,y1,y2,,yN1) having general form:

    U(u,ut,ux,uy1,uy2,)=0. (2.12)

    Assuming that upon using the similarity transformation u(t,x,y1,y2,,yN1)=g(ω), the nonlinear PDE (2.12) is reduced into a nonlinear ODE:

    U(Θ,Θ,Θ,)=0, (2.13)

    where prime () denotes the ordinary derivative w.r.t. ω. Integrating Eq (2.13) can reduce its complexity.

    According to the scheme of (G/G,1/G)-expansion method, Eq (2.13) possesses the solution of the form:

    Θ(ω)=mi=0piΔi(ω)+mi=1qiΔi1(ω)φ(ω), (2.14)

    where m is the positive integer obtained by taking the homogeneous balance between highest order nonlinear term and highest order linear term of ODE (2.13), p0,pi,qi (1im) are coefficients while Δ(ω) and φ(ω) defined by:

    Δ=GG,φ=1G, (2.15)

    in which G(ω) is a solution of second order ODE:

    G(ω)+sG(ω)=υ, (2.16)

    where s and υ are arbitrary constants.

    From Eqs (2.15) and (2.16), we have

    Δ=Δ2+υφs,φ=Δφ. (2.17)

    Depending on the sign of the parameter s, the solution of Eq (2.16) is categorized into three cases:

    Case 1. When s<0:

    The general solution of Eq (2.16) is:

    G(ω)=γ1sinh(sω)+γ2cosh(sω)+υs, (2.18)

    where γ1 and γ2 are the integration constants. Substituting Eq (2.18) into Eq (2.15) and using Eq (2.17), we get:

    φ2=s(Δ22υφ+s)s2σ+υ2,σ=γ21γ22. (2.19)

    Case 2. When s>0:

    The general solution of Eq (2.16) is:

    G(ω)=γ1sin(sω)+γ2cos(sω)+υs, (2.20)

    where γ1 and γ2 are the integration constants. Substituting Eq (2.20) into Eq (2.15) and using Eq (2.17), we get:

    φ2=s(Δ22υφ+s)s2συ2,σ=γ21+γ22. (2.21)

    Case 3. When s=0:

    In this case Eq (2.16) gives the solution of the form:

    G(ω)=υ2ω2+γ1ω+γ2, (2.22)

    where γ1 and γ2 are the integration constants. Thus Eq (2.15) by the use of Eqs (2.22) and (2.17), gives us:

    φ2=Δ22υφγ212υγ2. (2.23)

    The following steps are used to obtain the solution of nonlinear PDE (2.12) corresponding to each case (say Case 1):

    Step 1. After determining the value of positive integer m, Eq (2.14) is substituted into Eq (2.13) and, by the aid of Eqs (2.17) and (2.19), Eq (2.13) is changed into a polynomial of Δi, φj where 0in, j1 (n is any integer).

    Step 2. Equating the coefficients of Δi(ω) and Δi1φ(ω) to zero, yields the system of algebraic equations involving pi, qi, s, σ, υ (and possibly the parameters of ODE (2.13)). After solving the system of algebraic equations and using Eq (2.15), Eq (2.14) gives the solution of ODE (2.13) (corresponding to Case 1).

    Step 3. The above process is repeated for the evaluation of parameters for the remaining two cases and in a similar way solutions for ODE (2.13) are obtained.

    Step 4. The solutions of nonlinear PDE (2.12) corresponding to the three cases are obtained by substituting the similarity variable (ω).

    In this section, we shall find the Lie algebra admitted by Eq (1.1) using Lie theory. After the computation of the Lie point symmetries, we shall present the group invariant solutions, which are new types of solutions of Eq (1.1).

    Consider a one parameter (ε) Lie group of point transformation on the space of "N+2" variables, which preserves the invariance of Eq (1.1).

    t=t+εξ0(t,x,y1,,yN1,u)+O(ε2),x=x+εξ1(t,x,y1,,yN1,u)+O(ε2),yj=yj+εηj(t,x,y1,,yN1,u)+O(ε2),j=1,,N1u=u+εζ(t,x,y1,,yN1,u)+O(ε2), (3.1)

    where ξ0,ξ1,ηj and ζ are known as infinitesimals of point transformation (3.1) while ε is the small parameter.

    The infinitesimal generator corresponding to the above Lie group (3.1) is given by:

    X=ξ0(t,x,y1,,yN1,u)t+ξ1(t,x,y1,,yN1,u)x+N1j=1ηj(t,x,y1,,yN1,u)yj+ζ(t,x,y1,,yN1,u)u. (3.2)

    The Lie invariance condition [47] for Eq (1.1) reads:

    pr(4)X(Ω)|Ω=0=0,Ω=uttauxxb(u2)xxcuxxxxN1j=1djuyjyj, (3.3)

    where pr(4)X is the fourth prolongation of the infinitesimal generator (3.2) given by:

    pr(3)X=X+ζttutt+ζxux+ζxxuxx+ζxxxxuxxxx+N1j=1ζyjyjuyjyj, (3.4)

    in which ζtt,ζx,ζxx,ζxxxx and ζyjyj are the extended infinitesimals [46].

    Using Eqs (3.3) and (3.4), we obtain an overdetermined system of PDEs about the infinitesimals of point transformation (3.1), which upon solving yields a finite dimensional Lie algebra of (N+1) dimensional Boussinesq equation (1.1).

    Theorem 2. The (N+1) dimensional Boussinesq equation (1.1) admits a finite dimensional Lie algebra spanned by exactly N2+N+42 Lie point symmetries given by:

    X1=t,X2=x,Xj+2=yj,j=1,,N1.XN+j+1=yjdjt+tyj,j=1,,N1X2N+α+β1=yα+1yβdα+1dβyβyα+1,α=1,,N2,β=1,,α.XN2+N+42=2bttbxx2bN1j=1yjyj+(a+2bu)u. (3.5)

    It is evident from Eq (3.5) that Eq (1.1) admits infinitesimal generators XN+j+1 and X2N+α+β1 only when N>1 and N>2, respectively.

    Lie point symmetries of Eq (1.2)

    Equation (1.2) constitutes three dimensional Lie algebra \left(\because(1^2+1+4)/2 = 3\right) , given by (3.5) as follows

    \begin{equation} X_1 = \; \frac{\partial}{\partial t},\; \; X_2 = \; \frac{\partial}{\partial x},\; \; X_3 = \; -2bt\frac{\partial}{\partial t}-bx\frac{\partial}{\partial x}+\left(a+2bu\right)\frac{\partial}{\partial u}. \end{equation} (3.6)

    Lie point symmetries of Eq (1.3)

    Equation (1.3) possesses five dimensional Lie algebra \left(\because(2^2+2+4)/2 = 5\right) , given by (3.5) as follows:

    \begin{eqnarray} \begin{aligned} X_1 = &\; \frac{\partial}{\partial t},\; \; X_2 = \; \frac{\partial}{\partial x},\; \; X_3 = \; \frac{\partial}{\partial x},\; \; X_4 = \frac{y}{d}\frac{\partial}{\partial t}+t\frac{\partial}{\partial y},\\ X_5 = &\; -2bt\frac{\partial}{\partial t}-bx\frac{\partial}{\partial x}-2by\frac{\partial}{\partial y}+\left(a+2bu\right)\frac{\partial}{\partial u}. \end{aligned} \end{eqnarray} (3.7)

    Lie point symmetries of Eq (1.4)

    Equation (1.4) possesses eight dimensional Lie algebra \left(\because(3^2+3+4)/2 = 8\right) , given by (3.5) as follows:

    \begin{eqnarray} \begin{aligned} X_1 = &\; \frac{\partial}{\partial t},\; \; X_2 = \; \frac{\partial}{\partial x},\; \; X_3 = \; \frac{\partial}{\partial y},\; \; X_4 = \; \frac{\partial}{\partial z},\\ X_5 = &\frac{y}{d_1}\frac{\partial}{\partial t}+t\frac{\partial}{\partial y},\; \; X_6 = \frac{z}{d_2}\frac{\partial}{\partial t}+t\frac{\partial}{\partial z},\\ X_7 = &z\frac{\partial}{\partial y}-\frac{d_2}{d_1}y\frac{\partial}{\partial z},\\ X_8 = &\; -2bt\frac{\partial}{\partial t}-bx\frac{\partial}{\partial x}-2by\frac{\partial}{\partial y}-2bz\frac{\partial}{\partial z}+\left(a+2bu\right)\frac{\partial}{\partial u}. \end{aligned} \end{eqnarray} (3.8)

    Suppose the one parameter Lie group of transformations corresponding to the infinitesimal generators in (3.5) has the following form:

    \begin{eqnarray} \begin{aligned} t^{\dagger} = &T\left(t,x,y_{1},\cdots,y_{N-1},u;\varepsilon\right)\ ,\\ x^{\dagger} = &\chi\left(t,x,y_{1},\cdots,y_{N-1},u;\varepsilon\right) ,\\ y_{j}^{\dagger} = &Y_{j}\left(t,x,y_{1},\cdots,y_{N-1},u;\varepsilon\right) ,\\ u^{\dagger} = &U\left(t,x,y_{1},\cdots,y_{N-1},u;\varepsilon\right). \end{aligned} \end{eqnarray} (3.9)

    To determine the group of point transformations (3.9) from the infinitesimal generators (3.5), we consider the following initial value problem:

    \begin{eqnarray} \begin{aligned} \frac{dt^{\dagger}}{d\varepsilon} = &\xi^{0}\left(t^{\dagger},x^{\dagger},y_{1}^{\dagger},\cdots,y_{N-1}^{\dagger},u^{\dagger}\right)\ ,\\ \frac{dx^{\dagger}}{d\varepsilon} = &\xi^{1}\left(t^{\dagger},x^{\dagger},y_{1}^{\dagger},\cdots,y_{N-1}^{\dagger},u^{\dagger}\right)\ ,\\ \frac{dy_{j}^{\dagger}}{d\varepsilon} = &\eta^{j}\left(t^{\dagger},x^{\dagger},y_{1}^{\dagger},\cdots,y_{N-1}^{\dagger},u^{\dagger}\right),\ j = 1,\cdots,N-1,\\ \frac{du^{\dagger}}{d\varepsilon} = &\zeta\left(t^{\dagger},x^{\dagger},y_{1}^{\dagger},\cdots,y_{N-1}^{\dagger},u^{\dagger}\right), \end{aligned} \end{eqnarray} (3.10)

    with the initial condition (t^{\dagger}, x^{\dagger}, y_{1}^{\dagger}, \cdots, y_{N-1}^{\dagger}, u^{\dagger})|_{\varepsilon = 0} = \left(t, x, y_{1}, \cdots, y_{N-1}, u\right).

    After providing the infinitesimals of each Lie point symmetry in (3.5), the solutions of the initial value problem (3.10) yield the following Lie groups.

    \begin{equation*} G_1: \begin{cases} t^{\dagger} = t+\varepsilon,\\ x^{\dagger} = x,\\ y_{j}^{\dagger} = y_{j},\; j = 1,\cdots,N-1.\\ u^{\dagger} = u. \end{cases}\; \; \; G_2: \begin{cases} t^{\dagger} = t,\\ x^{\dagger} = x+\varepsilon,\\ y_{j}^{\dagger} = y_{j},\; j = 1,\cdots,N-1.\\ u^{\dagger} = u. \end{cases} \end{equation*}
    \begin{equation*} G_{j+2}:\begin{cases} t^{\dagger} = t,\\ x^{\dagger} = x,\\ y_{j}^{\dagger} = y_{j}+\varepsilon,\; j = 1,\cdots,N-1.\\ u^{\dagger} = u. \end{cases} \end{equation*}
    \begin{equation*} G_{N+j+1}:\begin{cases} t^{\dagger} = t\cosh{\left(\frac{\varepsilon}{\sqrt{d_{j}}}\right)}+\frac{y_{j}}{\sqrt{d_{j}}}\sinh{\left(\frac{\varepsilon}{\sqrt{d_{j}}}\right)},\\ x^{\dagger} = x,\\ y_{j}^{\dagger} = t\sqrt{d_{j}}\sinh{\left(\frac{\varepsilon}{\sqrt{d_{j}}}\right)}+y_{j}\cosh{\left(\frac{\varepsilon}{\sqrt{d_{j}}}\right)},\\ u^{\dagger} = u. \end{cases}\; j = 1,\cdots,N-1. \end{equation*}
    \begin{equation*} G_{2N+\alpha+\beta-1}:\begin{cases} t^{\dagger} = t,\\ x^{\dagger} = x,\\ \begin{cases} y_{\beta}^{\dagger} = y_{\beta}\cos{\left(\sqrt{\frac{d_{\alpha+1}}{d_{\beta}}}\varepsilon\right)}+y_{\alpha+1}\sqrt{\frac{d_{\beta}}{d_{\alpha+1}}}\sin{\left(\sqrt{\frac{d_{\alpha+1}}{d_{\beta}}}\varepsilon\right)},\\ y_{\alpha+1}^{\dagger} = y_{\alpha+1}\cos{\left(\sqrt{\frac{d_{\alpha+1}}{d_{\beta}}}\varepsilon\right)}-y_{\beta}\sqrt{\frac{d_{\alpha+1}}{d_{\beta}}}\sin{\left(\sqrt{\frac{d_{\alpha+1}}{d_{\beta}}}\varepsilon\right)},\\ y_{k}^{\dagger} = y_{k},\; \left(k\neq \alpha+1,\beta\right),\; \alpha = 1,\cdots,N-2,\; \beta = 1,\cdots,\alpha. \end{cases}\\ u^{\dagger} = u. \end{cases} \end{equation*}
    \begin{equation*} G_{\frac{N^2+N+4}{2}}:\begin{cases} t^{\dagger} = te^{-2b\varepsilon},\\ x^{\dagger} = xe^{-b\varepsilon},\\ y_{j}^{\dagger} = y_{j}e^{-2b\varepsilon},\; j = 1,\cdots,N-1.\\ u^{\dagger} = ue^{2b\varepsilon}+\frac{a}{2b}\left(e^{2b\varepsilon}-1\right). \end{cases} \end{equation*}

    Theorem: If u\left(t, x, y_1, \cdots, y_{N-1}\right) is a solution of \left(N+1\right) -dimensional generalized Boussinesq equation (1.1), then new solutions u^{\ell} = u^{\ell}\left(t, x, y_1, \cdots, y_{N-1}\right), \; \; \left(\ell = 1, \cdots, \frac{N^2+N+4}{2}\right) of Eq (1.1) corresponding to each group are given by:

    For G_1:

    u^{1} = u\left(t-\varepsilon,x,y_1,\cdots,y_{N-1}\right).

    For G_2:

    u^{2} = u\left(t,x-\varepsilon,y_1,\cdots,y_{N-1}\right).

    For G_{j+2}\; \left(j = 1, \cdots, N-1\right):

    \begin{array}{c} u^{3} = u\left(t,x,y_1-\varepsilon,\cdots,y_{N-1}\right), \\ \cdots\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdots \\ u^{N+1} = u\left(t,x,y_1,\cdots,y_{N-1}-\varepsilon\right). \end{array}

    For G_{N+j+1}\; \left(j = 1, \cdots, N-1\right):

    u^{N+2} = u\left(t\cosh{\left(\frac{\varepsilon}{\sqrt{d_{1}}}\right)}-\frac{y_1}{\sqrt{d_1}}\sinh{\left(\frac{\varepsilon}{\sqrt{d_{1}}}\right)},x,-t\sqrt{d_1}\sinh{\left(\frac{\varepsilon}{\sqrt{d_1}}\right)}+\\ y_1\cosh{\left(\frac{\varepsilon}{\sqrt{d_1}}\right)},y_2,\cdots,y_{N-1}\right),\\
    u^{N+3} = u\left(t\cosh{\left(\frac{\varepsilon}{\sqrt{d_{2}}}\right)}-\frac{y_2}{\sqrt{d_2}}\sinh{\left(\frac{\varepsilon}{\sqrt{d_{2}}}\right)},x,y_1,-t\sqrt{d_2}\sinh{\left(\frac{\varepsilon}{\sqrt{d_2}}\right)}+\\ y_2\cosh{\left(\frac{\varepsilon}{\sqrt{d_2}}\right)},\cdots,y_{N-1}\right),
    \cdots\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdots
    u^{2N} = u\left(t\cosh{\left(\frac{\varepsilon}{\sqrt{d_{N-1}}}\right)}-\frac{y_{N-1}}{\sqrt{d_{N-1}}}\sinh{\left(\frac{\varepsilon}{\sqrt{d_{N-1}}}\right)},x,y_1,\cdots,-t\sqrt{d_{N-1}}\sinh{\left(\frac{\varepsilon}{\sqrt{d_{N-1}}}\right)}+ \\ y_{N-1}\cosh{\left(\frac{\varepsilon}{\sqrt{d_{N-1}}}\right)}\right) .

    For G_{2N+\alpha+\beta-1}\; \left(\alpha = 1, \cdots, N-2, \; \; \beta = 1, \cdots, \alpha\right):

    \begin{equation*} { u^{2N+1} = u\left(t,x,y_{1}\cos{\left(\sqrt{\frac{d_{2}}{d_{1}}}\varepsilon\right)}-y_2\sqrt{\frac{d_{1}}{d_{2}}}\sin{\left(\sqrt{\frac{d_{2}}{d_{1}}}\varepsilon\right)},y_{2}\cos{\left(\sqrt{\frac{d_{2}}{d_{1}}}\varepsilon\right)}+\\ y_1\sqrt{\frac{d_{2}}{d_{1}}}\sin{\left(\sqrt{\frac{d_{2}}{d_{1}}}\varepsilon\right)},y_3,\cdots,y_{N-1}\right) ,}\\ \end{equation*}
    u^{2N+2} = u\left(t,x,y_{1}\cos{\left(\sqrt{\frac{d_{3}}{d_{1}}}\varepsilon\right)}-y_3\sqrt{\frac{d_{1}}{d_{3}}}\sin{\left(\sqrt{\frac{d_{3}}{d_{1}}}\varepsilon\right)},y_{2},y_{3}\cos{\left(\sqrt{\frac{d_{3}}{d_{1}}}\varepsilon\right)}+\\ y_1\sqrt{\frac{d_{3}}{d_{1}}}\sin{\left(\sqrt{\frac{d_{3}}{d_{1}}}\varepsilon\right)},\cdots,y_{N-1}\right) ,
    \cdots\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdots
    u^{(N^2+N+2)/2} = u\left(t,x,y_{1},\cdots,y_{N-2}\cos{\left(\sqrt{\frac{d_{N-1}}{d_{N-2}}}\varepsilon\right)}-y_{N-1}\sqrt{\frac{d_{N-2}}{d_{N-1}}}\sin{\left(\sqrt{\frac{d_{N-1}}{d_{N-2}}}\varepsilon\right)},\\ y_{N-1}\cos{\left(\sqrt{\frac{d_{N-1}}{d_{N-2}}}\varepsilon\right)}+ y_{N-2}\sqrt{\frac{d_{N-1}}{d_{N-2}}}\sin{\left(\sqrt{\frac{d_{N-1}}{d_{N-2}}}\varepsilon\right)}\right) .

    For G_{(N^2+N+4)/2}:

    \begin{equation*} u^{(N^2+N+4)/2} = \frac{a}{2b}\left(e^{-2b\varepsilon}-1\right)+e^{-2b\varepsilon}u\left(t e^{2b\varepsilon},x e^{b\varepsilon},y_{1} e^{2b\varepsilon},\cdots,y_{N-1} e^{2b\varepsilon}\right). \end{equation*}

    In this section, we shall find the closed form solutions of Eq (1.1). To accomplish this, we'll first conduct symmetry reduction in such a way that Eq (1.1) becomes a nonlinear ODE.

    After computing the commutation relations [46] for Eq (1.1), it is found that the Lie algebra (3.5) is closed w.r.t. the Lie bracket for every N . As the Lie bracket is commutative for all the translational Lie point symmetries in (3.5). i.e., \left[X_i, X_j\right] = 0, \; \forall\; i, j = 1, \cdots, N+1. Therefore, these translational symmetries create an abelian subalgebra, and the associated one dimensional optimal system of Eq (1.1) comprises conjugacy classes [46] that are formed by these symmetries. One of them is the conjugacy class, that makes advantage of all translational symmetries is < X_1+\mathscr{H}X_2+\sum_{j = 1}^{N-1}{{\rm{ \mathsf{ θ}}}_jX_{j+2}} > , corresponding to which the similarity solution is obtained by solving the characteristic equation:

    \frac{dt}{1} = \frac{dx}{\mathscr{H}} = \frac{dy_1}{{\rm{ \mathsf{ θ}}}_1} = \cdots = \frac{dy_{N-1}}{{\rm{ \mathsf{ θ}}}_{N-1}},

    which yields the similarity variables

    \begin{equation} \omega = t-\mathscr{H} x-\sum\limits_{j = 1}^{N-1}{{\rm{ \mathsf{ θ}}}_jy_j},\; \; u = \Theta\left(\omega\right). \end{equation} (4.1)

    Using Eq (4.1) in Eq (1.1) we obtain the nonlinear ODE:

    \begin{equation} \mathscr{H}^4 c\Theta^{\left(4\right)}+\mathscr{H}^2 b\left(2\Theta \Theta^{\prime \prime}+2\Theta^{\prime 2}\right)+\left(\mathscr{H}^2a-1+\sum\limits_{j = 1}^{N-1}{d_j{\rm{ \mathsf{ θ}}}_j^2}\right)\Theta^{\prime \prime} = 0. \end{equation} (4.2)

    For convenience, we take

    \begin{equation} \mu = \mathscr{H}^2a-1+\sum\limits_{j = 1}^{N-1}{d_j{\rm{ \mathsf{ θ}}}_j^2}. \end{equation} (4.3)

    Thus, Eq (4.2) takes the form

    \begin{equation} \mathscr{H}^4 c\Theta^{\left(4\right)}+\mathscr{H}^2 b\left(2\Theta \Theta^{\prime \prime}+2\Theta^{\prime 2}\right)+\mu\Theta^{\prime \prime} = 0,\; \; \left(\prime = \frac{d}{d\omega}\right). \end{equation} (4.4)

    Integrating twice and neglecting the constants of integration each time, we obtain a second order nonlinear ODE:

    \begin{equation} \mathscr{H}^4c\Theta^{\prime \prime}+\mathscr{H}^{2}b\Theta^2+\mu \Theta = 0. \end{equation} (4.5)

    By taking homogeneous balance between highest order linear term \left(\Theta^{\prime \prime}\right) and the highest order nonlinear term \left(\Theta^2\right) of Eq (4.5), we find the value of the positive integer m = 2 , thus from Eq (2.14), we assume the solution of the form:

    \begin{equation} \Theta\left(\omega\right) = p_{0}+p_{1}\Delta\left(\omega\right)+p_{2}\Delta^2\left(\omega\right)+q_1\varphi\left(\omega\right)+q_2\Delta\left(\omega\right)\varphi\left(\omega\right). \end{equation} (4.6)

    We get a system of algebraic equations by substituting Eq (4.6) into Eq (4.5) and comparing the coefficients of like powers of \Delta\left(\omega\right) and \varphi\left(\omega\right) using the approach outlined in Section 2.2. Solving that algebraic system using Maple software, yields the values of parameters \mu, \; \upsilon, \; p_0, \; p_1, \; p_2, \; q_1, and q_2 .

    For s < 0 , the following two sets of parameters yields the hyperbolic solutions for Eq (1.1).

    Set 1:

    \begin{equation} p_0 = -\frac{6\mathscr{H}^2cs}{b},\; p_1 = 0,\; p_2 = -\frac{6\mathscr{H}^2c}{b},\; q_1 = q_2 = 0,\; \mu = 4s\mathscr{H}^4c,\; \upsilon = 0. \end{equation} (4.7)

    Set 2:

    \begin{equation} p_0 = -\frac{2\mathscr{H}^2cs}{b},\; p_1 = 0,\; p_2 = -\frac{6\mathscr{H}^2c}{b},\; q_1 = q_2 = 0,\; \mu = -4s\mathscr{H}^4c,\; \upsilon = 0. \end{equation} (4.8)

    By substituting these values of the parameters in Eq (4.6), we get solutions for Eq (4.5), which, when combined with the similarity variables (4.1), produces the solutions for Eq (1.1).

    For Set 1 :

    We get the following solution for Eq (1.1) by plugging Eq (4.7) into Eq (4.6) and considering Eq (4.1).

    \begin{equation} u_1\left(t,x,y_1,y_2,\cdots,y_{N-1}\right) = \frac{6\mathscr{H}^2\sigma sc}{b\left(\gamma_1\sinh{\left(\sqrt{-s}\omega\right)}+\gamma_2\cosh{\left(\sqrt{-s}\omega\right)}\right)^2}\; , \end{equation} (4.9)

    where \sigma = \gamma_1^2-\gamma_2^2 and \omega = t-\mathscr{H}x-{\rm{ \mathsf{ θ}}}_1y_1-\cdots-{\rm{ \mathsf{ θ}}}_1y_{N-1} .

    For Set 2 :

    We get the following solution for Eq (1.1) by plugging Eq (4.8) into Eq (4.6) and considering Eq (4.1).

    \begin{equation} u_2\left(t,x,y_1,y_2,\cdots,y_{N-1}\right) = \frac{6\mathscr{H}^2sc}{b}\left[\left(\frac{\gamma_1\cosh{\left(\sqrt{-s}\omega\right)}+\gamma_2\sinh{\left(\sqrt{-s}\omega\right)}}{\gamma_1\sinh{\left(\sqrt{-s}\omega\right)}+\gamma_2\cosh{\left(\sqrt{-s}\omega\right)}}\right)^2-\frac{1}{3}\right], \end{equation} (4.10)

    where \omega = t-\mathscr{H}x-{\rm{ \mathsf{ θ}}}_1y_1-\cdots-{\rm{ \mathsf{ θ}}}_{N-1}y_{N-1} .

    The hyperbolic exact solutions u_1 and u_2 represented by Eqs (4.9) and (4.10) are portrayed in Figures 1 and 2, respectively.

    Graph of u_1 by choosing a = -1, \; b = -1, \; c = -1, \; s = -1, \; \mathscr{H} = 1, \; \gamma_1 = 1, \; \gamma_2 = 0 , y_1 = y_2 = \cdots = y_{N-1} = 0.

    Graph of u_2 by choosing a = -1, \; b = -1, \; c = -1, \; s = -1, \; \mathscr{H} = 1, \; \gamma_1 = 1, \; \gamma_2 = 0 , y_1 = y_2 = \cdots = y_{N-1} = 0.

    Figure 1.  3D plot.
    Figure 2.  3D plot.

    For s > 0 , the following two sets of parameters yields the hyperbolic solutions for Eq (1.1).

    Set 1:

    \begin{equation} p_0 = -\frac{6\mathscr{H}^2cs}{b},\; p_1 = 0,\; p_2 = -\frac{6\mathscr{H}^2c}{b},\; q_1 = q_2 = 0,\; \mu = 4s\mathscr{H}^4c,\; \upsilon = 0. \end{equation} (4.11)

    Set 2:

    \begin{equation} p_0 = -\frac{2\mathscr{H}^2cs}{b},\; p_1 = 0,\; p_2 = -\frac{6\mathscr{H}^2c}{b},\; q_1 = q_2 = 0,\; \mu = -4s\mathscr{H}^4c,\; \upsilon = 0. \end{equation} (4.12)

    By substituting these values of the parameters in Eq (4.6), we get solutions for Eq (4.5), which, when combined with the similarity variables (4.1), produces the solutions for Eq (1.1).

    For Set 1 :

    We get the following solution for Eq (1.1) by plugging Eq (4.11) into Eq (4.6) and considering Eq (4.1).

    \begin{equation} u_3\left(t,x,y_1,y_2,\cdots,y_{N-1}\right) = -\frac{6\mathscr{H}^2\sigma sc}{b\left(\gamma_1\sin{\left(\sqrt{s}\omega\right)}+\gamma_2\cos{\left(\sqrt{s}\omega\right)}\right)^2}\; , \end{equation} (4.13)

    where \sigma = \gamma_1^2+\gamma_2^2 and \omega = t-\mathscr{H}x-{\rm{ \mathsf{ θ}}}_1y_1-\cdots-{\rm{ \mathsf{ θ}}}_1y_{N-1} .

    For Set 2 :

    We get the following solution for Eq (1.1) by plugging Eq (4.12) into Eq (4.6) and considering Eq (4.1).

    \begin{equation} u_4\left(t,x,y_1,y_2,\cdots,y_{N-1}\right) = -\frac{6\mathscr{H}^2sc}{b}\left[\left(\frac{\gamma_1\cos{\left(\sqrt{s}\omega\right)}-\gamma_2\sin{\left(\sqrt{s}\omega\right)}}{\gamma_1\sin{\left(\sqrt{s}\omega\right)}+\gamma_2\cosh{\left(\sqrt{s}\omega\right)}}\right)^2+\frac{1}{3}\right], \end{equation} (4.14)

    where \omega = t-\mathscr{H}x-{\rm{ \mathsf{ θ}}}_1y_1-\cdots-{\rm{ \mathsf{ θ}}}_{N-1}y_{N-1} .

    The trigonometric exact solutions u_3 and u_4 represented by Eqs (4.13) and (4.14) are portrayed in Figures 3 and 4 respectively.

    Graph of u_3 by choosing a = -1, \; b = -1, \; c = -1, \; s = 1, \; \mathscr{H} = 1, \; \gamma_1 = 1, \; \gamma_2 = 0 , y_1 = y_2 = \cdots = y_{N-1} = 0.

    Graph of u_4 by choosing a = -1, \; b = -1, \; c = -1, \; s = 1, \; \mathscr{H} = 1, \; \gamma_1 = 1, \; \gamma_2 = 0 , y_1 = y_2 = \cdots = y_{N-1} = 0.

    Figure 3.  3D plot.
    Figure 4.  3D plot.

    When s = 0 , We get a trivial solution

    \begin{equation} u_5\left(t,x,y_1,y_2,\cdots,y_{N-1}\right) = p_0, \end{equation} (4.15)

    for the set of parameters:

    \begin{equation} p_0 = p_0,\; p_1 = 0,\; p_2 = 0,\; q_1 = q_2 = 0,\; \mu = -\mathscr{H}^2bp_0,\; \upsilon = 0. \end{equation} (4.16)

    Thus, Eq (1.1) does not have any nontrivial rational function solutions.

    Suppose,

    \begin{equation} \mathfrak{U}\left(t,x,u,u_t,u_x,u_{xx},u_{y_{1}y_{1}},u_{y_{2}y_{2}},\cdots,u_{y_{N-1}y_{N-1}}\right) = 0 \end{equation} (5.1)

    represents Eq (1.1) where

    \begin{equation} \mathfrak{U} = u_{tt}-a u_{xx}-b\left(u^2\right)_{xx}-c u_{xxxx}-\sum\limits_{j = 1}^{N-1}{d_{j} u_{y_{j}y_{j}}}\; . \end{equation} (5.2)

    Considering the nonlocal variable \mathscr{P}\left(t, x, y_1, y_2, \cdots, y_{N-1}\right) , the formal Lagrangian for Eq (1.1) is of the form:

    \begin{equation} \mathscr{L} = \mathscr{P}\left(t,x,y_1,y_2,\cdots,y_{N-1}\right)\left(u_{tt}-a u_{xx}-b\left(u^2\right)_{xx}-c u_{xxxx}-\sum\limits_{j = 1}^{N-1}{d_{j} u_{y_{j}y_{j}}}\right). \end{equation} (5.3)

    The corresponding adjoint equation of Eq (1.1) is:

    \begin{equation} \mathfrak{U}^* = \frac{\delta}{\delta u}\left[\mathscr{P}\left(u_{tt}-a u_{xx}-b\left(u^2\right)_{xx}-c u_{xxxx}-\sum\limits_{j = 1}^{N-1}{d_{j} u_{y_{j}y_{j}}}\right)\right] = 0, \end{equation} (5.4)

    where the Euler Lagrange operator \delta/\delta u has the following form for Eq (1.1):

    \begin{equation} \frac{\delta}{\delta u} = \frac{\partial}{\partial u}-\mathscr{D}_{x}\frac{\partial}{\partial u_{x}}-\mathscr{D}_{t}^2\frac{\partial}{\partial u_{tt}}-\mathscr{D}_{x}^2\frac{\partial}{\partial u_{xx}}-\sum\limits_{j = 1}^{N-1}{\mathscr{D}_{y_{j}}^2\frac{\partial}{\partial u_{y_{j}y_{j}}}}-\mathscr{D}_{x}^4\frac{\partial}{\partial u_{xxxx}}, \end{equation} (5.5)

    in which the total derivatives are as follows:

    \begin{eqnarray} \begin{aligned} \mathscr{D}_x = &\frac{\partial}{\partial x}+u_{x}\frac{\partial}{\partial u}+u_{xx}\frac{\partial}{\partial u_{x}}+u_{xxx}\frac{\partial}{\partial u_{xx}}+u_{xxxx}\frac{\partial}{\partial u_{xxx}}+u_{xxxxx}\frac{\partial}{\partial u_{xxxx}},\\ \mathscr{D}_t = &\frac{\partial}{\partial t}+u_{t}\frac{\partial}{\partial u}+u_{tt}\frac{\partial}{\partial u_{t}}+u_{ttt}\frac{\partial}{\partial u_{tt}},\\ \mathscr{D}_{y_{j}} = &\frac{\partial}{\partial y_{j}}+u_{y_{j}}\frac{\partial}{\partial u}+u_{y_{j}y_{j}}\frac{\partial}{\partial u_{y_{j}}}+u_{y_{j}y_{j}y_{j}}\frac{\partial}{\partial u_{y_{j}y_{j}}}\; \left(j = 1,\cdots,N-1\right). \end{aligned} \end{eqnarray} (5.6)

    Using Eqs (5.5) and (5.6), Eq (5.4) becomes:

    \begin{equation} \mathfrak{U}^* = \mathscr{P}_{tt}-\left(a+2bu\right)\mathscr{P}_{xx}-c\; \mathscr{P}_{xxxx}-\sum\limits_{j = 1}^{N-1}{d_{j}\mathscr{P}_{y_{j}y_{j}}} = 0. \end{equation} (5.7)

    Invoking the Definitions 3–5 for the pair of Eqs (5.1) and (5.7), we state the following theorem after reckoning.

    Theorem: Equation (1.1) is not strictly, quasi or weak self-adjoint, rather it is nonlinear self-adjoint (i.e., \mathfrak{U} = \lambda\mathfrak{U}, \; \lambda = \Psi_u ), with the nonlocal variable \mathscr{P} = \Psi determined from the following system of PDEs:

    \begin{equation} \Psi_{xx} = 0,\; \; \; \Psi_{tt} = \sum\limits_{j = 1}^{N-1}{d_{j}\Psi_{y_{j}y_{j}}},\; \; \; \Psi_{u} = 0. \end{equation} (5.8)

    Remark: From above system of PDEs (5.8), it is clear that the nonlocal variable \mathscr{P} = \Psi is independent of variable u , i.e., \mathscr{P} = \Psi\left(t, x, y_1, \cdots, y_{N-1}\right) .

    Consider the scenario when Eq (1.1) reflects the \left(1+1\right) and \left(2+1\right) dimensional Boussinesq equations (1.2) and (1.3).

    Nonlocal variable for N = 1 :

    For N = 1 , the system of PDEs (5.8) takes the form:

    \begin{equation} \Psi_{xx} = 0,\; \; \; \Psi_{tt} = 0,\; \; \; \Psi_{u} = 0, \end{equation} (5.9)

    which upon solving yields

    \begin{equation} \mathscr{P} = \Psi\left(t,x,u\right) = C_1xt+C_2x+C_3t+C_4. \end{equation} (5.10)

    Nonlocal variable for N = 2 :

    For N = 2 , the system of PDEs (5.8) takes the form:

    \begin{equation} \Psi_{xx} = 0,\; \; \; \Psi_{tt} = d_1\Psi_{y_{1}y_{1}},\; \; \; \Psi_{u} = 0, \end{equation} (5.11)

    For sake of convenience, we remove the indices in Eq (5.11) (i.e., taking d_1 = d and y_1 = y ). Thus solving

    \begin{equation*} \Psi_{xx} = 0,\; \; \; \Psi_{tt} = d\Psi_{yy},\; \; \; \Psi_{u} = 0, \end{equation*}

    yields

    \begin{equation} \mathscr{P} = \Psi\left(t,x,y,u\right) = \left(x+1\right)\left[f\left(t+\frac{y}{\sqrt{d}}\right)+g\left(t-\frac{y}{\sqrt{d}}\right)\right]. \end{equation} (5.12)

    where f and g are arbitrary functions of its arguments.

    Components of conserved vector for Eq (1.1) corresponding to Lie symmetries (3.5) can be determined using Ibragimov's Theorem (2.1) using Eq (2.5).

    If \mathscr{T} = \left(\mathscr{T}^t, \mathscr{T}^x, \mathscr{T}^{y_1}, \cdots, \mathscr{T}^{y_{N-1}}\right) is a conserved vector for Eq (1.1), then it must satisfy the conservation law:

    \begin{equation} \left[\mathscr{D}_{t}\left(\mathscr{T}^{t}\right)+\mathscr{D}_{x}\left(\mathscr{T}^{x}\right)+\mathscr{D}_{y_{1}}\left(\mathscr{T}^{y_{1}}\right)+\cdots+\mathscr{D}_{y_{N-1}}\left(\mathscr{T}^{y_{N-1}}\right)\right]_{\left(1.1\right)} = 0. \end{equation} (6.1)

    Equation (2.5) yields the following components of conserved vector \mathscr{T} for Eq (1.1):

    \begin{eqnarray} \begin{aligned} \mathscr{T}^t = &\; \xi_{\ell}^{0}\mathscr{L}-\mathcal{W}_{\ell}\mathscr{D}_{t}\left(\frac{\partial \mathscr{L}}{\partial u_{tt}}\right)+\mathscr{D}_{t}\left(\mathcal{W}_{\ell}\right)\left(\frac{\partial \mathscr{L}}{\partial u_{tt}}\right),\\ \mathscr{T}^x = &\; \xi_{\ell}^{1}\mathscr{L}+\mathcal{W}_{\ell}\left[\frac{\partial\mathscr{L}}{\partial u_{x}}-\mathscr{D}_{x}\left(\frac{\partial \mathscr{L}}{\partial u_{xx}}\right)-\mathscr{D}_{x}^{3}\left(\frac{\partial \mathscr{L}}{\partial u_{xxxx}}\right)\right]+\mathscr{D}_{x}^{3}\left(\mathcal{W_{\ell}}\right)\left(\frac{\partial ]\mathscr{L}}{\partial u_{xxxx}}\right)\\ &+\mathscr{D}_{x}\left(\mathcal{W}_{\ell}\right)\left[\frac{\partial \mathscr{L}}{\partial u_{xx}}+\mathscr{D}_{x}^{2}\left(\frac{\partial \mathscr{L}}{\partial u_{xxxx}}\right)\right]-\mathscr{D}_{x}^{2}\left(\mathcal{W}_{\ell}\right)\mathscr{D}_{x}\left(\frac{\partial \mathscr{L}}{\partial u_{xxxx}}\right),\\ \mathscr{T}^{y_{j}} = &\; \eta_{\ell}^{y_{j}}\mathscr{L}-\mathcal{W}_{\ell}\mathscr{D}_{y_{j}}\left(\frac{\partial \mathscr{L}}{\partial u_{y_{j}y_{j}}}\right)+\mathscr{D}_{y_{j}}\left(\mathcal{W}_{\ell}\right)\left(\frac{\partial \mathscr{L}}{\partial u_{y_{j}y_{j}}}\right),\; \; \; \begin{array}{cc} j = 1,\cdots,N-1 & \\ \ell = 1,\cdots,\frac{N^2+N+4}{2}&, \end{array} \end{aligned} \end{eqnarray} (6.2)

    where

    \begin{equation} \mathcal{W}_{\ell} = \zeta_{\ell}-\xi_{\ell}^{0}\frac{\partial u}{\partial t}-\xi_{\ell}^{1}\frac{\partial u}{\partial x}-\sum\limits_{j = 1}^{N-1}{\eta_{\ell}^{y_{j}}\frac{\partial^2 u}{\partial y_j^2}}\; \; \; (\ell = 1,\cdots,\frac{N^2+N+4}{2}), \end{equation} (6.3)

    denotes the Lie characteristic function corresponding to Lie point symmetries X_{\ell} (3.5) and \mathscr{L} = \mathscr{P} \mathfrak{U} represents the formal Lagrangian in which the nonlocal variable \mathscr{P} satisfies the PDE system (5.8).

    Conservation laws of generalized fourth order Boussinesq equation [63] have been computed using multiplier approach. Moreover, infinite conservation laws for Eq (1.3) have also computed using Bell polynomials [64].

    In the following subsections, we shall compute the components of conserved vectors for Eqs (1.2) and (1.3) corresponding to the classical Lie point symmetries (3.6) and (3.7), respectively by using the nonlocal conservation laws.

    The nonlocal conservation law for Eq (1.2) is given by:

    \begin{equation} \left[\mathscr{D}_{t}\left(\mathscr{T}^{t}\right)+\mathscr{D}_{x}\left(\mathscr{T}^{x}\right)\right]_{\left(1.2\right)} = 0, \end{equation} (6.4)

    where \mathscr{T} = \left(\mathscr{T}^t, \mathscr{T}^x\right) represents the conserved vector for Eq (1.2).

    The components of conserved vector \mathscr{T}^t and \mathscr{T}^x are followed by Eq (6.2) as:

    \begin{eqnarray} \begin{aligned} \mathscr{T}^t = &\; \xi_{\ell}^{0}\mathscr{L}-\mathcal{W}_{\ell}\mathscr{D}_{t}\left(\frac{\partial \mathscr{L}}{\partial u_{tt}}\right)+\mathscr{D}_{t}\left(\mathcal{W}_{\ell}\right)\left(\frac{\partial \mathscr{L}}{\partial u_{tt}}\right),\\ \mathscr{T}^x = &\; \xi_{\ell}^{1}\mathscr{L}+\mathcal{W}_{\ell}\left[\frac{\partial\mathscr{L}}{\partial u_{x}}-\mathscr{D}_{x}\left(\frac{\partial \mathscr{L}}{\partial u_{xx}}\right)-\mathscr{D}_{x}^{3}\left(\frac{\partial \mathscr{L}}{\partial u_{xxxx}}\right)\right]+\mathscr{D}_{x}^{3}\left(\mathcal{W_{\ell}}\right)\left(\frac{\partial ]\mathscr{L}}{\partial u_{xxxx}}\right)\\ &+\mathscr{D}_{x}\left(\mathcal{W}_{\ell}\right)\left[\frac{\partial \mathscr{L}}{\partial u_{xx}}+\mathscr{D}_{x}^{2}\left(\frac{\partial \mathscr{L}}{\partial u_{xxxx}}\right)\right]-\mathscr{D}_{x}^{2}\left(\mathcal{W}_{\ell}\right)\mathscr{D}_{x}\left(\frac{\partial \mathscr{L}}{\partial u_{xxxx}}\right), \end{aligned} \end{eqnarray} (6.5)

    where \mathcal{W}_{\ell} = \zeta_{\ell}-\xi_{\ell}^{0}u_{t}-\xi_{\ell}^{1}u_{x}, \; \left(\ell = 1, 2, 3\right) are the Lie characteristic functions corresponding to Lie point symmetries X_{\ell} (3.6), given by:

    \begin{equation} \mathcal{W}_{1} = -u_{t},\; \; \mathcal{W}_2 = -u_{x},\; \; \mathcal{W}_3 = a+2bu+2btu_t+bxu_x, \end{equation} (6.6)

    and \mathscr{L} is the the formal Lagrangian

    \begin{equation} \mathscr{L} = \mathscr{P}\mathfrak{U},\; \; \mathfrak{U} = u_{tt}-au_{xx}-b\left(u^2\right)_{xx}-cu_{xxxx}, \end{equation} (6.7)

    with nonlocal variable \mathscr{P} given by Eq (5.11).

    Case 1. For X_1 = \frac{\partial}{\partial t}

    Substituting \xi_{1}^{0} = 1, \; \xi_{1}^{1} = \zeta_{1} = 0 , \mathcal{W}_{1} = -u_{t} and \mathscr{L} from Eq (6.7), in the pair of Eq (6.5), yields

    \begin{eqnarray} \begin{aligned} \mathscr{T}^{t} = &\left(C_1x+C_3\right)u_t-\left(C_1xt+C_2x+C_3t+C_4\right)\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}\right),\\ \mathscr{T}^{x} = &\left(au_{tx}+b\left(u^2\right)_{tx}+cu_{txxx}\right)\left(C_1xt+C_2x+C_3t+C_4\right)-\left(cu_{txx}-\left(a+2bu\right)u_{t}\right)\left(C_1t+C_2\right). \end{aligned} \end{eqnarray} (6.8)

    Surely, the conservation law (6.4) is satisfied, since

    \begin{equation*} \mathscr{D}_{t}\left(\mathscr{T}^{t}\right)+\mathscr{D}_{x}\left(\mathscr{T}^{x}\right) = \left(C_1x+C_3\right)\mathfrak{U}. \label{NS4.1.3a.6} \end{equation*}

    Four pairs of components of conserved vectors of Eq (1.2) can be obtained from Eq (6.8), w.r.t. set of arbitrary constants \{C_1, C_2, C_3, C_4\} .

    For C_1 = 1, C_2 = C_3 = C_4 = 0

    \begin{cases} \mathscr{T}^{t} = xu_t-xt\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}\right), \\ \mathscr{T}^{x} = xt\left(au_{tx}+b\left(u^2\right)_{tx}+cu_{txxx}\right)-t\left(cu_{txx}-\left(a+2bu\right)u_{t}\right). \end{cases}

    For C_2 = 1, C_1 = C_3 = C_4 = 0

    \begin{cases} \mathscr{T}^{t} = -x\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}\right), \\ \mathscr{T}^{x} = x\left(au_{tx}+b\left(u^2\right)_{tx}+cu_{txxx}\right)+\left(a+2bu\right)u_t-cu_{txx}. \end{cases}

    For C_3 = 1, C_1 = C_2 = C_4 = 0

    \begin{cases} \mathscr{T}^{t} = u_t-t\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}\right), \\ \mathscr{T}^{x} = t\left(au_{tx}+b\left(u^2\right)_{tx}+cu_{txxx}\right). \end{cases}

    For C_4 = 1, C_1 = C_2 = C_3 = 0

    \begin{cases} \mathscr{T}^{t} = -au_{xx}-b\left(u^2\right)_{xx}-cu_{xxxx}, \\ \mathscr{T}^{x} = au_{tx}+b\left(u^2\right)_{tx}+cu_{txxx}. \end{cases}

    Case 2. For X_2 = \frac{\partial}{\partial x} Substituting \xi_{2}^{1} = 1, \; \xi_{2}^{0} = \zeta_{2} = 0 , \mathcal{W}_{2} = -u_{x} and \mathscr{L} from Eq (6.7), in the pair of Eq (6.5), yields

    \begin{eqnarray} \begin{aligned} \mathscr{T}^{t} = &\left(C_1x+C_3\right)u_x-\left(C_1xt+C_2x+C_3t+C_4\right)u_{tx},\\ \mathscr{T}^{x} = &\left(C_1xt+C_2x+C_3t+C_4\right)u_{tt}-\left(cu_{xxx}+\left(a+2bu\right)u_{x}\right)\left(C_1t+C_2\right). \end{aligned} \end{eqnarray} (6.9)

    Clearly, these components satisfy conservation law (6.4), since

    \begin{equation*} \mathscr{D}_{t}\left(\mathscr{T}^{t}\right)+\mathscr{D}_{x}\left(\mathscr{T}^{x}\right) = \left(C_1t+C_2\right)\mathfrak{U}. \label{NS4.1.3a.8} \end{equation*}

    Four pairs of components of conserved vectors of Eq (1.2) can be obtained from Eq (6.9), w.r.t. set of arbitrary constants \{C_1, C_2, C_3, C_4\} .

    For C_1 = 1, C_2 = C_3 = C_4 = 0

    \begin{cases} \mathscr{T}^{t} = xu_{x}-xtu_{tx}, \\ \mathscr{T}^{x} = xtu_{tt}-t\left(cu_{xxx}+\left(a+2bu\right)u_x\right). \end{cases}

    For C_2 = 1, C_1 = C_3 = C_4 = 0

    \begin{cases} \mathscr{T}^{t} = -xtu_{tx}, \\ \mathscr{T}^{x} = xu_{tt}-cu_{xxx}-\left(a+2bu\right)u_x. \end{cases}

    For C_3 = 1, C_1 = C_2 = C_4 = 0

    \begin{cases} \mathscr{T}^{t} = u_x-tu_{tx}, \\ \mathscr{T}^{x} = tu_{tt}. \end{cases}

    For C_4 = 1, C_1 = C_2 = C_3 = 0

    \begin{cases} \mathscr{T}^{t} = -u_{tx}, \\ \mathscr{T}^{x} = u_{tt}. \end{cases}

    Case 3. For X_3 = -2bt\frac{\partial}{\partial t}-bx\frac{\partial}{\partial x}+\left(a+2bu\right)\frac{\partial}{\partial u}

    Substituting \xi_{3}^{0} = -2bt, \; \xi_{3}^{1} = -bx, \; \zeta_{3} = a+2bu , \mathcal{W}_{3} = a+2bu+2btu_{t}+bxu_{x} and \mathscr{L} from Eq (6.7), in the pair of Eq (6.5), yields

    \begin{array}{l} \mathscr{T}^{t} = b\left(xu_{tx}+2t\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}\right)+4u_{t}\right)\left(C_1xt+C_2x+C_3t+C_4\right)\\ \qquad \;-\left(a+2bu+2btu_t+bxu_x\right)\left(C_1x+C_3\right),\\ \mathscr{T}^{x} = \left[\left(a+2bu\right)\left(a+2bu+bxu_x+2btu_t\right)+bc\left(xu_{xxx}+2tu_{txx}+4u_{xx}\right)\right]\left(C_1t+C_2\right)\\ \qquad \;-b\left[xu_{tt}+\left(a+2bu\right)\left(5u_{x}+2tu_{tx}\right)+4btu_{t}u_{x}+c\left(5u_{xxx}+2tu_{txxx}\right)\right] \\ \qquad\; \left(C_1xt+C_2x+C_3t+C_4\right). \end{array} (6.10)

    Evidently, these components satisfy conservation law (6.4), since

    \begin{equation*} \mathscr{D}_{t}\left(\mathscr{T}^{t}\right)+\mathscr{D}_{x}\left(\mathscr{T}^{x}\right) = \left(2C_2bx+C_3bt+3C_4b\right)\mathfrak{U}. \label{NS4.1.3a.10} \end{equation*}

    Four pairs of components of conserved vectors of Eq (1.2) can be obtained from Eq (6.10), w.r.t. set of arbitrary constants \{C_1, C_2, C_3, C_4\} .

    For C_1 = 1, C_2 = C_3 = C_4 = 0

    \begin{cases} \mathscr{T}^{t} = bxt\left(xu_{tx}+2t\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}\right)+2u_{t}\right)-x\left(a+2bu+bxu_{x}\right), \\ \begin{array}{cc} \mathscr{T}^{x} = &t\left[\left(a+2bu\right)\left(a+2bu-2b\left(2xu_x-tu_t\right)\right)+bc\left(2tu_{txx}+4u_{xx}\right)\right]\\ & -bxt\left[xu_{tt}+2t\left(a+2bu\right)u_{tx}+4btu_{t}u_{x}+2c\left(2cu_{xxx}+tu_{txxx}\right)\right]. \end{array} \end{cases}

    For C_2 = 1, C_1 = C_3 = C_4 = 0

    \begin{cases} \mathscr{T}^{t} = bx\left(xu_{tx}+2t\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}\right)+4u_{t}\right), \\ \begin{array}{cc} \mathscr{T}^{x} = &t\left(a+2bu\right)\left(a+2bu-2b\left(2xu_x-tu_t\right)\right)+bc\left(2tu_{txx}+4u_{xx}\right)\\ & -bx\left[xu_{tt}+2t\left(a+2bu\right)u_{tx}+4btu_{t}u_{x}+2c\left(2cu_{xxx}+tu_{txxx}\right)\right]. \end{array} \end{cases}

    For C_3 = 1, C_1 = C_2 = C_4 = 0

    \begin{cases} \mathscr{T}^{t} = bt\left(xu_{tx}+2t\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}\right)+2u_{t}\right)-\left(a+2bu+bxu_x\right), \\ \mathscr{T}^{x} = -bt\left(xu_{tt}+\left(a+2bu\right)\left(5u_{x}+2tu_{tx}\right)+c\left(5u_{xxx}+2tu_{txxx}\right)+4btu_{t}u_{x}\right). \end{cases}

    For C_4 = 1, C_1 = C_2 = C_3 = 0

    \begin{cases} \mathscr{T}^{t} = bt\left(xu_{tx}+2t\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}\right)+2u_{t}\right)-\left(a+2bu+bxu_x\right), \\ \mathscr{T}^{x} = -b\left(xu_{tt}+\left(a+2bu\right)\left(5u_{x}+2tu_{tx}\right)+c\left(5u_{xxx}+2tu_{txxx}\right)+4btu_{t}u_{x}\right). \end{cases}

    The nonlocal conservation law for Eq (1.3) is given by:

    \begin{equation} \left[\mathscr{D}_{t}\left(\mathscr{T}^{t}\right)+\mathscr{D}_{x}\left(\mathscr{T}^{x}\right)+\mathscr{D}_{y}\left(\mathscr{T}^{y}\right)\right]_{\left(1.3\right)} = 0, \end{equation} (6.11)

    where \mathscr{T} = \left(\mathscr{T}^t, \mathscr{T}^x, \mathscr{T}^y\right) represents the conserved vector for Eq (1.3).

    The components of conserved vector \mathscr{T}^t, \; \mathscr{T}^x and \mathscr{T}^y are followed by Eq (6.2) as:

    \begin{eqnarray} \begin{aligned} \mathscr{T}^t = &\; \xi_{\ell}^{0}\mathscr{L}-\mathcal{W}_{\ell}\mathscr{D}_{t}\left(\frac{\partial \mathscr{L}}{\partial u_{tt}}\right)+\mathscr{D}_{t}\left(\mathcal{W}_{\ell}\right)\left(\frac{\partial \mathscr{L}}{\partial u_{tt}}\right),\\ \mathscr{T}^x = &\; \xi_{\ell}^{1}\mathscr{L}+\mathcal{W}_{\ell}\left[\frac{\partial\mathscr{L}}{\partial u_{x}}-\mathscr{D}_{x}\left(\frac{\partial \mathscr{L}}{\partial u_{xx}}\right)-\mathscr{D}_{x}^{3}\left(\frac{\partial \mathscr{L}}{\partial u_{xxxx}}\right)\right]+\mathscr{D}_{x}^{3}\left(\mathcal{W_{\ell}}\right)\left(\frac{\partial ]\mathscr{L}}{\partial u_{xxxx}}\right)\\ &+\mathscr{D}_{x}\left(\mathcal{W}_{\ell}\right)\left[\frac{\partial \mathscr{L}}{\partial u_{xx}}+\mathscr{D}_{x}^{2}\left(\frac{\partial \mathscr{L}}{\partial u_{xxxx}}\right)\right]-\mathscr{D}_{x}^{2}\left(\mathcal{W}_{\ell}\right)\mathscr{D}_{x}\left(\frac{\partial \mathscr{L}}{\partial u_{xxxx}}\right),\\ \mathscr{T}^y = &\; \eta_{\ell}\mathscr{L}-\mathcal{W}_{\ell}\mathscr{D}_{y}\left(\frac{\partial \mathscr{L}}{\partial u_{yy}}\right)+\mathscr{D}_{y}\left(\mathcal{W}_{\ell}\right)\left(\frac{\partial \mathscr{L}}{\partial u_{yy}}\right), \end{aligned} \end{eqnarray} (6.12)

    where \mathcal{W}_{\ell} = \zeta_{\ell}-\xi_{\ell}^{0}u_{t}-\xi_{\ell}^{1}u_{x}-\eta_{\ell}u_{y}, \; \left(\ell = 1, 2, 3, 4, 5\right) are the Lie characteristic functions corresponding to Lie point symmetries X_{\ell} (3.7), given by:

    \begin{equation} \mathcal{W}_{1} = -u_{t},\; \mathcal{W}_2 = -u_{x},\; \mathcal{W}_3 = -u_{y},\; \mathcal{W}_4 = -\frac{y}{d}u_{t}-tu_{y},\; \mathcal{W}_5 = a+2bu+2btu_t+ \\ bxu_x+2byu_y, \end{equation} (6.13)

    and \mathscr{L} is the the formal Lagrangian

    \begin{equation} \mathscr{L} = \mathscr{P}\mathfrak{U},\; \; \mathfrak{U} = u_{tt}-a u_{xx}-b\left(u^2\right)_{xx}-c u_{xxxx}-d u_{yy}, \end{equation} (6.14)

    with nonlocal variable \mathscr{P} given by Eq (5.12).

    Case 1. For X_1 = \frac{\partial}{\partial t}

    Substituting \xi_{1}^{0} = 1, \; \xi_{1}^{1} = \eta_{1} = \zeta_{1} = 0 , \mathcal{W}_{1} = -u_{t} and \mathscr{L} from Eq (6.14), in the pair of Eq (6.12), yields

    \begin{eqnarray} \begin{aligned} \mathscr{T}^{t} = &\left(x+1\right)\left[\left(f^{\prime}+g^{\prime}\right)u_{t}-\left(f+g\right)\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}+du_{yy}\right)\right],\\ \mathscr{T}^{x} = &\left(f+g\right)\left[\left(x+1\right)\left(au_{tx}+b\left(u^2\right)_{tx}+cu_{txxx}\right)-\left(au_t+b\left(u^2\right)_t+cu_{txx}\right)\right],\\ \mathscr{T}^{y} = &\left(x+1\right)\left[d\left(f+g\right)u_{ty}-\sqrt{d}\left(f^{\prime}-g^{\prime}\right)u_{t}\right], \end{aligned} \end{eqnarray} (6.15)

    where f = f\left(t+\frac{y}{\sqrt{d}}\right) and g = g\left(t-\frac{y}{\sqrt{d}}\right) are the arbitrary functions and, f^\prime and g^\prime denote their first order explicit derivatives.

    Surely, the conservation law (6.11) is satisfied, since

    \begin{equation*} \mathscr{D}_{t}\left(\mathscr{T}^{t}\right)+\mathscr{D}_{x}\left(\mathscr{T}^{x}\right)+\mathscr{D}_{y}\left(\mathscr{T}^{y}\right) = \left(x+1\right)\left(f^{\prime}+g^{\prime}\right)\mathfrak{U}. \end{equation*}

    The components of conserved vectors of Eq (1.3), w.r.t the arbitrary functions f and g are followed by Eq (6.15) as:

    For f\neq0, and g = 0 :

    \begin{cases} \mathscr{T}^{t} = \left(x+1\right)\left(f^\prime u_{t}-f\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}+du_{yy}\right)\right), \\ \mathscr{T}^{x} = f\left(x+1\right)\left(au_{tx}+b\left(u^2\right)_{tx}+cu_{txxx}\right)-f\left(au_t+b\left(u^2\right)_t+cu_{txx}\right), \\ \mathscr{T}^{y} = \left(x+1\right)\left(f\; du_{ty}-f^\prime\; \sqrt{d}u_{t}\right). \end{cases}

    For f = 0, and g\neq0 :

    \begin{cases} \mathscr{T}^{t} = \left(x+1\right)\left(g^\prime u_{t}-g\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}+du_{yy}\right)\right), \\ \mathscr{T}^{x} = g\left(x+1\right)\left(au_{tx}+b\left(u^2\right)_{tx}+cu_{txxx}\right)-g\left(au_t+b\left(u^2\right)_t+cu_{txx}\right), \\ \mathscr{T}^{y} = \left(x+1\right)\left(g\; du_{ty}+g^\prime\; \sqrt{d}u_{t}\right). \end{cases}

    Case 2. For X_2 = \frac{\partial}{\partial x}

    Substituting \xi_{2}^{1} = 1, \; \xi_{2}^{0} = \eta_{2} = \zeta_{2} = 0 , \mathcal{W}_{2} = -u_{x} and \mathscr{L} from Eq (6.14), in the pair of Eq (6.12), yields

    \begin{eqnarray} \begin{aligned} \mathscr{T}^{t} = &\left(x+1\right)\left[\left(f^{\prime}+g^{\prime}\right)u_{x}-\left(f+g\right)u_{tx}\right],\\ \mathscr{T}^{x} = &\left(f+g\right)\left[\left(x+1\right)\left(u_{tt}-du_{yy}\right)-\left(au_x+b\left(u^2\right)_x+cu_{xxx}\right)\right],\\ \mathscr{T}^{y} = &\left(x+1\right)\left[d\left(f+g\right)u_{xy}-\sqrt{d}\left(f^{\prime}-g^{\prime}\right)u_{x}\right], \end{aligned} \end{eqnarray} (6.16)

    where f = f\left(t+\frac{y}{\sqrt{d}}\right) and g = g\left(t-\frac{y}{\sqrt{d}}\right) are the arbitrary functions and, f^\prime and g^\prime represent their first order explicit derivatives.

    Clearly, the conservation law (6.11) is satisfied, since

    \begin{equation*} \mathscr{D}_{t}\left(\mathscr{T}^{t}\right)+\mathscr{D}_{x}\left(\mathscr{T}^{x}\right)+\mathscr{D}_{y}\left(\mathscr{T}^{y}\right) = \left(f+g\right)\mathfrak{U}. \label{NS4.1.3b.8} \end{equation*}

    The components of conserved vectors of Eq (1.3), w.r.t the arbitrary functions f and g are followed by Eq (6.16) as:

    For f\neq0, and g = 0 :

    \begin{cases} \mathscr{T}^{t} = \left(x+1\right)\left(f^\prime u_{x}-fu_{tx}\right), \\ \mathscr{T}^{x} = f\left(x+1\right)\left(u_{tt}-du_{yy}\right)-f\left(au_x+b\left(u^2\right)_x+cu_{xxx}\right), \\ \mathscr{T}^{y} = \left(x+1\right)\left(f\; du_{xy}-f^\prime\; \sqrt{d}u_{x}\right). \end{cases}

    For f = 0, and g\neq0 :

    \begin{cases} \mathscr{T}^{t} = \left(x+1\right)\left(g^\prime u_{x}-gu_{tx}\right), \\ \mathscr{T}^{x} = g\left(x+1\right)\left(u_{tt}-du_{yy}\right)-g\left(au_x+b\left(u^2\right)_x+cu_{xxx}\right), \\ \mathscr{T}^{y} = \left(x+1\right)\left(g\; du_{xy}+g^\prime\; \sqrt{d}u_{x}\right). \end{cases}

    Case 3. For X_3 = \frac{\partial}{\partial y}

    Substituting \eta_{3} = 1, \; \xi_{3}^{0} = \xi_{3}^{1} = \zeta_{3} = 0 , \mathcal{W}_{3} = -u_{y} and \mathscr{L} from Eq (6.14), in the pair of Eq (6.12), yields

    \begin{eqnarray} \begin{aligned} \mathscr{T}^{t} = &\left(x+1\right)\left[\left(f^{\prime}+g^{\prime}\right)u_{y}-\left(f+g\right)u_{ty}\right],\\ \mathscr{T}^{x} = &\left(f+g\right)\left[\left(x+1\right)\left(au_{xy}+b\left(u^2\right)_{xy}+cu_{xxxy}\right)-\left(au_y+b\left(u^2\right)_y+cu_{xxy}\right)\right],\\ \mathscr{T}^{y} = &\left(x+1\right)\left[\left(f+g\right)\left(u_{tt}-au_{xx}-b\left(u^2\right)_{xx}-cu_{xxxx}\right)-\sqrt{d}\left(f^{\prime}-g^{\prime}\right)u_{y}\right], \end{aligned} \end{eqnarray} (6.17)

    where f = f\left(t+\frac{y}{\sqrt{d}}\right) and g = g\left(t-\frac{y}{\sqrt{d}}\right) are the arbitrary functions and, f^\prime and g^\prime denote their first order explicit derivatives.

    Clearly, the conservation law (6.11) is satisfied, since

    \begin{equation*} \mathscr{D}_{t}\left(\mathscr{T}^{t}\right)+\mathscr{D}_{x}\left(\mathscr{T}^{x}\right)+\mathscr{D}_{y}\left(\mathscr{T}^{y}\right) = -\left(x+1\right)\left(\frac{f^\prime -g^\prime}{\sqrt{d}}\right)\mathfrak{U}. \label{NS4.1.3b.10} \end{equation*}

    The components of conserved vectors of Eq (1.3), w.r.t the arbitrary functions f and g are followed by Eq (6.17) as:

    For f\neq0, and g = 0 :

    \begin{cases} \mathscr{T}^{t} = \left(x+1\right)\left(f^\prime u_{y}-fu_{ty}\right), \\ \mathscr{T}^{x} = f\left(x+1\right)\left(au_{xy}+b\left(u^2\right)_{xy}+cu_{xxxy}\right)-f\left(au_y+b\left(u^2\right)_y+cu_{xxy}\right), \\ \mathscr{T}^{y} = \left(x+1\right)\left[f\left(u_{tt}-au_{xx}-b\left(u^2\right)_{xx}-cu_{xxxx}\right)-f^\prime\; \sqrt{d}u_{y}\right]. \end{cases}

    For f = 0, and g\neq0 :

    \begin{cases} \mathscr{T}^{t} = \left(x+1\right)\left(g^\prime u_{y}-gu_{ty}\right), \\ \mathscr{T}^{x} = g\left(x+1\right)\left(au_{xy}+b\left(u^2\right)_{xy}+cu_{xxxy}\right)-g\left(au_y+b\left(u^2\right)_y+cu_{xxy}\right), \\ \mathscr{T}^{y} = \left(x+1\right)\left[g\left(u_{tt}-au_{xx}-b\left(u^2\right)_{xx}-cu_{xxxx}\right)+g^\prime\; \sqrt{d}u_{y}\right]. \end{cases}

    Case 4. For X_4 = \frac{\partial}{\partial y}

    Substituting \xi_4^{0} = \frac{y}{d}, \; \eta_4 = t, \; \xi_{4}^{1} = \zeta_{4} = 0 , \mathcal{W}_{4} = -\frac{y}{d}u_{t}-tu_{y} and \mathscr{L} from Eq (6.14), in the pair of Eq (6.12), yields

    \begin{array} {l} \mathscr{T}^{t} = \left(x+1\right)\left(f^{\prime}+g^{\prime}\right)\left(\frac{y}{d}u_{t}+tu_{y}\right)-\left(x+1\right)\left(f+g\right) \\ \left(\left(tu_y\right)_t+\frac{y}{d}\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}+du_{yy}\right)\right),\\ \mathscr{T}^{x} = \left(f+g\right)\left(x+1\right)\left[\frac{y}{d}\left(au_{tx}+b\left(u^2\right)_{tx}+cu_{txxx}\right)+t\left(au_{xy}+b\left(u^2\right)_{xy}+cu_{xxxy}\right)\right]\\ \qquad \;\; -\left(f+g\right)\left[\frac{y}{d}\left(au_t+b\left(u^2\right)_{t}+cu_{txx}\right)+t\left(au_{y}+b\left(u^2\right)_{y}+cu_{xxy}\right)\right],\\ \mathscr{T}^{y} = \left(x+1\right)\left(f+g\right)\left(\left(yu_{t}\right)_{y}+t\left(u_{tt}-au_{xx}-b\left(u^2\right)_{xx}-cu_{xxxx}\right)\right)-\left(x+1\right)\left(f^{\prime}-g^{\prime}\right) \\ \left(t\sqrt{d}u_{y}+\frac{y}{\sqrt{d}}u_{t}\right), \end{array} (6.18)

    where f = f\left(t+\frac{y}{\sqrt{d}}\right) and g = g\left(t-\frac{y}{\sqrt{d}}\right) are the arbitrary functions and, f^\prime and g^\prime represent their first order explicit derivatives.

    Evidently, the conservation law (6.11) is satisfied, since

    \begin{equation*} \mathscr{D}_{t}\left(\mathscr{T}^{t}\right)+\mathscr{D}_{x}\left(\mathscr{T}^{x}\right)+\mathscr{D}_{y}\left(\mathscr{T}^{y}\right) = \left(x+1\right)\left(\frac{y}{d}\left(f^{\prime}+g^{\prime}\right)+\frac{t}{\sqrt{d}}\left(f^{\prime}-g^{\prime}\right)\right)\mathfrak{U}. \label{NS4.1.3b.12} \end{equation*}

    The components of conserved vectors of Eq (1.3), w.r.t the arbitrary functions f and g are followed by Eq (6.18) as:

    For f\neq0, and g = 0 :

    \begin{cases} \mathscr{T}^{t} = \left(x+1\right)\left[f^{\prime}\left(\frac{y}{d}u_{t}+tu_{y}\right)-f\left(\left(tu_y\right)_t+\frac{y}{d}\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}+du_{yy}\right)\right)\right], \\ \begin{array}{cc} \mathscr{T}^{x} = &f\left(x+1\right)\left[\frac{y}{d}\left(au_{tx}+b\left(u^2\right)_{tx}+cu_{txxx}\right)+t\left(au_{xy}+b\left(u^2\right)_{xy}+cu_{xxxy}\right)\right]\\ & -f\left[\frac{y}{d}\left(au_t+b\left(u^2\right)_{t}+cu_{txx}\right)+t\left(au_{y}+b\left(u^2\right)_{y}+cu_{xxy}\right)\right], \end{array}\\ \mathscr{T}^{y} = \left(x+1\right)\left[f\left(\left(yu_{t}\right)_{y}+t\left(u_{tt}-au_{xx}-b\left(u^2\right)_{xx}-cu_{xxxx}\right)\right)-f^{\prime}\left(t\sqrt{d}u_{y}+\frac{y}{\sqrt{d}}u_{t}\right)\right]. \end{cases}

    For f = 0, and g\neq0 :

    \begin{cases} \mathscr{T}^{t} = \left(x+1\right)\left[g^{\prime}\left(\frac{y}{d}u_{t}+tu_{y}\right)-g\left(\left(tu_y\right)_t+\frac{y}{d}\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}+du_{yy}\right)\right)\right], \\ \begin{array}{cc} \mathscr{T}^{x} = &g\left(x+1\right)\left[\frac{y}{d}\left(au_{tx}+b\left(u^2\right)_{tx}+cu_{txxx}\right)+t\left(au_{xy}+b\left(u^2\right)_{xy}+cu_{xxxy}\right)\right]\\ & -g\left[\frac{y}{d}\left(au_t+b\left(u^2\right)_{t}+cu_{txx}\right)+t\left(au_{y}+b\left(u^2\right)_{y}+cu_{xxy}\right)\right], \end{array}\\ \mathscr{T}^{y} = \left(x+1\right)\left[g\left(\left(yu_{t}\right)_{y}+t\left(u_{tt}-au_{xx}-b\left(u^2\right)_{xx}-cu_{xxxx}\right)\right)+g^{\prime}\left(t\sqrt{d}u_{y}+\frac{y}{\sqrt{d}}u_{t}\right)\right]. \end{cases}

    Case 5. For X_5 = -2bt\frac{\partial}{\partial t}-bx\frac{\partial}{\partial x}-2by\frac{\partial}{\partial y}+\left(a+2bu\right)\frac{\partial}{\partial u}

    Substituting \xi_5^{0} = -2bt, \; \xi_{5}^{1} = -bx, \; \eta_4 = -2by, \; \zeta_{4} = a+2bu , \mathcal{W}_{5} = a+2 b u+2 b t u_{t}+b x u_{x}+2 b y u_{y} and \mathscr{L} from Eq (6.14), in the pair of Eq (6.12), yields

    \begin{array}{l} \mathscr{T}^{t} = b\left(x+1\right)\left(f+g\right)\left(4u_{t}+xu_{tx}+2yu_{ty}\right)-\left(x+1\right)\left(f^{\prime}+g^{\prime}\right)\left(a+bxu_{x}+2b\left(u+tu_t+yu_y\right)\right)\\ \qquad\;\; +2bt\left(x+1\right)\left(f+g\right)\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}+du_{yy}\right),\\ \mathscr{T}^{x} = \left(a+2bu\right)\left(f+g\right)\left(a+2bu+bxu_x+2b\left(tu_t+yu_y\right)\right)+bc\left(f+g\right) \\ \qquad\;\; \left(xu_{xxx}+2\left(tu_{txx}+yu_{xxy}\right)+4u_{xx}\right)\\ \qquad\;\; -b\left(f+g\right)\left(x+1\right)\left[xu_{tt}-dxu_{yy}+\left(a+2bu\right)\left(5u_x+2tu_{tx}+2yu_{xy}\right)\right]\\ \qquad\;\; -b\left(f+g\right)\left(x+1\right)\left[4b\left(tu_t+yu_y\right)u_x+c\left(5u_{xxx}+2tu_{txxx}+2yu_{xxxy}\right)\right],\\ \mathscr{T}^{y} = -\left(f+g\right)\left(x+1\right)\left[2by\left(u_{tt}-au_{xx}-b\left(u^2\right)_{xx}-cu_{xxxx}\right)-d\left(bxu_{xy}+4bu_{y}+2btu_{ty}\right)\right]\\ \qquad\;\; +\sqrt{d}\left(a+2bu+2b\left(tu_t+yu_y\right)+bxu_x\right)\left(f^{\prime}-g^{\prime}\right)\left(x+1\right). \end{array} (6.19)

    where f = f\left(t+\frac{y}{\sqrt{d}}\right) and g = g\left(t-\frac{y}{\sqrt{d}}\right) are the arbitrary functions and, f^\prime and g^\prime represent their first order explicit derivatives.

    Surely, the conservation law (6.11) is satisfied, since

    \begin{equation*} \mathscr{D}_{t}\left(\mathscr{T}^{t}\right)+\mathscr{D}_{x}\left(\mathscr{T}^{x}\right)+\mathscr{D}_{y}\left(\mathscr{T}^{y}\right) = b\left[f+g-2\left(x+1\right)\left(t\left(f^{\prime}+g^{\prime}\right)+\frac{y}{\sqrt{d}}\left(f^{\prime}-g^{\prime}\right)\right)\right]\mathfrak{U}. \label{NS4.1.3b.14} \end{equation*}

    The components of conserved vectors of Eq (1.3), w.r.t the arbitrary functions f and g are followed by Eq (6.19) as:

    For f\neq0, and g = 0 :

    \begin{cases} \mathscr{T}^{t} = \left(x+1\right)\left[bf\left(4u_{t}+xu_{tx}+2yu_{ty}\right)-f^{\prime}\left(a+bxu_{x}+2b\left(u+tu_t+yu_y\right)\right)\right]\\ \; \; \; \; \; \; \; \; +2btf\left(x+1\right)\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}+du_{yy}\right), \\ \mathscr{T}^{x} = f\left(a+2bu\right)\left(a+2bu+bxu_x+2b\left(tu_t+yu_y\right)\right)+bcf\left(xu_{xxx}+2\left(tu_{txx}+yu_{xxy}\right)+4u_{xx}\right)\\ \; \; \; \; \; \; \; \; -bf\left(x+1\right)\left[xu_{tt}-dxu_{yy}+\left(a+2bu\right)\left(5u_x+2tu_{tx}+2yu_{xy}\right)\right]\\ \; \; \; \; \; \; \; \; -bf\left(x+1\right)\left[4b\left(tu_t+yu_y\right)u_x+c\left(5u_{xxx}+2tu_{txxx}+2yu_{xxxy}\right)\right], \\ \mathscr{T}^{y} = f^{\prime}\sqrt{d}\left(x+1\right)\left(a+2bu+2b\left(tu_t+yu_y\right)+bxu_x\right)\\ \; \; \; \; \; \; \; \; -f\left(x+1\right)\left[2by\left(u_{tt}-au_{xx}-b\left(u^2\right)_{xx}-cu_{xxxx}\right)-d\left(bxu_{xy}+4bu_{y}+2btu_{ty}\right)\right]. \end{cases}

    For f = 0, and g\neq0 :

    \begin{cases} \mathscr{T}^{t} = \left(x+1\right)\left[bg\left(4u_{t}+xu_{tx}+2yu_{ty}\right)-g^{\prime}\left(a+bxu_{x}+2b\left(u+tu_t+yu_y\right)\right)\right]\\ \; \; \; \; \; \; \; \; +2btg\left(x+1\right)\left(au_{xx}+b\left(u^2\right)_{xx}+cu_{xxxx}+du_{yy}\right), \\ \mathscr{T}^{x} = g\left(a+2bu\right)\left(a+2bu+bxu_x+2b\left(tu_t+yu_y\right)\right)+bcg\left(xu_{xxx}+2\left(tu_{txx}+yu_{xxy}\right)+4u_{xx}\right)\\ \; \; \; \; \; \; \; \; -bfg\left(x+1\right)\left[xu_{tt}-dxu_{yy}+\left(a+2bu\right)\left(5u_x+2tu_{tx}+2yu_{xy}\right)\right]\\ \; \; \; \; \; \; \; \; -bg\left(x+1\right)\left[4b\left(tu_t+yu_y\right)u_x+c\left(5u_{xxx}+2tu_{txxx}+2yu_{xxxy}\right)\right], \\ \mathscr{T}^{y} = -g^{\prime}\sqrt{d}\left(x+1\right)\left(a+2bu+2b\left(tu_t+yu_y\right)+bxu_x\right)\\ \; \; \; \; \; \; \; \; -g\left(x+1\right)\left[2by\left(u_{tt}-au_{xx}-b\left(u^2\right)_{xx}-cu_{xxxx}\right)-d\left(bxu_{xy}+4bu_{y}+2btu_{ty}\right)\right]. \end{cases}

    In this article, the \left(N+1\right) -dimensional generalized Boissinesq equation was studied using the classical Lie theory of differential equations. Lie point symmetries and the corresponding group invariant solutions of the equation were obtained with the help of which new form of solutions were detected. Using the appropriate similarity variables, the considered equation was transformed into nonlinear ordinary differential equation, whose solutions were constructed by the aid of \left(G^\prime/G, 1/G\right) expansion method. Some of the significant solutions were graphically depicted. The concept of nonlinear self-adjointness was employed with the help of which the nonlocal conservation laws were obtained. This article's research findings are novel, more generic, and physically applicable.

    The authors declare no conflict of interest.



    [1] E. Page, Continuous inspection schemes, Biometrika, 41 (1954), 100–115. https://doi.org/10.2307/2333009 doi: 10.2307/2333009
    [2] R. Arellano-Valle, L. Castro, R. Loschi, Change point detection in the skew-normal model parameters, Commun. Stat.-Theory M., 42 (2013), 603–618. https://doi.org/10.1080/03610926.2011.611321 doi: 10.1080/03610926.2011.611321
    [3] H. Chernoff, S. Zacks, Estimating the current mean of a normal distribution which is subjected to changes in time, Ann. Math. Stat., 35 (1964), 999–1018. https://doi.org/10.1214/aoms/1177700517 doi: 10.1214/aoms/1177700517
    [4] D. Hsu, Tests for variance shift at an unknown time point, J. R. Stat. Soc. C-Appl., 26 (1977), 279–284. https://doi.org/10.2307/2346968 doi: 10.2307/2346968
    [5] D. Hinkley, E. Hinkley, Inference about the change-point in a sequence of binomial variables, Biometrika, 57 (1970), 477–488. https://doi.org/10.1093/biomet/57.3.477 doi: 10.1093/biomet/57.3.477
    [6] K. Worsley, On the likelihood ratio test for a shift in location of normal populations, J. Am. Stat. Assoc., 74 (1979), 365–367. https://doi.org/10.1080/01621459.1979.10482519 doi: 10.1080/01621459.1979.10482519
    [7] K. Worsley, Confidence regions and tests for a change-point in a sequence of exponential family random variables, Biometrika, 73 (1986), 91–104. https://doi.org/10.1093/biomet/73.1.91 doi: 10.1093/biomet/73.1.91
    [8] B. Darkhovski, Nonparametric methods in change-point problems: a general approach and some concrete algorithms, IMS Lecture Notes Monogr. Ser., 23 (1994), 99–107. https://doi.org/10.1214/lnms/1215463117 doi: 10.1214/lnms/1215463117
    [9] E. Gombay, L. Horvath, An application of U-statistics to change-point analysis, Acta Sci. Math., 60 (1995), 345–357.
    [10] E. Gombay, M. Hušková, Rank based estimators of the change-point, J. Stat. Plan. Infer., 67 (1998), 137–154. https://doi.org/10.1016/S0378-3758(97)00099-2 doi: 10.1016/S0378-3758(97)00099-2
    [11] X. Cai, K. Said, W. Ning, Change-point analysis with bathtub shape for the exponential distribution, J. Appl. Stat., 43 (2016), 2740–2750. https://doi.org/10.1080/02664763.2016.1143455 doi: 10.1080/02664763.2016.1143455
    [12] T. Wang, W. Tian, W. Ning, Likelihood ratio test change-point detection in the skew slash distribution, Commun. Stat.-Simul. C., 51 (2022), 5068–5080. https://doi.org/10.1080/03610918.2020.1755869 doi: 10.1080/03610918.2020.1755869
    [13] C. Ferreira, T. Mattos, N. Balakrishnan, Mean-shift outliers model in skew scale-mixtures of normal distributions, J. Stat. Comput. Sim., 86 (2016), 2346–2361. https://doi.org/10.1080/00949655.2015.1110819 doi: 10.1080/00949655.2015.1110819
    [14] J. Chen, A. Gupta, Testing and locating variance changepoints with application to stock prices, J. Am. Stat. Assoc., 92 (1997), 739–747. https://doi.org/10.1080/01621459.1997.10474026
    [15] G. Ngunkeng, W. Ning, Information approach for the change-point detection in the skew normal distribution and its applications, Sequential Anal., 33 (2014), 475–490. https://doi.org/10.1080/07474946.2014.961845 doi: 10.1080/07474946.2014.961845
    [16] J. Chen, A. Gupta, J. Pan, Information criterion and change point problem for regular models, Sankhyā: The Indian Journal of Statistics, 68 (2006), 252–282.
    [17] J. Pan, J. Chen, Application of modified information criterion to multiple change point problems, J. Multivariate Anal., 97 (2006), 2221–2241. https://doi.org/10.1016/j.jmva.2006.05.009
    [18] K. Said, W. Ning, Y. Tian, Modified information criterion for testing changes in skew normal model, Braz. J. Probab. Stat., 33 (2019), 280–300. https://doi.org/10.1214/17-BJPS388 doi: 10.1214/17-BJPS388
    [19] M. Kilai, G. Waititu, W. Kibira, R. Aldallal, M. Bakr, Y. Tashkandy, et al., Information approach for change point analysis of EGGAPE distribution and application to COVID-19 data, Math. Probl. Eng., 2022 (2022), 9924902. https://doi.org/10.1155/2022/9924902
    [20] A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incomplete data via EM algorithm, J. R. Stat. Soc. B-Methol., 39 (1977), 1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x doi: 10.1111/j.2517-6161.1977.tb01600.x
    [21] R. Boyles, On the convergence of the EM algorithm, J. R. Stat. Soc. B, 45 (1983), 47–50. https://doi.org/10.1111/j.2517-6161.1983.tb01229.x doi: 10.1111/j.2517-6161.1983.tb01229.x
    [22] R. Redner, H. Walker, Mixture densities, maximum-likelihood and the EM algorithm, SIAM Rev., 26 (1984), 195–237. https://doi.org/10.1137/1026034 doi: 10.1137/1026034
    [23] X. Meng, D. Rubin, Maximum likelihood estimation via the ecm algorithm: a general framework, Biometrika, 80 (1993), 267–278. https://doi.org/10.2307/2337198 doi: 10.2307/2337198
    [24] C. Wu, On the convergence properties of the EM algorithm, Ann. Statist., 11 (1983), 95–103. https://doi.org/10.1214/aos/1176346060 doi: 10.1214/aos/1176346060
    [25] T. Lin, J. Lee, S. Yen, Finite mixture modelling using the skew normal distribution, Stat. Sinica, 17 (2007), 909–927.
    [26] T. Lin, Maximum likelihood estimation for multivariate skew normal mixture models, J. Multivariate Anal., 100 (2009), 257–265. https://doi.org/10.1016/j.jmva.2008.04.010 doi: 10.1016/j.jmva.2008.04.010
    [27] V. Lachos, P. Ghosh, R. Arellano-Valle, Likelihood based inference for skew-normal independent linear mixed models, Stat. Sinica, 20 (2010), 303–322.
    [28] T. Abe, H. Fujisawa, T. Kawashima, C. Ley, EM algorithm using overparameterization for multivariate skew-normal distribution, Economet. Stat., 19 (2021), 151–168. https://doi.org/10.1016/j.ecosta.2021.03.003 doi: 10.1016/j.ecosta.2021.03.003
    [29] H. Zhu, S. Lee, Local influence for incomplete-data models, J. R. Stat. Soc. B, 63 (2001), 111–126. https://doi.org/10.1111/1467-9868.00279 doi: 10.1111/1467-9868.00279
    [30] P. Perron, T. Vogelsang, Testing for a unit root in a time series with a changing mean: corrections and extensions, J. Bus. Econ. Stat., 10 (1992), 467–470. https://doi.org/10.1080/07350015.1992.10509923 doi: 10.1080/07350015.1992.10509923
    [31] L. Vostrikova, Detecting "disorder" in multidimensional random processes, Dokl. Akad. Nauk SSSR, 259 (1981), 270–274.
    [32] R. Basso, V. Lachos, C. Cabral, P. Ghosh, Robust mixture modeling based on scale mixtures of skew-normal distributions, Comput. Stat. Data Anal., 54 (2010), 2926–2941. https://doi.org/10.1016/j.csda.2009.09.031 doi: 10.1016/j.csda.2009.09.031
    [33] C. Zeller, C. Barbosa Cabral, V. Lachos, L. Benites, Finite mixture of regression models for censored data based on scale mixtures of normal distributions, Adv. Data Anal. Classif., 13 (2019), 89–116. https://doi.org/10.1007/s11634-018-0337-y doi: 10.1007/s11634-018-0337-y
    [34] T. Mattos, A. Garay, V. Lachos, Likelihood-based inference for censored linear regression models with scale mixtures of skew-normal distributions, J. Appl. Stat., 45 (2018), 2039–2066. https://doi.org/10.1080/02664763.2017.1408788 doi: 10.1080/02664763.2017.1408788
    [35] D. Hsu, Detecting shifts of parameter in gamma sequences with applications to stock-price and air-traffic flow analysis, J. Am. Stat. Assoc., 74 (1979), 31–40. https://doi.org/10.2307/2286717 doi: 10.2307/2286717
  • This article has been cited by:

    1. Naseem Abbas, Amjad Hussain, Aziz Khan, Thabet Abdeljawad, Bifurcation analysis, quasi-periodic and chaotic behavior of generalized Pochhammer-Chree equation, 2024, 15, 20904479, 102827, 10.1016/j.asej.2024.102827
    2. Saurabh Kumar, Vikas Gupta, An Efficient Numerical Approach to Solve Fractional Coupled Boussinesq Equations, 2024, 19, 1555-1415, 10.1115/1.4066389
    3. Mengmeng Wu, Lili Xia, Yudan Lan, Lie symmetry analysis and conservation laws of axially uniform strings, 2024, 12, 2195-268X, 1259, 10.1007/s40435-023-01289-0
    4. A. Tomar, H. Kumar, M. Ali, H. Gandhi, D. Singh, G. Pathak, Application of symmetry analysis and conservation laws to a fractional-order nonlinear conduction-diffusion model, 2024, 9, 2473-6988, 17154, 10.3934/math.2024833
    5. AMJAD HUSSAIN, ADIL JHANGEER, MUHAMMAD KHUBAIB ZIA, ILYAS KHAN, ABDUL HAMID GANIE, SAYED M. ELDIN, ANALYSIS OF (1 + n)-DIMENSIONAL GENERALIZED CAMASSA–HOLM KADOMTSEV–PETVIASHVILI EQUATION THROUGH LIE SYMMETRIES, NONLINEAR SELF-ADJOINT CLASSIFICATION AND TRAVELLING WAVE SOLUTIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23400789
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(895) PDF downloads(48) Cited by(0)

Figures and Tables

Figures(8)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog