Transcendental terms | Corresponding coefficients |
e2λ1 | λ′21+2γλ′1+1 |
e2λ2 | λ′22+2γλ′2+1 |
eλ1+λ2 | −2λ′1λ′2−2γ(λ′1+λ′2)+4δ−2 |
e2¯λ1 | 1 |
e2¯λ2 | 1 |
e¯λ1+¯λ2 | −2 |
eλ1+¯λ1 | 2αλ′1+2β |
eλ1+¯λ2 | −2αλ′1−2β |
e¯λ1+λ2 | −2αλ′2−2β |
eλ2+¯λ2 | 2αλ′2+2β |
A particularly useful assessment tool for evaluating uncertainty and dealing with fuzziness is the Fermatean fuzzy set (FFS), which expands the membership and non-membership degree requirements. Distance measurement has been extensively employed in several fields as an essential approach that may successfully disclose the differences between fuzzy sets. In this article, we discuss various novel distance measures in Fermatean hesitant fuzzy environments as research on distance measures for FFS is in its early stages. These new distance measures include weighted distance measures and ordered weighted distance measures. This justification serves as the foundation for the construction of the generalized Fermatean hesitation fuzzy hybrid weighted distance (DGFHFHWD) scale, as well as the discussion of its weight determination mechanism, associated attributes and special forms. Subsequently, we present a new decision-making approach based on DGFHFHWD and TOPSIS, where the weights are processed by exponential entropy and normal distribution weighting, for the multi-attribute decision-making (MADM) issue with unknown attribute weights. Finally, a numerical example of choosing a logistics transfer station and a comparative study with other approaches based on current operators and FFS distance measurements are used to demonstrate the viability and logic of the suggested method. The findings illustrate the ability of the suggested MADM technique to completely present the decision data, enhance the accuracy of decision outcomes and prevent information loss.
Citation: Chuan-Yang Ruan, Xiang-Jing Chen, Shi-Cheng Gong, Shahbaz Ali, Bander Almutairi. A decision-making framework based on the Fermatean hesitant fuzzy distance measure and TOPSIS[J]. AIMS Mathematics, 2024, 9(2): 2722-2755. doi: 10.3934/math.2024135
[1] | Yeyang Jiang, Zhihua Liao, Di Qiu . The existence of entire solutions of some systems of the Fermat type differential-difference equations. AIMS Mathematics, 2022, 7(10): 17685-17698. doi: 10.3934/math.2022974 |
[2] | Hong Li, Keyu Zhang, Hongyan Xu . Solutions for systems of complex Fermat type partial differential-difference equations with two complex variables. AIMS Mathematics, 2021, 6(11): 11796-11814. doi: 10.3934/math.2021685 |
[3] | Zhenguang Gao, Lingyun Gao, Manli Liu . Entire solutions of two certain types of quadratic trinomial q-difference differential equations. AIMS Mathematics, 2023, 8(11): 27659-27669. doi: 10.3934/math.20231415 |
[4] | Minghui Zhang, Jianbin Xiao, Mingliang Fang . Entire solutions for several Fermat type differential difference equations. AIMS Mathematics, 2022, 7(7): 11597-11613. doi: 10.3934/math.2022646 |
[5] | Wenju Tang, Keyu Zhang, Hongyan Xu . Results on the solutions of several second order mixed type partial differential difference equations. AIMS Mathematics, 2022, 7(2): 1907-1924. doi: 10.3934/math.2022110 |
[6] | Jingjing Li, Zhigang Huang . Radial distributions of Julia sets of difference operators of entire solutions of complex differential equations. AIMS Mathematics, 2022, 7(4): 5133-5145. doi: 10.3934/math.2022286 |
[7] | Nan Li, Jiachuan Geng, Lianzhong Yang . Some results on transcendental entire solutions to certain nonlinear differential-difference equations. AIMS Mathematics, 2021, 6(8): 8107-8126. doi: 10.3934/math.2021470 |
[8] | Hong Yan Xu, Zu Xing Xuan, Jun Luo, Si Min Liu . On the entire solutions for several partial differential difference equations (systems) of Fermat type in C2. AIMS Mathematics, 2021, 6(2): 2003-2017. doi: 10.3934/math.2021122 |
[9] | Zheng Wang, Zhi Gang Huang . On transcendental directions of entire solutions of linear differential equations. AIMS Mathematics, 2022, 7(1): 276-287. doi: 10.3934/math.2022018 |
[10] | Hua Wang, Hong Yan Xu, Jin Tu . The existence and forms of solutions for some Fermat-type differential-difference equations. AIMS Mathematics, 2020, 5(1): 685-700. doi: 10.3934/math.2020046 |
A particularly useful assessment tool for evaluating uncertainty and dealing with fuzziness is the Fermatean fuzzy set (FFS), which expands the membership and non-membership degree requirements. Distance measurement has been extensively employed in several fields as an essential approach that may successfully disclose the differences between fuzzy sets. In this article, we discuss various novel distance measures in Fermatean hesitant fuzzy environments as research on distance measures for FFS is in its early stages. These new distance measures include weighted distance measures and ordered weighted distance measures. This justification serves as the foundation for the construction of the generalized Fermatean hesitation fuzzy hybrid weighted distance (DGFHFHWD) scale, as well as the discussion of its weight determination mechanism, associated attributes and special forms. Subsequently, we present a new decision-making approach based on DGFHFHWD and TOPSIS, where the weights are processed by exponential entropy and normal distribution weighting, for the multi-attribute decision-making (MADM) issue with unknown attribute weights. Finally, a numerical example of choosing a logistics transfer station and a comparative study with other approaches based on current operators and FFS distance measurements are used to demonstrate the viability and logic of the suggested method. The findings illustrate the ability of the suggested MADM technique to completely present the decision data, enhance the accuracy of decision outcomes and prevent information loss.
We all know Fermat's last theorem: For an integer n>2, the equation xn+yn=zn for x,y,z has no positive integer solution. It took 356 years from when it was proposed in 1637, to 1993 when Wiles conquered it. This equation can also be extended to functional equations. In complex analysis, the researchers began to focus on meromorphic solutions of the equation fn(z)+gn(z)=hn(z). As far as we know, Montel [22] was the first scholar to study this problem, and later Gross and Baker carried out the follow-up research work [2,9,10]. Then, applying Nevanlinna theory to the study of this kind of functional equation became a hot topic. For example, Yang et al. [31] studied the transcendental meromorphic solution of the functional equation f(z)2+f′(z)2=1 and found that the solution to this equation must have the form of f(z)=12(peλz+1pe−λz), where p,λ are nonzero constants. With the establishment of the Nevanlinna theory with the difference of meromorphic function [8,11], more attention was paid to Fermat-type functional equation with the difference of meromorphic function. Liu et al. [15,16,17] studied the finite order transcendental entire solutions of Fermat-type difference equations f(z+c)2+f(z)2=1 and f(z+c)2+f′(z)2=1, and they obtained that the solutions of these two equations are sine functions. Subsequently, more attention has been paid to this area of research [14,18,19,20,21,23,24,25,28,29,30,33,34].
In 2016, Liu and Yang [18] studied the existence of solutions to quadratic trinomial functional equations, as well as the entire function and its derivatives and differences, and they converted the equations in the following two theorems into Fermat- type equations by transformation.
Theorem 1.1. ([18, Theorem 1.4]) If α≠0,±1, then the finite order transcendental entire solution of equation
f(z)2+2αf(z)f(z+c)+f(z+c)2=1 |
is of order one.
Theorem 1.2. ([18, Theorem 1.6]) If α≠0,±1, then the equation
f(z)2+2αf(z)f′(z)+f′(z)2=1 |
has no transcendental meromorphic solutions.
On the other hand, Han and Lü [12] studied the existence of solutions to the Fermat-type equation when the right side was an exponential function. Here we only list the n=2 case in their results.
Theorem 1.3. ([12, Theorem 1.1]) The meromorphic solutions of f of the following differential equation
f(z)2+f′(z)2=eαz+β |
are
f(z)=eβ2sin(z+b) |
if α=0, and
f(z)=deαz+β2 |
if α≠0 with d2(1+(α2)2)=1.
In the same article, they also studied the case of replacing f′(z) with f(z+c) in the above equation, and found that the solution of equation
f(z)2+f(z+c)2=eαz+β |
is f(z)=deαz+β2 with d2(1+eac)=1.
Combining these conclusions above, Luo et al. [20] studied the following three equations with finite order transcendental entire solutions. These three equations are
f(z+c)2+2αf(z)f(z+c)+f(z)2=eg(z), | (1.1) |
f(z+c)2+2αf′(z)f(z+c)+f′(z)2=eg(z) | (1.2) |
and
f(z)2+2αf(z)f′(z)+f′(z)2=eg(z), | (1.3) |
where α≠0,±1, c are constants and g(z) is a polynomial. If all these equations admit finite order transcendental entire solutions, g(z) must be a polynomial with the degree of one, and the solutions f of these equations are all exponential functions or the sum of two exponential functions whose exponents are polynomials of the degree of one, as seen in Theorems 2.1–2.3 [20]. Each of these three equations contains only two terms of f(z),f′(z) or f(z+c), so can we consider a quadratic equation that contains all three of these terms?
Inspired by this, we shall study the problem of finite order transcendental entire solutions of functional equations involving the quadratic of f, its derivative and its difference. In fact, we studied the finite order transcendental entire solution for (1.4) below.
Theorem 1.4. Suppose that α≠0,±1, β≠0, γ≠0 and c≠0 are four constants such that α2+β2+γ2≠1+2αβγ, and g(z) is a nonconstant polynomial. If the complex equation
[f′(z)]2+[f(z+c)]2+f2(z)+2αf′(z)f(z+c)+2βf(z)f(z+c)+2γf(z)f′(z)=eg(z) | (1.4) |
admits a transcendental entire solution f(z) of finite order, then for
δ=1−α2−β2−γ2+2αβγ1−α2, |
the solution has two forms:
(1)
f(z)=deaz+b22i√δ, |
where a≠0 and b is an arbitrary constant. Moreover, g(z)=az+b, and d is a constant with
1+a24+eac+(aα+2β)eac/2+aγ=−4δd2. |
(2)
f(z)=ea1z+b1−ea2z+b22i√δ, |
where a1,a2(a1≠a2) are nonzero constants satisfying (1.5), and b1,b2 are arbitrary constants, g(z)=(a1+a2)z+b1+b2.
{a21+2γa1+e2a1c+(2αa1+2β)⋅ea1c+1=0;a22+2γa2+e2a2c+(2αa2+2β)⋅ea2c+1=0;[ea1c−ea2c+α(a1−a2)]2+(1−α2)(a1−a2)2+4δ=0. | (1.5) |
Let's give two examples to show that Theorem 1.4 is true.
Example 1.5. Suppose α=1/3, β=γ=1 and c=2 in (1.4), then δ=−1/2. Set a=2,b=2, then by the relationship of a and d, we have
d=√2√4+83e2+e4. |
We can verify that the entire function
f(z)=±1√4+83e2+e4⋅ez+1 |
is a solution of
[f′(z)]2+[f(z+2)]2+f2(z)+23f′(z)f(z+2)+2f(z)f(z+2)+2f(z)f′(z)=e2z+2. |
Example 1.6. Suppose
α=3πi4,β=1+3π22,γ=−5πi4 |
and c=1 in (1.4), then δ=π2. a1=πi,a2=3πi, b1,b2 are arbitrary constants. We can verify that the entire function
f(z)=eπiz+b1−e3πiz+b2±2πi |
is a solution of
[f′(z)]2+[f(z+1)]2+f2(z)+3πi2f′(z)f(z+1)+(2+3π2)f(z)f(z+1)−5πi2f(z)f′(z)=e4πiz+b1+b2. |
From Theorem 1.4 we have the following corollary.
Corollary 1.7. Under the assumption of Theorem 1.4, if the degree of polynomial g(z) is greater than one, then (1.4) does not have a transcendental solution with finite order.
If q(≠0,1) is a constant, then f(qz) is called the q-difference of meromorphic function f(z). The q-difference is also an important research content in the value distribution theory, and the research on it can be traced back to the early 20th century [5,13].
In recent decades, with the establishment of Nevanlinna theory related to it [3], the research on q-difference has been vigorously developed, and this theory has been applied to many q-difference equations to get a lot of results [4,6,7,16,26,27]. Therefore, we considered to replace f(z+c) in (1.4) by f(qz) as to get a q-difference functional equation, and then studied the finite order transcendental entire solution of this equation. Through the complicated discussion and calculation of different cases, we came to the following conclusion.
Theorem 1.8. Suppose that α≠0,±1, β≠0, γ≠0,±1 and q≠0,1 are four constants such that α2+β2+γ2≠1+2αβγ, and g(z) is a nonconstant polynomial. If the complex equation
[f′(z)]2+[f(qz)]2+f2(z)+2αf′(z)f(qz)+2βf(z)f(qz)+2γf(z)f′(z)=eg(z) | (1.6) |
admits a transcendental entire solution f(z) of finite order, then
f(z)=±eaz+b2 |
and g(z)=aqz+b, b is an arbitrary constant, a≠0 and γ2≠1 such that
{a24+γa+1=0,αa+2β=0. | (1.7) |
Here is an example to test the truth of the Theorem 1.8.
Example 1.9. Suppose α=1/2,β=−1,γ=−5/4 and q is any constant except 0,1 in (1.6), then we can verify that the entire function f(z)=±e2z+1 is a solution of
[f′(z)]2+[f(qz)]2+f2(z)+f′(z)f(qz)−2f(z)f(qz)−52f(z)f′(z)=e4qz+2. |
A corollary also can be obtained from Theorem 1.8.
Corollary 1.10. Under the assumption of Theorem 1.8, if the degree of polynomial g(z) is greater than one, then (1.6) does not admit transcendental entire solution with finite order.
Remark 1.11. Equations (1.4) and (1.6) can be transformed into three term quadratic equations by linear transformation. The purpose of restrictions α2≠1 and α2+β2+γ2≠1+2αβγ in Theorems 1.4 and 1.8 is to not allow these three term quadratic equations to degenerate into quadratic equations with two or one terms, which have been studied in previous literatures. This can be seen easily from (3.2) in the proof below.
Remark 1.12. From the proof of Theorems 1.4 and 1.8 and the above three examples, we can find that if the two equations have finite order transcendental entire solutions, then the solutions of both equations are exponential functions and their exponents are polynomials with the degree of one. For (1.4), after the solution was substituted into the equation, the terms of the equation contained the common factor eg(z). After dividing both sides of the equation by eg(z), the relationship between the coefficients of the equation and the coefficients of the exponent was obtained. For (1.6), when one substitutes the solution into it, the term eg(z) in the right side of the equation is equal to [f(qz)]2 in the left side, which can be subtracted from both sides of the equation. The signs of the other two mixed terms containing f(qz) are opposite to each other, so these two mixed terms were canceled out.
The following lemma played a key role in the proofs of this paper. It is about the factorization of an entire function. In particular, if f(z) was a finite order entire function without zero, then f(z)=eh(z) where h(z) was a nonconstant polynomial, as seen in Theorems 1.42 and 1.44 [32].
Lemma 2.1. (Hadamard's factorization theorem) [32, Theorem 2.5] Let f be an entire function of finite order λ(f) with zeros {a1,a2,⋯}⊂C∖{0} and a k-fold zero at the origin. Then,
f(z)=zkP(z)eQ(z) |
where P(z) is the canonical product of f formed with the non-null zeros of f,
P(z)=∞∏n=1(1−zan)ezan+12(zan)2+⋯+1h(zan)h, |
and h is the smallest integer for which this series converges, called the genus of the canonical product. Q(z) is a polynomial of degree ≤λ(f) and h≤λ.
The second lemma belongs to Borel. It's about the combination of entire functions, and we'll use it repeatedly in the proofs in Sections 3 and 4. When using it, the key is to verify the second condition below.
Lemma 2.2. [32, Theorem 1.52] If fj(z)(j=1,2,⋯,n) and gj(z)(j=1,2,⋯,n)(n≥2) are entire functions satisfying
(1) ∑nj=1fj(z)egj(z)≡0,
(2) the orders of fj are less than that of egh(z)−gk(z) for 1≤j≤n,1≤h<k≤n.
Then, fj≡0,(j=1,2,⋯,n).
According to the linear algebra, any quadratic form can be reduced to the standard form by a non-degenerate linear transformation. So, setting
{f(z)=w,f′(z)=u−αv+αβ−γ1−α2w,f(z+c)=v−β−αγ1−α2w | (3.1) |
and substituting it into (1.4), we obtain that
u2+(1−α2)v2+1−α2−β2−γ2+2αβγ1−α2w2=eg(z). | (3.2) |
For simplicity and convenience, let's denote
δ:=1−α2−β2−γ2+2αβγ1−α2, |
then (3.2) can convert into
(√u2+(1−α2)v2eg(z)2)2+(√δweg(z)2)2=1. | (3.3) |
Consequently, we have
(√u2+(1−α2)v2eg(z)2+i⋅√δweg(z)2)⋅(√u2+(1−α2)v2eg(z)2−i⋅√δweg(z)2)=1. | (3.4) |
By Hadamard's factorization theorem, if the multiplicities of any zeros of the entire function u2+(1−α2)v2 is even number, then √u2+(1−α2)v2 is also an entire function. The following (3.5) holds in the complex plane, where p(z) is a polynomial. If u2+(1−α2)v2 have some zeros with odd number multiplicities, then √u2+(1−α2)v2 has branch points in the complex plane. Branches are obtained by connecting finite branch points and infinity points appropriately by line segments. These segments are called branch cuts, and √u2+(1−α2)v2 is analytic and univalent in every branch [1,35]. Since the two analytical factors on the left side of (3.4) have no zeros in each branch, there exists an analytical function p(z) such that the equations
{√u2+(1−α2)v2eg(z)2+i⋅√δweg(z)2=ep(z),√u2+(1−α2)v2eg(z)2−i⋅√δweg(z)2=e−p(z) | (3.5) |
hold in every branch. Denote
λ1(z):=p(z)+g(z)2, λ2(z):=−p(z)+g(z)2, |
then,
w=eλ1(z)−eλ2(z)2i√δ | (3.6) |
hold in every branch. Moreover, noting that w=f(z) is an entire function with finite order, the righthand side of (3.6) can be extended to the whole complex plane. Therefore, one can supplement the definition of function p(z) at the points on branch cuts by the limiting values, and it is still called p(z) after supplementary definition. Thus, p(z) is analytic on the whole complex plane, so it's an entire function. Because ep(z) is of finite order, p(z) is actually a polynomial, so we get
u2+(1−α2)v2=(eλ1(z)+eλ2(z)2)2. | (3.7) |
Noting that f(z)=w, we have
{f(z)=eλ1(z)−eλ2(z)2i√δ,f′(z)=λ′1(z)eλ1(z)−λ′2(z)eλ2(z)2i√δ,f(z+c)=eλ1(z+c)−eλ2(z+c)2i√δ. | (3.8) |
From (3.1), we know that
u=f′(z)+αf(z+c)+γf(z) |
and
v=f(z+c)+β−αγ1−α2f(z). |
Substituting the above u,v into (3.7) we get
[f′(z)]2+[f(z+c)]2+β2+γ2−2αβγ1−α2f2(z)+2αf′(z)f(z+c)+2βf(z+c)f(z)+2γf′(z)f(z)=e2λ1(z)+e2λ2(z)+2eλ1(z)+λ2(z)4. | (3.9) |
For simplicity and convenience, we give the following notation:
λ1:=λ1(z),λ2:=λ2(z),¯λ1:=λ1(z+c),¯λ2:=λ2(z+c). |
Substituting (3.8) into (3.9) we obtain
λ′21e2λ1+λ′22e2λ2−2λ′1λ′2eλ1+λ2−4δ+e2¯λ1+e2¯λ2−2e¯λ1+¯λ2−4δ+β2+γ2−2αβγ1−α2⋅e2λ1+e2λ2−2eλ1+λ2−4δ+2α⋅λ′1eλ1+¯λ1−λ′1eλ1+¯λ2−λ′2e¯λ1+λ2+λ′2eλ2+¯λ2−4δ+2β⋅eλ1+¯λ1−eλ1+¯λ2−e¯λ1+λ2+eλ2+¯λ2−4δ+2γ⋅λ′1e2λ1−λ′1eλ1+λ2−λ′2eλ1+λ2+λ′2e2λ2−4δ=e2λ1+e2λ2+2eλ1+λ24. | (3.10) |
The transcendental terms appearing in the above equation have exponents
2λ1,2λ2,λ1+λ2,2¯λ1,2¯λ2,¯λ1+¯λ2,λ1+¯λ1,λ1+¯λ2,¯λ1+λ2andλ2+¯λ2. |
In order to apply Lemma 2.2 to (3.10), we checked whether the pairwise difference between these exponents was constant. If λ1≡λ2, then f(z)≡0 this was impossible, so λ1≢λ2. The following two cases are discussed.
Case 1. If λ1−λ2 is a nonzero constant, then p(z) is a constant, denoted by p in the following. Consequently, for p≠kπi(k∈Z),
f(z)=w=(ep−e−p)eg(z)/22i√δ. | (3.11) |
Then,
f′(z)=(ep−e−p)eg(z)/22i√δ⋅g′(z)2 | (3.12) |
and
f(z+c)=(ep−e−p)eg(z+c)/22i√δ. | (3.13) |
Substituting (3.11)–(3.13) into (1.4), the terms in the left side of (1.4) can be expressed respectively as
{[f′(z)]2=d2eg(z)−4δ⋅(g′(z))24,[f(z+c)]2=d2eg(z+c)−4δ,f2(z)=d2eg(z)−4δ,2αf′(z)f(z+c)=2α⋅d2eg(z)+g(z+c)2−4δ⋅g′(z)2,2βf(z)f(z+c)=2β⋅d2eg(z)+g(z+c)2−4δ,2γf(z)f′(z)=2γ⋅d2eg(z)−4δ⋅g′(z)2, | (3.14) |
where d:=ep−e−p. If the degree of polynomial g(z) is greater than one, the three exponents g(z),g(z+c) and g(z)+g(z+c)2 are pairwise distinct. By Lemma 2.2, we obtained that after combining like terms, the coefficients of these three exponential terms eg(z),eg(z+c) and eg(z)+g(z+c)2 are zero. In particular, d2−4δ=0 since it's the coefficient of the sole term eg(z+c). This is impossible, because that means f≡0, so the degree of g(z) is one. Therefore, suppose g(z)=az+b, a(≠0),b are constants. Substitute it into (3.14), then into (1.4), and eliminate eg(z) from both sides of this equation. Then, we get
1+a24+eac+(aα+2β)eac/2+aγ=−4δd2. | (3.15) |
This means if the constants α,β,γ,c in the original (1.4) are known, then the solution is
f(z)=deaz+b22i√δ, |
where constants a,d should satisfy the relationship of (3.15), and b is an arbitrary constant.
Case 2. If λ1−λ2 is not a constant, then p(z) is not a constant; instead, it is a nonconstant polynomial. For (3.10) we multiply −4δ on both sides, combine like terms and move all the terms to the left side of this equation, then the right side is just zero. Thus, the coefficients of the distinct transcendental terms can be listed in Table 1.
Transcendental terms | Corresponding coefficients |
e2λ1 | λ′21+2γλ′1+1 |
e2λ2 | λ′22+2γλ′2+1 |
eλ1+λ2 | −2λ′1λ′2−2γ(λ′1+λ′2)+4δ−2 |
e2¯λ1 | 1 |
e2¯λ2 | 1 |
e¯λ1+¯λ2 | −2 |
eλ1+¯λ1 | 2αλ′1+2β |
eλ1+¯λ2 | −2αλ′1−2β |
e¯λ1+λ2 | −2αλ′2−2β |
eλ2+¯λ2 | 2αλ′2+2β |
Because the difference between any two of 2λ1,2λ2,λ1+λ2 is not constant, the term containing e2λ1 cannot combine with terms containing e2λ2 or eλ1+λ2.
Suppose that deg(λ1)=m>1 and deg(λ2)=n>1. If the term containing e2λ1 cannot combine with any other transcendental terms, then its coefficient has to be zero for any z∈C by Lemma 2.2. This is impossible, since its coefficients are nonconstant polynomials. The only term in the coefficient that may cancel out with λ′21 is the term that contains λ′2. They must have the same degree, so we have 2(m−1)=n−1. By the same arguments, we have m−1=2(n−1) by considering λ′22 with λ′1. Then, we get a contradiction, and it yields that deg(λ1),deg(λ2) are both at most one.
Therefore, we can assume that λ1=a1z+b1 and λ2=a2z+b2 where a1≠a2 are constants, and b1,b2 are arbitrary constants. The transcendental terms and the corresponding coefficients in Table 1 can convert into those in Table 2. Since the three transcendental terms e2λ1, e2λ2 and eλ1+λ2 cannot be combined with each other, we get the following system of (3.16) with respect to the coefficients by Lemma 2.2.
{a21+2γa1+e2a1c+(2αa1+2β)⋅ea1c+1=0,a22+2γa2+e2a2c+(2αa2+2β)⋅ea2c+1=0,−2a1a2−2γ(a1+a2)−2e(a1+a2)c−(2αa1+2β)⋅ea2c−(2αa2+2β)⋅ea1c+4δ−2=0. | (3.16) |
Before | After | Corresponding coefficients |
e2λ1 | e2λ1 | a21+2γa1+1 |
e2¯λ1 | e2λ1 | e2a1c |
eλ1+¯λ1 | e2λ1 | (2αa1+2β)⋅ea1c |
e2λ2 | e2λ2 | a22+2γa2+1 |
e2¯λ2 | e2λ2 | e2a2c |
eλ2+¯λ2 | e2λ2 | (2αa2+2β)⋅ea2c |
eλ1+λ2 | eλ1+λ2 | −2a1a2−2γ(a1+a2)+4δ−2 |
e¯λ1+¯λ2 | eλ1+λ2 | −2e(a1+a2)c |
eλ1+¯λ2 | eλ1+λ2 | (−2αa1−2β)⋅ea2c |
e¯λ1+λ2 | eλ1+λ2 | (−2αa2−2β)⋅ea1c |
Adding the three equations in (3.16) together, they convert into
{a21+2γa1+e2a1c+(2αa1+2β)⋅ea1c+1=0,a22+2γa2+e2a2c+(2αa2+2β)⋅ea2c+1=0,[ea1c−ea2c+α(a1−a2)]2+(1−α2)(a1−a2)2+4δ=0. | (3.17) |
Therefore, the original (1.4) has solutions of the form
f(z)=ea1z+b1−ea2z+b22i√δ, |
where a1,a2(a1≠a2) are nonzero constants satisfying (3.17), and b1,b2 are arbitrary constants.
For an exponential polynomial f(z) with finite order, the exponents for each exponential terms of f′(z) are the same as those of f(z), but the exponents of f(qz) are not the same as the exponents of f(z) for q≠0,1. The term eg(z) in the right side of (1.6) with coefficient one must combine with one of these two kinds of exponential terms, transcendental terms in f(z) or f(qz), by Lemma 2.2. The following are divided into two cases for discussion.
Case 1. If eg(z) can combine with the exponential terms in f(z), then replacing f(z+c) by f(qz) in Section 3 and using the same methods in it we get
{f(z)=eλ1(z)−eλ2(z)2i√δ,f′(z)=λ′1(z)eλ1(z)−λ′2(z)eλ2(z)2i√δ,f(qz)=eλ1(qz)−eλ2(qz)2i√δ, | (4.1) |
where λ1(z),λ2(z),δ are the same as in Section 3, and we also have
u=f′(z)+αf(qz)+γf(z),v=f(qz)+β−αγ1−α2f(z). |
Substituting the above u,v into
u2+(1−α2)v2=(eλ1(z)+eλ2(z)2)2, | (4.2) |
it yields
[f′(z)]2+[f(qz)]2+β2+γ2−2αβγ1−α2f2(z)+2αf′(z)f(qz)+2βf(qz)f(z)+2γf′(z)f(z)=e2λ1(z)+e2λ2(z)+2eλ1(z)+λ2(z)4. | (4.3) |
For simplicity and convenience, we denote
λ1:=λ1(z),λ2:=λ2(z),~λ1:=λ1(qz),~λ2:=λ2(qz). |
Substituting (4.1) into (4.3) we get
λ′21e2λ1+λ′22e2λ2−2λ′1λ′2eλ1+λ2−4δ+e2~λ1+e2~λ2−2e~λ1+~λ2−4δ+β2+γ2−2αβγ1−α2⋅e2λ1+e2λ2−2eλ1+λ2−4δ+2α⋅λ′1eλ1+~λ1−λ′1eλ1+~λ2−λ′2e~λ1+λ2+λ′2eλ2+~λ2−4δ+2β⋅eλ1+~λ1−eλ1+~λ2−e~λ1+λ2+eλ2+~λ2−4δ+2γ⋅λ′1e2λ1−λ′1eλ1+λ2−λ′2eλ1+λ2+λ′2e2λ2−4δ=e2λ1+e2λ2+2eλ1+λ24. | (4.4) |
The transcendental terms appearing in (4.4) have exponents
2λ1,2λ2,λ1+λ2,2~λ1,2~λ2,~λ1+~λ2,λ1+~λ1,λ1+~λ2,~λ1+λ2andλ2+~λ2. |
In order to apply Lemma 2.2 to (4.4), we checked whether the pairwise difference between these exponents was constant. If λ1≡λ2, then f(z)≡0. This is impossible, so λ1≢λ2.
Subcase 1.1. If λ1(z)−λ2(z) is a nonzero constant, then p(z) is a nonzero constant, denoted by p in the following for simplicity. Consequently,
f(z)=w=(ep−e−p)eg(z)/22i√δ. | (4.5) |
Then,
f′(z)=(ep−e−p)eg(z)/22i√δ⋅g′(z)2 | (4.6) |
and
f(qz)=(ep−e−p)eg(qz)/22i√δ. | (4.7) |
Substituting (4.5)–(4.7) into (1.6), the terms in the left side of this equation can be expressed as
{[f′(z)]2=d2eg(z)−4δ⋅(g′(z))24,[f(qz)]2=d2eg(qz)−4δ,f2(z)=d2eg(z)−4δ,2αf′(z)f(qz)=2α⋅d2eg(z)+g(qz)2−4δ⋅g′(z)2,2βf(z)f(qz)=2β⋅d2eg(z)+g(qz)2−4δ,2γf(z)f′(z)=2γ⋅d2eg(z)−4δ⋅g′(z)2, | (4.8) |
where d:=ep−e−p.
If polynomial g(z) contains at least two nonconstant terms, without loss of generality, we set
g(z)=anzn+⋯+amzm+⋯+a0,n>m, |
then,
g(qz)=an(qz)n+⋯+am(qz)m+⋯+a0 |
and
g(qz)−g(z)=an(qn−1)zn+⋯+am(qm−1)zm+⋯. |
If g(qz)−g(z) is a constant and one has q=1, then this contradicts the assumption and g(qz)−g(z) is not a constant. By the same argument, g(qz)−g(z)+g(qz)2 is also not a constant. Therefore, the three exponential terms, eg(z),eg(qz) and eg(z)+g(qz)2, are pairwise distinct, even if we don't consider their constant coefficients. Substituting (4.8) into (1.6) and applying Lemma 2.2 to the obtained equation, we get that the coefficients of the three exponential terms are zero. In particular, d2−4δ=0 since it's the coefficient of the sole term eg(qz). This is impossible, because that means that f≡0.
So, g(z) is the form of g(z)=anzn+b, where an(≠0),b are constants. Substitute this into (4.8) and we obtain that
{[f′(z)]2=d2eanzn+b−4δ⋅(nanzn−1)24,[f(qz)]2=d2eanqnzn+b−4δ,f2(z)=d2eanzn+b−4δ,2αf′(z)f(qz)=2α⋅nanzn−12⋅d2ean(1+qn)zn2+b−4δ,2βf(z)f(qz)=2β⋅d2ean(1+qn)zn2+b−4δ,2γf(z)f′(z)=2γ⋅d2eanzn+b−4δ⋅nanzn−12, | (4.9) |
then take the above expressions into (1.6). If qn≠1, the expression of [f(qz)]2 has a zero coefficient by Lemma 2.2, that is d2−4δ=0, which is impossible, so qn=1. Then, for all z∈C we have
(nanzn−1)24+2+(α+β)nanzn−1+2β≡−4δd2 |
by eliminating eg(z) from both sides of (1.6), so n has to be one, and q=qn=1, which contradicts the assumption.
Subcase 1.2. If λ1−λ2 is not a constant, then p(z) is not a constant; instead, it is a nonconstant polynomial. We multiply −4δ, combine like terms in (4.4), and move all the terms to the left side of the equation, then the right side is just zero. Thus, the coefficients of the distinct transcendental terms are listed in Table 3.
Transcendental terms | Corresponding coefficients |
e2λ1 | λ′21+2γλ′1+1 |
e2λ2 | λ′22+2γλ′2+1 |
eλ1+λ2 | −2λ′1λ′2−2γ(λ′1+λ′2)+4δ−2 |
e2~λ1 | 1 |
e2~λ2 | 1 |
e~λ1+~λ2 | −2 |
eλ1+~λ1 | 2αλ′1+2β |
eλ1+~λ2 | −2αλ′1−2β |
e~λ1+λ2 | −2αλ′2−2β |
eλ2+~λ2 | 2αλ′2+2β |
By the same method in Case 2 of Section 3 (proof of Theorem 1.4), the degree of λ1(z) and λ2(z) both are at most one. Set λ1(z)=a1z+b1 and λ2(z)=a2z+b2, where a1≠a2, b1,b2 are arbitrary constants, then ~λ1(z)=a1qz+b1 and ~λ2(z)=a2qz+b2. Substituting these into Table 3, we get the results in Table 4.
No. | Before | After | Corresponding coefficients |
① | e2λ1 | e2a1z+2b1 | a21+2γa1+1 |
② | e2λ2 | e2a2z+2b2 | a22+2γa2+1 |
③ | eλ1+λ2 | e(a1+a2)z+b1+b2 | −2a1a2−2γ(a1+a2)+4δ−2 |
④ | e2~λ1 | e2a1qz+2b1 | 1 |
⑤ | e2~λ2 | e2a2qz+2b2 | 1 |
⑥ | e~λ1+~λ2 | e(a1+a2)qz+b1+b2 | −2 |
⑦ | eλ1+~λ1 | ea1(1+q)z+2b1 | 2αa1+2β |
⑧ | eλ1+~λ2 | e(a1+a2q)z+b1+b2 | −2αa1−2β |
⑨ | e~λ1+λ2 | e(a1q+a2)z+b1+b2 | −2αa2−2β |
⑩ | eλ2+~λ2 | ea2(1+q)z+2b2 | 2αa2+2β |
The coefficient of term ④ in Table 4 is one and it must combine with some like terms by Lemma 2.2. 2a1q in term ④ may be equal to 2a2 in term ②, a1+a2 in term ③, a1+a2q in term ⑧ and a2+a2q in term ⑩ since q≠1,a1≠a2. Then, we also considered that terms ⑤ and ⑥ must combine with some other like terms, respectively, since their coefficients are both nonzero, so there are many cases that have to be discussed. Through discussion for all possible cases, it is impossible to have a finite order entire solution (see the Appendix).
Case 2. If eg(z) can combine with the exponential terms in f(qz), then
{u=f′(z)+αf(qz)+γf(z),v=f(z)+β−αγ1−γ2f(qz),w=f(qz), | (4.10) |
and (1.6) can convert into
u2+(1−γ2)v2+δ′w2=eg(z), | (4.11) |
where
δ′:=1−α2−β2−γ2+2αβγ1−γ2. |
By the same method in Section 3, we have
{f(qz)=eλ1(z)−eλ2(z)2i√δ′,f(z)=eλ1(z/q)−eλ2(z/q)2i√δ′,f′(z)=λ′1eλ1(z/q)−λ′2eλ2(z/q)2qi√δ′, | (4.12) |
where
λ1(z)=p(z)+g(z)/2, λ2(z)=−p(z)+g(z)/2, |
p(z) is a polynomial. Here, λ1(z/q), λ2(z/q) are composite functions with respect to z, and according to the chain rule for derivatives, λ′1 and λ′2 represent the derivative of the outer function. By the same method in Case 1, we can divide into two subcases.
Subcase 2.1. If λ1(z)−λ2(z) is a constant, then (4.12) can be rewritten as
{f(z)=deg(z/q)22i√δ′,f′(z)=deg(z/q)22i√δ′⋅g′2q,f(qz)=deg(z)22i√δ′, | (4.13) |
where d=ep−e−p. Here, g(z/q) is a composite function with respect to z, and according to the chain rule for derivatives, g′ here represents the derivative of the outer function. Substituting (4.13) into each term in the right side of (1.6), we have
{[f′(z)]2=d2eg(z/q)−4δ′⋅(g′)24q2,[f(qz)]2=d2eg(z)−4δ′,f2(z)=d2eg(z/q)−4δ′,2αf′(z)f(qz)=2α⋅d2eg(z)+g(z/q)2−4δ′⋅g′2q,2βf(z)f(qz)=2β⋅d2eg(z)+g(z/q)2−4δ′,2γf(z)f′(z)=2γ⋅d2eg(z/q)−4δ′⋅g′2q. | (4.14) |
If polynomial g(z) contains at least two nonconstant terms, without loss of generality we set
g(z)=anzn+⋯+amzm+⋯+a0, n>m, |
then
g(z/q)=an(z/q)n+⋯+am(z/q)m+⋯+a0 |
and
g(z/q)−g(z)=an(1qn−1)zn+⋯+am(1qm−1)zm+⋯. |
If g(z/q)−g(z) is a constant and one has q=1, this contradicts the assumption and g(z/q)−g(z) is not a constant. By the same argument, g(z/q)−g(z)+g(z/q)2 is also not a constant. Therefore, the three exponential terms, eg(z),eg(qz) and eg(z)+g(qz)2, are distinct and can't combine like terms. Substituting (4.14) into (1.6) and applying Lemma 2.2 to the obtained equation, we get that the coefficients of the three exponential terms are zeroes after combining like terms:
{d2−4δ′−1≡0,d2−4δ′⋅(g′)24q2+d2−4δ′+2γ⋅d2−4δ′⋅g′2q≡0,2α⋅d2−4δ′⋅g′2q+2β⋅d2−4δ′≡0. | (4.15) |
Since the three equations hold for all z∈C, g(z/q) has a degree of one, and so does g(z).
Therefore, we can set g(z/q)=az+b, then g(z)=aqz+b, where a≠0 and b is an arbitrary constant. Noting that g′ represents the derivative of the outer function, so g′=aq, then the above equations convert into
{d2−4δ′=1,a24+1+2γa≡0,αa+2β≡0. | (4.16) |
Thus, it yields α2+β2−2αβγ=0 and γ2≠1.
In other words, (1.6) admits a solution in this case with the form f(z)=eaz+b2 and g(z)=aqz+b such that
{a24+1+2γa≡0,αa+2β≡0, | (4.17) |
then α2+β2−2αβγ=0 and γ2≠1.
Subcase 2.2. If λ1(z)−λ2(z) is nonconstant, then from (4.11) we have
u2+(1−γ2)v2=(eλ1(z)+eλ2(z)2)2. | (4.18) |
Substituting (4.10) into (4.18) we deduce that
[f′(z)]2+[f(z)]2+α2+β2−2αβγ1−γ2[f(qz)]2+2αf′(z)f(qz)+2βf(qz)f(z)+2γf′(z)f(z)=e2λ1(z)+e2λ2(z)+2eλ1(z)+λ2(z)4. | (4.19) |
For simplicity and convenience, we denote
λ1:=λ1(z),λ2:=λ2(z),^λ1:=λ1(z/q),^λ2:=λ2(z/q). |
Substituting (4.12) into (4.19) we obtain
1q2⋅λ′21e2^λ1+λ′22e2^λ2−2λ1′λ2′e^λ1+^λ2−4δ′+e2^λ1+e2^λ2−2e^λ1+^λ2−4δ′+α2+β2−2αβγ1−γ2⋅e2λ1+e2λ2−2eλ1+λ2−4δ′+2α⋅1q⋅λ′1eλ1+^λ1−λ′1e^λ1+λ2−λ′2eλ1+^λ2+λ′2eλ2+^λ2−4δ′+2β⋅eλ1+^λ1−eλ1+^λ2−e^λ1+λ2+eλ2+^λ2−4δ′+2γ⋅1q⋅λ′1e2^λ1−λ′1e^λ1+^λ2−λ′2e^λ1+^λ2+λ′2e2^λ2−4δ′=e2λ1+e2λ2+2eλ1+λ24. | (4.20) |
Let's multiply both sides of (4.20) by −4δ′ and move all terms to the left side of the equation. After combining the terms of the same kind, we get the results in Table 5. Using the method in Subcase 1.2, we can also obtain that there are no suitable finite order transcendental entire solutions for (1.6) in this case. The details are omitted here.
Transcendental terms | Corresponding coefficients |
e2λ1 | 1 |
e2λ2 | 1 |
eλ1+λ2 | 4δ′−2 |
e2^λ1 | 1q2⋅λ′21+2γq⋅λ′1+1 |
e2^λ2 | 1q2⋅λ′22+2γq⋅λ′2+1 |
e^λ1+^λ2 | −2q2λ′1λ′2−2γq(λ′1+λ′2)−2 |
eλ1+^λ1 | 2αqλ′1+2β |
eλ1+^λ2 | −2αqλ′2−2β |
e^λ1+λ2 | −2αqλ′1−2β |
eλ2+^λ2 | 2αqλ′2+2β |
In this paper we proved two theorems (Theorems 1.4 and 1.8), studied the finite order entire solutions of (1.4) and (1.6), respectively and found the concrete forms of solutions of these two equations, both of which were exponential functions. Examples 1.5 and 1.6 verified the two cases of solutions of the equation in Theorem 1.4, and Example 1.9 verified the truth of Theorem 1.8. The equations studied in this paper can be transformed into the Fermat-type equation with three quadratic terms by linear transformation, which improves the previous Fermat-type equations with only two quadratic terms, so it is very novel.
The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by Natural Science Foundation of Henan (No. 232300420129) and the Key Scientific Research Project of Colleges and Universities in Henan Province (No. 22A110004), China. The author would like to thank the referee for a careful reading of the manuscript and valuable comments.
The author declares no conflict of interest.
We divided Table 4 into the following four cases with 10 subcases, but in each case there is no finite order transcendental entire solution. The classification is based on the fact that terms ④, ⑤ and ⑥ in Table 4 must be combined with other terms, since their coefficients are nonzero. Otherwise, they contradict with Lemma 2.2.
Case A1. Term ④ can combine with term ② and ⑨ in Table 4, that is, a1q=a2. Since term ⑤ should also combine with other terms, we split into some subcases.
Subcase A1.1. Term ⑤ may combine with term ① in Table 4. Thus, we get the results in Table A1.
No. | Transcendental terms | Corresponding coefficients |
① | e2a1z | e2b1(a21+2γa1+1) |
② | e−2a1z | e2b2(a21−2γa1+1) |
③ | e0 | eb1+b2(2a21+4δ−2) |
④ | e−2a1z | e2b1 |
⑤ | e2a1z | e2b2 |
⑥ | e0 | −2eb1+b2 |
⑦ | e0 | e2b1(2αa1+2β) |
⑧ | e2a1z | eb1+b2(−2αa1−2β) |
⑨ | e−2a1z | eb1+b2(2αa1−2β) |
⑩ | e0 | e2b2(−2αa1+2β) |
After combining terms of the same kind in Table A1, according to Lemma 2.2, we know that the coefficients must always be zero, and the following equations were obtained
{e2b1(a21+2γa1+1)+e2b2+eb1+b2(−2αa1−2β)=0,e2b2(a21−2γa1+1)+e2b1+eb1+b2(2αa1−2β)=0,eb1+b2(a21+2δ−2)+e2b1(αa1+β)+e2b2(−αa1+β)=0. |
Thus, we have
{eb1=±eb2,α=±γ,β=±1, |
it yields δ=0, which is impossible.
Subcase A1.2. Term ⑤ may combine with term ③ in Table 4. Then, we obtained the results in Table A2 as follows.
No. | Transcendental terms | Corresponding coefficients |
① | e2a1z | e2b1(a21+2γa1+1) |
② | e−a1z | e2b2(a214−γa1+1) |
③ | ea12⋅z | eb1+b2(a21−γa1+4δ−2) |
④ | e−a1z | e2b1 |
⑤ | ea12⋅z | e2b2 |
⑥ | e−a14⋅z | −2eb1+b2 |
⑦ | ea12⋅z | e2b1(2αa1+2β)=0 |
⑧ | e5a14⋅z | eb1+b2(−2αa1−2β)=0 |
⑨ | e−a1z | eb1+b2(αa1−2β)=eb1+b2(−3β) |
⑩ | e−a14⋅z | e2b2(−αa1+2β) |
Combining terms of the same kind and according to Lemma 2.2, we know that the coefficients must always be zero, and the following equations are obtained
{e2b1(a21+2γa1+1)=0,e2b2(a214−γa1+1)+e2b1+eb1+b2(αa1−2β)=0,eb1+b2(a21−γa1+4δ−2)+e2b2+e2b1(2αa1+2β)=0,−2eb1+b2+e2b2(−αa1+2β)=0,eb1+b2(−2αa1−2β)=0. |
For the above equation system, there is no suitable solution a1.
Case A2. Term ④ can combine with term ③ in Table 4, that is, 2a1q=a1+a2. Since term ⑤ should also combine with other terms, we split it into three subcases.
Subcase A2.1. Term ⑤ may combine with term ① in Table 4. We get the results in Table A3.
No. | Transcendental terms | Corresponding coefficients |
① | e2a1z | e2b1(a21+2γa1+1) |
② | e−4a1z | e2b2(4a21−4γa1+1) |
③ | e−a1z | eb1+b2(4a21+2γa1+4δ−2) |
④ | e−a1z | e2b1 |
⑤ | e2a1z | e2b2 |
⑥ | ea12⋅z | −2eb1+b2 |
⑦ | ea12⋅z | e2b1(2αa1+2β) |
⑧ | e2a1z | eb1+b2(−2αa1−2β) |
⑨ | e−5a12z | eb1+b2(4αa1−2β) |
⑩ | e−a1z | e2b2(−4αa1+2β) |
From Table A3, after combining terms of the same kind, according to Lemma 2.2, we know that the coefficients must always be zero, and the following equations are obtained
{e2b1(a21+2γa1+1)+e2b2+eb1+b2(−2αa1−2β)=0,e2b2(4a21−4γa1+1)=0,eb1+b2(4a21+2γa1+4δ−2)+e2b1+e2b2(−4αa1+2β)=0,−2eb1+b2+e2b1(2αa1+2β)=0,eb1+b2(4αa1−2β)=0. |
For the above equation system, there is no suitable solution a1.
Subcase A2.2. Term ⑤ may combine with term ⑦ in Table 4. Then, we get the results in Table A4.
No. | Transcendental terms | Corresponding coefficients |
① | e2a1z | e2b1(a21+2γa1+1) |
② | e−3a1z | e2b2(94a21−3γa1+1) |
③ | e−12a1z | eb1+b2(3a21+γa1+4δ−2) |
④ | e−12a1z | e2b1 |
⑤ | e34a1z | e2b2 |
⑥ | e18a1z | −2eb1+b2 |
⑦ | e34a1⋅z | e2b1(2αa1+2β) |
⑧ | e118a1z | eb1+b2(−2αa1−2β) |
⑨ | e−7a14z | eb1+b2(3αa1−2β) |
⑩ | e−98a1z | e2b2(−3αa1+2β) |
In Table A4, the term ⑥ cannot combine with other transcendental terms; it's impossible.
Subcase A2.3. Term ⑤ may combine with term ⑨ in Table 4. Then, we deduce the results in Table A5.
No. | Transcendental terms | Corresponding coefficients |
① | e2a1z | e2b1(a21+2γa1+1) |
② | e−a1z | e2b2(a22+2γa2+1) |
③ | e12a1z | eb1+b2(−2a1a2−2γ(a1+a2)+4δ−2) |
④ | e12a1z | e2b1 |
⑤ | e−14a1z | e2b2 |
⑥ | e18a1z | −2eb1+b2 |
⑦ | e54a1z | e2b1(2αa1+2β) |
⑧ | e78a1z | eb1+b2(−2αa1−2β) |
⑨ | e−14a1z | eb1+b2(−2αa2−2β) |
⑩ | {\mathrm e}^{-\frac{5}{8}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
In Table A5, the term ⑥ cannot combine with other transcendental terms; it's impossible.
Case A3. Term ④ can combine with term ⑧ in Table 4, that is, 2a_1q = a_1+a_2q . Since term ⑤ should also combine with other terms, we split it into two subcases.
Subcase A3.1. Term ⑤ may combine with term ③ in Table 4. We get the results in Table A6.
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{1}{4}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{5}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{1}{2}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{7}{4}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{5}{2}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
The term ⑥ cannot combine with other transcendental terms; this is impossible.
Subcase A3.2. Term ⑤ may combine with term ⑨ in Table 4. We get the results in Table A7.
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{0} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{2}{3}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{0} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{4}{3}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{2}{3}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{2}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{4}{3}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
By ⑦ and ⑩ in Table A7, we have a_1 = a_2 , which is a contradiction.
Case A4. Term ④ can combine with term ⑩ in Table 4, that is, 2a_1q = a_2+a_2q . Since term ⑤ should also combine with other terms, we split it into three subcases.
Subcase A4.1. Term ⑤ may combine with term ① in Table 4. We get the results in Table A8.
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(4a_1^2-4\gamma a_1+1\right) |
③ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(4a_1^2+2\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{2}a_1} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{5}{2}a_1z} | {\mathrm e}^{b_1+b_2}\left(4\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2}\left(-4\alpha a_1+2\beta\right) |
Subcase A4.2. Term ⑤ may combine with term ③ in Table 4. Then, we have the results in Table A9.
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-\frac{4}{3}a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{\frac{1}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{1}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{1}{12}a_1} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{3}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{7}{6}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{11}{12}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{1}{2}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
The term ⑥ cannot combine with other transcendental terms; it's impossible.
Subcase A4.3. Term ⑤ may combine with term ⑦ in Table 4. Then, we get the results in Table A10.
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{0} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{2}{3}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{0} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{2}{3}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{4}{3}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{4}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
From ⑧ and ⑨ in Table A10, we have a_1 = a_2 ; it's impossible.
[1] |
Y. Seo, S. Kim, O. Kisi, V. P. Singh, Daily water level forecasting using wavelet decomposition and artificial intelligence techniques, J. Hydrol., 520 (2015), 224-243. https://doi.org/10.1016/j.jhydrol.2014.11.050 doi: 10.1016/j.jhydrol.2014.11.050
![]() |
[2] |
G. Wei, M. Lu, Pythagorean fuzzy power aggregation operators in multiple attribute decision making, Int. J. Intell. Syst., 33 (2018), 169-186. https://doi.org/10.1002/int.21946 doi: 10.1002/int.21946
![]() |
[3] |
O. Castillo, L. Amador-Angulo, J. R. Castro, M. Garcia-Valdez, A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems, Inform. Sci., 354 (2016), 257-274. https://doi.org/10.1016/j.ins.2016.03.026 doi: 10.1016/j.ins.2016.03.026
![]() |
[4] |
G. Wei, Y. Wei, Similarity measures of Pythagorean fuzzy sets based on the cosine function and their applications, Int. J. Intell. Syst., 33 (2018), 634-652. https://doi.org/10.1002/int.21965 doi: 10.1002/int.21965
![]() |
[5] |
L. Sahoo, Some score functions on Fermatean fuzzy sets and its application to bride selection based on TOPSIS method, Int. J. Fuzzy Syst. Appl., 10 (2021), 18-29. https://doi.org/10.4018/IJFSA.2021070102 doi: 10.4018/IJFSA.2021070102
![]() |
[6] |
H. T. X. Chi, F. Y. Vincent, Ranking generalized fuzzy numbers based on centroid and rank index, Appl. Soft Comput., 68 (2018), 283-292. https://doi.org/10.1016/j.asoc.2018.03.050 doi: 10.1016/j.asoc.2018.03.050
![]() |
[7] |
M. S. Kuo, G. S. Liang, W. C. Huang, Extensions of the multicriteria analysis with pairwise comparison under a fuzzy environment, Int. J. Approx. Reason., 43 (2006), 268-285. https://doi.org/10.1016/j.ijar.2006.04.006 doi: 10.1016/j.ijar.2006.04.006
![]() |
[8] |
J. Pan, S. Rahman, Multiattribute utility analysis with imprecise information: An enhanced decision support technique for the evaluation of electric generation expansion strategies, Electr. Pow. Syst. Res., 46 (1998), 101-109. https://doi.org/10.1016/S0378-7796(98)00022-4 doi: 10.1016/S0378-7796(98)00022-4
![]() |
[9] |
S. Y. Chou, Y. H. Chang, C. Y. Shen, A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes, Eur. J. Oper. Res., 189 (2008), 132-145. https://doi.org/10.1016/j.ejor.2007.05.006 doi: 10.1016/j.ejor.2007.05.006
![]() |
[10] | C. L. Hwang, K. Yoon, Methods for multiple attribute decision making, In: Multiple Attribute Decision Making, Berlin, Heidelberg: Springer, 1981, 58-191. https://doi.org/10.1007/978-3-642-48318-9_3 |
[11] |
G. Nalcaci, A. Özmen, G. W. Weber, Long-term load forecasting: models based on MARS, ANN and LR methods, Cent. Eur. J. Oper. Res., 27 (2019), 1033-1049. https://doi.org/10.1007/s10100-018-0531-1 doi: 10.1007/s10100-018-0531-1
![]() |
[12] |
M. A. Ahmadi, M. Ebadi, A. Shokrollahi, S. M. J. Majidi, Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir, Appl. Soft Comput., 13 (2013), 1085-1098. https://doi.org/10.1016/j.asoc.2012.10.009 doi: 10.1016/j.asoc.2012.10.009
![]() |
[13] |
A. F. Hayes, A. K. Montoya, A tutorial on testing, visualizing, and probing an interaction involving a multicategorical variable in linear regression analysis, Commun. Methods. Meas., 11 (2017), 1-30. https://doi.org/10.1080/19312458.2016.1271116 doi: 10.1080/19312458.2016.1271116
![]() |
[14] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[15] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96. https://dl.acm.org/doi/10.5555/1708507.1708520 |
[16] |
Z. Xu, Intuitionistic fuzzy aggregation operator, IEEE T. Fuzzy Syst., 15 (2007), 1179-1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
![]() |
[17] |
H. Garg, A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems, Appl. Soft Comput., 38 (2016), 988-999. https://doi.org/10.1016/j.asoc.2015.10.040 doi: 10.1016/j.asoc.2015.10.040
![]() |
[18] |
F. Feng, H. Fujita, M. I. Ali, R. R. Yager, X. Liu, Another view on generalized intuitionistic fuzzy soft sets and related multiattribute decision making methods, IEEE T. Fuzzy Syst., 27 (2019), 474-488. https://doi.org/10.1109/TFUZZ.2018.2860967 doi: 10.1109/TFUZZ.2018.2860967
![]() |
[19] |
R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, Int. J. Intell. Syst., 28 (2013), 436-452. https://doi.org/10.1002/int.21584 doi: 10.1002/int.21584
![]() |
[20] |
Z. Li, G. Wei, M. Lu, Pythagorean fuzzy hamy mean operators in multiple attribute group decision making and their application to supplier selection, Symmetry, 10 (2018), 505. https://doi.org/10.3390/sym10100505 doi: 10.3390/sym10100505
![]() |
[21] |
K. Naeem, M. Riaz, X. Peng, D. Afzal, Pythagorean fuzzy soft MCGDM methods based on TOPSIS, VIKOR and aggregation operators, J. Intell. Fuzzy Syst., 37 (2019), 6937-6957. https://doi.org/10.3233/JIFS-190905 doi: 10.3233/JIFS-190905
![]() |
[22] |
M. Akram, M. Ramzan, M. Deveci, Linguistic Pythagorean fuzzy CRITIC-EDAS method for multiple-attribute group decision analysis, Eng. Appl. Artif. Intell., 119 (2023), 105777. https://doi.org/10.1016/j.engappai.2022.105777 doi: 10.1016/j.engappai.2022.105777
![]() |
[23] |
S. Singh, A. H. Ganie, On some correlation coefficients in Pythagorean fuzzy environment with applications, Int. J. Intell. Syst., 35 (2020), 682-717. https://doi.org/10.1002/int.22222 doi: 10.1002/int.22222
![]() |
[24] |
R. Verma, J. M. Merigó, On generalized similarity measures for Pythagorean fuzzy sets and their applications to multiple attribute decision‐making, Int. J. Intell. Syst., 34 (2019), 2556-2583. https://doi.org/10.1002/int.22160 doi: 10.1002/int.22160
![]() |
[25] |
T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Ambient Intell. Hum. Comput., 11 (2020), 663-674. https://doi.org/10.1007/s12652-019-01377-0 doi: 10.1007/s12652-019-01377-0
![]() |
[26] |
T. Senapati, R. R. Yager, Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods, Eng. Appl. Artif. Intell., 85 (2019), 112-121. https://doi.org/10.1016/j.engappai.2019.05.012 doi: 10.1016/j.engappai.2019.05.012
![]() |
[27] |
Y. Pan, S. Z. Zeng, W. Chen, J. Gu, Service quality evaluation of crowdsourcing logistics platform based on Fermatean fuzzy TODIM and regret theory, Eng. Appl. Artif. Intell., 123 (2023), 106385. https://doi.org/10.1016/j.engappai.2023.106385 doi: 10.1016/j.engappai.2023.106385
![]() |
[28] |
A. H. Ganie, Multicriteria decision-making based on distance measures and knowledge measures of Fermatean fuzzy sets, Granul. Comput., 7 (2022), 979-998. https://doi.org/10.1007/s41066-021-00309-8 doi: 10.1007/s41066-021-00309-8
![]() |
[29] |
Z. Deng, J. Wang, New distance measure for Fermatean fuzzy sets and its application, Int. J. Intell. Syst., 37 (2022), 1903-1930. https://doi.org/10.1002/int.22760 doi: 10.1002/int.22760
![]() |
[30] |
C. Xu, J. Shen, Multi-criteria decision making and pattern recognition based on similarity measures for Fermatean fuzzy sets, J. Intell. Fuzzy Syst., 41 (2021), 5847-5863. https://doi.org/10.3233/JIFS-201557 doi: 10.3233/JIFS-201557
![]() |
[31] |
L. Sahoo, A new score function based Fermatean fuzzy transportation problem, Results Control Optim., 4 (2022), 100040. https://doi.org/10.1016/j.rico.2021.100040 doi: 10.1016/j.rico.2021.100040
![]() |
[32] |
L. Zhou, S. Wan, J. Dong, A Fermatean fuzzy ELECTRE method for multi-criteria group decision-making, Informatica, 33 (2022), 181-224. https://doi.org/10.15388/21-INFOR463 doi: 10.15388/21-INFOR463
![]() |
[33] |
V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529-539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418
![]() |
[34] |
J. Peng, J. Wang, X. Wu, Novel multi-criteria decision-making approaches based on hesitant fuzzy sets and prospect theory, Int. J. Inf. Tech. Decis., 15 (2016), 621-643. https://doi.org/10.1142/S0219622016500152 doi: 10.1142/S0219622016500152
![]() |
[35] |
J. Peng, J. Wang, X. Wu, H. Zhang, X. Chen, The fuzzy cross-entropy for intuitionistic hesitant fuzzy sets and their application in multi-criteria decision-making, Int. J. Syst. Sci., 46 (2015), 2335-2350. https://doi.org/10.1080/00207721.2014.993744 doi: 10.1080/00207721.2014.993744
![]() |
[36] |
B. Farhadinia, Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets, Inform. Sci., 240 (2013), 129-144. https://doi.org/10.1016/j.ins.2013.03.034 doi: 10.1016/j.ins.2013.03.034
![]() |
[37] |
M. Khan, S. Abdullah, A. Ali, F. Amin, F. Hussain, Pythagorean hesitant fuzzy Choquet integral aggregation operators and their application to multi-attribute decision-making, Soft Comput., 23 (2019), 251-267. https://doi.org/10.1007/s00500-018-3592-0 doi: 10.1007/s00500-018-3592-0
![]() |
[38] |
A. Hussain, M. I. Ali, T. Mahmood, Hesitant q-rung orthopair fuzzy aggregation operators with their applications in multi-criteria decision making, Iran. J. Fuzzy Syst., 17 (2020), 117-134. https://doi.org/10.22111/IJFS.2020.5353 doi: 10.22111/IJFS.2020.5353
![]() |
[39] |
H. M. A. Farid, M. Riaz, B. Almohsin, D. Marinkovic, Optimizing filtration technology for contamination control in gas processing plants using hesitant q-rung orthopair fuzzy information aggregation, Soft Comput., 2023. https://doi.org/10.1007/s00500-023-08588-w doi: 10.1007/s00500-023-08588-w
![]() |
[40] |
A. R. Mishra, S. M. Chen, P. Rani, Multiattribute decision making based on Fermatean hesitant fuzzy sets and modified VIKOR method, Inform. Sci., 607 (2022), 1532-1549. https://doi.org/10.1016/j.ins.2022.06.037 doi: 10.1016/j.ins.2022.06.037
![]() |
[41] |
M. Kirişci, Fermatean Hesitant Fuzzy Sets for Multiple Criteria Decision-Making with Applications, Fuzzy Inform. Eng., 15 (2023), 100-127. https://doi.org/10.26599/fie.2023.9270011 doi: 10.26599/fie.2023.9270011
![]() |
[42] |
A. Khan, M. Aslam, Q. Iqbal, Cyclone disaster assessment based on Fermatean hesitant fuzzy information and extended TOPSIS method, J. Intell. Fuzzy Syst., 44 (2023), 10633-10660. https://doi.org/10.3233/JIFS-222144 doi: 10.3233/JIFS-222144
![]() |
[43] |
H. Lai, H. Liao, Y. Long, E. K. Zavadskas, A Hesitant Fermatean Fuzzy CoCoSo Method for Group Decision-Making and an Application to Blockchain Platform Evaluation, Int. J. Fuzzy Syst., 24 (2022), 2643-2661. https://doi.org/10.1007/s40815-022-01319-7 doi: 10.1007/s40815-022-01319-7
![]() |
[44] |
Y. Wang, X. Ma, H. Qin, H. Sun, W. Wei, Hesitant Fermatean fuzzy Bonferroni mean operators for multi-attribute decision-making, Complex Intell. Syst., 2023. https://doi.org/10.1007/s40747-023-01203-3 doi: 10.1007/s40747-023-01203-3
![]() |
[45] |
C. Y. Ruan, X. J. Chen, L. N. Han, Fermatean Hesitant Fuzzy Prioritized Heronian Mean Operator and Its Application in Multi-Attribute Decision Making, Comput. Mater. Con., 75 (2023), 3204-3222. https://doi.org/10.32604/cmc.2023.035480 doi: 10.32604/cmc.2023.035480
![]() |
[46] |
L. Sha, Y. Shao, Fermatean Hesitant Fuzzy Choquet Integral Aggregation Operators, IEEE Access, 11 (2023), 38548-38562. https://doi.org/10.1109/ACCESS.2023.3267512 doi: 10.1109/ACCESS.2023.3267512
![]() |
[47] |
A. R. Mishra, P. Liu, P. Rani, COPRAS method based on interval-valued hesitant Fermatean fuzzy sets and its application in selecting desalination technology, Appl. Soft Comput., 119 (2022), 108570. https://doi.org/10.1016/j.asoc.2022.108570 doi: 10.1016/j.asoc.2022.108570
![]() |
[48] |
I. Demir, Novel correlation coefficients for interval-valued Fermatean hesitant fuzzy sets with pattern recognition application, Turkish J. Math., 47 (2023), 213-233. https://doi.org/10.55730/1300-0098.3355 doi: 10.55730/1300-0098.3355
![]() |
[49] |
W. Zeng, H. Cui, Y. Liu, Q. Yin, Z. Xu, Novel distance measure between intuitionistic fuzzy sets and its application in pattern recognition, Iran. J. Fuzzy Syst., 19 (2022), 127-137. https://doi.org/10.22111/IJFS.2022.6947 doi: 10.22111/IJFS.2022.6947
![]() |
[50] |
Y. Washizawa, S. Hotta, Mahalanobis distance on extended Grassmann manifolds for variational pattern analysis, IEEE T. Neur. Net. Learn. Syst., 25 (2014), 1980-1990. https://doi.org/10.1109/TNNLS.2014.2301178 doi: 10.1109/TNNLS.2014.2301178
![]() |
[51] |
H. Kamacı, F. Marinkovic, S. Petchimuthu, M. Riaz, S. Ashraf, Novel distance-measures-based extended TOPSIS method under linguistic linear Diophantine fuzzy information, Symmetry, 14 (2022), 2140. https://doi.org/10.3390/sym14102140 doi: 10.3390/sym14102140
![]() |
[52] |
D. Liu, Y. Liu, L. Wang, Distance measure for Fermatean fuzzy linguistic term sets based on linguistic scale function: An illustration of the TODIM and TOPSIS methods, Int. J. Intell. Syst., 34 (2019), 2807-2834. https://doi.org/10.1002/int.22162 doi: 10.1002/int.22162
![]() |
[53] |
S. Yang, Y. Pan, S. Zeng, Decision making framework based Fermatean fuzzy integrated weighted distance and TOPSIS for green low-carbon port evaluation, Eng. Appl. Artif. Intell., 114 (2022), 105048. https://doi.org/10.1016/j.engappai.2022.105048 doi: 10.1016/j.engappai.2022.105048
![]() |
[54] |
M. Kirişci, New cosine similarity and distance measures for Fermatean fuzzy sets and TOPSIS approach, Knowl. Inf. Syst., 65 (2023), 855-868. https://doi.org/10.1007/s10115-022-01776-4 doi: 10.1007/s10115-022-01776-4
![]() |
[55] |
A. H. Ganie, Multicriteria decision-making based on distance measures and knowledge measures of Fermatean fuzzy sets, Granul. Comput., 7 (2022), 979-998. https://doi.org/10.1007/s41066-021-00309-8 doi: 10.1007/s41066-021-00309-8
![]() |
[56] |
Z. Deng, J. Wang, New distance measure for Fermatean fuzzy sets and its application, Int. J. Intell. Syst., 37 (2022), 1903-1930. https://doi.org/10.1002/int.22760 doi: 10.1002/int.22760
![]() |
[57] |
S. Zeng, J. Gu, X. Peng, Low‑carbon cities comprehensive evaluation method based on Fermatean fuzzy hybrid distance measure and TOPSIS, Artif. Intell. Rev., 56 (2023), 8591-8607. https://doi.org/10.1007/s10462-022-10387-y doi: 10.1007/s10462-022-10387-y
![]() |
[58] |
Z. Xu, J. Chen, Ordered weighted distance measure, J. Syst. Sci. Syst. Eng., 17 (2008), 432-445. https://doi.org/10.1007/s11518-008-5084-8 doi: 10.1007/s11518-008-5084-8
![]() |
[59] |
L. Zhou, J. Wu, H. Chen, Linguistic continuous ordered weighted distance measure and its application to multiple attributes group decision making, Appl. Soft Comput., 25 (2014), 266-276. https://doi.org/10.1016/j.asoc.2014.09.027 doi: 10.1016/j.asoc.2014.09.027
![]() |
[60] |
S. Zeng, J. M. Merigo, D. Palacios-Marques, H. Jin, F. Gu, Intuitionistic fuzzy induced ordered weighted averaging distance operator and its application to decision making, J. Intell. Fuzzy Syst., 32 (2017), 11-22. https://doi.org/10.3233/JIFS-141219 doi: 10.3233/JIFS-141219
![]() |
[61] |
Y. Qin, Y. Liu, Z. Hong, Multicriteria decision making method based on generalized Pythagorean fuzzy ordered weighted distance measures, J. Intell. Fuzzy Syst., 33 (2017), 3665-3675. https://doi.org/10.3233/JIFS-17506 doi: 10.3233/JIFS-17506
![]() |
[62] |
Z. Xu, M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inform. Sci., 181 (2011), 2128-2138. https://doi.org/10.1016/j.ins.2011.01.028 doi: 10.1016/j.ins.2011.01.028
![]() |
[63] |
H. Liu, J. You, X. You, Evaluating the risk of healthcare failure modes using interval 2-tuple hybrid weighted distance measure, Comput. Ind. Eng., 78 (2014), 249-258. https://doi.org/10.1016/j.cie.2014.07.018 doi: 10.1016/j.cie.2014.07.018
![]() |
[64] |
S. Zeng, J. Chen, X. Li, A hybrid method for Pythagorean fuzzy multiple-criteria decision making, Int. J. Inf. Tech. Decis., 15 (2016), 403-422. https://doi.org/10.1142/S0219622016500012 doi: 10.1142/S0219622016500012
![]() |
[65] |
Q. Ding, Y. Wang, M. Goh, TODIM dynamic emergency decision-making method based on hybrid weighted distance under probabilistic hesitant fuzzy information, Int. J. Fuzzy Syst., 23 (2021), 474-491. https://doi.org/10.1007/s40815-020-00978-8 doi: 10.1007/s40815-020-00978-8
![]() |
[66] |
S. Zeng, J. Gu, X. Peng, Low-carbon cities comprehensive evaluation method based on Fermatean fuzzy hybrid distance measure and TOPSIS, Artif. Intell. Rev., 56 (2023), 8591-8607. https://doi.org/10.1007/s10462-022-10387-y doi: 10.1007/s10462-022-10387-y
![]() |
[67] |
Z. Xu, An overview of methods for determining OWA weights, Int. J. Intell. Syst., 20 (2005), 843-865. https://doi.org/10.1002/int.20097 doi: 10.1002/int.20097
![]() |
[68] |
X. Gou, Z. Xu, H. Liao, Hesitant fuzzy linguistic entropy and cross-entropy measures and alternative queuing method for multiple criteria decision making, Inform. Sci., 388 (2017), 225-246. https://doi.org/10.1016/j.ins.2017.01.033 doi: 10.1016/j.ins.2017.01.033
![]() |
[69] |
J. Rezaei, T. Nispeling, J. Sarkis, L. Tavasszy, A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method, J. Clean. Prod., 135 (2016), 577-588. https://doi.org/10.1016/j.jclepro.2016.06.125 doi: 10.1016/j.jclepro.2016.06.125
![]() |
[70] |
K. Krishnamoorthy, M. Lee, Improved tests for the equality of normal coefficients of variation, Comput. Stat., 29 (2014), 215-232. https://doi.org/10.1007/s00180-013-0445-2 doi: 10.1007/s00180-013-0445-2
![]() |
[71] |
S. Zeng, Y. Hu, C. Llopis-Albert, Stakeholder-inclusive multi-criteria development of smart cities, J. Bus. Res., 154 (2023), 113281. https://doi.org/10.1016/j.jbusres.2022.08.045 doi: 10.1016/j.jbusres.2022.08.045
![]() |
[72] |
B. Sennaroglu, G. V. Celebi, A military airport location selection by AHP integrated PROMETHEE and VIKOR methods, Transport. Res. D-Tr. E., 59 (2018), 160-173. https://doi.org/10.1016/j.trd.2017.12.022 doi: 10.1016/j.trd.2017.12.022
![]() |
[73] |
M. S. A. Khan, F. Anjum, I. Ullah, T. Senapati, S. Moslem, Priority Degrees and Distance Measures of Complex Hesitant Fuzzy Sets With Application to Multi-Criteria Decision Making, IEEE Access, 11 (2023), 13647-13666. https://doi.org/10.1109/ACCESS.2022.3232371 doi: 10.1109/ACCESS.2022.3232371
![]() |
[74] |
X. Sha, C. Yin, Z. Xu, Weighted hesitant fuzzy Lance distance measure of dimension reduction based on exponential entropy and its application, Control. Decis., 35 (2020), 728-734. https://doi.org/10.13195/j.kzyjc.2018.0910 doi: 10.13195/j.kzyjc.2018.0910
![]() |
1. | Yihui Gong, Qi Yang, On Entire Solutions of Two Fermat-Type Differential-Difference Equations, 2025, 51, 1017-060X, 10.1007/s41980-024-00942-4 |
Transcendental terms | Corresponding coefficients |
{\mathrm e}^{2{\lambda_1}} | \lambda_1'^2+2\gamma\lambda_1'+1 |
{\mathrm e}^{2{\lambda_2}} | \lambda_2'^2+2\gamma\lambda_2'+1 |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2\lambda_1'\lambda_2'-2\gamma(\lambda_1'+\lambda_2')+4\delta-2 |
{\mathrm e}^{2{\overline{\lambda_1}}} | 1 |
{\mathrm e}^{2{\overline{\lambda_2}}} | 1 |
{\mathrm e}^{\overline{{\lambda_1}}+\overline{{\lambda_2}}} | -2 |
{\mathrm e}^{{\lambda_1}+\overline{{\lambda_1}}} | 2\alpha\lambda_1'+2\beta |
{\mathrm e}^{{\lambda_1}+\overline{{\lambda_2}}} | -2\alpha\lambda_1'-2\beta |
{\mathrm e}^{\overline{{\lambda_1}}+{\lambda_2}} | -2\alpha\lambda_2'-2\beta |
{\mathrm e}^{{\lambda_2}+\overline{{\lambda_2}}} | 2\alpha\lambda_2'+2\beta |
Before | After | Corresponding coefficients |
{\mathrm e}^{2{ \lambda_1}} | {\mathrm e}^{2{ \lambda_1}} | a_1^2+2\gamma a_1+1 |
{\mathrm e}^{2{\overline{ \lambda_1}}} | {\mathrm e}^{2{ \lambda_1}} | {\mathrm e}^{2a_1c} |
{\mathrm e}^{{ \lambda_1}+\overline{{ \lambda_1}}} | {\mathrm e}^{2{ \lambda_1}} | (2\alpha a_1+2\beta)\cdot {\mathrm e}^{a_1c} |
{\mathrm e}^{2{ \lambda_2}} | {\mathrm e}^{2{ \lambda_2}} | a_2^2+2\gamma a_2+1 |
{\mathrm e}^{2{\overline{\lambda_2}}} | {\mathrm e}^{2{\lambda_2}} | {\mathrm e}^{2a_2c} |
{\mathrm e}^{{\lambda_2}+\overline{{\lambda_2}}} | {\mathrm e}^{2{\lambda_2}} | (2\alpha a_2+2\beta)\cdot {\mathrm e}^{a_2c} |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2 a_1 a_2-2\gamma(a_1+ a_2)+4\delta-2 |
{\mathrm e}^{\overline{{\lambda_1}}+\overline{{\lambda_2}}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2{\mathrm e}^{(a_1+a_2)c} |
{\mathrm e}^{{\lambda_1}+\overline{{\lambda_2}}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | (-2\alpha a_1-2\beta)\cdot {\mathrm e}^{a_2c} |
{\mathrm e}^{\overline{{\lambda_1}}+{\lambda_2}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | (-2\alpha a_2-2\beta)\cdot {\mathrm e}^{a_1c} |
Transcendental terms | Corresponding coefficients |
{\mathrm e}^{2{\lambda_1}} | \lambda_1'^2+2\gamma\lambda_1'+1 |
{\mathrm e}^{2{\lambda_2}} | \lambda_2'^2+2\gamma\lambda_2'+1 |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2\lambda_1'\lambda_2'-2\gamma(\lambda_1'+\lambda_2')+4\delta-2 |
{\mathrm e}^{2{\widetilde{\lambda_1}}} | 1 |
{\mathrm e}^{2{\widetilde{\lambda_2}}} | 1 |
{\mathrm e}^{\widetilde{{\lambda_1}}+\widetilde{{\lambda_2}}} | -2 |
{\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_1}}} | 2\alpha\lambda_1'+2\beta |
{\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_2}}} | -2\alpha\lambda_1'-2\beta |
{\mathrm e}^{\widetilde{{\lambda_1}}+{\lambda_2}} | -2\alpha\lambda_2'-2\beta |
{\mathrm e}^{{\lambda_2}+\widetilde{{\lambda_2}}} | 2\alpha\lambda_2'+2\beta |
No. | Before | After | Corresponding coefficients |
① | {\mathrm e}^{2{\lambda_1}} | {\mathrm e}^{2a_1z+2b_1} | a_1^2+2\gamma a_1+1 |
② | {\mathrm e}^{2{\lambda_2}} | {\mathrm e}^{2a_2z+2b_2} | a_2^2+2\gamma a_2+1 |
③ | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | {\mathrm e}^{(a_1+a_2)z+b_1+b_2} | -2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2 |
④ | {\mathrm e}^{2{\widetilde{\lambda_1}}} | {\mathrm e}^{2a_1qz+2b_1} | 1 |
⑤ | {\mathrm e}^{2{\widetilde{\lambda_2}}} | {\mathrm e}^{2a_2qz+2b_2} | 1 |
⑥ | {\mathrm e}^{\widetilde{{\lambda_1}}+\widetilde{{\lambda_2}}} | {\mathrm e}^{(a_1+a_2)qz+b_1+b_2} | -2 |
⑦ | {\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_1}}} | {\mathrm e}^{a_1(1+q)z+2b_1} | 2\alpha a_1+2\beta |
⑧ | {\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_2}}} | {\mathrm e}^{(a_1+a_2q)z+b_1+b_2} | -2\alpha a_1-2\beta |
⑨ | {\mathrm e}^{\widetilde{{\lambda_1}}+{\lambda_2}} | {\mathrm e}^{(a_1q+a_2)z+b_1+b_2} | -2\alpha a_2-2\beta |
⑩ | {\mathrm e}^{{\lambda_2}+\widetilde{{\lambda_2}}} | {\mathrm e}^{a_2(1+q)z+2b_2} | 2\alpha a_2+2\beta |
Transcendental terms | Corresponding coefficients |
{\mathrm e}^{2{\lambda_1}} | 1 |
{\mathrm e}^{2{\lambda_2}} | 1 |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | 4\delta'-2 |
{\mathrm e}^{2{\widehat{\lambda_1}}} | \frac{1}{q^2}\cdot \lambda_1'^2+\frac{2\gamma}{q}\cdot \lambda_1'+1 |
{\mathrm e}^{2{\widehat{\lambda_2}}} | \frac{1}{q^2}\cdot \lambda_2'^2+\frac{2\gamma}{q}\cdot \lambda_2'+1 |
{\mathrm e}^{\widehat{{\lambda_1}}+\widehat{{\lambda_2}}} | -\frac{2}{q^2}\lambda_1'\lambda_2'-\frac{2\gamma}{q}(\lambda_1'+\lambda_2')-2 |
{\mathrm e}^{{\lambda_1}+\widehat{\lambda_1}} | \frac{2\alpha}{q}\lambda_1'+2\beta |
{\mathrm e}^{{\lambda_1}+\widehat{\lambda_2}} | -\frac{2\alpha}{q}\lambda_2'-2\beta |
{\mathrm e}^{\widehat{{\lambda_1}}+{\lambda_2}} | -\frac{2\alpha}{q}\lambda_1'-2\beta |
{\mathrm e}^{{\lambda_2}+\widehat{\lambda_2}} | \frac{2\alpha}{q}\lambda_2'+2\beta |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_1^2-2\gamma a_1+1\right) |
③ | {\mathrm e}^0 | {\mathrm e}^{b_1+b_2}\left(2a_1^2+4\delta-2\right) |
④ | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^0 | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^0 | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-2a_1z} | {\mathrm e}^{b_1+b_2}\left(2\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^0 | {\mathrm e}^{2b_2}\left(-2\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_2}\left(\frac{a_1^2}{4}-\gamma a_1+1\right) |
③ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{b_1+b_2}\left(a_1^2-\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{a_1}{4}\cdot z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right)=0 |
⑧ | {\mathrm e}^{\frac{5a_1}{4}\cdot z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right)=0 |
⑨ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(\alpha a_1-2\beta\right)={\mathrm e}^{b_1+b_2}(-3\beta) |
⑩ | {\mathrm e}^{-\frac{a_1}{4}\cdot z} | {\mathrm e}^{2b_2}\left(-\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(4{a_1^2}-4\gamma a_1+1\right) |
③ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{b_1+b_2}\left(4a_1^2+2\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{5a_1}{2}z} | {\mathrm e}^{b_1+b_2}\left(4\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2}\left(-4\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-3a_1z} | {\mathrm e}^{2b_2}\left(\frac{9}{4}{a_1^2}-3\gamma a_1+1\right) |
③ | {\mathrm e}^{-\frac{1}{2}a_1 z} | {\mathrm e}^{b_1+b_2}\left(3a_1^2+\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{3}{4}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{8}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{3}{4}a_1\cdot z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{11}{8}a_1 z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{7a_1}{4}z} | {\mathrm e}^{b_1+b_2}\left(3\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{9}{8}a_1 z} | {\mathrm e}^{2b_2}\left(-3\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-\frac{1}{4}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{8}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{5}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{7}{8}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{1}{4}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{5}{8}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{1}{4}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{5}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{1}{2}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{7}{4}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{5}{2}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{0} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{2}{3}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{0} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{4}{3}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{2}{3}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{2}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{4}{3}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(4a_1^2-4\gamma a_1+1\right) |
③ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(4a_1^2+2\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{2}a_1} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{5}{2}a_1z} | {\mathrm e}^{b_1+b_2}\left(4\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2}\left(-4\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-\frac{4}{3}a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{\frac{1}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{1}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{1}{12}a_1} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{3}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{7}{6}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{11}{12}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{1}{2}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{0} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{2}{3}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{0} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{2}{3}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{4}{3}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{4}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
Transcendental terms | Corresponding coefficients |
{\mathrm e}^{2{\lambda_1}} | \lambda_1'^2+2\gamma\lambda_1'+1 |
{\mathrm e}^{2{\lambda_2}} | \lambda_2'^2+2\gamma\lambda_2'+1 |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2\lambda_1'\lambda_2'-2\gamma(\lambda_1'+\lambda_2')+4\delta-2 |
{\mathrm e}^{2{\overline{\lambda_1}}} | 1 |
{\mathrm e}^{2{\overline{\lambda_2}}} | 1 |
{\mathrm e}^{\overline{{\lambda_1}}+\overline{{\lambda_2}}} | -2 |
{\mathrm e}^{{\lambda_1}+\overline{{\lambda_1}}} | 2\alpha\lambda_1'+2\beta |
{\mathrm e}^{{\lambda_1}+\overline{{\lambda_2}}} | -2\alpha\lambda_1'-2\beta |
{\mathrm e}^{\overline{{\lambda_1}}+{\lambda_2}} | -2\alpha\lambda_2'-2\beta |
{\mathrm e}^{{\lambda_2}+\overline{{\lambda_2}}} | 2\alpha\lambda_2'+2\beta |
Before | After | Corresponding coefficients |
{\mathrm e}^{2{ \lambda_1}} | {\mathrm e}^{2{ \lambda_1}} | a_1^2+2\gamma a_1+1 |
{\mathrm e}^{2{\overline{ \lambda_1}}} | {\mathrm e}^{2{ \lambda_1}} | {\mathrm e}^{2a_1c} |
{\mathrm e}^{{ \lambda_1}+\overline{{ \lambda_1}}} | {\mathrm e}^{2{ \lambda_1}} | (2\alpha a_1+2\beta)\cdot {\mathrm e}^{a_1c} |
{\mathrm e}^{2{ \lambda_2}} | {\mathrm e}^{2{ \lambda_2}} | a_2^2+2\gamma a_2+1 |
{\mathrm e}^{2{\overline{\lambda_2}}} | {\mathrm e}^{2{\lambda_2}} | {\mathrm e}^{2a_2c} |
{\mathrm e}^{{\lambda_2}+\overline{{\lambda_2}}} | {\mathrm e}^{2{\lambda_2}} | (2\alpha a_2+2\beta)\cdot {\mathrm e}^{a_2c} |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2 a_1 a_2-2\gamma(a_1+ a_2)+4\delta-2 |
{\mathrm e}^{\overline{{\lambda_1}}+\overline{{\lambda_2}}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2{\mathrm e}^{(a_1+a_2)c} |
{\mathrm e}^{{\lambda_1}+\overline{{\lambda_2}}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | (-2\alpha a_1-2\beta)\cdot {\mathrm e}^{a_2c} |
{\mathrm e}^{\overline{{\lambda_1}}+{\lambda_2}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | (-2\alpha a_2-2\beta)\cdot {\mathrm e}^{a_1c} |
Transcendental terms | Corresponding coefficients |
{\mathrm e}^{2{\lambda_1}} | \lambda_1'^2+2\gamma\lambda_1'+1 |
{\mathrm e}^{2{\lambda_2}} | \lambda_2'^2+2\gamma\lambda_2'+1 |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2\lambda_1'\lambda_2'-2\gamma(\lambda_1'+\lambda_2')+4\delta-2 |
{\mathrm e}^{2{\widetilde{\lambda_1}}} | 1 |
{\mathrm e}^{2{\widetilde{\lambda_2}}} | 1 |
{\mathrm e}^{\widetilde{{\lambda_1}}+\widetilde{{\lambda_2}}} | -2 |
{\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_1}}} | 2\alpha\lambda_1'+2\beta |
{\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_2}}} | -2\alpha\lambda_1'-2\beta |
{\mathrm e}^{\widetilde{{\lambda_1}}+{\lambda_2}} | -2\alpha\lambda_2'-2\beta |
{\mathrm e}^{{\lambda_2}+\widetilde{{\lambda_2}}} | 2\alpha\lambda_2'+2\beta |
No. | Before | After | Corresponding coefficients |
① | {\mathrm e}^{2{\lambda_1}} | {\mathrm e}^{2a_1z+2b_1} | a_1^2+2\gamma a_1+1 |
② | {\mathrm e}^{2{\lambda_2}} | {\mathrm e}^{2a_2z+2b_2} | a_2^2+2\gamma a_2+1 |
③ | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | {\mathrm e}^{(a_1+a_2)z+b_1+b_2} | -2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2 |
④ | {\mathrm e}^{2{\widetilde{\lambda_1}}} | {\mathrm e}^{2a_1qz+2b_1} | 1 |
⑤ | {\mathrm e}^{2{\widetilde{\lambda_2}}} | {\mathrm e}^{2a_2qz+2b_2} | 1 |
⑥ | {\mathrm e}^{\widetilde{{\lambda_1}}+\widetilde{{\lambda_2}}} | {\mathrm e}^{(a_1+a_2)qz+b_1+b_2} | -2 |
⑦ | {\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_1}}} | {\mathrm e}^{a_1(1+q)z+2b_1} | 2\alpha a_1+2\beta |
⑧ | {\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_2}}} | {\mathrm e}^{(a_1+a_2q)z+b_1+b_2} | -2\alpha a_1-2\beta |
⑨ | {\mathrm e}^{\widetilde{{\lambda_1}}+{\lambda_2}} | {\mathrm e}^{(a_1q+a_2)z+b_1+b_2} | -2\alpha a_2-2\beta |
⑩ | {\mathrm e}^{{\lambda_2}+\widetilde{{\lambda_2}}} | {\mathrm e}^{a_2(1+q)z+2b_2} | 2\alpha a_2+2\beta |
Transcendental terms | Corresponding coefficients |
{\mathrm e}^{2{\lambda_1}} | 1 |
{\mathrm e}^{2{\lambda_2}} | 1 |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | 4\delta'-2 |
{\mathrm e}^{2{\widehat{\lambda_1}}} | \frac{1}{q^2}\cdot \lambda_1'^2+\frac{2\gamma}{q}\cdot \lambda_1'+1 |
{\mathrm e}^{2{\widehat{\lambda_2}}} | \frac{1}{q^2}\cdot \lambda_2'^2+\frac{2\gamma}{q}\cdot \lambda_2'+1 |
{\mathrm e}^{\widehat{{\lambda_1}}+\widehat{{\lambda_2}}} | -\frac{2}{q^2}\lambda_1'\lambda_2'-\frac{2\gamma}{q}(\lambda_1'+\lambda_2')-2 |
{\mathrm e}^{{\lambda_1}+\widehat{\lambda_1}} | \frac{2\alpha}{q}\lambda_1'+2\beta |
{\mathrm e}^{{\lambda_1}+\widehat{\lambda_2}} | -\frac{2\alpha}{q}\lambda_2'-2\beta |
{\mathrm e}^{\widehat{{\lambda_1}}+{\lambda_2}} | -\frac{2\alpha}{q}\lambda_1'-2\beta |
{\mathrm e}^{{\lambda_2}+\widehat{\lambda_2}} | \frac{2\alpha}{q}\lambda_2'+2\beta |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_1^2-2\gamma a_1+1\right) |
③ | {\mathrm e}^0 | {\mathrm e}^{b_1+b_2}\left(2a_1^2+4\delta-2\right) |
④ | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^0 | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^0 | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-2a_1z} | {\mathrm e}^{b_1+b_2}\left(2\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^0 | {\mathrm e}^{2b_2}\left(-2\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_2}\left(\frac{a_1^2}{4}-\gamma a_1+1\right) |
③ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{b_1+b_2}\left(a_1^2-\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{a_1}{4}\cdot z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right)=0 |
⑧ | {\mathrm e}^{\frac{5a_1}{4}\cdot z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right)=0 |
⑨ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(\alpha a_1-2\beta\right)={\mathrm e}^{b_1+b_2}(-3\beta) |
⑩ | {\mathrm e}^{-\frac{a_1}{4}\cdot z} | {\mathrm e}^{2b_2}\left(-\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(4{a_1^2}-4\gamma a_1+1\right) |
③ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{b_1+b_2}\left(4a_1^2+2\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{5a_1}{2}z} | {\mathrm e}^{b_1+b_2}\left(4\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2}\left(-4\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-3a_1z} | {\mathrm e}^{2b_2}\left(\frac{9}{4}{a_1^2}-3\gamma a_1+1\right) |
③ | {\mathrm e}^{-\frac{1}{2}a_1 z} | {\mathrm e}^{b_1+b_2}\left(3a_1^2+\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{3}{4}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{8}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{3}{4}a_1\cdot z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{11}{8}a_1 z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{7a_1}{4}z} | {\mathrm e}^{b_1+b_2}\left(3\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{9}{8}a_1 z} | {\mathrm e}^{2b_2}\left(-3\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-\frac{1}{4}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{8}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{5}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{7}{8}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{1}{4}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{5}{8}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{1}{4}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{5}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{1}{2}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{7}{4}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{5}{2}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{0} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{2}{3}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{0} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{4}{3}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{2}{3}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{2}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{4}{3}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(4a_1^2-4\gamma a_1+1\right) |
③ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(4a_1^2+2\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{2}a_1} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{5}{2}a_1z} | {\mathrm e}^{b_1+b_2}\left(4\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2}\left(-4\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-\frac{4}{3}a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{\frac{1}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{1}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{1}{12}a_1} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{3}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{7}{6}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{11}{12}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{1}{2}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{0} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{2}{3}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{0} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{2}{3}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{4}{3}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{4}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |