In this paper, we study the finite volume element method of bilinear parabolic optimal control problem. We will use the optimize-then-discretize approach to obtain the semi-discrete finite volume element scheme for the optimal control problem. Under some reasonable assumptions, we derive the optimal order error estimates in L2(J;L2) and L∞(J;L2)-norm. We use the backward Euler method for the discretization of time to get fully discrete finite volume element scheme for the optimal control problem, and obtain some error estimates. The approximate order for the state, costate and control variables is O(h3/2+△t) in the sense of L2(J;L2) and L∞(J;L2)-norm. Finally, a numerical experiment is presented to test these theoretical results.
Citation: Zuliang Lu, Ruixiang Xu, Chunjuan Hou, Lu Xing. A priori error estimates of finite volume element method for bilinear parabolic optimal control problem[J]. AIMS Mathematics, 2023, 8(8): 19374-19390. doi: 10.3934/math.2023988
[1] | Jingye Zhao, Zonghua Wei, Jiahui Liu, Yongqiang Fan . Vanishing magnetic field limits of solutions to the non-isentropic Chaplygin gas magnetogasdynamics equations. AIMS Mathematics, 2025, 10(1): 1675-1703. doi: 10.3934/math.2025077 |
[2] | Noufe H. Aljahdaly . Study tsunamis through approximate solution of damped geophysical Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(5): 10926-10934. doi: 10.3934/math.2024534 |
[3] | Shang Mengmeng . Large time behavior framework for the time-increasing weak solutions of bipolar hydrodynamic model of semiconductors. AIMS Mathematics, 2017, 2(1): 102-110. doi: 10.3934/Math.2017.1.102 |
[4] | Aidi Yao . Two-dimensional pseudo-steady supersonic flow around a sharp corner for the generalized Chaplygin gas. AIMS Mathematics, 2022, 7(7): 11732-11758. doi: 10.3934/math.2022654 |
[5] | Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562 |
[6] | Lining Tong, Li Chen, Simone Göttlich, Shu Wang . The global classical solution to compressible Euler system with velocity alignment. AIMS Mathematics, 2020, 5(6): 6673-6692. doi: 10.3934/math.2020429 |
[7] | Shaomin Wang, Cunji Yang, Guozhi Cha . On the variational principle and applications for a class of damped vibration systems with a small forcing term. AIMS Mathematics, 2023, 8(9): 22162-22177. doi: 10.3934/math.20231129 |
[8] | Ahmed E. Abouelregal, Khalil M. Khalil, Wael W. Mohammed, Doaa Atta . Thermal vibration in rotating nanobeams with temperature-dependent due to exposure to laser irradiation. AIMS Mathematics, 2022, 7(4): 6128-6152. doi: 10.3934/math.2022341 |
[9] | Waleed Hamali, Abdulah A. Alghamdi . Exact solutions to the fractional nonlinear phenomena in fluid dynamics via the Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(11): 31142-31162. doi: 10.3934/math.20241501 |
[10] | Kunquan Li . Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity. AIMS Mathematics, 2024, 9(5): 12412-12432. doi: 10.3934/math.2024607 |
In this paper, we study the finite volume element method of bilinear parabolic optimal control problem. We will use the optimize-then-discretize approach to obtain the semi-discrete finite volume element scheme for the optimal control problem. Under some reasonable assumptions, we derive the optimal order error estimates in L2(J;L2) and L∞(J;L2)-norm. We use the backward Euler method for the discretization of time to get fully discrete finite volume element scheme for the optimal control problem, and obtain some error estimates. The approximate order for the state, costate and control variables is O(h3/2+△t) in the sense of L2(J;L2) and L∞(J;L2)-norm. Finally, a numerical experiment is presented to test these theoretical results.
The non-isentropic Euler equations in RN in fluid dynamics with a time-dependent linear damping and Coriolis force can be expressed as follows:
ρt+div(ρu)=0, | (1.1) |
(ρu)t+div(ρu⊗u)+ρJu+α(t)ρu+▽p=0, | (1.2) |
St+u⋅▽S=0, | (1.3) |
where u=(u1,u2,⋯,uN)T is an N-dimensional velocity field, ρ(x,t) and p(x,t)=eSργ represent density and the pressure function respectively, JT=−J representing Corilis force is an anti-symmetric matrix. The damping term α(t)ρu with α(t)≥0 as a coefficient of friction is proportional to the momentum.
For the special case when α(t)=0, the equations are reduced to Euler equations extended and governed by Coriolis rotational force [1,2,3,4]. The theoretical global existence of the Euler equations with rotational forces can be referred to [5,6,7]. Further studies on stability and tropical cyclones driven by this model can be referred to [8,9,10,11,12,13].
If J=0, (1.1)–(1.3) are reduced to non-isentropic linear-damped Euler equations, which provide an important model regarding to its physical behaviours. The system can also be used to describe compressible gas dynamics through a porous material driven by a friction force [14,15,16]. Weak solutions of the damped Euler equations are shown with asymptotic and large-time behavious in [16,17,18,19]. Chow, Fan, and Yuen, in 2017, constructed the solutions of Cartesian form with J=0 in [20], which can be regarded as a special case in this article, while taking the parameter γ and 2α in [20] to be γ+1 and α respectively. For time-dependent damping, Dong and Li studied a class of analytical solutions with free-boundary [21] in 2022.
For the case with J=0 and α(t)=0, the system (1.1)–(1.3) is reduced to the Euler equations
ρt+div(ρu)=0, | (1.4) |
(ρu)t+div(ρu⊗u)+▽p=0, | (1.5) |
St+u⋅▽S=0. | (1.6) |
There are lots of researches on Euler equations, for example, see [22,23,24,25,26]. Among all the topics, constructing analytical and exact solutions are crucial [27,28,29,30,31,32,33,34] with a common pattern of the velocity function u in linear form in many previous studies. For non-isentropic Euler equations, Barna and Mátyás presented the analytic solutions for one-dimensional Euler equations and three-dimensional Navier-Stokes equations with polytropic equation of state [34,35], which can be referred to by taking n≠γ and the viscosities to be zero respectively. Based on the linear form of velocity, An, Fan, and Yuen contributed with Cartesian rotational solutions to the N-dimension isentropic compressible Euler equations (1.4)–(1.6) [36] in 2015:
u=b(t)+A(t)x, | (1.7) |
where b(t) and A(t) are vector and matrix respectively. Further studies have shown the existence of general solutions in Cartesian form to isentropic Euler equations with damping and rotational forces in [20] and [37], respectively.
Referring to the many blowup pheonomena studies [38,39,40], the global solution is still complicated to look for.
In this article, the existence of a form of Cartesian solutions to non-isentropic Euler equations with rational force and linear damping (1.1)–(1.3) is proven by adopting mainly techniques on matrices, vectors, and curve integration. Enforcing eS=ρ and regarding velocity field u as an linear transformation of x∈RN, the problem is equivalent to finding the pressure function p, which leads us to a quadratic form and requirments on the matrix A and vector b. With this finding, we can construct some special exact solutions, which could be utilized in benchmarks for testings, simulations of computing flows.
In the following sections, we will prove the existence of the non-isentropic damped Euler equations with Coriolis forces, which admit Cartesian solutions by using appropriate requirements on matrix A and vector b. We will give examples on this first cartesian form solutions to non-isentropic Euler equations based on our finding.
In this section, we consider the non-isentropic Euler equations. Suppose that the density ρ and pressure p satisfy the relation
p(ρ)=eSργ, | (3.1) |
where the constant γ=cp/cu≥1, and cp and cu are the specific heats per unit mass under constant pressure and constant volume, respectively. Then we have the following theorem.
Theorem 3.1. If matrices A with tr(A)=0 and B=(At+A2+JA+α(t)A)/2 satisfy the matrix differential equations
BT=B, | (3.2) |
Bt+BA+ATB=0, | (3.3) |
then the compressible Euler equations with a time-dependent linear damping and Coriolis force (1.1)–(1.3) have explicit solutions in the form
u=b(t)+Ax, | (3.4) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ, | (3.5) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)], | (3.6) |
where μ=(γγ+1)1γ; the vector function b(t) and scalar function c(t) satisfy the ordinary differential equations:
(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb=0, | (3.7) |
ct−bT(bt+Ab+Jb+α(t)b)=0. | (3.8) |
Proof. By (3.65), (3.5) and (3.6), ρ>0, S=lnρ. Let
ˉp=γ+1γργ, | (3.9) |
▽pρ=1ρ▽(esργ)=1ρ▽(ργ+1)=(γ+1)ργ−1▽ρ=▽(γ+1γργ)=▽ˉp. | (3.10) |
With (3.9), the compressible Euler equations (1.2) and (1.3) can then be written as
ρt+div(ρu)=0, | (3.11) |
ut+(u⋅▽)u+Ju+α(t)u+▽ˉp=0, | (3.12) |
St+u⋅▽S=0. | (3.13) |
Owing to the equivalent relation (3.9) between ˉp and ρ, we mainly deal with ˉp when solving Eqs (3.11) and (3.12). Substituting Eq (3.4) into Eq (3.12), we have
ut+(u⋅▽)u+Ju+α(t)u+▽ˉp | (3.14) |
=bt+Atx+[(b+Ax)⋅▽](b+Ax)+JAx+α(t)Ax+Jb+α(t)b+▽ˉp | (3.15) |
=bt+Jb+α(t)b+Atx+(b⋅▽)Ax+(Ax⋅▽)Ax+JAx+α(t)Ax+▽ˉp | (3.16) |
=bt+(A+J+α(t))b+(At+A2+JA+α(t)A)x+▽ˉp=0. | (3.17) |
Let
B=(bij)N×N=12(At+A2+JA+α(t)A), J=(gij)N×N. | (3.18) |
Then the above equation can be written into a component form
Qi(x1,⋯,xN)≡−bit−α(t)bi−N∑k=1(aikbk+gikbk+2bikxk)=∂ˉp∂xi, i=1,2,⋯,N. | (3.19) |
Then, the following sufficient and necessary compatible conditions of these N equations,
∂Qj(x1,⋯,xN)∂xi=∂Qi(x1,⋯,xN)∂xj, i,j=1,2,⋯,N, | (3.20) |
lead to
bji=bij, i,j=1,2,⋯,N, | (3.21) |
which implies that B=12(At+A2+JA+α(t)A) is a symmetric matrix. Under the condition (3.20), ˉp(x) is a complete differential function,
dˉp(x)=N∑i=1∂ˉp(x)∂xidxi=N∑i=1Qi(x1,⋯,xN)dxi. | (3.22) |
Therefore we can choose a special integration route to obtain
ˉp(x,t)=N∑i=1∫(x1,x2,⋯,xN)(0,0,⋯,0)Qi(x1,x2,⋯,xN)dxi | (3.23) |
=∫x10Q1(x1,0,⋯,0)dx1,+∫x20Q2(x1,x2,0,⋯,0)dx2+⋯+∫xN0QN(x1,x2,⋯,xN)dxN | (3.24) |
=−N∑i=1[bi,t+N∑k=1(aikbk+gikbk)+α(t)bi]xi−N∑i=1biix2i−2N∑i,k=1, i<kbikxixk+c(t) | (3.25) |
=−xT(bt+Jb+Ab+α(t)b)−xTBx+c(t). | (3.26) |
Next, we show that functions (3.4)–(3.6) satisfy (3.11). By (3.9), we have
ρt=(μˉp1γ)t=μγˉp1γ−1ˉpt, | (3.27) |
ρtr(A)=μˉp1γtr(A)=μγˉp1γ−1γtr(A)ˉp, | (3.28) |
▽ρ=▽(μˉp1γ)=μγˉp1γ−1▽ˉp, | (3.29) |
u⋅▽ρ=μγˉp1γ−1uT▽ˉp. | (3.30) |
From Eqs (3.27)–(3.30), we have
ρt+div(ρu)=ρt+ρtr(A)+u⋅▽ρ=−μγˉp1γ−1{xT(bt+Ab+Jb+α(t)b)t+xTBtx−ct(t)+γtr(A)[xT(bt+Ab+Jb+α(t)b)+xTBx−c(t)]+(b+Ax)T(bt+Ab+Jb+α(t)b+2Bx)} | (3.31) |
=−μγˉp1γ−1{xT(Bt+γtr(A)B+2ATB)x+xT[(bt+Ab+Jb+α(t)b)t+(γtr(A)I+AT)(bt+Ab+Jb+α(t)b)+2Bb]−[ct+γtr(A)c−bT(bt+Ab+Jb+α(t)b)]} | (3.32) |
=−μγˉp1γ−1{xT[Bt+2ATB]x+xT[(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb]−[ct−bT(bt+Ab+Jb+α(t)b)]}=0, | (3.33) |
where we use the condition of the first term
xT(Bt+2ATB)x=0, | (3.34) |
which is equivalent to
(Bt+2ATB)T=−(Bt+2ATB), | (3.35) |
that is,
Bt+BA+ATB=0, | (3.36) |
which is (3.3). The second and third terms are controlled to be 0 with (3.7) and (3.8). By (3.6), we have
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]=lnρ. | (3.37) |
From (3.9), (3.37) is equivalent to
S=ln(μˉpγ)=lnμ+1γlnˉp, | (3.38) |
St=(lnˉp)tγ=1γˉp−1ˉpt, | (3.39) |
▽S=1γ▽lnˉp=1γˉp−1▽ˉp. | (3.40) |
Substituting (3.4)–(3.6) and (3.38)–(3.40) to (3.13) and using (3.3), (3.7), and (3.8), we obtain by a similar argument used in obtaining Eq (3.33) that
St+u⋅▽S=1γˉp−1(ˉpt+uT▽ˉp) | (3.41) |
=1γˉp−1[−xT(bt+Ab+Jb+α(t)b)t−xTBtx+ct(t)−(xTAT+bT)(bt+Ab+Jb+α(t)b+2Bx)] | (3.42) |
=1γˉp{−xT[(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb]−xT[Bt+2ATB]x+ct(t)−bT(bt+Ab+Jb+α(t)b)}=0. | (3.43) |
We observe that Eq (3.3) is a N2 matrix differential equation, which demands us to apply special reduction conditions to acquire solutions.
Corollary 3.1. If A is an anti-symmetric matrix, that is
AT=−A, | (3.44) |
and the following conditions are satisfied:
At+α(t)A=0, | (3.45) |
AJ=JA, | (3.46) |
Bt=0, | (3.47) |
btt+2Atb+(Jb+α(t)b)t=0, | (3.48) |
ct−bT(bt+Ab+Jb+α(t)b)=0, | (3.49) |
then the compressible Euler equations (3.11)–(3.13) admit a general solution
u=b(t)+Ax, | (3.50) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ, | (3.51) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]. | (3.52) |
Proof. By (3.45) and (3.46),
BT=12(At+A2+JA+α(t)A)T | (3.53) |
=12[(−A)(−A)+(−A)(−J)] | (3.54) |
=12(A2+JA)=B. | (3.55) |
We can then simplify (3.3), (3.7), and (3.8) into (3.47), (3.48), and (3.49). Since matrix A is anti-symmetric, we have
BA+ATB=0. | (3.56) |
By (3.47), we have
Bt=0, | (3.57) |
Bt+BA+ATB=0. | (3.58) |
Thus, Eq (3.3) is ensured.
Since
BT=B, | (3.59) |
AJ=JA, | (3.60) |
AT+A=0, | (3.61) |
we have
(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb | (3.62) |
=btt+Atb+Abt−Abt−A(Ab+Jb+α(t)b)+(At+A2+JA+α(t)A)b+(Jb+α(t)b)t | (3.63) |
=btt+2Atb+(Jb+α(t)b)t=0. | (3.64) |
Thus, Eq (3.64) is simplified to (3.48).
Next, we give the following examples in 2 to N-dimension to demonstrate special cases of this corollary.
Remark 3.1. As (3.5) and (3.6) demand
−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)>0 | (3.65) |
for the positivity of the argument of the logarithm and density, the solutions exist locally.
Example 3.1. When α=0, we have the following examples:
2-dimensional Case: We take constant matrix
A=J=k1[01−10], b=k2[cos(k1t)sin(k1t)], c(t)=0, | (3.66) |
where k1 and k2 are arbitrary constants.
By (3.18),
B=12(At+A2+JA+α(t)A)=12(2A2)=A2 | (3.67) |
=k12[−100−1]. | (3.68) |
Since A is a constant matrix, At=0, taking α(t)=0,
Bt=d(At+A2+JA+α(t)A)2dt=0, | (3.69) |
Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.70) |
=−k12b+0+Jbt+0 | (3.71) |
=−k12k2[cos(k1t)sin(k1t)]+k12k2[01−10][−sin(k1t)cos(k1t)]=0, | (3.72) |
Eq (3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.73) |
=0−k2[cos(k1t)sin(k1t)]T(k1k2[−sin(k1t)cos(k1t)]+2k1k2[01−10][cos(k1t)sin(k1t)]) | (3.74) |
=−k1k22[cos(k1t)sin(k1t)]T[sin(k1t)−cos(k1t)]=0. | (3.75) |
we obtain the following solution:
u(t)=[k2cos(k1t)+k1x2k2sin(k1t)−k1x1], | (3.76) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ | (3.77) |
=μ[−xT(bt+2Ab)−xTA2x]1γ | (3.78) |
=μ[−xT(k1k2[−sin(k1t)cos(k1t)]+2k1k2[−sin(k1t)cos(k1t)])−xTk12[−100−1]x]1γ | (3.79) |
=μ[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)]1γ, | (3.80) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)] | (3.81) |
=lnμ+1γln[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)]. | (3.82) |
3-dimensional Case: We take constant matrix
A=J=k1[01−1−1011−10], b=k2t[111], c(t)=3k222t2, | (3.83) |
where k1 and k2 are arbitrary constants.
Since matrix A is a constant matrix, (3.45)–(3.47) are satisfied. By using of (3.83), (3.48) and (3.49) are ensured. By (3.18),
B=12(At+A2+JA+α(t)A)=12(2A2)=A2 | (3.84) |
=k12[−2111−2111−2]. | (3.85) |
Since A is a constant matrix, At=0, taking α(t)=0,
Bt=d(At+A2+JA+α(t)A)2dt=0, | (3.86) |
Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.87) |
=0+0+Jbt+0 | (3.88) |
=k1k2[01−1−1011−10][111]=0, | (3.89) |
Eq (3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.90) |
=3k22t−k2[ttt]T(k2[111]+2k1k2[01−1−1011−10][ttt]) | (3.91) |
=3k22t−3k22t+0=0. | (3.92) |
Therefore we obtain the solution:
u(t)=[k2t+k1(x2−x3)k2t+k1(x3−x1)k2t+k1(x1−x2)], | (3.93) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ | (3.94) |
=μ[−xT(bt+2Ab)−xTA2x+3k222t2]1γ | (3.95) |
=μ[−xT(k2[111]+0)−xTk12[−2111−2111−2]x+3k222t2]1γ | (3.96) |
=μ[2k12(x12+x22+x32−x1x2−x1x3−x2x3)−k2(x1+x2+x3)+3k222t2]1γ, | (3.97) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)] | (3.98) |
=lnμ+1γln[2k12(x12+x22+x32−x1x2−x1x3−x2x3)−k2(x1+x2+x3)+3k222t2]. | (3.99) |
Remark 3.2. The 3-dimensional example has the same setting with Example 5 in [37], which admits the same u solution but has different entropy and density.
4-dimensional Case: We take
A=J=k1[0−211201−3−1−102−13−20], | (3.100) |
b=k2t[1111], c(t)=2k22t2, | (3.101) |
where k1 and k2 are arbitrary constants. By (3.18),
B=12(At+A2+JA+α(t)A)=12(2A2)=A2 | (3.102) |
=k12[−62−482−1484−48−62842−14]. | (3.103) |
Since A is a constant matrix, At=0, taking α(t)=0,
Bt=d(At+A2+JA+α(t)A)2dt=0, | (3.104) |
Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.105) |
=0+0+Jbt+0 | (3.106) |
=k1k2[0−211201−3−1−102−13−20][1111]=0, | (3.107) |
Eq (3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.108) |
=4k22t−k2[tttt]T(k2[1111]+2k1k2[0−211201−3−1−102−13−20][tttt]) | (3.109) |
=4k22t−4k22t+0=0. | (3.110) |
We have the following solutions:
u=k2t[1111]+k1[−2x2+x3+x42x1+x3−3x4−x1−x2+2x4−x1+3x2−2x3], | (3.111) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ | (3.112) |
=μ[−xT(bt+2Ab)−xTA2x+2k22t2]1γ | (3.113) |
=μ[−xT(k2[1111]+0)−xTk12[−62−482−1484−48−62842−14]x+2k22t2]1γ | (3.114) |
=μ[−k2(x1+x2+x3+x4)+k21(6x12+14x22+6x32+14x42−4x1x2+8x1x3−16x1x4−16x2x3−8x2x4−4x3x4)+2k22t2]1γ, | (3.115) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)] | (3.116) |
=lnμ+1γln[−k2(x1+x2+x3+x4)+k21(6x12+10x22+6x32+14x42−4x1x2+8x1x3−16x1x4−16x2x3−8x2x4−4x3x4)+2k22t2]. | (3.117) |
Example 3.2. When α is a constant, we have the following examples.
2-dimensional Case: We take
A=−J=k1e−αt[01−10], b=k2e−αt[11], | (3.118) |
c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution
u(t)=e−αt[k1x2+k2−k1x1+k2], | (3.119) |
ρ=μm1γ, | (3.120) |
S=lnμ+1γlnm. | (3.121) |
3-dimensional Case: We take
A=−J=k1e−αt[011−101−1−10], b=k2e−αt[111], | (3.122) |
c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution
u(t)=e−αt[k1(x2+x3)+k2k1(x3−x1)+k2−k1(x1+x2)+k2], | (3.123) |
ρ=μm1γ, | (3.124) |
S=lnμ+1γlnm. | (3.125) |
4-dimensional Case: We take
A=−J=k1e−αt[0111−1011−1−101−1−1−10], b=k2e−αt[1111], | (3.126) |
c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution
u(t)=e−αt[k1(x2+x3+x4)+k2k1(x3+x4−x1)+k2k1(x4−x1−x2)+k2−k1(x1+x2+x3)+k2], | (3.127) |
ρ=μm1γ, | (3.128) |
S=lnμ+1γlnm. | (3.129) |
N-dimensional Case: We take
A=k1e−αt[011⋯1−101⋯1−1−1⋱1⋮⋮⋱1−1−1−1⋯0], b=k2e−αt[11⋮1], | (3.130) |
J=−A, c(t)=m>0, | (3.131) |
where k1, k2, and m are arbitrary constants. Then we get a solution
ui=e−αt[k1(N∑k=i+1xk−i−1∑k=1xk)+k2], | (3.132) |
ρ=μm1γ, | (3.133) |
S=lnμ+1γlnm. | (3.134) |
Proof. Since N-dimensional case covers 2 to 4-dimensional cases, here gives the verification of N-dimensional case. (3.46) is guaranteed by J=−A, with
At=−αk1e−αt=−αA, | (3.135) |
(3.45) is satisfied. Therefore,
B=12(At+A2+JA+αA)=0, Bt=0, | (3.136) |
(3.47) is ensured. Substituting (3.130) and (3.131) into (3.48) and (3.49) produces
btt+2Atb+(Jb+α(t)b)t | (3.137) |
=α2b+2αAb+(αb−Ab)t | (3.138) |
=α2b+2αAb−α2b−2αAb=0, | (3.139) |
and
ct−bT(bt+αb+Ab+Jb) | (3.140) |
=0−bT(−αb+αb−Jb+Jb)=0. | (3.141) |
Example 3.3. (2-dimensional case) We take
A=tk1[01−10], J=(tk1−k2tk1)[0−110], b=tk1[11], c(t)=β, α(t)=−k1t, | (3.142) |
where k1<0, k2, and β are arbitrary constants. As
AJ=JA=(t2k1−k2)[1001], | (3.143) |
(3.46) is satisfied.
Denoting
Q=(qij)N×N=[01−10], w=[11], | (3.144) |
it is easy to see
At=k1tk1−1Q=−α(t)A, | (3.145) |
and,
B=A2+JA2=(A+J)A2=k22tk1QA=−k22I=BT, | (3.146) |
Bt=(−k22I)t=0, | (3.147) |
therefore, (3.47) is satisfied. Since
bt=−α(t)b,J=k2tk1Q−A, | (3.148) |
(3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.149) |
=−(α(t)b)t−2α(t)Ab+[(k2tk1Q−A)tk1w]t+(α(t)b)t | (3.150) |
=−2α(t)Ab−(Ab)t | (3.151) |
=−2α(t)Ab−Abt−Atb | (3.152) |
=−2α(t)Ab+α(t)Ab+α(t)Ab=0, | (3.153) |
(3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.154) |
=0−tk1wT[k1tk1−1w+tk1Qtk1w+(k2tk1−tk1)Qtk1w−k1tk1−1w] | (3.155) |
=0−tk1wT(k2tk1Qtk1w) | (3.156) |
=−k2tk1wTQw | (3.157) |
=−k2tk1N∑i=1,j=1qij=0. | (3.158) |
Then we get a solution
u(t)=tk1[1+x21−x1], | (3.159) |
ρ=μ[k2(x12+x222−x1−x2)+β]1γ, | (3.160) |
S=lnμ+1γln[k2(x12+x222−x1−x2)+β]. | (3.161) |
Example 3.4 (3-dimensional case). We take
A=tk1[011−101−1−10], J=(tk1−k2tk1)[0−1−110−1110], b=tk1[111], c(t)=β, α(t)=−k1t, | (3.162) |
where k1<0, k2, and β are arbitrary constants. As
AJ=JA=(t2k1−k2)[21−1121−112], | (3.163) |
(3.46) is satisfied.
Denoting
Q=(qij)N×N=[011−101−1−10], w=[111], | (3.164) |
it is easy to see
At=−α(t)A, | (3.165) |
B=A2+JA2=(A+J)A2=k22tk1QA=k22Q2=BT, | (3.166) |
B=A2+JA2=k22[−2−11−1−2−11−1−2], | (3.167) |
therefore
BT=B, Bt=0, | (3.168) |
(3.47) is satisfied.
Since
bt=−α(t)b, J=k2tk1Q−A, | (3.169) |
(3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.170) |
=−(α(t)b)t−2α(t)Ab+[(k2tk1Q−A)tk1w]t+(α(t)b)t | (3.171) |
=−2α(t)Ab−(Ab)t | (3.172) |
=−2α(t)Ab−Abt−Atb | (3.173) |
=−2α(t)Ab+α(t)Ab+α(t)Ab=0, | (3.174) |
(3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.175) |
=0−tk1wT[k1tk1−1w+tk1Qtk1w+(k2tk1−tk1)Qtk1w−k1tk1−1w] | (3.176) |
=0−tk1wT(k2tk1Qtk1w) | (3.177) |
=−k2tk1wTQw | (3.178) |
=−k2tk1N∑i=1,j=1qij=0. | (3.179) |
We then get a solution
u(t)=tk1[x2+x3+1x3−x1+1−x1−x2+1], | (3.180) |
ρ=μ[k2(x12+x22+x32+x1x2+x2x3−x1x3−2x1+2x3)+β]1γ, | (3.181) |
S=lnμ+1γln[k2(x12+x22+x32+x1x2+x2x3−x1x3−2x1+2x3)+β]. | (3.182) |
Remark 3.3 (N-dimensional case). We can abtain N-dimensional solutions denoting
Q=(qij)N×N=[011⋯1−101⋯1−1−1⋱1⋮⋮⋱1−1−1−1⋯0], w=[11⋮1], | (3.183) |
and taking
A=f(t)Q, J=(k1f(t)−f(t))Q, b=f(t)w, α(t)=−˙f(t)f(t), c(t)=β, | (3.184) |
where ˙f(t)f(t)≤0, k1 and β are arbitrary constants. As
AJ=JA=(k1−f(t)2)Q2, | (3.185) |
(3.46) is satisfied. It is easy to see
At=−α(t)A, | (3.186) |
B=A2+JA2=(A+J)A2=k12f(t)Qf(t)Q=k12Q2, | (3.187) |
therefore
BT=B, Bt=0, | (3.188) |
(3.47) are satisfied. Since
bt=−α(t)b, J=k1f(t)Q−A, | (3.189) |
(3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.190) |
=−(α(t)b)t−2α(t)Ab+[(k1f(t)−f(t))Qf(t)w]t+(α(t)b)t | (3.191) |
=−2α(t)Ab+(k1Qw−Ab)t | (3.192) |
=−2α(t)Ab−(Ab)t | (3.193) |
=−2α(t)Ab−Abt−Atb | (3.194) |
=−2α(t)Ab+α(t)Ab+α(t)Ab=0, | (3.195) |
(3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.196) |
=0−f(t)wT[˙f(t)w+f(t)Qf(t)w+(k1f(t)−f(t))Qf(t)w−˙f(t)w] | (3.197) |
=0−f(t)wT(k1f(t)Qf(t)w) | (3.198) |
=−k1f(t)wTQw | (3.199) |
=−k1f(t)N∑i=1,j=1qij=0. | (3.200) |
In this paper, we construct the Cartesian solutions
u=b(t)+A(t)x |
for the non-isentropic Euler equations with a time-dependent linear damping and a rotational force. By constructing appropriate matices A(t) and vectors b(t), we obtain new theoretical new exact solutions, which are obtained under the requirement of entropy S=lnρ. We then invite the scientific community to provide solutions with other forms of or more general form of entropy. The global existence of the solutions remains open, while the blowup phenomena are complicated to higher dimensional cases due to the existence of many temporal variables and the multiple requirements imposed on them.
The author declares there is no interest in relation to this article.
Verification of examples on Euler equations
For simplicity, we use the same ˉp defined in (3.9), solutions of ρ and S in all dimensions are equivalent to
ρ=μˉp1γ, | (4.1) |
S=lnμ+1γlnˉp. | (4.2) |
It is clear that from the theorem (3.5) and (3.6) and can be easily verified from substitution that all solutions satisfy S=lnρ. Dividing ρ from both sides of (1.2), we rewrite the Euler equations (1.1)–(1.3) as
ρt+N∑k=1∂∂xkρuk=0, | (4.3) |
∂ui∂t+N∑k=1uk(∂ui∂xk+jik)+αui+γ+1γ∂∂xiργ=0, | (4.4) |
St+N∑k=1uk∂∂xkS=0. | (4.5) |
Example 1
For 2-dimension case: Substituting (3.76)–(3.82) and (4.1) into (4.3) produces
ρt+∂∂x1(ρu1)+∂∂x2(ρu2) | (4.6) |
=μ(ˉp1γ)t+∂∂x1(μˉp1γu1)+∂∂x2(μˉp1γu2) | (4.7) |
=μγˉp1−γγˉpt+(k2cos(k1t)+k1x2)∂∂x1μˉp1γ+(k2cos(k1t)−k1x1)∂∂x2μˉp1γ | (4.8) |
=μγˉp1−γγ[−k21k2cos(k1t)x1−k21k2sin(k1t)x2]+μγˉp1−γγ∂∂x1[ˉp(k2cos(k1t)+k1x2)]+μγˉp1−γγ∂∂x2[ˉp(k2cos(k1t)−k1x1)] | (4.9) |
=μγˉp1−γγ{−k21k2cos(k1t)x1−k21k2sin(k1t)x2+∂∂x1[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)](k2cos(k1t)+k1x2)+∂∂x2[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)](k2sin(k1t)−k1x1)} | (4.10) |
=μγˉp1−γγ[−k21k2cos(k1t)x1−k21k2sin(k1t)x2+(2k21x1−k1k2sin(k1t))(k2cos(k1t)+k1x2)+(2k21x2+k1k2cos(k1t))(k2sin(k1t)−k1x1)]=0. | (4.11) |
Substituting (3.76)–(3.82) into (4.4), the first momentum gives
∂u1∂t+u1(∂u1∂x1+j11)+u2(∂u1∂x2+j12)+αu1+γ+1γ∂∂x1ργ | (4.12) |
=−k1k2sin(k1t)+u1(0+0)+(k2sin(k1t)−k1x1)(k1+k1)+2k21x1−k1k2sin(k1t) | (4.13) |
=0, | (4.14) |
the second momentum gives
∂u2∂t+u1(∂u2∂x1+j11)+u2(∂u2∂x2+j12)+αu2+γ+1γ∂∂x2ργ | (4.15) |
=k1k2sin(k1t)+(k2cos(k1t)−k1x2)(−k1−k1)+u2(0+0)+2k21x2−k1k2cos(k1t) | (4.16) |
=0. | (4.17) |
Substituting (3.76)–(3.82) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S | (4.18) |
=1γˉp(−k21k2cos(k1t)x1−k21k2sin(k1t)x2)+1γˉp(2k21x1−k1k2sin(k1t))(k2cos(k1t)+k1x2)+1γˉp(2k21x2+k1k2cos(k1t))(k2sin(k1t)−k1x1) | (4.19) |
=1γˉp(−k21k2cos(k1t)x1−k21k2sin(k1t)x2)+1γˉp(k21k2sin(k1t)x2+k21k2cos(k1t)x1)=0. | (4.20) |
For 3-dimensional case: Substituting (3.93)–(3.99) and (4.1) into (4.3) produces
ρt+∂∂x1(ρu1)+∂∂x2(ρu2)+∂∂x3(ρu3) | (4.21) |
=μ(ˉp1γ)t+∂∂x1(μˉp1γu1)+∂∂x2(μˉp1γu2)+∂∂x3(μˉp1γu3) | (4.22) |
=μγˉp1−γγˉpt+[k2t+k1(x2−x3)]∂∂x1μˉp1γ+[k2t+k1(x3−x1)]∂∂x2μˉp1γ+[k2t+k1(x1−x2)]∂∂x3μˉp1γ | (4.23) |
=μγˉp1−γγ3k22t+μγˉp1−γγ[k2t+k1(x2−x3)]∂ˉp∂x1+μγˉp1−γγ[k2t+k1(x3−x1)]∂ˉp∂x2+μγˉp1−γγ[k2t+k1(x1−x2)]∂ˉp∂x3 | (4.24) |
=μγˉp1−γγ{3k22t+[k2t+k1(x2−x3)]∂ˉp∂x1+[k2t+k1(x3−x1)]∂ˉp∂x2+[k2t+k1(x1−x2)]∂ˉp∂x3} | (4.25) |
=μγˉp1−γγ{3k22t+[k2t+k1(x2−x3)][2k22(2x1−x2−x3)−k2]+[k2t+k1(x3−x1)][2k22(2x2−x1−x3)−k2]+[k2t+k1(x1−x2)][2k22(2x3−x1−x2)−k2]}=0. | (4.26) |
Substituting (3.93)–(3.99) into (4.4), the first momentum gives
∂u1∂t+u1(∂u1∂x1+j11)+u2(∂u1∂x2+j12)+u3(∂u1∂x3+j13)+αu1+γ+1γ∂∂x1ργ | (4.27) |
=k2+u1(0+0)+[k2t+k1(x3−x1)](k1+k1)+[k2t+k1(x1−x2)](−k1−k1)+2k21(2x1−x2−x3)−k2=0, | (4.28) |
the second momentum gives
∂u2∂t+u1(∂u2∂x1+j21)+u2(∂u2∂x2+j22)+u3(∂u2∂x3+j23)+αu2+γ+1γ∂∂x2ργ | (4.29) |
=k2+[k2t+k1(x2−x3)](−k1−k1)+u2(0+0)+[k2t+k1(x1−x2)](k1+k1)+2k21(2x2−x1−x3)−k2=0, | (4.30) |
the third momentum gives
∂u3∂t+u1(∂u3∂x1+j31)+u2(∂u3∂x2+j32)+u3(∂u3∂x3+j33)+αu3+γ+1γ∂∂x3ργ | (4.31) |
=k2+[k2t+k1(x2−x3)](k1+k1)+[k2t+k1(x3−x1)](−k1−k1)+u3(0+0)+2k21(2x3−x1−x2)−k2=0. | (4.32) |
Substituting (3.93)–(3.99) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S+u3∂∂x3S | (4.33) |
=1γˉp3k22t+[k2t+k1(x2−x3)]∂∂x1lnˉp+[k2t+k1(x3−x1)]∂∂x2lnˉp+[k2t+k1(x1−x2)]∂∂x3lnˉp | (4.34) |
=1γˉp{3k22t+[k2t+k1(x2−x3)][2k21(2x1−x2−x3)−k2]+[k2t+k1(x3−x1)][2k21(2x2−x1−x3)−k2]+[k2t+k1(x1−x2)][2k21(2x3−x1−x2)−k2]}=0. | (4.35) |
For 4-dimensional case: Substituting (3.111)–(3.117) and (4.1) into (4.3) produces
ρt+∂∂x1(ρu1)+∂∂x2(ρu2)+∂∂x3(ρu3)+∂∂x4(ρu4) | (4.36) |
=μ(ˉp1γ)t+∂∂x1(μˉp1γu1)+∂∂x2(μˉp1γu2)+∂∂x3(μˉp1γu3)+∂∂x4(μˉp1γu4) | (4.37) |
=μγˉp1−γγˉpt+[k2t+k1(−2x2+x3+x4)]∂∂x1μˉp1γ+[k2t+k1(2x1+x3−3x4)]∂∂x2μˉp1γ+[k2t+k1(−x1−x2+2x4)]∂∂x3μˉp1γ+[k2t+k1(−x1+3x2−2x3)]∂∂x4μˉp1γ | (4.38) |
=μγˉp1−γγ4k22t+μγˉp1−γγ[k2t+k1(−2x2+x3+x4)]∂ˉp∂x1+μγˉp1−γγ[k2t+k1(2x1+x3−3x4)]∂ˉp∂x2+μγˉp1−γγ[k2t+k1(−x1−x2+2x4)]∂ˉp∂x3+μγˉp1−γγ[k2t+k1(−x1+3x2−2x3)]∂ˉp∂x4 | (4.39) |
=μγˉp1−γγ{4k22t+[k2t+k1(−2x2+x3+x4)]∂ˉp∂x1+[k2t+k1(2x1+x3−3x4)]∂ˉp∂x2+[k2t+k1(−x1−x2+2x4)]∂ˉp∂x3+[k2t+k1(−x1+3x2−2x3)]∂ˉp∂x4} | (4.40) |
=μγˉp1−γγ{4k22t+[k2t+k1(−2x2+x3+x4)][−k2+k21(12x1−4x2+8x3−16x4)]+[k2t+k1(2x1+x3−3x4)][−k2+k21(28x2−4x1−16x3−8x4)]+[k2t+k1(−x1−x2+2x4)][−k2+k21(12x3+8x1−16x2−4x4)]+[k2t+k1(−x1+3x2−2x3)][−k2+k21(28x4−16x1−8x2−4x3)]}=0. | (4.41) |
Substituting (3.111)–(3.117) into (4.4), the first momentum gives
∂u1∂t+u1(∂u1∂x1+j11)+u2(∂u1∂x2+j12)+u3(∂u1∂x3+j13)+u4(∂u1∂x4+j14)+αu1+γ+1γ∂∂x1ργ | (4.42) |
=k2+u1(0+0)+[k2t+k1(2x1+x3−3x4)](−2k1−2k1)+[k2t+k1(−x1−x2+2x4)](k1+k1)+[k2t+k1(−x1+3x2−2x3)](k1+k1)−k2+k21(12x1−4x2+8x3−16x4)=0, | (4.43) |
the second momentum gives
∂u2∂t+u1(∂u2∂x1+j21)+u2(∂u2∂x2+j22)+u3(∂u2∂x3+j23)+u4(∂u2∂x4+j24)+αu2+γ+1γ∂∂x2ργ | (4.44) |
=k2+[k2t+k1(−2x2+x3+x4)](2k1+2k1)+u2(0+0)+[k2t+k1(−x1−x2+2x4)](k1+k1)+[k2t+k1(−x1+3x2−2x3)](−3k1−3k1)−k2+k21(−4x1+28x2−16x3−8x4)=0, | (4.45) |
the third momentum gives
∂u3∂t+u1(∂u3∂x1+j31)+u2(∂u3∂x2+j32)+u3(∂u3∂x3+j33)+u4(∂u3∂x4+j34)+αu3+γ+1γ∂∂x3ργ | (4.46) |
=k2+[k2t+k1(−2x2+x3+x4)](−k1−k1)+[k2t+k1(2x1+x3−3x4)](−k1−k1)+u3(0+0)+[k2t+k1(−x1+3x2−2x3)](2k1+2k1)−k2+k21(8x1−16x2+12x3−4x4)=0, | (4.47) |
the fourth momentum gives
∂u4∂t+u1(∂u4∂x1+j41)+u2(∂u4∂x2+j42)+u3(∂u4∂x3+j43)+u4(∂u4∂x4+j44)+αu4+γ+1γ∂∂x4ργ | (4.48) |
=k2+[k2t+k1(−2x2+x3+x4)](−k1−k1)+[k2t+k1(2x1+x3−3x4)](3k1+3k1)+[k2t+k1(−x1−x2+2x4)](−2k1−2k1)+u4(0+0)−k2+k21(−16x1−8x2−4x3+28x4)=0. | (4.49) |
Substituting (3.111)–(3.117) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S+u3∂∂x3S+u4∂∂x4S | (4.50) |
=ˉptγˉp+u1∂∂x1lnˉpγ+u2∂∂x2lnˉpγ+u3∂∂x3lnˉpγ+u4∂∂x4lnˉpγ | (4.51) |
=1γˉp{4k22t+[k2t+k1(−2x2+x3+x4)][−k2+k21(12x1−4x2+8x3−16x4)]+[k2t+k1(2x1+x3−3x4)][−k2+k21(28x2−4x1−16x3−8x4)]+[k2t+k1(−x1−x2+2x4)][−k2+k21(12x3+8x1−16x2−4x4)]+[k2t+k1(−x1+3x2−2x3)][−k2+k21(28x4−16x1−8x2−4x3)]}=0. | (4.52) |
Example 2
Since N-dimensional case covers 2 to 4-dimensional cases, here gives the verification of N-dimensional case. Substituting solutions into Euler equations, as S is a constant, (4.5) is guaranteed. Since ρ is also a constant, by
ρt+N∑k=1∂∂xkρuk | (4.53) |
=0+ρN∑k=1∂∂xkuk | (4.54) |
=ρe−αtN∑k=1∂∂xk[k1(N∑g=k+1xg−k−1∑g=1xg)+k2]=0, | (4.55) |
Eq (4.3) is verified.
∂ui∂xk=∂∂xke−αt[k1(N∑k=i+1xk−i−1∑k=1xk)+k2] | (4.56) |
={−k1e−αt,for k<i0,for k=ik1e−αt,for k>i}=−jik, | (4.57) |
therefore,
∂ui∂t+N∑k=1uk(∂ui∂xk+jik)+αui+γ+1γ∂∂xiργ | (4.58) |
=−αui+0+αui+0=0, | (4.59) |
the n-th momentum Eq (4.4) is satisfied.
Example 3
Substituting (3.159)–(3.161) into (4.3) produces
ρt+∂∂x1ρu1+∂∂x2ρu2 | (4.60) |
=0+μγˉp1−γγtk1(1+x2)k2(x1−1)+μγˉp1−γγtk1(1−x1)k2(x2+1)=0. | (4.61) |
Substituting (3.159)–(3.161) into (4.4) gives
∂ui∂t+u1(∂ui∂xk+ji1)+u2(∂ui∂xk+ji2)+αui+γ+1γ∂∂xiργ | (4.62) |
=u1(∂ui∂xk+ji1)+u2(∂ui∂xk+ji2)+0 | (4.63) |
=k1tk1−1[1+x11−x2]+tk1(1+x2)(tk1[0−1]+[0tk1−k2tk1])+tk1(1−x1)(tk1[10]+[−tk1+k2tk10])−k1ttk1[1+x11−x2]+[k2(x1−1)k2(x2+1)]=0. | (4.64) |
Substituting (3.159)–(3.161) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S | (4.65) |
=0+tk1(1+x2)k2(2x1−1)γˉp+tk1(1−x1)k2(2x2+1)γˉp=0. | (4.66) |
Example 4
Substituting (3.180)–(3.182) into (4.3) produces
ρt+∂∂x1ρu1+∂∂x2ρu2+∂∂x3ρu3 | (4.67) |
=0+μγˉp1−γγ[tk1(x2+x3+1)k2(2x1+x2−x3−2)+tk1(x3−x1+1)k2(2x2+x1+x3)+tk1(−x1−x2+1)k2(2x3−x1+x2+2)]=0. | (4.68) |
Substituting (3.180)–(3.182) into (4.4), since
ut=k1tk1−1=k1ttk1=−α(t)u, | (4.69) |
we have
∂ui∂t+N∑k=1uk(∂ui∂xk+jik)+αui+γ+1γ∂∂xiργ | (4.70) |
=u1(∂ui∂xk+ji1)+u2(∂ui∂xk+ji2)+u3(∂ui∂xk+ji3)+0 | (4.71) |
=tk1(x2+x3+1)(tk1[0−1−1]+[0tk1−k2tk1tk1−k2tk1])+tk1(x3−x1+1)(tk1[10−1]+[−tk1+k2tk10tk1−k2tk1])+tk1(−x1−x2+1)(tk1[110]+[−tk1+k2tk1−tk1+k2tk10]+[k2(2x1+x2−x3−2)k2(2x2+x1+x3)k2(2x3−x1+x2−2)])=0. | (4.72) |
Substituting (3.180)–(3.182) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S+u3∂∂x3S | (4.73) |
=0+1γˉp[tk1(x2+x3+1)k2(2x1+x2−x3−2)+tk1(x3−x1+1)k2(2x2+x1+x3)+tk1(−x1−x2+1)k2(2x3−x1+x2+2)]=0. | (4.74) |
[1] | R. A. Adams, J. J. F. Fournier, Sobolev spaces, 2 Eds., New York: Academic Press, 2003. |
[2] |
N. Arada, E. Casas, F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201–229. http://dx.doi.org/10.1023/A:1020576801966 doi: 10.1023/A:1020576801966
![]() |
[3] |
R. E. Bank, D. J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal., 24 (1987), 777–787. http://dx.doi.org/10.1137/0724050 doi: 10.1137/0724050
![]() |
[4] |
C. M. Bollo, C. M. Gariboldi, D. A. Tarzia, Simultaneous distributed and Neumann boundary optimal control problems for elliptic hemivariational inequalities, J. Nonlinear Var. Anal., 6 (2022), 535–549. http://dx.doi.org/10.23952/jnva.6.2022.5.07 doi: 10.23952/jnva.6.2022.5.07
![]() |
[5] | S. C. Brenner, L. R. Scott, The mathematical theory of finite elementMethods, 3 Eds., New York: Springer, 2008. http://dx.doi.org/10.1007/978-0-387-75934-0 |
[6] |
P. Chatzipantelidis, R. Lazarov, V. Thomée, Error estimate for a finite volume element method for parabolic equations in convex polygonal domains, Numer. Meth. Part. D. E., 20 (2004), 650–674. http://dx.doi.org/10.1002/num.20006 doi: 10.1002/num.20006
![]() |
[7] |
Y. Chen, Y. Huang, W. Liu, N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42 (2010), 382–403. https://dx.doi.org/10.1007/s10915-009-9327-8 doi: 10.1007/s10915-009-9327-8
![]() |
[8] | Y. Chen, Z. Lu, High efficient and accuracy numerical methods for optimal control problems, 1 Eds., Beijing: Science Press, 2015. |
[9] |
Y. Chen, Z. Lu, Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problems, Comput. Method. Appl. M., 199 (2010), 1415–1423. http://dx.doi.org/10.1016/j.cma.2009.11.009 doi: 10.1016/j.cma.2009.11.009
![]() |
[10] |
Y. Chen, Z. Lu, R. Guo, Error estimates of triangularmixed finite element methods for quasilinear optimal controlproblems, Front. Math. China, 7 (2012), 397–413. http://dx.doi.org/10.1007/s11464-012-0179-4 doi: 10.1007/s11464-012-0179-4
![]() |
[11] |
Y. Chen, Z. Lu, Y. Huang, Superconvergence of triangular Raviart-Thomas mixed finite element methods for bilinear constrained optimal control problem, Comput. Math. Appl., 66 (2013), 1498–1513. http://dx.doi.org/10.1016/j.camwa.2013.08.019 doi: 10.1016/j.camwa.2013.08.019
![]() |
[12] |
Y. Chen, N. Yi, W. Li, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254–2275. https://dx.doi.org/10.1137/070679703 doi: 10.1137/070679703
![]() |
[13] |
S. Chou, Q. Li, Error estimates in L2, H1 and L∞ in covolume methods for elliptic and parabolic problems: a unified approach, Math. Comput., 69 (2000), 103–120. https://dx.doi.org/10.1090/S0025-5718-99-01192-8 doi: 10.1090/S0025-5718-99-01192-8
![]() |
[14] |
S. Chou, X. Ye, Unified analysis of finite volume methods for second order elliptic problems, SIAM J. Numer. Anal., 45 (2007), 1639–1653. http://dx.doi.org/10.1137/050643994 doi: 10.1137/050643994
![]() |
[15] |
R. E. Ewing, T. Lin, Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal., 39 (2002), 1865–1888. http://dx.doi.org/10.1137/S0036142900368873 doi: 10.1137/S0036142900368873
![]() |
[16] | Y. Feng, Z. Lu, S. Zhang, L. Cao, L. Li, A priori error estimates of finite volume methods for general elliptic optimal control problems, Electron. J. Differ. Eq., 267 (2017), 1–15. |
[17] |
M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Optim. Applic., 30 (2005), 45–61. http://dx.doi.org/10.1007/s10589-005-4559-5 doi: 10.1007/s10589-005-4559-5
![]() |
[18] |
B. T. Kien, X. Qin, C. F. Wen, J. C. Yao, Second-order optimality conditions for multiobjective optimal control problems with mixed pointwise constraints and free right end point, SIAM J. Control Optim., 58 (2020), 2658–2677. http://dx.doi.org/10.1137/19M1281770 doi: 10.1137/19M1281770
![]() |
[19] |
R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation for distributed convexoptimal control problems, SIAM J. Control Optim., 41 (2002), 1321–1349. http://dx.doi.org/10.1137/S0363012901389342 doi: 10.1137/S0363012901389342
![]() |
[20] |
W. Liu, T. Zhao, K. Ito, Z. Zhang, Error estimates of Fourier finite volume element method for parabolic Dirichlet boundary optimal control problems on complex connected domains, Appl. Numer. Math., 186 (2023), 164–201. http://dx.doi.org/10.1016/j.apnum.2023.01.007 doi: 10.1016/j.apnum.2023.01.007
![]() |
[21] | Z. Lu, L∞-estimates of rectangular mixed methods for nonlinear constrained optimal control problem, Bull. Malays. Math. Sci. Soc., 37 (2014), 271–284. http://dx.doi.org/228721511 |
[22] |
Z. Lu, L. Li, L. Cao, C. Hou, A priori error estimates offinite volume method for nonlinear optimal control problem, Numer. Analys. Appl., 10 (2017), 224–236. http://dx.doi.org/10.1134/S1995423917030041 doi: 10.1134/S1995423917030041
![]() |
[23] |
Z. Lu, S. Zhang, L∞-error estimates of rectangular mixed finitec element methods for bilinear optimal control problem, Appl. Math. Comput., 300 (2017), 79–94. http://dx.doi.org/10.1016/j.amc.2016.12.006 doi: 10.1016/j.amc.2016.12.006
![]() |
[24] | Q. Li, Z. Liu, Finite volume element methods for nonlinear parabolic problems, J. KSIAM, 6 (2002), 85–97. |
[25] | J. L. Lions, Optimal control of systems governed by partial differential equations, 1 Eds., Berlin: Springer, 1971. |
[26] | W. Liu, N. Yan, Adaptive finite element methods for optimal control governed by PDEs, 1 Eds., Beijing: Springer, 2008. |
[27] |
X. Luo, Y. Chen, Y. Huang, T. Hou, Some error estimates offinite volume element method for parabolic optimal control problems, Optim. Contr. Appl. Met., 35 (2014), 145–165. http://dx.doi.org/10.1002/oca.2059 doi: 10.1002/oca.2059
![]() |
[28] | D. Yang, Y. Chang, W. Liu, A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type, J. Comput. Math., 26 (2008), 471–487. |
[29] | T. Zhang, H. Zhong, J. Zhao, A full discrete two-gridb finite-volume method for a nonlinear parabolic problem, Int. J. Comput. Math., 88 (2011), 1644–1663. http://dx.doi.org/abs/10.1080/00207160.2010.521550 |