In this paper, we study normalized solutions of the fractional Schrödinger equation with a critical nonlinearity
{(−Δ)su=λu+|u|p−2u+|u|2∗s−2u,x∈RN,∫RNu2dx=a2, u∈Hs(RN),
where N≥2, s∈(0,1), a>0, 2<p<2∗s≜2NN−2s and (−Δ)s is the fractional Laplace operator. In the purely L2-subcritical perturbation case 2<p<2+4sN, we prove the existence of a second normalized solution under some conditions on a, p, s, and N. This is a continuation of our previous work (Z. Angew. Math. Phys., 73 (2022) 149) where only one solution is obtained.
Citation: Xizheng Sun, Zhiqing Han. Note on normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity[J]. AIMS Mathematics, 2024, 9(8): 21641-21655. doi: 10.3934/math.20241052
[1] | Yipeng Qiu, Yingying Xiao, Yan Zhao, Shengyue Xu . Normalized ground state solutions for the Chern–Simons–Schrödinger equations with mixed Choquard-type nonlinearities. AIMS Mathematics, 2024, 9(12): 35293-35307. doi: 10.3934/math.20241677 |
[2] | Mahmoud A. E. Abdelrahman, H. S. Alayachi . A reliable analytic technique and physical interpretation for the two-dimensional nonlinear Schrödinger equations. AIMS Mathematics, 2024, 9(9): 24359-24371. doi: 10.3934/math.20241185 |
[3] | Dengfeng Lu, Shuwei Dai . On a class of three coupled fractional Schrödinger systems with general nonlinearities. AIMS Mathematics, 2023, 8(7): 17142-17153. doi: 10.3934/math.2023875 |
[4] | Huanhuan Wang, Kexin Ouyang, Huiqin Lu . Normalized ground states for fractional Kirchhoff equations with critical or supercritical nonlinearity. AIMS Mathematics, 2022, 7(6): 10790-10806. doi: 10.3934/math.2022603 |
[5] | Baojian Hong, Jinghan Wang, Chen Li . Analytical solutions to a class of fractional coupled nonlinear Schrödinger equations via Laplace-HPM technique. AIMS Mathematics, 2023, 8(7): 15670-15688. doi: 10.3934/math.2023800 |
[6] | Dumitru Baleanu, Kamyar Hosseini, Soheil Salahshour, Khadijeh Sadri, Mohammad Mirzazadeh, Choonkil Park, Ali Ahmadian . The (2+1)-dimensional hyperbolic nonlinear Schrödinger equation and its optical solitons. AIMS Mathematics, 2021, 6(9): 9568-9581. doi: 10.3934/math.2021556 |
[7] | Safoura Rezaei Aderyani, Reza Saadati, Javad Vahidi, Nabil Mlaiki, Thabet Abdeljawad . The exact solutions of conformable time-fractional modified nonlinear Schrödinger equation by Direct algebraic method and Sine-Gordon expansion method. AIMS Mathematics, 2022, 7(6): 10807-10827. doi: 10.3934/math.2022604 |
[8] | Min Shu, Haibo Chen, Jie Yang . Existence and asymptotic behavior of normalized solutions for the mass supercritical fractional Kirchhoff equations with general nonlinearities. AIMS Mathematics, 2025, 10(1): 499-533. doi: 10.3934/math.2025023 |
[9] | Zeliha Korpinar, Mustafa Inc, Ali S. Alshomrani, Dumitru Baleanu . The deterministic and stochastic solutions of the Schrodinger equation with time conformable derivative in birefrigent fibers. AIMS Mathematics, 2020, 5(3): 2326-2345. doi: 10.3934/math.2020154 |
[10] | Xinyi Zhang, Jian Zhang . On Schrödinger-Poisson equations with a critical nonlocal term. AIMS Mathematics, 2024, 9(5): 11122-11138. doi: 10.3934/math.2024545 |
In this paper, we study normalized solutions of the fractional Schrödinger equation with a critical nonlinearity
{(−Δ)su=λu+|u|p−2u+|u|2∗s−2u,x∈RN,∫RNu2dx=a2, u∈Hs(RN),
where N≥2, s∈(0,1), a>0, 2<p<2∗s≜2NN−2s and (−Δ)s is the fractional Laplace operator. In the purely L2-subcritical perturbation case 2<p<2+4sN, we prove the existence of a second normalized solution under some conditions on a, p, s, and N. This is a continuation of our previous work (Z. Angew. Math. Phys., 73 (2022) 149) where only one solution is obtained.
In this paper, we study normalized solutions of the fractional Schrödinger equation with a critical nonlinearity of |u|2∗s−2u,
{(−Δ)su=λu+|u|p−2u+|u|2∗s−2u,x∈RN,∫RNu2dx=a2, u∈Hs(RN), | (1.1) |
where N≥2, s∈(0,1), a>0, and 2<p<2∗s≜2NN−2s. The fractional Laplace operator (−Δ)s is defined by
(−Δ)su=−C(N,s)2P.V.∫RNu(x+y)+u(x−y)−2u(x)|y|N+2sdy=C(N,s)2P.V.∫RNu(x)−u(y)|x−y|N+2sdy |
with a positive constant C(N,s), and we normalize the factor C(N,s)/2=1 for convenience. For problem (1.1), p=2+4sN is the L2-critical exponent.
The operator (−Δ)s arises in physics, chemistry, biology, and finance and can be seen as the infinitesimal generators of the Lévy stable diffusion process (see [1]). Moreover, (−Δ+m2)12 appears in quantum mechanics, where m is the mass of the particle under consideration (see [16]). The study of fractional Laplacian nonlinear equations has attracted much attention from many mathematicians working in different fields. Felmer et al. [11] studied the existence, regularity, and symmetry of positive solutions to the fractional Schrödinger equations in the whole space RN. Caffarelli et al. investigated a fractional Laplacian with free boundary conditions (see [6,7]). We also refer the interested readers to the works [5,9,10,19] for more details on the fractional operator and its applications.
Normalized solutions to Schrödinger equations with L2-supercritical nonlinearity were first studied in the paper [14], where the energy functional was unbounded from below on the L2-constraint. Recently, Soave in [21] proved several existence (or nonexistence) and stability (or instability) results for the Schrödinger equation with combined nonlinearities as follows:
{−Δu=λu+μ|u|q−2u+|u|2∗−2u,x∈RN,∫RNu2dx=a2, u∈H1(RN), |
where N≥3, μ>0, λ∈R and 2<q<2∗≜2NN−2. Wei and Wu in [22] extended the results in [21] in three aspects. Firstly, they obtained the existence of a solution of mountain-pass type for N≥3 and 2<q<2+4N. Secondly, the existence and nonexistence of ground states for 2+4N≤q<2∗ with μ>0 large were obtained. Finally, they obtained the precisely asymptotic behaviors of ground states and mountain-pass solutions as μ→0. Luo and Zhang in [17] dealt with the existence of normalized ground states for the fractional Schrödinger equation with combined nonlinearities as follows:
{(−Δ)su=λu+|u|p−2u+|u|q−2u,x∈RN,∫RNu2dx=a2, u∈Hs(RN). | (1.2) |
Under different assumptions on q<p and a>0, they proved the existence and nonexistence of normalized solutions in the L2-subcritical case and L2-supercritical case, respectively. But they only considered the Sobolev subcritical case p,q<2∗s. Motivated by the above papers, Zhang and Han in [25] considered problem (1.2) in the Sobolev critical case q=2∗s, i.e., problem (1.1). They obtained the following results:
(i) Let N≥2, s∈(0,1), 2<p<2+4sN, and assume that 0<a<min{α1,α2}. Then, m+a≜infu∈V(a)+E(u)=infu∈V(a)E(u)<0 and it can be attained by ua,+, which is nonnegative and radially decreasing. Moreover, problem (1.1) has a ground state (ua,+,λa,+) with λa,+<0;
(ii) Let N≥2, s∈(0,1), N2>8s2, p=2+4sN, and assume that 0<a<α3. Then, m−a≜infu∈V(a)−E(u)∈(0,sNSN2ss) and it can be attained by ua,− which is nonnegative and radially decreasing. Moreover, problem (1.1) has a ground state (ua,−,λa,−) with λa,−<0;
(iii) Let N≥2, s∈(0,1), N2>8s2, 2+4sN<p<2∗s, and assume that 0<a<α4. Then, m−a≜infu∈V(a)−E(u)∈(0,sNSN2ss) and it can be attained by ua,− which is nonnegative and radially decreasing. Moreover, problem (1.1) has a ground state (ua,−,λa,−) with λa,−<0.
The constants α1, α2, α3, α4 that appear in (ⅰ)–(ⅲ) are
α1≜[p(2∗s−2)2C(s,N,p)(2∗s−pγp,s)(2∗sS2∗s2s(2−pγp,s)2(2∗s−pγp,s))2−pγp,s2∗s−2]1p(1−γp,s),α2≜[22∗ssNγp,sC(s,N,p)(2∗s−pγp,s)(γp,sSN2ss2−pγp,s)2−pγp,s2]1p(1−γp,s),α3≜(p2C(s,N,p))1p−2,α4≜γ−1p(1−γp,s)p,sSN4ss |
where γp,s≜N(p−2)2ps<1, the constants Ss, C(s,N,p) are defined in (1.3), (1.5) respectively and V(a) is defined in (1.6).
We also refer to the works [2,3,4,15,20,24,26] for other related equations.
In order to state our main results, we denote the best constant of the embedding Ds,2(RN)↪L2∗s(RN) by
Ss=infu∈Ds,2(RN)∖{0}‖ | (1.3) |
where D^{s, 2}(\mathbb{R}^N) denotes the completion of the space C_c^{\infty}(\mathbb{R}^N) with the norm \|u\|_{D^{s, 2}(\mathbb{R}^N)} = \|(-\Delta)^\frac{s}{2}u\|_2 . Solutions to (1.1) can be obtained as the critical points of the associated energy functional
\begin{align} E(u) = \frac{1}{2}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}{\rm d}x{\rm d}y-\frac{1}{p}\|u(x)\|_p^p-\frac{1}{2_s^\ast}\|u(x)\|_{2_s^\ast}^{2_s^\ast} \end{align} | (1.4) |
defined on the constraint manifold S(a)\triangleq\left\{u\in H^s(\mathbb{R}^N):\|u\|_2^2 = a^2\right\} , where
\begin{align*} H^s(\mathbb{R}^N)\triangleq\left\{u\in L^2(\mathbb{R}^N):\|(-\Delta)^\frac{s}{2}u\|_2^2 = \int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}{\rm d}x{\rm d}y < +\infty\right\} \end{align*} |
endowed with the natural norm
\|u\|_{H^s}^2 = \|u\|_2^2+\|(-\Delta)^\frac{s}{2}u\|_2^2. |
We recall the following fractional Gagliardo–Nirenberg–Sobolev inequality (see [12])
\begin{align} \|u\|_p^p\leq C(s, N, p)\|u\|_2^{(1-\gamma_{p, s})p}\|(-\Delta)^\frac{s}{2}u\|_2^{\gamma_{p, s}p}, \quad\forall u\in H^s(\mathbb{R}^N). \end{align} | (1.5) |
Define H_r^s(\mathbb{R}^N)\triangleq\left\{u\in H^s(\mathbb{R}^N):u(x) = u(|x|)\right\} . It is well known that H_r^s(\mathbb{R}^N) is compactly embedded into L^p(\mathbb{R}^N) for any p\in(2, 2_s^\ast) , and H_r^s(\mathbb{R}^N) is a natural constraint (see [23]).
Lemma 1. (Lemma 2.1 in [25]). Let (u, \lambda)\in S(a)\times \mathbb{R} be a weak solution to problem (1.1). Then u belongs to the set
\begin{align} V(a)\triangleq\left\{u\in S(a):P(u)\triangleq\|(-\Delta)^\frac{s}{2}u\|_2^2-\gamma_{p, s}\|u\|_p^p-\|u\|_{2^\ast_s}^{2^\ast_s} = 0\right\}. \end{align} | (1.6) |
Moreover, V(a) can be naturally divided into the following three parts:
\begin{align} V(a)^+&\triangleq\left\{u\in V(a):2\|(-\Delta)^\frac{s}{2}u\|_2^2 > p\gamma^2_{p, s}\|u\|_p^p-2^\ast_s\|u\|_{2^\ast_s}^{2^\ast_s} \right\}, \\ V(a)^0&\triangleq\left\{u\in V(a):2\|(-\Delta)^\frac{s}{2}u\|_2^2 = p\gamma^2_{p, s}\|u\|_p^p-2^\ast_s\|u\|_{2^\ast_s}^{2^\ast_s} \right\}, \\ V(a)^-&\triangleq\left\{u\in V(a):2\|(-\Delta)^\frac{s}{2}u\|_2^2 < p\gamma^2_{p, s}\|u\|_p^p-2^\ast_s\|u\|_{2^\ast_s}^{2^\ast_s} \right\}. \end{align} |
In the L^2 -subcritical perturbation case 2 < p < 2+\frac{4s}{N} , since the functional (1.4) is unbounded below on S(a) as 2_s^\ast < 2+\frac{4s}{N} , it will be naturally expected that E(u)\mid_{S(a)} has a second critical point of mountain pass type for problem (1.1). In this paper, we give a complete positive answer to the above expectation (see Theorem 1.1). Since H_r^s(\mathbb{R}^N) is a natural constraint, we only need to find the critical point for the functional E(u) defined on H^s_r(\mathbb{R}^N)\cap S(a) . Define
\begin{align*} V_r(a)^-\triangleq V(a)^-\cap H^s_r(\mathbb{R}^N). \end{align*} |
Theorem 1. Let N\geq2 , s\in(0, 1) , 2 < p < 2+\frac{4s}{N} , and assume that 0 < a < \min\{\alpha_1, \alpha_2\} . Then m_{a, r}^-\triangleq\inf_{u\in V_r(a)^-}E(u)\in(0, \frac{s}{N}S_s^{\frac{N}{2s}}) and it can be attained by u_{a, -} which is positive and radially decreasing. Moreover, problem (1.1) has a second solution (u_{a, -}, \lambda_{a, -}) with some \lambda_{a, -} < 0 .
Remark 1. The method used in this paper can also be applied to the following Sobolev critical fractional Schrödinger equation with a parameter \mu > 0
\begin{eqnarray*} \left\{ \begin{array}{lll} (-\Delta)^su = \lambda u+\mu|u|^{p-2}u+|u|^{2^\ast_s-2}u, & x\in \mathbb{R}^N, \\ { \int}_{\mathbb{R}^N}u^2{\rm d}x = a^2, \end{array}\right. \end{eqnarray*} |
which was considered in [27]. We leave the details to the interested readers.
Notations. The notation C in the following context denotes some positive constant that might be changed from line to line and even in the same line. a\sim b means that Cb \leq a \leq Cb and a\lesssim b ( a\gtrsim b ) means that a\leq Cb ( a\geq Cb ) for some positive constant C . The notation B_z(0) denotes the ball in \mathbb{R}^N of center at origin and radius z .
As in [14], we use the fiber map preserving the L^2 -norm \tau\ast u = e^{\frac{N\tau}{2}}u(e^\tau x) for a.e. x\in\mathbb{R}^N . For u\in S(a) , define the auxiliary function
\Psi_u(\tau): = E(\tau\ast u) = \frac{1}{2}e^{2s\tau}\|(-\Delta)^{\frac{s}{2}}u\|_2^2-\frac{e^{ps\gamma_{p, s}\tau}}{p} \|u\|_p^p-\frac{e^{2_s^\ast s\tau}}{2_s^\ast}\|u\|_{2_s^\ast}^{2_s^\ast}, \quad \tau\in\mathbb{R}. |
Lemma 2. (Lemma 3.3 in [25]). Let N\geq2 , 2 < p < 2+\frac{4s}{N} , and 0 < a < \alpha_1 . For every u\in S(a) , the function \Psi_u(\tau) has exactly two critical points s_u < t_u\in\mathbb{R} and two zeros c_u < d_u\in\mathbb{R} with s_u < c_u < t_u < d_u . Moreover, we have the following statements:
{\rm (i)} s_u\ast u\in V(a)^+ and t_u\ast u\in V(a)^- . If \tau\ast u\in S(a) , then either \tau = s_u or \tau = t_u .
{\rm (ii)} We have
E(t_u\ast u) = \max\left\{E(\tau\ast u):\tau\in\mathbb{R}\right\} > 0 |
and \Psi_u(\tau) is strictly decreasing on (t_u, +\infty) . In particular, if t_u < 0 , then P(u) < 0 .
{\rm (iii)} The maps u\in V(a)\mapsto s_u\in\mathbb{R} and u\in V(a)\mapsto t_u\in\mathbb{R} are of class C^1 .
Proof. Statements (ⅰ), (ⅲ), and the first part of (ⅱ) have already been shown in Lemma 3.3 in [25]. From the proof of Lemma 3.3 in [25], we know the functions \Psi_u(\tau) and \Psi_u''(\tau) have exactly two inflection points. In particular, \Psi_u(\tau) is strictly decreasing and concave on [t_u, +\infty) . Hence, if t_u < 0 , then P(u) = \Psi_u'(0) < 0 .
Lemma 3. Let N\geq2 , 2 < p < 2+\frac{4s}{N} , and 0 < a < \min\{\alpha_1, \alpha_2\} . Then, we have
m_{a, r}^-\triangleq\inf\limits_{u\in V_r(a)^-}E(u) > 0. |
Proof. Applying (1.4), (1.5), and \|u\|_{2_s^\ast}^2\leq S_s^{-1}\|(-\Delta)^\frac{s}{2}u\|_2^2 , we have
\begin{align*} E(u)& = \frac{1}{2}\|(-\Delta)^\frac{s}{2}u\|_2^2-\frac{1}{p}\|u\|_p^p-\frac{1}{2_s^\ast}\|u\|_{2_s^\ast}^{2_s^\ast} \\&\geq\frac{1}{2}\|(-\Delta)^\frac{s}{2}u\|_2^2-\frac{1}{p}C^p(s, N, p)a^{(1-\gamma_{p, s})p}\|(-\Delta)^\frac{s}{2}u\|_2^{\gamma_{p, s}p}-\frac{1}{2_s^\ast S_s^{\frac{2_s^\ast}{2}}}\|(-\Delta)^\frac{s}{2}u\|_2^{2_s^\ast} \end{align*} |
for every u\in V_r(a)^- . Define
h(t)\triangleq\frac{1}{2}t^2-\frac{C^p(s, N, p)}{p}a^{(1-\gamma_{p, s})p}t^{p\gamma_{p, s}}-\frac{1}{2_s^\ast S_s^{\frac{2_s^\ast}{2}}}t^{2_s^\ast}. |
Since p\gamma_{p, s} < 2 < 2_s^\ast , it is easy to see that h(0^+) = 0^- and h(+\infty) = -\infty . Let t_{\rm max} denote the strict maximum of the function h(t) , which is at a positive level (see Lemma 3.2 in [25]). For every u\in V_r(a)^- , by an easy computation, there exists \tau_u\in \mathbb{R} such that \|(-\Delta)^\frac{s}{2}(\tau_u \ast u)\|_2 = t_{\rm max} . Moreover, by Lemma 2, we see that the value 0 is the unique strict maximum of the function \Psi_u(\tau) . Therefore,
\begin{align*} E(u) = \Psi_u(0)\geq \Psi_u(\tau_u) = E(\tau_u \ast u)\geq h(\|(-\Delta)^\frac{s}{2}(\tau_u \ast u)\|_2) = h(t_{\rm max}) > 0. \end{align*} |
Since u\in V_r(a)^- is arbitrarily chosen, we deduce that
\begin{align*} m_{a, r}^-\triangleq\inf\limits_{u\in V_r(a)^-}E(u)\geq h(t_{\rm max}) > 0. \end{align*} |
Lemma 4. Let N\geq2 , 2 < p < 2+\frac{4s}{N} , and 0 < a < \min\{\alpha_1, \alpha_2\} . Then m^+_a\triangleq\inf_{u\in V(a)^+}E(u) = \inf_{u\in V(a)}E(u) < 0 and it can be attained by u_{a, +} , which is positive and radially decreasing. Moreover, problem (1.1) has the ground state solution (u_{a, +}, \lambda_{a, +}) with \lambda_{a, +} < 0 .
Proof. By using a similar method used in Theorem 1.1 in [25], we obtain
m^+_a\triangleq\inf\limits_{u\in V(a)^+}E(u) = \inf\limits_{u\in V(a)}E(u) < 0 |
and it can be attained by u_{a, +} , which is nonnegative and radially decreasing. Moreover, problem (1.1) has the ground state (u_{a, +}, \lambda_{a, +}) with \lambda_{a, +} < 0 . Finally, by the strong maximum principle for the fractional Laplacian (see Proposition 2.17 in [19]), we have that u_{a, +} is positive.
Lemma 5. Let N\geq2 , 2 < p < 2+\frac{4s}{N} , and 0 < a < \min\{\alpha_1, \alpha_2\} . Then, we have
m_{a, r}^-\triangleq\inf\limits_{u\in V_r(a)^-}E(u) < m_a^++\frac{s}{N}S_s^{\frac{N}{2s}}. |
Proof. As in [18], the function U_\varepsilon(x) = \varepsilon^{-\frac{N-2s}{2}}u^\ast(\frac{x}{\varepsilon}) solves the equation (-\Delta)^su = |u|^{2_s^\ast-2}u in \mathbb{R}^N , where u^\ast(x) = \tilde{u}(x/S_s^{\frac{1}{2s}})/\|\tilde{u}\|_{2_s^\ast} and \tilde{u}(x) = k(\mu^2+|x|^2)^{-\frac{N-2s}{2}} , x\in\mathbb{R}^N , with k > 0 and \mu > 0 are fixed constants. Let \chi(x)\in C_c^{\infty}(\mathbb{R}^N) be a cut-off function satisfying:
{\rm (a)} 0\leq\chi(x)\leq1 for any x\in \mathbb{R}^N ,
{\rm (b)} \chi(x)\equiv1 in B_1(0) ,
{\rm (c)} \chi(x)\equiv0 in \mathbb{R}^N\setminus \overline{B_2(0)} .
Define W_{\varepsilon} = \chi(x)U_\varepsilon(x) . According to Propositions 21 and 22 in [18], we know that
\begin{align} \|(-\Delta)^\frac{s}{2}W_\varepsilon\|_2^2\leq S_s^{\frac{N}{2s}}+O(\varepsilon^{N-2s}), \quad \|W_\varepsilon\|_{2^\ast_s}^{2^\ast_s} = S_s^{\frac{N}{2s}}+O(\varepsilon^{N}), \end{align} | (2.1) |
\begin{align} \|W_\varepsilon\|_p^p = \left\{ \begin{array}{lll} C\varepsilon^{N-\frac{N-2s}{2}p}+O(\varepsilon^{\frac{N-2s}{2}p}), &N > \frac{p}{p-1}2s, \\ C\varepsilon^{\frac{N}{2}}\log\frac{1}{\varepsilon}+O(\varepsilon^{\frac{N}{2}}), &N = \frac{p}{p-1}2s, \\ C\varepsilon^{\frac{N-2s}{2}p}+O(\varepsilon^{N-\frac{N-2s}{2}p}), &N < \frac{p}{p-1}2s \end{array} \right. \end{align} | (2.2) |
and
\begin{align} \|W_\varepsilon\|_2^2 = \left\{ \begin{array}{lll} C\varepsilon^{2s}+O(\varepsilon^{N-2s}), &N > 4s, \\ C\varepsilon^{2s}\log\frac{1}{\varepsilon}+O(\varepsilon^{2s}), &N = 4s, \\ C\varepsilon^{N-2s}+O(\varepsilon^{2s}), &N < 4s. \end{array} \right. \end{align} | (2.3) |
Now, we define
\begin{align*} \widehat{W}_{\varepsilon, t}\triangleq u_{a, +}+tW_\varepsilon \quad{\rm and} \quad \overline{W}_{\varepsilon, t}\triangleq\xi^{\frac{N-2s}{2}}\widehat{W}_{\varepsilon, t}(\xi x). \end{align*} |
Then, it is well known that
\begin{align} \|(-\Delta)^\frac{s}{2}\overline{W}_{\varepsilon, t}\|_2^2 = \|(-\Delta)^\frac{s}{2}\widehat{W}_{\varepsilon, t}\|_2^2, \quad \|\overline{W}_{\varepsilon, t}\|_{2^\ast_s}^{2^\ast_s} = \|\widehat{W}_{\varepsilon, t}\|_{2^\ast_s}^{2^\ast_s} \end{align} | (2.4) |
and
\begin{align} \|\overline{W}_{\varepsilon, t}\|_2^2 = \xi^{-2s}\|\widehat{W}_{\varepsilon, t}\|_2^2, \quad \|\overline{W}_{\varepsilon, t}\|_{p}^{p} = \xi^{(p\gamma_{p, s}-p)s}\|\widehat{W}_{\varepsilon, t}\|_{p}^{p}. \end{align} | (2.5) |
We choose \xi = \left(\|\widehat{W}_{\varepsilon, t}\|_2/a\right)^{\frac{1}{s}} , then \overline{W}_{\varepsilon, t}\in H^s_r(\mathbb{R}^N)\cap S(a) . By Lemma 2, there exists \tau_{\varepsilon, t} > 0 such that (\overline{W}_{\varepsilon, t})_{\tau_{\varepsilon, t}}\in V_r(a)^- , where (\overline{W}_{\varepsilon, t})_{\tau_{\varepsilon, t}} = \tau_{\varepsilon, t}^{\frac{N}{2}}\overline{W}_{\varepsilon, t}(\tau_{\varepsilon, t}x) . Thus,
\begin{align} \|(-\Delta)^\frac{s}{2}\overline{W}_{\varepsilon, t}\|_2^2\tau_{\varepsilon, t}^{s(2-p\gamma_{p, s})} = \gamma_{p, s}\|\overline{W}_{\varepsilon, t}\|_{p}^{p}+ \|\overline{W}_{\varepsilon, t}\|_{2^\ast_s}^{2^\ast_s}\tau_{\varepsilon, t}^{s(2^\ast_s-p\gamma_{p, s})}. \end{align} | (2.6) |
Since u_{a, +}\in V(a)^+ , by Lemma 2, we get \tau_{\varepsilon, 0} > 1 . By (2.1), (2.2), and (2.6), we know that \tau_{\varepsilon, t}\rightarrow0 as t\rightarrow +\infty uniformly for \varepsilon > 0 sufficiently small. Since \tau_{\varepsilon, t} is unique by Lemma 2, it is standard to show that \tau_{\varepsilon, t} is continuous for t , which implies that there exists t_\varepsilon > 0 such that \tau_{\varepsilon, t_\varepsilon} = 1 . It follows that
\begin{align} m_{a, r}^-\leq\sup\limits_{t\geq0}E(\overline{W}_{\varepsilon, t}). \end{align} | (2.7) |
Recall that u_{a, +}\in H^s_r(\mathbb{R}^N)\cap S(a) and W_\varepsilon are positive. By (2.4) and (2.5), we have
\begin{align} E(\overline{W}_{\varepsilon, t})& = \frac{1}{2}\|(-\Delta)^\frac{s}{2}\widehat{W}_{\varepsilon, t}\|_2^2-\frac{1}{p}\xi^{(p\gamma_{p, s}-p)s} \|\widehat{W}_{\varepsilon, t}\|_p^p-\frac{1}{2_s^\ast}\|\widehat{W}_{\varepsilon, t}\|_{2_s^\ast}^{2_s^\ast} {}\\& = \frac{1}{2}\|(-\Delta)^\frac{s}{2}\left(u_{a, +}+tW_\varepsilon\right)\|_2^2-\frac{1}{p}\xi^{(p\gamma_{p, s}-p)s} \|u_{a, +}+tW_\varepsilon\|_p^p-\frac{1}{2_s^\ast}\|u_{a, +}+tW_\varepsilon\|_{2_s^\ast}^{2_s^\ast}. \end{align} | (2.8) |
By the fact that u_{a, +} is a solution to problem (1.1) for some \lambda_{a, +} < 0 and the Pohazaev identity satisfied by u_{a, +} , we have
\begin{align} \lambda_{a, +}a^2 = \lambda_{a, +}\|u_{a, +}\|_2^2 = (\gamma_{p, s}-1)\|u_{a, +}\|_p^p. \end{align} | (2.9) |
Then, by (2.8) and (2.9), we deduce that E(\overline{W}_{\varepsilon, t})\rightarrow m_a^+ as t\rightarrow0^+ and
\begin{align*} E(\overline{W}_{\varepsilon, t}) < t^2\|(-\Delta)^\frac{s}{2}W_\varepsilon\|_2^2 -\int_{\mathbb{R}^N}(-\Delta)^\frac{s}{2}u_{a, +}(-\Delta)^\frac{s}{2}W_\varepsilon{\rm d}x+\frac{\lambda_{a, +}a^2}{p(\gamma_{p, s}-1)}-\frac{1}{2_s^\ast}t^{2_s^\ast}\|W_\varepsilon\|_{2_s^\ast}^{2_s^\ast}\rightarrow -\infty \end{align*} |
as t\rightarrow +\infty uniformly for \varepsilon > 0 sufficiently small. Hence, there exists t_0 > 0 large enough such that t_\varepsilon\in(\frac{1}{t_0}, t_0) and E(\overline{W}_{\varepsilon, t}) < 0 for t < \frac{1}{t_0} and t > t_0 . Now, we estimate E(\overline{W}_{\varepsilon, t}) for \frac{1}{t_0}\leq t\leq t_0 . Let u_{a, +} be a positive and radially decreasing ground state solution to problem (1.1) (see Lemma 4). Then, we have
\begin{align} \int_{\mathbb{R}^N}u_{a, +}W_\varepsilon{\rm d}x&\sim \int_{B_1(0)}U_\varepsilon(x){\rm d}x\sim\varepsilon^{\frac{N+2s}{2}}\int_0^{\frac{1}{\varepsilon}}\frac{1}{(C+r^2)^{\frac{N-2s}{2}}}r^{N-1}{\rm d}r{}\\&\sim\varepsilon^{\frac{N+2s}{2}}\left(\frac{1}{\varepsilon}\right)^{2s} \sim\varepsilon^{\frac{N-2s}{2}}. \end{align} | (2.10) |
From the definition of \widehat{W}_{\varepsilon, t} , we obtain
\begin{align} \xi^{2s}& = \frac{\|\widehat{W}_{\varepsilon, t}\|_2^2}{a^2} = 1+\frac{2t}{a^2}\int_{\mathbb{R}^N}u_{a, +}W_\varepsilon{\rm d}x+\frac{t^2}{a^2}\|W_{\varepsilon}\|_2^2 \end{align} | (2.11) |
for \frac{1}{t_0}\leq t\leq t_0 . Applying (2.11) and the inequality (1+\hat{t})^\alpha\geq1+\alpha\hat{t} for \hat{t}\geq0 and \alpha < 0 , we obtain that
\begin{align} \xi^{(p\gamma_{p, s}-p)s}& = (\xi^{2s})^{\frac{p\gamma_{p, s}-p}{2}} = \left(1+\frac{2t}{a^2}\int_{\mathbb{R}^N}u_{a, +}W_\varepsilon{\rm d}x+\frac{t^2}{a^2}\|W_{\varepsilon}\|_2^2\right)^{\frac{p\gamma_{p, s}-p}{2}} {}\\&\geq1+\frac{p\gamma_{p, s}-p}{2}\left(\frac{2t}{a^2}\int_{\mathbb{R}^N}u_{a, +}W_\varepsilon{\rm d}x+\frac{t^2}{a^2}\|W_{\varepsilon}\|_2^2\right). \end{align} | (2.12) |
Applying (2.8)–(2.10) and (2.12), we have
\begin{align} E(\overline{W}_{\varepsilon, t}) &\leq\frac{1}{2}\|(-\Delta)^\frac{s}{2}u_{a, +}\|_2^2+\frac{1}{2}t^2\|(-\Delta)^\frac{s}{2}W_{\varepsilon}\|_2^2 -\frac{1}{p} \|u_{a, +}+tW_{\varepsilon}\|_p^p {}\\&+t\int_{\mathbb{R}^N}(-\Delta)^{\frac{s}{2}}u_{a, +}(-\Delta)^{\frac{s}{2}}W_{\varepsilon}{\rm d}x-\frac{1}{2_s^\ast}\|u_{a, +}+tW_\varepsilon\|_{2_s^\ast}^{2_s^\ast} {}\\& -\frac{p\gamma_{p, s}-p}{2p}\left(\frac{2t}{a^2}\int_{\mathbb{R}^N}u_{a, +}W_\varepsilon{\rm d}x+\frac{t^2}{a^2}\|W_{\varepsilon}\|_2^2\right)\|\widehat{W}_{\varepsilon, t}\|_p^p {}\\&\leq m_a^++E(t W_\varepsilon)-\frac{t(\gamma_{p, s}-1)}{a^2}\int_{\mathbb{R}^N}u_{a, +}W_\varepsilon{\rm d}x \|\widehat{W}_{\varepsilon, t}\|_p^p {}\\&+t\lambda_{a, +}\int_{\mathbb{R}^N}u_{a, +}W_\varepsilon{\rm d}x-\frac{t^2(\gamma_{p, s}-1)}{2a^2}\|{W}_{\varepsilon}\|_2^2 \|\widehat{W}_{\varepsilon, t}\|_p^p {}\\& = m_a^++E(t W_\varepsilon)+\frac{t^2(1-\gamma_{p, s})}{2a^2}\|{W}_{\varepsilon}\|_2^2 \|\widehat{W}_{\varepsilon, t}\|_p^p {}\\&+\frac{t(1-\gamma_{p, s})}{a^2}\int_{\mathbb{R}^N}u_{a, +}W_\varepsilon{\rm d}x\left(\|\widehat{W}_{\varepsilon, t}\|_p^p-\|u_{a, +}\|_p^p\right) \end{align} | (2.13) |
for \frac{1}{t_0}\leq t\leq t_0 . By direct calculation, we have
\begin{align} \|\widehat{W}_{\varepsilon, t}\|_p^p-\|u_{a, +}\|_p^p& = \|u_{a, +}+tW_\varepsilon\|_p^p-\|u_{a, +}\|_p^p {}\\&\lesssim\|u_{a, +}\|_p^p+\|tW_\varepsilon\|_p^p-\|u_{a, +}\|_p^p+\int_{\mathbb{R}^N}u_{a, +}^{p-1}tW_\varepsilon{\rm d}x. \end{align} | (2.14) |
Similar to (2.10), we have
\begin{align} \int_{\mathbb{R}^N}u_{a, +}^{p-1}W_\varepsilon{\rm d}x\lesssim\int_{B_2(0)}U_\varepsilon(x){\rm d}x\lesssim\varepsilon^{\frac{N-2s}{2}}. \end{align} | (2.15) |
By (2.1)–(2.3) and (2.13)–(2.15), we have
\begin{align} E(\overline{W}_{\varepsilon, t})&\leq m_a^++\frac{t(1-\gamma_{p, s})}{a^2}\left(O(\varepsilon^{\frac{N-2s}{2}})+ \|tW_\varepsilon\|_p^p \right)O(\varepsilon^{\frac{N-2s}{2}}) {}\\&+E(t W_\varepsilon)+\frac{t^2(1-\gamma_{p, s})}{2a^2}\|W_\varepsilon\|_2^2\|u_{a, +}+tW_\varepsilon\|_p^p {}\\&\leq m_a^++\frac{t^2}{2}\left(S_s^{\frac{N}{2s}}+O(\varepsilon^{N-2s})\right)-\frac{t^{2_s^\ast}}{2_s^\ast}\left(S_s^{\frac{N}{2s}}+O(\varepsilon^{N})\right) -O(\|W_\varepsilon\|_p^p) {}\\&+O(\varepsilon^{N-2s})+O(\varepsilon^{\frac{N-2s}{2}})O(\|W_\varepsilon\|_p^p) +O(\|W_\varepsilon\|_2^2)+O(\|W_\varepsilon\|_2^2)O(\|W_\varepsilon\|_p^p) {}\\& < m_a^++\frac{t^2}{2}S_s^{\frac{N}{2s}}-\frac{t^{2_s^\ast}}{2_s^\ast}S_s^{\frac{N}{2s}} \leq m_a^++\frac{s}{N}S_s^{\frac{N}{2s}} \end{align} | (2.16) |
for \frac{1}{t_0}\leq t\leq t_0 by taking \varepsilon > 0 sufficiently small. By Lemma 3 and (2.16), we obtain
\begin{align} 0 < m_{a, r}^-&\triangleq\inf\limits_{u\in V_r(a)^-}E(u)\leq E((\overline{W}_{\varepsilon, t_\varepsilon})_{\tau_{\varepsilon, t_\varepsilon}}) = E(\overline{W}_{\varepsilon, t_\varepsilon}){}\\&\leq\sup\limits_{t\in\left( t_0^{-1}, t_0\right)}E(\overline{W}_{\varepsilon, t}) < m_a^++\frac{s}{N}S_s^{\frac{N}{2s}}. \end{align} | (2.17) |
Moreover, by (2.17), for t < \frac{1}{t_0} and t > t_0 , we have
\begin{align} E(\overline{W}_{\varepsilon, t}) < 0 < m_a^++\frac{s}{N}S_s^{\frac{N}{2s}}. \end{align} | (2.18) |
It follows from (2.16) and (2.18) that
\begin{align*} \sup\limits_{t\geq0}E(\overline{W}_{\varepsilon, t}) < m_a^++\frac{s}{N}S_s^{\frac{N}{2s}}. \end{align*} |
Then, the conclusion follows from (2.7).
For 0 < c < \min\{\alpha_1, \alpha_2\} , let u\in V(c)^{\pm} . Then v_b\triangleq\frac{b}{c}u\in S(b) for all b > 0 . By Lemma 2, there exists \tau_{\pm}(b) > 0 such that
(v_b)_{\tau_{\pm}(b)} = (\tau_{\pm}(b))^{\frac{N}{2}}v_b(\tau_{\pm}(b)x)\in V(b)^{\pm}, |
where 0 < b < \min\{\alpha_1, \alpha_2\} . Clearly, \tau_{\pm}(c) = 1 .
Lemma 6. Let N\geq2 , 2 < p < 2+\frac{4s}{N} , and 0 < c < \min\{\alpha_1, \alpha_2\} . Then, (\tau_{\pm}^s(c))' exist and
\begin{align} (\tau_{\pm}^s(c))' = \frac{\gamma_{p, s}p\|u\|_p^p+2_s^\ast\|u\|_{2_s^\ast}^{2_s^\ast}-2\|(-\Delta)^\frac{s}{2}u\|_2^2} {c\left(2\|(-\Delta)^\frac{s}{2}u\|_2^2-\gamma^2_{p, s}p\|u\|_p^p-2_s^\ast\|u\|_{2_s^\ast}^{2_s^\ast}\right)}. \end{align} | (2.19) |
Moreover, E((v_b)_{\tau_{\pm}(b)}) < E(u) for all b > c such that b < \min\{\alpha_1, \alpha_2\} .
Proof. The proof is mainly inspired by [8,22]. Since (v_b)_{\tau_{\pm}(b)}\in V(b)^{\pm} , we have
\begin{align*} \left(\frac{b}{c}\tau_{\pm}^s(b)\right)^{2}\|(-\Delta)^\frac{s}{2}u\|_2^2 = \gamma_{p, s} \left(\frac{b}{c}\tau_{\pm}^{\gamma_{p, s}s}(b)\right)^{p}\|u\|_p^p+\left(\frac{b}{c}\tau_{\pm}^{s}(b)\right)^{2_s^\ast}\|u\|_{2_s^\ast}^{2_s^\ast}. \end{align*} |
Next, we define the function
\begin{align*} \Phi(b, \tau_{\pm}^s) = \left(\frac{b}{c}\tau_{\pm}^s\right)^{2}\|(-\Delta)^\frac{s}{2}u\|_2^2-\gamma_{p, s} \left(\frac{b}{c}\tau_{\pm}^{\gamma_{p, s}s}\right)^{p}\|u\|_p^p-\left(\frac{b}{c}\tau_{\pm}^{s}\right)^{2_s^\ast}\|u\|_{2_s^\ast}^{2_s^\ast}. \end{align*} |
Clearly, \Phi(b, \tau_{\pm}^s(b)) = 0 for 0 < b < \min\{\alpha_1, \alpha_2\} . Applying u\in V(c)^\pm and Lemma 1, we have
\begin{align*} \partial_{\tau_{\pm}^{s}}\Phi(c, 1) = 2\|(-\Delta)^\frac{s}{2}u\|_2^2-\gamma_{p, s}^2p\|u\|_p^p -2^\ast_s\|u\|_{2^\ast_s}^{2^\ast_s}\neq0. \end{align*} |
Applying the implicit function theorem, we have (\tau_{\pm}^s(c))' exists and (2.19) holds. By u\in V(c)^\pm once more, we deduce that
\begin{align*} 1+c(\tau_{\pm}^s(c))'& = 1+\frac{\gamma_{p, s}p\|u\|_p^p+2^\ast_s\|u\|_{2^\ast_s}^{2^\ast_s}-2\|(-\Delta)^\frac{s}{2}u\|_2^2}{2\|(-\Delta)^\frac{s}{2}u\|_2^2-\gamma^2_{p, s}p\|u\|_p^p-2_s^\ast\|u\|_{2_s^\ast}^{2_s^\ast}} \\& = \frac{p\gamma_{p, s}(1-\gamma_{p, s})\|u\|_p^p}{2\|(-\Delta)^\frac{s}{2}u\|_2^2-\gamma^2_{p, s}p\|u\|_p^p-2_s^\ast\|u\|_{2_s^\ast}^{2_s^\ast}}. \end{align*} |
Since (v_b)_{\tau_{\pm}(b)}\in V(b)^{\pm} and u\in V(c)^\pm , we obtain
\begin{align*} E((v_b)_{\tau_{\pm}(b)})& = \left(\frac{1}{2}-\frac{1}{p\gamma_{p, s}}\right) \|(-\Delta)^\frac{s}{2}(v_b)_{\tau_{\pm}(b)}\|_2^2+\left(\frac{1}{p\gamma_{p, s}}-\frac{1}{2_s^\ast}\right)\|(v_b)_{\tau_{\pm}(b)}\|_{2_s^\ast}^{2_s^\ast} \\& = \left(\frac{b}{c}\tau_{\pm}^s(b)\right)^{2}\left(\frac{1}{2}-\frac{1}{p\gamma_{p, s}}\right) \|(-\Delta)^\frac{s}{2}u\|_2^2+\left(\frac{b}{c}\tau_{\pm}^{s}(b)\right)^{2_s^\ast}\left(\frac{1}{p\gamma_{p, s}}-\frac{1}{2_s^\ast}\right)\|u\|_{2_s^\ast}^{2_s^\ast} \\& = \left(\frac{1}{2}-\frac{1}{p\gamma_{p, s}}\right)\|(-\Delta)^\frac{s}{2}u\|_2^2+\left(\frac{1}{p\gamma_{p, s}}-\frac{1}{2_s^\ast}\right)\|u\|_{2_s^\ast}^{2_s^\ast}+o(b-c) \\&+\frac{1+c(\tau_{\pm}^s(c))'}{c}\left[2\left(\frac{1}{2}-\frac{1}{p\gamma_{p, s}}\right)\|(-\Delta)^\frac{s}{2}u\|_2^2+2_s^\ast\left(\frac{1}{p\gamma_{p, s}}-\frac{1}{2_s^\ast}\right)\|u\|_{2_s^\ast}^{2_s^\ast}\right](b-c) \\& = E(u)-\frac{(1-\gamma_{p, s})\|u\|_p^p}{c}(b-c)+o(b-c). \end{align*} |
Thus, we obtain
\begin{align*} \frac{dE((v_b)_{\tau_{\pm}(b)})}{db}\Big|_{b = c} = -\frac{(1-\gamma_{p, s})\|u\|_p^p}{c} < 0. \end{align*} |
Since 0 < c < \min\{\alpha_1, \alpha_2\} is arbitrary and (v_b)_{\tau_{\pm}(b)}\in V(b)^\pm , we have E((v_b)_{\tau_{\pm}(b)}) < E(u) for all b > c such that b < \min\{\alpha_1, \alpha_2\} .
Lemma 7. Let N\geq2 , 2 < p < 2+\frac{4s}{N} , and 0 < a < \min\{\alpha_1, \alpha_2\} . Assume that u\in V(a) is a critical point for E(u)\mid_{V(a)} , then u is a critical point for E(u)\mid_{S(a)} .
Proof. By Lemma 3.1 in [25], we have that V(a) is a smooth manifold of codimension 2 in H^s(\mathbb{R}^N) and V(a)^0 is empty. If u\in V(a) is a critical point for E(u)\mid_{V(a)} , then by the Lagrange multipliers rule there exist \lambda, \mu\in \mathbb{R} such that
\begin{align*} E'(u)\varphi-\lambda\int_{\mathbb{R}^N}u\varphi{\rm d}x-\mu P'(u)\varphi = 0 \end{align*} |
for every \varphi\in H^s(\mathbb{R}^N) . This implies
\begin{align*} (1-2\mu)(-\Delta)^su = \lambda u+(1-\mu\gamma_{p, s}p)|u|^{p-2}u+(1-\mu 2_s^\ast)|u|^{2_s^\ast-2}u, \quad x\in\mathbb{R}^N. \end{align*} |
We have to prove that \mu = 0 . By using the Pohozaev identity for the above equation, we know that
\begin{align} (1-2\mu)\|(-\Delta)^{\frac{s}{2}}u\|_2^2 = \gamma_{p, s}(1-\gamma_{p, s}p\mu)\|u\|_p^p+(1-\mu2_s^\ast) \|u\|_{2_s^\ast}^{2_s^\ast}. \end{align} | (2.20) |
Applying u\in V(a) and (2.20), we deduce that
\begin{align*} \mu\left(2\|(-\Delta)^{\frac{s}{2}}u\|_2^2-\gamma_{p, s}^2p\|u\|_p^p-2_s^\ast\|u\|_{2_s^\ast}^{2_s^\ast}\right) = 0. \end{align*} |
Since u\notin V(a)^0 , we have 2\|(-\Delta)^{\frac{s}{2}}u\|_2^2-\gamma_{p, s}^2p\|u\|_p^p-2_s^\ast\|u\|_{2_s^\ast}^{2_s^\ast}\neq0 . Thus, we have \mu = 0 . Hence, u is a critical point for E(u)\mid_{S(a)} , that is, V(a) is a natural constraint.
Lemma 8. Let N\geq2 , 2 < p < 2+\frac{4s}{N} , and 0 < a < \min\{\alpha_1, \alpha_2\} . Assume that m_{a, r}^- < m_a^++\frac{s}{N}S_s^{\frac{N}{2s}} , then m_{a, r}^- can be attained by some u_{a, -}\in H^s_r(\mathbb{R}^N) , which is positive and radially decreasing. Furthermore, problem (1.1) has a second solution u_{a, -} with some \lambda_{a, -} < 0 .
Proof. Let \{\bar{u}_n\}\subset V_r(a)^- be a minimizing sequence. By Ekeland's variational principle (see [13]), there exists a new minimizing sequence \{{u}_{n}\} satisfying
\begin{equation} \begin{cases} \|\bar u_{n}- u_{n}\|_{H^s(\mathbb{R}^N)}\rightarrow 0, & {\rm as} \ n\rightarrow \infty, \\ E(u_{n})\rightarrow m_{a, r}^-, & {\rm as} \ n\rightarrow \infty, \\ P(u_{n})\rightarrow 0, & {\rm as} \ n\rightarrow \infty, \\ E'|_{V_r(a)^-}(u_{n})\rightarrow 0, & {\rm as} \ n\rightarrow \infty. \end{cases} \end{equation} | (2.21) |
Therefore, we obtain
\begin{align} E(u_n)-\frac{1}{2}P(u_{n}) = \frac{1}{p}\left(\frac{p\gamma_{p, s}}{2}-1\right)\|u_n\|_p^p+\frac{s}{N} \|u_n\|_{2^\ast_s}^{2^\ast_s} \rightarrow m_{a, r}^-, \quad {\rm as} \ n\rightarrow \infty . \end{align} | (2.22) |
From the third property in (2.21), we have
\begin{align*} E(u_n)& = \frac{s}{N}\|(-\Delta)^\frac{s}{2}u_n\|_2^2-\frac{1}{p}\left(1-\frac{\gamma_{p, s}p}{2_s^\ast}\right)\|u_n\|_p^p+o_n(1) \\&\geq\frac{s}{N}\|(-\Delta)^\frac{s}{2}u_n\|_2^2-\frac{1}{p}C^p(s, N, p)\left(1-\frac{\gamma_{p, s}p}{2_s^\ast}\right)a^{(1-\gamma_{p, s})p}\|(-\Delta)^\frac{s}{2}u_n\|_2^{\gamma_{p, s}p}+o_n(1) \end{align*} |
by the Gagliardo–Nirenberg–Sobolev inequality (1.5). Then, using that E(u_n)\leq m_{a, r}^-+1 for n large, we deduce that
\begin{align*} \frac{s}{N}\|(-\Delta)^\frac{s}{2}u_n\|_2^2\leq\frac{1}{p}C^p(s, N, p)\left(1-\frac{\gamma_{p, s}p}{2_s^\ast}\right)a^{(1-\gamma_{p, s})p}\|(-\Delta)^\frac{s}{2}u_n\|_2^{\gamma_{p, s}p}+m_{a, r}^-+1. \end{align*} |
This implies that \{u_n\} is bounded in H^s_r(\mathbb{R}^N) . Therefore, u_n\rightharpoonup u_0 in H^s_r(\mathbb{R}^N) up to a subsequence. By the Sobolev compact embedding theorem H_r^s(\mathbb{R}^N)\hookrightarrow L^{p}(\mathbb{R}^N) for 2 < p < 2_s^\ast , we have u_n\rightarrow u_0 strongly in L^{p}(\mathbb{R}^N) as n\rightarrow \infty up to a subsequence. Without loss of generality, we assume that u_n\rightharpoonup u_0 weakly in H^s_r(\mathbb{R}^N) and u_n\rightarrow u_0 strongly in L^{p}(\mathbb{R}^N) as n\rightarrow \infty . We claim that u_0\neq0 . Otherwise, u_n\rightarrow0 strongly in L^{p}(\mathbb{R}^N) . By P(u_{n})\rightarrow 0 as n\rightarrow \infty , it follows that
\begin{align} \|(-\Delta)^\frac{s}{2}u_n\|_2^2 = \|u_n\|_{2_s^\ast}^{2_s^\ast}+o_n(1). \end{align} | (2.23) |
Applying (2.23) and the embedding D^{s, 2}(\mathbb{R}^N)\hookrightarrow L^{2^\ast_s}(\mathbb{R}^N) , we obtain either u_n\rightarrow0 strongly in D^{s, 2}(\mathbb{R}^N) as n\rightarrow \infty or
\begin{align} \|(-\Delta)^\frac{s}{2}u_n\|_2^2& = \|u_n\|_{2_s^\ast}^{2_s^\ast}+o_n(1){}\\&\geq S_s^{\frac{N}{2s}}+o_n(1).{} \end{align} |
According to (2.22), either m_{a, r}^- = 0 or m_{a, r}^-\geq\frac{s}{N}S_s^{\frac{N}{2s}} , which contradicts Lemmas 3 and 5. Therefore, we obtain u_0\neq0 . Let v_n\triangleq u_n-u_0 . Then, there are the following two cases:
{\rm (i)} v_n\rightarrow0 strongly in H^s_r(\mathbb{R}^N) as n\rightarrow \infty ;
{\rm (ii)} \|(-\Delta)^\frac{s}{2}v_n\|_2^2+\|v_n\|_2^2\gtrsim 1 .
In the case (ⅰ), u_0\in V_r(a)^- and m_{a, r}^- is attained by u_0 , which is nonnegative and radially decreasing. By Lemma 7, u_0 is a solution to problem (1.1) with \lambda_0\in\mathbb{R} , which appears as a Lagrange multiplier. By multiplying equation (1.1) with u_0 and integrating by parts, it follows from u_0\in V_r(a)^- that
\begin{align*} \lambda_0a^2 = (\gamma_{p, s}-1)\|u_0\|_p^p < 0. \end{align*} |
Hence, \lambda_0 < 0 . By using the strong maximum principle for the fractional Laplacian, we can see that u_0 is positive. It remains to consider the case (ⅱ). Let \|u_0\|_2^2 = t_0^2 . Then, by Fatou's lemma, we get 0 < t_0\leq a . Next, we have the following two subcases:
{\rm (a)} \|v_n\|_{2_s^\ast}\rightarrow0 as n\rightarrow \infty up to a subsequence;
{\rm (b)} \|v_n\|_{2_s^\ast}^{2_s^\ast}\gtrsim 1 .
In the subcase (a), by Lemma 2, there exists s_0 > 0 such that (u_0)_{s_0}\in V_r(t_0)^- . Using Lemma 2 again, (2.21) and u_n\rightarrow u_0 strongly in L^{p}(\mathbb{R}^N)\cap L^{2_s^\ast}(\mathbb{R}^N) as n\rightarrow \infty up to a subsequence, we deduce that
\begin{align*} m_{a, r}^-+o_n(1) = E(u_n)\geq E((u_n)_{s_0}) = E((u_0)_{s_0})+o_n(1). \end{align*} |
By Lemma 6, we have m_{t_0, r}^-\geq m_{a, r}^- . Therefore, E((u_0)_{s_0}) = m_{t_0, r}^- and m_{t_0, r}^- = m_{a, r}^- . If t_0 < a , we take (u_0)_{s_0} as the test function in the proof of Lemma 6, and we deduce that m_{t_0, r}^- > m_{a, r}^- , which is a contradiction. Thus, in the case of (a), we have t_0 = a , and m^-_{a, r} is attained by (u_0)_{s_0} , which is nonnegative and radially decreasing. As above, we can see that (u_0)_{s_0} is positive and (u_0)_{s_0} is a solution to problem (1.1) with \lambda'_0 < 0 . Now, it remains to consider the case (b). Let
\begin{align*} s_n\triangleq\left(\frac{\|(-\Delta)^\frac{s}{2}v_n\|_2^2}{\|v_n\|_{2_s^\ast}^{2_s^\ast}}\right)^{\frac{1}{(2_s^\ast-2)s}}. \end{align*} |
Clearly, in the case (b), s_n\lesssim1 , and by the embedding D^{s, 2}(\mathbb{R}^N)\hookrightarrow L^{2^\ast_s}(\mathbb{R}^N) , we deduce that
\begin{align*} \|(-\Delta)^\frac{s}{2}(v_n)_{s_n}\|_2^2& = \|(v_n)_{s_n}\|_{2_s^\ast}^{2_s^\ast}\\&\geq S_s^{\frac{N}{2s}}. \end{align*} |
Since 0 < t_0\leq a , by Lemma 2, there exists \tau_0 > 0 such that (u_0)_{\tau_0}\in V_r(t_0)^- . We claim that s_n\geq\tau_0 up to a subsequence. If not, suppose the contrary: s_n < \tau_0 for all n . Define an auxiliary functional
\begin{align*} E_0(u)\triangleq\frac{1}{2}\|(-\Delta)^\frac{s}{2}u\|_2^2-\frac{1}{2_s^\ast}\|u\|_{2_s^\ast}^{2_s^\ast}. \end{align*} |
Applying Lemma 2 once more, the Brezis–Lieb lemma (see Lemma 1.32 in [23]), Lemma 6, u_n\rightarrow u_0 strongly in L^p(\mathbb{R}^N) as n\rightarrow \infty , and the boundedness of \{s_n\} , it follows that
\begin{align*} m_{a, r}^-+o_n(1)& = E(u_n)\geq E((u_n)_{s_n})\\& = E((u_0)_{s_n})+E_0((v_n)_{s_n})+o_n(1)\\&\geq m_{t_0}^++\frac{s}{N}S_s^{\frac{N}{2s}}+o_n(1)\\&\geq m_{a}^++\frac{s}{N}S_s^{\frac{N}{2s}}+o_n(1), \end{align*} |
which is impossible. Therefore, we have s_n\geq\tau_0 up to a subsequence. Without loss of generality, we assume that s_n\geq\tau_0 for all n\in \mathbb{N} . Again, by Lemma 2, the Brezis–Lieb lemma (see Lemma 1.32 in [23]), and the fact that u_n\rightarrow u_0 strongly in L^p(\mathbb{R}^N) as n\rightarrow \infty , we obtain
\begin{align*} m_{a, r}^-+o_n(1)& = E(u_n)\geq E((u_n)_{\tau_0})\\& = E((u_0)_{\tau_0})+E_0((v_n)_{\tau_0})+o_n(1). \end{align*} |
According to s_n\geq\tau_0 , by the proof of Theorem 1.4 in [27] (see Section 8 in [27]), we have
E_0((v_n)_{\tau_0})\geq0. |
By Lemma 6, we have t_0 = a , and m_{a, r}^- is attained by (u_0)_{\tau_0} , which is nonnegative and radially decreasing. By the above analysis, we prove that (u_0)_{\tau_0} is positive and (u_0)_{\tau_0} is a solution for problem (1.1) with some \lambda''_0 < 0 . Thus, we have proved that m_{a, r}^- can always be attained by u_{a, -} , which is positive and radially decreasing. Hence, problem (1.1) has a second solution (u_{a, -}, \lambda_{a, -}) with some \lambda_{a, -} < 0 .
We are ready to give the proof of Theorem 1.
Proof of Theorem 1. By Lemmas 3 and 5, we have m_{a, r}^- < m_a^++\frac{s}{N}S_s^{\frac{N}{2s}} . Then, Theorem 1 follows from Lemma 8.
Xizheng Sun: Conceptualization, Investigation, Methodology, Supervision, Validation, Writing-original draft, Writing-review and editing; Zhiqing Han: Conceptualization, Methodology, Validation, Writing-original draft, Writing-review and editing. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work does not have any conflicts of interest.
[1] | D. Applebaum, Lévy processes–-From probability to finance and quantum groups, Notices of the American Mathematical Society, 51 (2004), 1336–1347. |
[2] |
T. Bartsch, N. Soave, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var., 58 (2019), 22. https://doi.org/10.1007/s00526-018-1476-x doi: 10.1007/s00526-018-1476-x
![]() |
[3] |
T. Bartsch, H. W. Li, W. M. Zou, Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrödinger systems, Calc. Var., 62 (2023), 9. https://doi.org/10.1007/s00526-022-02355-9 doi: 10.1007/s00526-022-02355-9
![]() |
[4] |
H. Berestycki, P.-L. Lions, Nonlinear scalar field equations, Ⅰ existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345. https://doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555
![]() |
[5] | C. Bucur, E. Valdinoci, Nonlocal diffusion and applications, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-28739-3 |
[6] |
L. A. Caffarelli, J.-M. Roquejoffre, Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151–1179. https://doi.org/10.4171/JEMS/226 doi: 10.4171/JEMS/226
![]() |
[7] |
L. A. Caffarelli, S. Salsa, L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425–461. https://doi.org/10.1007/s00222-007-0086-6 doi: 10.1007/s00222-007-0086-6
![]() |
[8] |
Z. J. Chen, W. M. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Rational Mech. Anal., 205 (2012), 515–551. https://doi.org/10.1007/s00205-012-0513-8 doi: 10.1007/s00205-012-0513-8
![]() |
[9] |
V. Coti Zelati, M. Nolasco, Existence of ground states for nonlinear, pseudo-relativistic Schrödinger equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 22 (2011), 51–72. https://doi.org/10.4171/RLM/587 doi: 10.4171/RLM/587
![]() |
[10] |
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
![]() |
[11] |
P. Felmer, A. Quaas, J. G. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinb. A, 142 (2012), 1237–1262. https://doi.org/10.1017/S0308210511000746 doi: 10.1017/S0308210511000746
![]() |
[12] |
R. L. Frank, E. Lenzmann, L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., 69 (2016), 1671–1726. https://doi.org/10.1002/cpa.21591 doi: 10.1002/cpa.21591
![]() |
[13] | N. Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge: Cambridge University Press, 1993. https://doi.org/10.1017/cbo9780511551703 |
[14] |
L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. Theor., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
![]() |
[15] |
L. Jeanjean, T. T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann., 384 (2022), 101–134. https://doi.org/10.1007/s00208-021-02228-0 doi: 10.1007/s00208-021-02228-0
![]() |
[16] | E. H. Lieb, M. P. Loss, Analysis, second edition, Providence, RI: American Mathematical Society, 2001. https://doi.org/10.1090/gsm/014 |
[17] |
H. J. Luo, Z. T. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var., 59 (2020), 143. https://doi.org/10.1007/s00526-020-01814-5 doi: 10.1007/s00526-020-01814-5
![]() |
[18] |
R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67–102. https://doi.org/10.1090/S0002-9947-2014-05884-4 doi: 10.1090/S0002-9947-2014-05884-4
![]() |
[19] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007) 67–112. https://doi.org/10.1002/cpa.20153 doi: 10.1002/cpa.20153
![]() |
[20] |
N. Soave, Normalized ground state for the NLS equations with combined nonlinearities, J. Differ. Equations, 269 (2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016
![]() |
[21] |
N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020) 108610. https://doi.org/10.1016/j.jfa.2020.108610 doi: 10.1016/j.jfa.2020.108610
![]() |
[22] |
J. C. Wei, Y. Z. Wu, Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities, J. Funct. Anal., 283 (2022), 109574. https://doi.org/10.1016/j.jfa.2022.109574 doi: 10.1016/j.jfa.2022.109574
![]() |
[23] | M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
[24] |
P. H. Zhang, Z. Q. Han, Normalized ground states for Kirchhoff equations in \mathbb{R}^3 with a critical nonlinearity, J. Math. Phys., 63 (2022), 021505. https://doi.org/10.1063/5.0067520 doi: 10.1063/5.0067520
![]() |
[25] |
P. H. Zhang, Z. Q. Han, Normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity, Z. Angew. Math. Phys., 73 (2022), 149. https://doi.org/10.1007/s00033-022-01792-y doi: 10.1007/s00033-022-01792-y
![]() |
[26] |
P. H. Zhang, Z. Q. Han, Normalized ground states for Schrödinger system with a coupled critical nonlinearity, Appl. Math. Lett., 150 (2024), 108947. https://doi.org/10.1016/j.aml.2023.108947 doi: 10.1016/j.aml.2023.108947
![]() |
[27] |
M. D. Zhen, B. L. Zhang, Normalized ground states for the critical fractional NLS equation with a perturbation, Rev. Mat. Complut., 35 (2022), 89–132. https://doi.org/10.1007/s13163-021-00388-w doi: 10.1007/s13163-021-00388-w
![]() |