
This paper employs differential subordination and quantum calculus to investigate a new class of q-starlike functions associated with an eight-like image domain. Our study laid a foundational understanding of the behavior of these q-starlike functions. We derived the results in first-order differential subordination. We established sharp inequalities for the initial Taylor coefficients and provided optimal estimates for solving the Fekete-Szegö problem and a second-order Hankel determinant applicable to all q-starlike functions in this class. Furthermore, we presented a series of corollaries that demonstrate the broader implications of our findings in geometric function theory.
Citation: Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan. Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus[J]. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379
[1] | Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of $ q $-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577 |
[2] | Ekram E. Ali, Georgia Irina Oros, Rabha M. El-Ashwah, Abeer M. Albalahi . Applications of fuzzy differential subordination theory on analytic $ p $ -valent functions connected with $ \mathfrak{q} $-calculus operator. AIMS Mathematics, 2024, 9(8): 21239-21254. doi: 10.3934/math.20241031 |
[3] | Ebrahim Amini, Mojtaba Fardi, Shrideh Al-Omari, Rania Saadeh . Certain differential subordination results for univalent functions associated with $ q $-Salagean operators. AIMS Mathematics, 2023, 8(7): 15892-15906. doi: 10.3934/math.2023811 |
[4] | Shujaat Ali Shah, Ekram Elsayed Ali, Adriana Cătaș, Abeer M. Albalahi . On fuzzy differential subordination associated with $ q $-difference operator. AIMS Mathematics, 2023, 8(3): 6642-6650. doi: 10.3934/math.2023336 |
[5] | Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067 |
[6] | Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus . $ q $-Noor integral operator associated with starlike functions and $ q $-conic domains. AIMS Mathematics, 2022, 7(6): 10842-10859. doi: 10.3934/math.2022606 |
[7] | Aisha M. Alqahtani, Rashid Murtaza, Saba Akmal, Adnan, Ilyas Khan . Generalized $ q $-convex functions characterized by $ q $-calculus. AIMS Mathematics, 2023, 8(4): 9385-9399. doi: 10.3934/math.2023472 |
[8] | Georgia Irina Oros, Gheorghe Oros, Daniela Andrada Bardac-Vlada . Certain geometric properties of the fractional integral of the Bessel function of the first kind. AIMS Mathematics, 2024, 9(3): 7095-7110. doi: 10.3934/math.2024346 |
[9] | Ekram E. Ali, Miguel Vivas-Cortez, Rabha M. El-Ashwah . New results about fuzzy $ \mathbf{\gamma } $-convex functions connected with the $ \mathfrak{q} $-analogue multiplier-Noor integral operator. AIMS Mathematics, 2024, 9(3): 5451-5465. doi: 10.3934/math.2024263 |
[10] | Ekram E. Ali, Nicoleta Breaz, Rabha M. El-Ashwah . Subordinations and superordinations studies using $ q $-difference operator. AIMS Mathematics, 2024, 9(7): 18143-18162. doi: 10.3934/math.2024886 |
This paper employs differential subordination and quantum calculus to investigate a new class of q-starlike functions associated with an eight-like image domain. Our study laid a foundational understanding of the behavior of these q-starlike functions. We derived the results in first-order differential subordination. We established sharp inequalities for the initial Taylor coefficients and provided optimal estimates for solving the Fekete-Szegö problem and a second-order Hankel determinant applicable to all q-starlike functions in this class. Furthermore, we presented a series of corollaries that demonstrate the broader implications of our findings in geometric function theory.
Quantum calculus (known as q-calculus) extends traditional calculus by introducing the parameter q, offering flexible and powerful tools for analyzing mathematical functions. This framework has attracted growing attention due to its applications in various fields, including mathematics, engineering, and physics. Recent advancements have amplified its relevance, with notable applications in q-transform analysis, q-difference and q-integral equations, optimal control, and fractional calculus.
The q-derivative operator plays a central role in the theory of special functions, enabling the definition and in-depth analysis of various subclasses of analytic functions. For instance, Mahmood et al. [1] investigated the coefficients of q-starlike functions associated with conic domains, Ahmad et al. [2] explored the Hankel determinants and Zalcman conjecture for q-starlike functions associated with the balloon-shaped domain, and Shi et al. [3] studied the properties of generalized integral operators in the lemniscate domain of Bernoulli. Ahmad et al. [4] extended these ideas by exploring Janowski functions to establish q-analogues of differential subordination results. The q-derivative operator also underpins the q-extension of starlike functions, as discussed in [5].
Recent research highlights the significant role of q-calculus in advancing contemporary mathematical theory. Studies such as [6,7,8] deepen our understanding of analytic and symmetric functions through q-analytic techniques. This body of work demonstrates the broad applicability of q-calculus, with potential implications across quantum theory, number theory, and statistical mechanics. For further exploration of fractional derivatives, including Caputo and conformable fractional derivatives, readers may consult [9,10] and their references.
We present some basic definitions related to our work before moving on to our primary findings.
Let H(D) denote the class of all analytic functions f defined in the open unit disk
D={ε∈C: |ε|<1}, |
where C represents the set of complex numbers. Let A⊆H(D) be the subclass of all analytic functions f having the Taylor series representation:
f(ε)=ε+∞∑k=2ξkεk (ε∈D). | (1.1) |
Suppose that P represents the Carathéodory class of analytic functions h normalized by
h(ε)=1+∞∑n=1cnεn, | (1.2) |
such that the real part is positive:
ℜ(h(ε))>0. |
For each given analytic function f∈A, the rth Hankel determinant Hr,n is defined in [11] as follows,
Hr,n(f)=|ξnξn+1… ξn+r−1ξn+1ξn+2… ξn+r⋮ ⋮ … ⋮ ξn+r−1ξn+r… ξn+2r−2|, |
where r,n∈N and ξ1=1. The following are two second Hankel determinants.
H2,1(f)=|1ξ2ξ2ξ3|=ξ3−ξ22, H2,2(f)=|ξ2ξ3ξ3ξ4|=ξ2ξ4−ξ23. | (1.3) |
In recent years, considerable attention has been devoted to investigating the upper bounds of the expression |H2,2(f)| across various subclasses of analytic functions. Key contributions in this domain have been made by researchers such as Noonan and Thomas [12], Hayman [13], Ohran et al. [14], and Shi et al. [15]. Babalola [16] initiated the study of bounds for the third Hankel determinant, further enriching the field.
For a deeper exploration of this subject, recent studies provide valuable insights and are discussed in references [17,18,19]. This growing body of research highlights the importance of Hankel determinants in analytic function theory, offering the potential for discoveries and advancing our understanding of this mathematical area.
For the functions f and g ∈H(D), we say that f is subordinated to g, written as
f(ε)≺g(ε), |
if there exists a Schwarz function ω(ε), which is an analytic function in D with ω(0)=0 and |ω(ε)|≤1, such that
f(ε)=g(ω(ε)). |
Furthermore, if two functions f and g are analytic in D and g is univalent, then f is subordinated to g if and only if\
f(D)⊆g(D) and f(0)=g(0). |
There are some applications of subordination below; see [20] for more applications.
Definition 1.1. A function p∈P[A,B] if
p(ε)≺1+Aε1+Bε (−1≤B<A≤1). |
Equivalently,
|p(ε)−1A−Bp(ε)|<1. |
In particular, f is a Janowski starlike function if εf′(ε)f(ε)∈P[A,B]. See [21] for more details about Janowski starlike functions.
We take into consideration a class of functions in the domain bounded by a tangent function. All functions h will belong to such a class if they fulfill
h(ε)≺1+12tan(ε). | (1.4) |
The images of these functions lie in the right-half plane and the geometrical representation is like an eight-shape domain. Simple computations allow the above (1.4) to be expressed as
|tan−1(2h(ε)−2)|<1. | (1.5) |
In parallel comparison to starlike functions, Khan et al. [22] introduced the following class of Janowski-type starlike functions along with some properties.
S∗tan={f(ε)∈A:εf′(ε)f(ε)≺1+12tan(ε)}. | (1.6) |
Thus, by the relation of (1.4) and (1.5),
S∗tan={f(ε)∈A:|tan−1(2εf′(ε)f(ε)−2)|<1}. |
Definition 1.2. [23] For a function f, the q-derivative (also known as the q-difference operator) is defined by
(Dqf)(ε)=f(ε)−f(qε)(1−q)ε, | (1.7) |
where ε≠0 and 0<q<1.
For example, for n∈N and ε∈D, we have
Dq{∞∑n=1ξnεn}=∞∑n=1[n]qξnεn−1, | (1.8) |
where the q-number is defined by
[n]q=1−qn1−q=1+n−1∑l=1ql and [0]q=0. |
Now, we introduce a new class S∗tan(q) of Janowski-type q-starlike functions associated with the eight-shaped image domain. Several classes of Janowski-type q-starlike functions have been investigated previously (see [24]).
Definition 1.3. A function f in A is said to belong to S∗tan(q) if the following holds
εDqf(ε)f(ε)≺1+12tan(ε). | (1.9) |
Remark 1.1. One can see that
limq→1−S∗tan(q)=S∗tan. |
The graphological representation for the class S∗tan(q) is given in the following Figure 1.
In our research, we set out to explore and characterize a novel class of q-starlike functions associated with an eight-like image domain. We employed differential subordination and quantum calculus techniques to achieve this goal. Our primary aim is to establish a fundamental understanding of the behavior of these q-starlike functions, focusing on deriving first-order differential subordination results. Additionally, we sought to determine sharp inequalities for initial Taylor coefficients and provide optimal estimates for the Fekete-Szegö problem and a second-order Hankel determinant applicable to all q-starlike functions within this newly defined class. Through this work, we intend to contribute to the broader field of geometric function theory, demonstrating the wider implications of our findings through a series of corollaries.
The following lemmas are essential to investigate our main results.
Lemma 2.1. [25] (q-Jack's Lemma) Let ω(ε)∈H(D) with ω(0)=0. If |ω(ε)| achieves the maximum value on the circle |ε|=r at a point ε0, then
ε0(Dqω)(ε0)=mω(ε0), |
where 0<q<1 and m≥1.
Lemma 2.2. [26] Let h∈P have the series of the form (1.2). Then the following inequalities hold true:
|ct|≤2 (t≥1), | (2.1) |
|ct+k−νctck|<2 (0≤ν≤1). | (2.2) |
Lemma 2.3. [27] Let h∈P be represented by (1.2), and then the following inequality holds.
|p2−λp21|≤2 max{1;|2λ−1|} (λ∈C). |
Lemma 2.4. Let h∈P be given in (1.2), and then there exist k and δ∈D such that
c2=12(c21+k(4−c21)), | (2.3) |
c3=14(c31+2c1k(4−c21)−(4−c21)c1k2+2(4−c21)(1−|k|2)δ). | (2.4) |
The values given in (2.3) and (2.4) are due to [26] and [28], respectively.
Lemma 2.5. [28] If h∈P has the form (1.2), then
|α1c31−2α2c1c2+c3|≤2, | (2.5) |
where
0≤α1≤1 and α1(2α1−1)≤α2≤α1. |
Lemma 2.6. [29] Suppose that
max{|P+Qx+Rx2|+1−|x|2}=χ(P,Q,R), | (2.6) |
where P, Q, and R are real numbers, and x∈¯D={ε∈C:|ε|≤1}.
If PR≥0, then
χ(P,Q,R)={|P|+|Q|+|R|, |Q|≥2(1−|R|),1+|P|+Q24(1−|R|), |Q|<2(1−|R|). |
In this section, we start with the results of differential subordination. In the next section, we derive the sharp constraints for the first three unknown coefficients, the sharp Fekete-Szegö problem, and the sharp estimate of the second-order Hankel determinant for the newly defined class of q-starlike functions. In addition, the consequences of these results are given in the form of corollaries. In the last section, we establish the sufficient criteria for functions belonging to the class S∗tan(q).
Theorem 3.1. Let f(ε)∈A and h(ε)∈H(D). Suppose that
−1≤B<sech2(1)sec2(1)<A≤1, |
|δ|≥2(A−B)(sech2(1)−|B|sec2(1)). | (3.1) |
If the following condition holds:
1+δεDqh(ε)≺1+Aε1+Bε. | (3.2) |
Then
h(ε)≺2+tan(ε)2. |
Proof. Suppose that
p(ε)=1+δεDqh(ε). | (3.3) |
Also, for ω(ε)∈H(D), we consider
h(ε)=1+tan(ω(ε))2. | (3.4) |
It is sufficient to demonstrate that |ω(ε)|<1 in order to yield the required result. Using (3.3) and (3.4), we have
p(ε)=1+δsec2(ω(ε))εDqω(ε)2, |
and hence,
|p(ε)−1A−Bp(ε)|=|δsec2(ω(ε))εDqω(ε)A−B(1+δsec2(ω(ε))εDqω(ε)2)|=|δsec2(ω(ε))εDqω(ε)2(A−B)−Bδsec2(ω(ε))εDqω(ε)|. |
If ω(ε) achieves, at some point ε=ε0, its maximum value |ω(ε0)|=1, i.e., ω(ε0)=eiθ, θ∈[−π,π], then, by Lemma 2.1, for m≥1,
ε0Dqω(ε0)=mω(ε0). |
Thus,
|p(ε0)−1A−Bp(ε0)|=|δsec2(eiθ)mω(ε0)2(A−B)−Bδsec2(eiθ)mω(ε0)|≥|δ|m|sec(eiθ)|22(A−B)+|B||δ|m|sec(eiθ)|2. | (3.5) |
A direct computation gives that
|sec(eiθ)|2=1|cos(cosθ)cosh(sinθ)−isin(cosθ)sinh(sinθ)|2=1cosh2(sinθ)+cos2(cosθ)−1:=φ(θ). |
Since φ(−θ)=φ(θ), for θ∈[0,π], then
min{φ(θ)}=φ(π2)=sech2(1),max{φ(θ)}=φ(0)=φ(π)=sec2(1). |
Therefore,
sech2(1)≤|sec(eiθ)|2≤sec2(1). | (3.6) |
Putting values of (3.6) into (3.5), we get
|p(ε0)−1A−Bp(ε0)|≥|δ|msech2(1)2(A−B)+|B||δ|msec2(1). | (3.7) |
Let
ϕ(m)=|δ|msech2(1)2(A−B)+|B||δ|msec2(1). |
Then
ϕ′(m)=2(A−B)sech2(1)|δ|(2(A−B)+|B||δ|msec2(1))2>0, |
which shows the increasing behavior of ϕ(m), so the maximum of ϕ(m) will be obtained at m=1. It follows that
|p(ε0)−1A−Bp(ε0)|≥|δ|sech2(1)2(A−B)+|B||δ|sec2(1). |
From (3.1),
|p(ε0)−1A−Bp(ε0)|≥1, |
which contradicts (3.2), thus |ω(ε)|<1 and we achieve the intended outcome.
By taking h(ε)=εDqf(ε)f(ε), we deduce the following result.
Corollary 3.1. Let f(ε)∈A and h(ε)=εDqf(ε)f(ε). Suppose that
−1≤B<sech2(1)sec2(1)<A≤1, |
|δ|≥2(A−B)(sech2(1)−|B|sec2(1)). | (3.8) |
If the following condition holds:
1+δεDq(ε(Dqf)(ε)f(ε))≺1+Aε1+Bε. | (3.9) |
Then
εDqf(ε)f(ε)≺2+tan(ε)2. |
Theorem 3.2. Let h(ε)∈H(D) with h(0)=1. Suppose that
−1≤B<sech2(1)sec2(1)<A≤1, |
|δ|≥(A−B)(2+tan(1))2(sech2(1)−|B|sec2(1)). | (3.10) |
If the following subordination criteria hold:
1+δ(εDqh(ε)h(ε))≺1+Aε1+Bε. | (3.11) |
Then the following subordination holds:
h(ε)≺2+tan(ε)2. |
Proof. Define
p(ε)=1+δ(εDqh(ε)h(ε)). | (3.12) |
Let ω(ε)∈H(D), and consider
h(ε)=2+tan(ω(ε))2. | (3.13) |
We need to show that |ω(ε)|≤1. Using logarithmic differentiation on (3.13), we obtain from (3.12) that
p(ε)=1+δ2sec2(ω(ε))εDqω(ε)2+tan(ω(ε)), |
and so
|p(ε)−1A−Bp(ε)|=|δ2sec2(ω(ε))εDqω(ε)2+tan(ω(ε))A−B(1+δ2sec2(ω(ε))εDqω(ε)2+tan(ω(ε)))|=|2δsec2(ω(ε))εDqω(ε)(A−B)(2+tan(ω(ε)))−2δBsec2(ω(ε))εDqω(ε)|. |
If at some ε=ε0, ω(ε) attains its maximum value for example |ω(ε0)|=1, then, by Lemma 2.1,
|p(ε0)−1A−Bp(ε0)|=|2δsec2(eiθ)mω(ε0)(A−B)(2+tan(eiθ))−2δBsec2(eiθ)mω(ε0)|≥2m|δ||sec2(eiθ)|(A−B)(2+|tan(eiθ)|)+2m|δ|B|sec2(eiθ)|. | (3.14) |
Now, a direct, simple calculation gives us
|tan(eiθ)|2=|sin(cos(θ))cosh(sin(θ))+icos(cos(θ))sinh(sin(θ))cos(cos(θ))cosh(sin(θ))−isin(cos(θ))sinh(sin(θ))|2=cosh2(sin(θ))−cos2(sin(θ))cos2(cos(θ))+cosh2(sin(θ))−1:=φ1(θ). |
Since φ1(−θ)=φ1(θ), consider θ∈[0,π]. Then
min{φ1(θ)}=φ1(π2)=tanh2(1),max{φ1(θ)}=φ1(0)=φ1(π)=tan2(1). |
Therefore,
tanh(1)≤|tan(eiθ)|≤tan(1). | (3.15) |
Now set (3.6) and (3.15) in Eq (3.14), and we get
ϕ(m)=2m|δ|sech2(1)(A−B)(2+tan(1))+2m|δ||B|sec2(1), |
ϕ′(m)=2|δ|(A−B)(2+tan(1))|B|sech2(1)((A−B)(2+tan(1))+2m|δ||B|sec2(1))2>0. |
Clearly, one can observe that ϕ(m) is increasing in nature so its maximum value is obtained at m=1, thus
|p(ε0)−1A−Bp(ε0)|≥2|δ|sech2(1)(A−B)(2+tan(1))+2|δ||B|sec2(1). |
By (3.10), we have
|p(ε0)−1A−Bp(ε0)|≥1, |
which contradicts (3.11), therefore |ω(ε)|<1 and so the desired result is obtained.
By taking h(ε)=εDqf(ε)f(ε), we deduce the following corollary.
Corollary 3.2. Let f∈A. Suppose that
−1≤B<sech2(1)sec2(1)<A≤1, |
|δ|≥(A−B)(2+tan(1))2(sech2(1)−|B|sec2(1)). | (3.16) |
If the following subordination holds:
1+δε(f(ε)εDq(f(ε)))Dq(εDqf(ε)f(ε))≺1+Aε1+Bε, | (3.17) |
then we have
εDqf(ε)f(ε)≺2+tan(ε)2. |
Theorem 3.3. Let h(ε)∈H(D) with h(0)=1. Suppose that
|δ|≥(A−B)(2+|tan(1)|)222(|sech2(1)|−|B||sec1|), for −1≤B<sech2(1)sec2(1)<A≤1. | (3.18) |
If the following subordination criteria are fulfilled:
1+δεDqh(ε)(h(ε))2≺1+Aε1+Bε, |
then we have
h(ε)≺2+tan(ε)2. |
Proof. We define a function:
p(ε)=1+δεDqh(ε)(h(ε))2. |
If there exists ω(ε)∈H(D) such that
h(ε)=2+tan(ω(ε))2, |
then, we obtain that
p(ε)=1+δ4sec2(ω(ε))εDqω(ε)(2+tan(ω(ε)))2, |
and hence,
|p(ε)−1A−Bp(ε)|=|δ4sec2(ω(ε))εDqω(ε)(2+tan(ω(ε)))2A−B(1+δ4sec2(ω(ε))εDqω(ε)(2+tan(ω(ε)))2)|=|4δsec2(ω(ε))εDqω(ε)(A−B)(2+tan(ω(ε)))2−B(4δsec2(ω(ε))εDqω(ε))|. |
If ω(ε) attains its maximum value at some point ε=ε0, which is |ω(ε0)|=1:ω(ε0)=eiθ, for some θ∈[−π,π], then, by Lemma 2.1,
ε0Dqω(ε0)=mω(ε0), for m≥1. |
Thus, we have
|p(ε0)−1A−Bp(ε0)|=|4δsec2(eiθ)mω(ε0)(A−B)(2+tan(eiθ))2−Bδ(4sec2(eiθ)mω(ε0))|≥4m|δ||sec2(eiθ)|(A−B)(2+|tan(eiθ)|)2+4m|δ||B||sec2(eiθ)|. | (3.19) |
Applying (3.6) and (3.15) in Eq (3.19),
ϕ(m)=4m|δ|sech2(1)(A−B)(2+tan(1))2+4m|δ||B|sec2(1)⇒ϕ′(m)=4|δ|(A−B)(2+|tan(1)|)2sech2(1)((A−B)(2+tan(1))2+4m|δ||B|sec2(1))2>0. |
Thus, the function ϕ(m) is increasing; hence, it has its maximum value at m=1. Now, we have
|p(ε0)−1A−Bp(ε0)|≥4|δ|sech2(1)(A−B)(2+tan(1))2+4|δ||B|sec2(1). |
By (3.18),
|p(ε0)−1A−Bp(ε0)|≥1. |
It is a contradiction to
p(ε)≺1+Aε1+Bε. |
Therefore, |ω(ε)|<1, and the required result is obtained.
By taking h(ε)=ε(Dqf)(ε)(f(ε))2, we deduce the following corollay.
Corollary 3.3. Let f∈A. Suppose that
−1≤B<sech2(1)sec2(1)<A≤1, |
|δ|≥(A−B)(2+tan(1))24(sech2(1)−|B|sec2(1)). | (3.20) |
If the following holds:
1+δε(f(ε)ε(Dqf)(ε))2Dq(ε(Dqf)(ε)f(ε))≺1+Aε1+Bε, | (3.21) |
then, we have
ε(Dqf)(ε)(f(ε))2≺2+tan(ε)2. |
Theorem 3.4. Let h(ε)∈H(D) with h(0)=1. Suppose that
|δ|≥(A−B)(2+|tan(eiθ)|)323(|sec2(eiθ)|−|B||sec2(eiθ)|), for −1≤B<sech2(1)sec2(1)<A≤1. | (3.22) |
If the following subordination holds:
1+δε(Dqh)(ε)(h(ε))3≺1+Aε1+Bε, | (3.23) |
then,
h(ε)≺2+tan(ε)2. |
Proof. Suppose that
p(ε)=1+δεDqh(ε)(h(ε))3. |
Now if
h(ε)=2+tan(ω(ε))2, |
then we can easily obtain
p(ε)=1+δ8εDqω(ε)sec2(ω(ε))(2+tan(ω(ε)))3, |
and so,
|p(ε)−1A−Bp(ε)|=|δ8εDqω(ε)sec2(ω(ε))(2+tan(ω(ε)))3A−B(1+δ8εDqω(ε)sec2(ω(ε))(2+tan(ω(ε)))3)|=|8δsec2(ω(ε))εDqω(ε)(A−B)(2+tan(ω(ε)))3−8Bδsec2(ω(ε))εDqω(ε)|. |
If the function ω achieves its maximum value, |ω(ε0)|=1, at some point ε=ε0, applying Lemma 2.1 gives us,
|p(ε0)−1A−Bp(ε0)|=|8δsec2(ω(ε0))mω(ε0)(A−B)(2+tan(ω(ε0)))3−8δBsec2(ω(ε0))mω(ε0)|≥8mδ|sec2(eiθ)|(A−B)(2+|tan(eiθ)|)3+8m|δ||B||sec2(eiθ)|. | (3.24) |
Substituting (3.6) and (3.15) into Eq (3.24), we have
ϕ(m)=8m|δ|sech2(1)(A−B)(2+tan(1))3−8m|δ||B|sec2(1), |
ϕ′(m)=8|δ|(A−B)(2+tan(1))3sech2(1)((A−B)(2+tan(1))3+8m|δ||B|sec2(1))2>0. |
It demonstrates that the function ϕ(m) is increasing. So, its maximum value is obtained at m=1. Thus,
|p(ε0)−1A−Bp(ε0)|≥8|δ||sec2(eiθ)|(A−B)(2+|tan(eiθ)|)3+8|δ||B||sec2(eiθ)|, |
and hence
|p(ε0)−1A−Bp(ε0)|≥1. |
By (3.23), a contradiction occurs. We must have |ω(ε)|<1, so we obtain the needed outcome.
By taking h(ε)=εDqf(ε)(f(ε))3, we deduce the following result.
Corollary 3.4. Let f∈A. Suppose that
−1≤B<sech2(1)sec2(1)<A≤1, |
|δ|≥(A−B)(2+tan(1))323(sech2(1)−|B|sec2(1)). | (3.25) |
If the following condition holds:
1+δε(f(ε)εDq(f(ε)))3Dq(εDqf(ε)f(ε))≺1+Aε1+Bε, | (3.26) |
then,
εDqf(ε)(f(ε))3≺2+tan(ε)2. |
Theorem 3.5. Let h(ε)∈H(D) with h(0)=1. Suppose that
|δ|≥(A−B)(2+|tan(eiθ)|)n2n(|sec2(eiθ)|−|B||sec2(eiθ)|), for −1≤B<sech2(1)sec2(1)<A≤1. | (3.27) |
If the following subordination is provided:
1+δεDqh(ε)(h(ε))n≺1+Aε1+Bε, | (3.28) |
then,
h(ε)≺2+tan(ε)2. |
Proof. Suppose
p(ε)=1+δεDqh(ε)(h(ε))n. |
Now consider
h(ε)=2+tan(ω(ε))2. |
We can easily obtain that
p(ε)=1+δ2nεDqω(ε)sec2(ω(ε))(2+tan(ω(ε)))n, |
and hence,
|p(ε)−1A−Bp(ε)|=|δ2nεDqω(ε)sec2(ω(ε))(2+tan(ω(ε)))nA−B(1+δ2nεDqω(ε)sec2(ω(ε))(2+tan(ω(ε)))n)|=|2nδεDqω(ε)sec2(ω(ε))(A−B)(2+tan(ω(ε)))n−2nBδεDqω(ε)sec2(ω(ε))|. |
If the function ω accomplishes its maximum value, |ω(ε0)|=1, at some point ε=ε0, then, utilizing Lemma 2.1, we have
|p(ε0)−1A−Bp(ε0)|=|2nδεDqω(ε)sec2(ω(ε))(A−B)(2+tan(ω(ε)))n−2nBδεDqω(ε)sec2(ω(ε))|≥2nmδ|sec2(eiθ)|(A−B)(2+|tan(eiθ)|)n+2nm|δ||B||sec2(eiθ)|. | (3.29) |
Now set (3.6) and (3.15) in (3.29), and we get
ϕ(m)=2nmδ|sec2(eiθ)|(A−B)(2+|tan(eiθ)|)n+2nm|δ||B||sec2(eiθ)|⇒ϕ′(m)=2n|δ|(A−B)(2+tan(1))nsech2(1)((A−B)(2+|tan(eiθ)|)n+2nm|δ||B||sec2(eiθ)|)2>0. |
It demonstrates that ϕ(m) increases, achieving the maximum value at m=1. Thus,
|p(ε0)−1A−Bp(ε0)|≥2nδ|sec2(eiθ)|(A−B)(2+|tan(eiθ)|)n+2n|δ||B||sec2(eiθ)|, |
and hence
|p(ε0)−1A−Bp(ε0)|≥1, |
which contradicts the assumption (3.28), so |ω(ε)|<1. We complete the proof.
By taking h(ε)=εDqf(ε)(f(ε))n, we deduce the following corollary.
Corollary 3.5. Let f∈A. Suppose that
−1≤B<sech2(1)sec2(1)<A≤1, |
|δ|≥(A−B)(2+tan(1))n2n(sech2(1)−|B|sec2(1)). | (3.30) |
If the following is given:
1+δε(f(ε)εDq(f(ε)))nDq(εDqf(ε)f(ε))≺1+Aε1+Bε, | (3.31) |
then,
εDqf(ε)(f(ε))n≺2+tan(ε)2. |
Remark 3.1. One can obtain new results for the class S∗tan by taking the limit q→1− in our results.
Theorem 4.1. If f∈S∗tan(q) is of the form (1.1), then
|ξ2|≤12q (0<q<1),|ξ3|≤12q(q+1) (0.5<q<1),|ξ4|≤12q(q2+q+1) (0.41310<q<0.57708). |
All these estimates are extreme for a function defined below:
εDqf(ε)f(ε)=2+tan(εn)2=1+12εn+⋯ (n=1,2,3). | (4.1) |
Proof. Suppose f∈S∗tan(q), and then there exists a Schwarz function ω(ε) such that
ε(Dqf)(ε)f(ε)=2+tan(ω(ε))2, |
where ω(ε)=p(ε)−1p(ε)+1. If p(ε) follows the form of (1.2), then
ω(ε)=c1ε+c2ε2+c3ε3+c4ε4+⋯2+c1ε+c2ε2+c3ε3+c4ε4+⋯. |
Using this, one can easily find
2+tan(ω(ε))2=1+14c1ε+(14c2−18c21)ε2+(112c31−14c2c1+14c3)ε3+(−116c41+14c21c2−14c3c1−18c22+14c4)ε4+⋯. | (4.2) |
Then
εDqf(ε)f(ε)=1+qξ2ε+[q(q+1)ξ3−qξ22]ε2+[q(2∑n=0qn)ξ4−q(q+2)ξ2ξ3+qξ32]ε3+q[q3ξ5+(ξ5−ξ2ξ4)q2+(ξ5−ξ23+ξ22ξ3−ξ2ξ4)q+ξ5+3ξ22ξ3−2ξ2ξ4−ξ42−ξ23]ε4+⋯. | (4.3) |
Comparing (4.2) and (4.3), we obtain
ξ2=14qc1, | (4.4) |
ξ3=14q(q+1)(c2−2q−14qc21), | (4.5) |
ξ4=14q(1+q+q2)((16q3+10q2−12q+348q2(q+1))c31−(4q2+3q−2)4q(q+1)c1c2+c3). | (4.6) |
Applying (2.1) to (4.4), and we have
|ξ2|≤12q. |
To find the bound of ξ3, apply (2.2) to (4.5) with 0.5<q<1, and we have
|ξ3|≤12q(q+1). |
From Lemma 2.5,
α1=16q3+10q2−12q+348q2(q+1), |
and
α2=(4q2+3q−2)2q(q+1), |
so the conditions 0≤α2≤1 and α2(2α2−1)≤α1≤α2 are satisfied for 0.41310<q<0.57708. Applying Lemma 2.5, we get
|ξ4|≤12q(1+q+q2). |
Corollary 4.1. If f∈S∗tan, then
|ξ2|≤12,|ξ3|≤14,|ξ4|≤16. |
The above three bounds are sharp for the function defined below:
εf′(ε)f(ε)=2+tan(εn)2=1+12εn+⋯ (n=1,2,3). | (4.7) |
Theorem 4.2. If f∈S∗tan(q), then
|ξ3−λξ22|≤12q(q+1)max{1,|(1+q)ξ−12q|}. |
The result is sharp for the function defined in (4.1), for n=2.
Proof. From (4.4) and (4.5), we have
|ξ3−λξ22|=14q(q+1)|c2−(a(1+q)+2q−1)4qc21c21|. |
Applying Lemma 2.3 to the preceding equation yields the desired outcome.
Corollary 4.2. If f∈S∗tan, then
|ξ3−λξ22|≤14max{1,|2λ−12|}. |
The result is sharp for the function defined in (4.7), for n=2.
Theorem 4.3. If f∈S∗tan(q), then
|ξ2ξ3−ξ4|≤12q(1+q+q2) (0.14527<q<0.22265). |
The outcome is sharp for the function defined in (4.1), for n=3.
Proof. From (4.4)–(4.6), we have
|ξ2ξ3−ξ4|=14q(1+q+q2)|9−22q48qc31−(1−5q)4qc1c2+c3|. |
Comparing with Lemma 2.5, we have
α1=9−22q48q and α2=(1−5q)2q, |
and the conditions 0≤α2≤1 and α2(2α2−1)≤α1≤α2 are satisfied for 0.14527<q<0.22265, so Lemma 2.5 is valid to apply. Hence
|ξ2ξ3−ξ4|≤12q(1+q+q2). |
Corollary 4.3. If f∈S∗tan, then
|ξ2ξ3−ξ4|≤16. |
The result is sharp for the function defined in (4.7), for n=3.
Theorem 4.4. Let f∈S∗tan(q) be given in the form (1.1), and then
|ξ2ξ4−ξ23|≤14(1+q+q2)2, for q∈(0.8382,1). | (4.8) |
Proof. From (4.4)–(4.6), we have
|ξ2ξ4−ξ23|=|(1+q)16(1+q+q2)(1+q+q2+q3)c1c3−116(1+q+q2)2c22−(q5+q4+8q3−5q2+10q−5)64(1+q)(1+q+q2)2(1+q+q2+q3)c21c2−11024(q8+4q7+14q6−40q5+11q4−116q3+186q2−60q+88)(1+q)3(1+q+q2)2(1+q+q2+q3)c41|. |
Using Lemma 2.4 for c1=c, we have
|ξ2ξ4−ξ23|=|−(q8+12q7+38q6+32q5+43q4−148q3+202q2−76q+48)1024(q+1)3(q2+q+1)2(q3+q2+q+1)c4−(q5+q4+4q3−13q2+6q−5)128(q+1)(q2+q+1)2(q3+q2+q+1)c2(4−c2)x−((1+q+q2+q3)(4−c2)+(1+q)(1+q+q2)c264(1+q+q2)2(1+q+q2+q3))(4−c2)x2+(1+q)32(1+q+q2)(1+q+q2+q3)(4−c2)c(1−|x|2)ε|. |
For c∈[0,2], the simple calculation gives
|ξ2ξ4−ξ23|=(1+q)32(1+q+q2)(1+q+q2+q3)|−(q8+12q7+38q6+32q5+43q4−148q3+202q2−76q+48)32(q+1)4(q2+q+1)c4−(q5+q4+4q3−13q2+6q−5)4(q+1)2(q2+q+1)c2(4−c2)x−((1+q+q2+q3)(4−c2)+(1+q)(1+q+q2)c22(1+q)(1+q+q2))(4−c2)x2+(4−c2)c(1−|x|2)ε|, |
where x and δ satisfy |x|≤1 and |δ|≤1.
Next, we will find the maximum value of |ξ2ξ4−ξ23| for c∈[0,2].
Case 1. When c=0, we have
|ξ2ξ4−ξ23|≤14(1+q+q2)2 q∈(0,1). |
Case 2. When c=2, we get
|a2a4−a23|=14(1+q+q2)2⋅(q8+12q7+38q6+32q5+43q4−148q3+202q2−76q+48)16(q+1)3(1+q+q2+q3)≤14(1+q+q2)2 q∈(0,1). |
Case 3. Assume c∈(0,2). Then, by the above equation and the triangular inequality,
|ξ2ξ4−ξ23|≤(1+q)(4−c2)c32(1+q+q2)(1+q+q2+q3)|−(q8+12q7+38q6+32q5+43q4−148q3+202q2−76q+48)32(q+1)4(q2+q+1)(4−c2)c3−(q5+q4+4q3−13q2+6q−5)c4(q+1)2(q2+q+1)x−((1+q+q2+q3)(4−c2)+(1+q)(1+q+q2)c22c(1+q)(1+q+q2))x2+(1−|x|2)|. |
By Lemma 2.6, we can write it as
|ξ2ξ4−ξ23|≤(1+q)(4−c2)c32(1+q+q2)(1+q+q2+q3)ψ(P,Q,R), |
where
P=−(q8+12q7+38q6+32q5+43q4−148q3+202q2−76q+48)32(q+1)4(q2+q+1)(4−c2)c3, |
Q=(−q5−q4−4q3+13q2−6q+5)c4(q+1)2(q2+q+1), |
and
R=−((1+q+q2+q3)(4−c2)+(1+q)(1+q+q2)c2)2c(1+q)(1+q+q2). |
Clearly, for all q∈(0,1) and c∈(0,2), we have
PR=(c2q+4q2+4)(q8+12q7+38q6+MD)64(4−c2)(q+1)4(q2+q+1)2c2>0, |
where
MD=32q5+43q4−148q3+202q2−76q+48. |
Now we consider |Q|−2(1−|R|). Let
φ(c)=8(q+1)2(q2+q+1)c{|Q|−2(1−|R|)}, |
which implies
φ(c)=2(5−2q+21q2−q4−q5)c2−16(q+1)2(q2+q+1)c+32(q2+1)(q+1)2. |
Differentiating φ(c) twice, we have
φ′(c)=4(5−2q+21q2−q4−q5)c−16(q+1)2(q2+q+1), |
φ′′(c)=4(5−2q+21q2−q4−q5)>0 q∈(0,1). |
This shows that φ′(c) is an increasing function and
maxφ′(c)=φ′(2)=−8q5−24q4−48q3+104q2−64q+24<0 q∈(0.8382,1). |
It follows that
φ′(c)<0, c∈(0,2), q∈(0.8382,1). |
Hence, φ(c) is a decreasing function and
minφ(c)=φ(2)=−8q5−8q4−32q3+104q2−48q+40≥0 q∈(0,1). |
This implies |Q|−2(1−|R|)>0, and then by Lemma 2.6,
|ξ2ξ4−ξ23|≤(1+q)(4−c2)c32(1+q+q2)(1+q+q2+q3)(|P|+|Q|+|R|)=h(c), |
where
h(c)=−Mc4+Nc2−256(q2+1)(q+1)41024(q+1)3(q2+q+1)2(1+q+q2+q3). |
By differentiating, we have
h′(c)=11024(q+1)3(q2+q+1)2(1+q+q2+q3)(Mc3+Nc), |
where
M=−(−q8−20q7−62q6−72q5+53q4+372q3−90q2+124q−8)≤0 for q∈(0.0669,1), |
and
N=−(32q7+160q6+416q5+64q4−384q3+64q−96)≤0 for q∈(0.8382,1), |
which implies
h′(c)≤0. |
We conclude that the function h(c) is a decreasing function and
h(c)≤h(0)=14(q2+q+1)2. |
From all of the above discussion, we conclude that
|ξ2ξ4−ξ23|≤14(1+q+q2)2, for q∈(0.8382,1). |
Theorem 5.1. A function f∈S∗tan(q) if and only if
1ε[f(ε)∗Hε2−Gε2(1−ε)(1−qε)]≠0, | (5.1) |
where
G=2+tan(eiθ),H=tan(eiθ), or G=H=1. | (5.2) |
Proof. If a function f∈ S∗tan(q), then f is analytic in D, and hence 1εf(ε)≠0 for all ε in D∗=D−{0}. Thus, we have the Eq (5.1) for G=H=1.
Now, by using (1.9) along with the principle of subordination, there exists a Schwarz function ω such that
ε(Dqf)(ε)f(ε)=1+tan(ω(ε))2. |
Taking into consideration ω(ε)=eiθ, for 0≤θ≤2π, then the above expression becomes
ε(Dqf)(ε)f(ε)≠1+tan(eiθ)2, | (5.3) |
ε(Dqf)(ε)−(2+tan(eiθ)2)f(ε)≠0. | (5.4) |
Now, by using the relations
f(ε)=f(ε)∗ε1−ε and ε(Dqf)(ε)=f(ε)∗ε(1−ε)(1−qε), |
the Eq (5.4) becomes
f(ε)∗ε(1−ε)(1−qε)−(2+tan(eiθ)2)(f(ε)∗ε1−ε)≠0. |
After some simple calculations, we get
f(ε)∗(((2+tan(eiθ))qε2−tan(eiθ)ε)2(1−ε)(1−qε))≠0,12ε(f(ε)∗Hε2−Gε(1−ε)(1−qε))≠0, |
where H and G are given in (1.3), and thus the the necessary condition holds.
Conversely, assume that the condition in (5.1) satisfies, then 1εf(ε)≠0, for all ε∈D. Let K(ε)=ε(Dqf)(ε)f(ε), which is regular in D and K(0)=1.
Also, assume that f(ε)=1+tan(ε)2, and from (5.3), f(∂D)∩K(ε)=∅.
Therefore, the connected component C−f(∂D) containing the domain K(ε) is connected as well. Given the univalence of "K" and the supposition that f(0)=K(0)=1, it is evident that K≺f, indicating that f∈S∗tan(q).
In conclusion, leveraging the framework of q-calculus, we have introduced a novel class of q-starlike functions associated with the eight-shaped image domain, offering new insights into their geometric behavior. Our research successfully established results in differential subordination and derived sharp inequalities for the first three unknown coefficients of the Taylor series. Additionally, we provided precise solutions to the Fekete-Szegö problem and second-order Hankel determinants for this newly defined class, with the broader implications demonstrated through a series of corollaries.
The scope of these findings extends beyond the specific class of functions examined. Our methodology offers a flexible foundation for analyzing other image domains and subclasses within geometric function theory. This opens avenues for future work that could explore more general families of functions, potentially leading to new results in related areas, such as higher-order Hankel determinants, multi-variable quantum calculus, and further applications of q-differential operators. The results enhance the current understanding of q-starlike functions and provide a robust platform for future investigations into the more profound applications of quantum calculus in geometric and analytic function theory.
Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad and Bilal Khan: Writing-original draft, writing-review and editing. All authors contributed equally to the manuscript. All authors have read and approved the final version of the manuscript for publication.
The first author is supported by the UAEU Program for Advanced Research (UPAR12S127) from United Arab Emirates University.
The authors declare that they have no competing interests.
[1] |
M. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. J. Riaz, Some coefficient inequalities of q-starlike functions associated with the conic domain defined by q-derivative, J. Funct. Space, 2018 (2018), 8492072. https://doi.org/10.1155/2018/8492072 doi: 10.1155/2018/8492072
![]() |
[2] |
A. Ahmad, J. Gong, A. Rasheed, S. Hussain, A. Ali, Z. Cheikh, Sharp results for a new class of analytic functions associated with the q-differential operator and the symmetric Balloon-shaped domain, Symmetry, 16 (2024), 1134. https://doi.org/10.3390/sym16091134 doi: 10.3390/sym16091134
![]() |
[3] |
L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of analytic functions involving a generalized q-operator, Symmetry, 12 (2020), 291. https://doi.org/10.3390/sym12020291 doi: 10.3390/sym12020291
![]() |
[4] |
B. Ahmad, M. G. Khan, B. A. Frasin, M. K. Aouf, T. Abdeljawad, W. K. Mashwani, et al., On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Math., 6 (2020), 3037–3052. https://doi.org/10.3934/math.2021185 doi: 10.3934/math.2021185
![]() |
[5] |
M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
![]() |
[6] |
E. E. Ali, G. I. Oros, S. Ali Shah, A. M. Albalahi, Applications of q-calculus multiplier operators and subordination for the study of particular analytic function subclasses, Mathematics, 11 (2023), 2705. https://doi.org/10.3390/math11122705 doi: 10.3390/math11122705
![]() |
[7] |
E. E. Ali, G. I. Oros, S. Ali Shah, A. M. Albalahi, Differential subordination and superordination studies involving symmetric functions using a q-analogue multiplier operator, AIMS Math., 8 (2023), 27924–27946. https://doi.org/10.3934/math.20231428 doi: 10.3934/math.20231428
![]() |
[8] |
K. Jabeen, A. Saliu, J. Gong, S. Hussain, Majorization problem for q-general family of functions with bounded radius rotations, Mathematics, 12 (2024), 2605. https://doi.org/10.3390/math12172605 doi: 10.3390/math12172605
![]() |
[9] | A. B. Makhlouf, O. Naifar, M. A. Hammami, B. Wu, FTS and FTB of conformable fractional order linear systems, Math. Probl. Eng., 2018 (2018), 2572986. |
[10] |
O. Naifar, A. Jmal, A. M. Nagy, A. B. Makhlouf, Improved quasiuniform stability for fractional order neural nets with mixed delay, Math. Probl. Eng., 2020 (2020), 8811226. https://doi.org/10.1155/2020/8811226 doi: 10.1155/2020/8811226
![]() |
[11] |
F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, P. Ame. Math. Soc., 20 (1969), 8–12. https://doi.org/10.1090/S0002-9939-1969-0232926-9 doi: 10.1090/S0002-9939-1969-0232926-9
![]() |
[12] |
J. W. Noonan, D. K. Thomas, On the second Hankel determinant of a really mean p-valent functions, T. Am. Math. Soc., 22 (1976), 337–346. https://doi.org/10.1090/S0002-9947-1976-0422607-9 doi: 10.1090/S0002-9947-1976-0422607-9
![]() |
[13] |
W. K. Hayman, On the second Hankel determinant of mean univalent functions, P. Lond. Math. Soc., 3 (1968), 77–94. https://doi.org/10.1112/plms/s3-18.1.77 doi: 10.1112/plms/s3-18.1.77
![]() |
[14] |
H. Orhan, N. Magesh, J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turk. J. Math., 40 (2016), 679–687. https://doi.org/10.3906/mat-1505-3 doi: 10.3906/mat-1505-3
![]() |
[15] |
L. Shi, M. G. Khan, B. Ahmad, W. K. Mashwani, P. Agarwal, S. Momani, Certain coefficient estimate problems for three-leaf-type starlike functions, Fractal Fract., 5 (2021), 137. https://doi.org/10.3390/fractalfract5040137 doi: 10.3390/fractalfract5040137
![]() |
[16] | K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequal. Theor. Appl., 6 (2007), 1–7. |
[17] |
M. G. Khan, W. K. Mashwani, J. S. Ro, B. Ahmad, Problems concerning sharp coefficient functionals of bounded turning functions, AIMS Math., 8 (2023), 27396–27413. https://doi.org/10.3934/math.20231402 doi: 10.3934/math.20231402
![]() |
[18] |
M. G. Khan, W. K. Mashwani, L. Shi, S. Araci, B. Ahmad, B. Khan, Hankel inequalities for bounded turning functions in the domain of cosine hyperbolic function, AIMS Math., 8 (2023), 21993–22008. https://doi.org/10.3934/math.20231121 doi: 10.3934/math.20231121
![]() |
[19] |
I. Al-shbeil, J. Gong, S. Khan, N. Khan, A. Khan, M. F. Khan, et al., Hankel and symmetric Toeplitz determinants for a new subclass of q-starlike functions, Fractal Fract., 6 (2022), 658. https://doi.org/10.3390/fractalfract6110658 doi: 10.3390/fractalfract6110658
![]() |
[20] |
M. G. Khan, B. Khan, J. Gong, F. Tchier, F. M. O. Tawfiq, Applications of first-order differential subordination for subfamilies of analytic functions related to symmetric image domains, Symmetry, 15 (2023), 2004. https://doi.org/10.3390/sym15112004 doi: 10.3390/sym15112004
![]() |
[21] |
W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math., 23 (1970), 159–177. https://doi.org/10.4064/ap-23-2-159-177 doi: 10.4064/ap-23-2-159-177
![]() |
[22] |
M. G. Khan, B. Khan, F. M. O. Tawfiq, J. S. Ro, Zalcman functional and majorization results for certain subfamilies of holomorphic functions, Axioms, 12 (2023), 868. https://doi.org/10.3390/axioms12090868 doi: 10.3390/axioms12090868
![]() |
[23] |
F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
![]() |
[24] |
M. S. Ur Rehman, Q. Z. Ahmad, I. Al-Shbeil, S. Ahmad, A. Khan, B. Khan, et al., Coefficient inequalities for multivalent Janowski type q-starlike functions involving certain conic domains, Axioms, 11 (2022), 494. https://doi.org/10.3390/axioms11100494 doi: 10.3390/axioms11100494
![]() |
[25] |
K. Ademogullari, Y. Kahramaner, q-harmonic mappings for which analytic part is q-convex functions, Nonlinear Anal. Diff. Eq., 4 (2016), 283–293. https://doi.org/10.12988/nade.2016.6311 doi: 10.12988/nade.2016.6311
![]() |
[26] | C. Pommerenke, G. Jensen, Univalent functions, Gottingen, Germany: Vandenhoeck and Ruprecht, 1975. |
[27] | W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of the Conference on Complex Analysis, Tianjin, 1992,157–169. |
[28] |
R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, P. Am. Math. Soc., 87 (1983), 251–257. https://doi.org/10.1090/S0002-9939-1983-0681830-8 doi: 10.1090/S0002-9939-1983-0681830-8
![]() |
[29] |
J. H. Choi, Y. C. Kim, T. Sugawa, A general approach to the Fekete-Szego problem, J. Math. Soc., 59 (2007), 707–727. https://doi.org/10.2969/jmsj/05930707 doi: 10.2969/jmsj/05930707
![]() |