Research article

Convergence properties of a family of inexact Levenberg-Marquardt methods

  • Received: 17 April 2023 Revised: 13 May 2023 Accepted: 18 May 2023 Published: 02 June 2023
  • MSC : 90C33, 65K05

  • We present a family of inexact Levenberg-Marquardt (LM) methods for the nonlinear equations which takes more general LM parameters and perturbation vectors. We derive an explicit formula of the convergence order of these inexact LM methods under the H¨oderian local error bound condition and the H¨oderian continuity of the Jacobian. Moreover, we develop a family of inexact LM methods with a nonmonotone line search and prove that it is globally convergent. Numerical results for solving the linear complementarity problem are reported.

    Citation: Luyao Zhao, Jingyong Tang. Convergence properties of a family of inexact Levenberg-Marquardt methods[J]. AIMS Mathematics, 2023, 8(8): 18649-18664. doi: 10.3934/math.2023950

    Related Papers:

    [1] Ziqiang Wang, Chunyu Cen, Junying Cao . Topological optimization algorithm for mechanical-electrical coupling of periodic composite materials. Electronic Research Archive, 2023, 31(5): 2689-2707. doi: 10.3934/era.2023136
    [2] Yun Ni, Jinqing Zhan, Min Liu . Topological design of continuum structures with global stress constraints considering self-weight loads. Electronic Research Archive, 2023, 31(8): 4708-4728. doi: 10.3934/era.2023241
    [3] Furong Xie, Yunkai Gao, Ting Pan, De Gao, Lei Wang, Yanan Xu, Chi Wu . Novel lightweight connecting bracket design with multiple performance constraints based on optimization and verification process. Electronic Research Archive, 2023, 31(4): 2019-2047. doi: 10.3934/era.2023104
    [4] Mingtao Cui, Wennan Cui, Wang Li, Xiaobo Wang . A polygonal topology optimization method based on the alternating active-phase algorithm. Electronic Research Archive, 2024, 32(2): 1191-1226. doi: 10.3934/era.2024057
    [5] Mingtao Cui, Min Pan, Jie Wang, Pengjie Li . A parameterized level set method for structural topology optimization based on reaction diffusion equation and fuzzy PID control algorithm. Electronic Research Archive, 2022, 30(7): 2568-2599. doi: 10.3934/era.2022132
    [6] Xiaoguang Li . Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189
    [7] Lei Liu, Jun Dai . Estimation of partially linear single-index spatial autoregressive model using B-splines. Electronic Research Archive, 2024, 32(12): 6822-6846. doi: 10.3934/era.2024319
    [8] Yuhai Zhong, Huashan Feng, Hongbo Wang, Runxiao Wang, Weiwei Yu . A bionic topology optimization method with an additional displacement constraint. Electronic Research Archive, 2023, 31(2): 754-769. doi: 10.3934/era.2023037
    [9] Xiang Xu, Chuanqiang Huang, Chongchong Li, Gang Zhao, Xiaojie Li, Chao Ma . Uncertain design optimization of automobile structures: A survey. Electronic Research Archive, 2023, 31(3): 1212-1239. doi: 10.3934/era.2023062
    [10] Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang . Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29(1): 1859-1880. doi: 10.3934/era.2020095
  • We present a family of inexact Levenberg-Marquardt (LM) methods for the nonlinear equations which takes more general LM parameters and perturbation vectors. We derive an explicit formula of the convergence order of these inexact LM methods under the H¨oderian local error bound condition and the H¨oderian continuity of the Jacobian. Moreover, we develop a family of inexact LM methods with a nonmonotone line search and prove that it is globally convergent. Numerical results for solving the linear complementarity problem are reported.



    A set CR is said to be convex, if

    (1τ)υ1+τυ2C,υ1,υ2C,τ[0,1].

    Similarly, a function Ψ:CR is said to be convex, if

    Ψ((1τ)υ1+τυ2)(1τ)Ψ(υ1)+τΨ(υ2),υ1,υ2C,τ[0,1].

    In recent years, the classical concepts of convexity has been extended and generalized in different directions using novel and innovative ideas.

    Let us recall first Raina's function Rσρ,λ(z) that it's defined as follows:

    Rσρ,λ(z)=Rσ(0),σ(1),ρ,λ(z):=k=0σ(k)Γ(ρk+λ)zk,zC, (1.1)

    where ρ,λ>0, with bounded modulus |z|<M, and σ={σ(0),σ(1),,σ(k),} is a bounded sequence of positive real numbers. For details, see [1].

    Cortez et al. [2] presented a new generalization of convexity class as follows:

    Definition 1. [2] Let ρ,λ>0 and σ=(σ(0),,σ(k),) be a bounded sequence of positive real numbers. A non-empty set IR is said to be generalized convex, if

    υ1+τRσρ,λ(υ2υ1)I,υ1,υ2I,τ[0,1].

    Definition 2. [2] Let ρ,λ>0 and σ=(σ(0),,σ(k),) be a bounded sequence of positive real numbers. A function Ψ:IRR is said to be generalized convex, if

    Ψ(υ1+τRσρ,λ(υ2υ1))(1τ)Ψ(υ1)+τΨ(υ2),υ1,υ2I,τ[0,1].

    Quantum calculus is the branch of mathematics (often known as calculus without limits) in which we obtain q-analogues of mathematical objects which can be recaptured by taking q1. Interested readers may find very useful details on quantum calculus in [3]. Recently, quantum calculus has been extended to post quantum calculus. In quantum calculus we deal with q-number with one base q however post quantum calculus includes p and q-numbers with two independent variables p and q. This was first considered by Chakarabarti and Jagannathan [4]. Tunç and Gov [5] introduced the concepts of (p,q)-derivatives and (p,q)-integrals on finite intervals as:

    Definition 3. [5] Let KR be a non-empty set such that υ1K, 0<q<p1 and Ψ:KR be a continuous function. Then, the (p,q)-derivative υ1D(p,q)Ψ(Θ) of Ψ at ΘK is defined by

    υ1D(p,q)Ψ(Θ)=Ψ(pΘ+(1p)υ1)Ψ(qΘ+(1q)υ1)(pq)(Θυ1),(Θυ1).

    Note that, if we take p=1 in Definition 3, then we get the definition of q-derivative introduced and studied by Tariboon et al. [6].

    Definition 4. [5] Let KR be a non-empty set such that υ1K, 0<q<p1 and Ψ:KR be a continuous function. Then, the (p,q)-integral on K is defined by

    Θυ1Ψ(τ)υ1d(p,q)τ=(pq)(Θυ1)n=0qnpn+1Ψ(qnpn+1Θ+(1qnpn+1)υ1)

    for all ΘK.

    Note that, if we take p=1 in Definition 4, then we get the definition of q-integral on finite interval introduced and studied by Tariboon et al. [6].

    Theory of convexity has played very important role in the development of theory of inequalities. A wide class of inequalities can easily be obtained using the convexity property of the functions. In this regard Hermite-Hadamard's inequality is one of the most studied result. It provides us an equivalent property for convexity. This famous result of Hermite and Hadamard reads as: Let Ψ:[υ1,υ2]RR be a convex function, then

    Ψ(υ1+υ22)1υ2υ1υ2υ1Ψ(Θ)dΘΨ(υ1)+Ψ(υ2)2.

    In recent years, several new extensions and generalizations of this classical result have been obtained in the literature. In [7] Dragomir and Agarwal have obtained a new integral identity using the first order differentiable functions:

    Lemma 1. [7] Let Ψ:X=[υ1,υ2]RR be a differentiable function on X (the interior set of X), then

    Ψ(υ1)+Ψ(υ2)21υ2υ1υ2υ1Ψ(Θ)dΘ=υ2υ1210(12τ)Ψ(τυ1+(1τ)υ2)dτ.

    Using this identity authors have obtained some new right estimates for Hermite-Hadamard's inequality essentially using the class of first order differentiable convex functions. This idea of Dragomir and Agarwal has inspired many researchers and consequently a variety of new identities and corresponding inequalities have been obtained in the literature using different techniques. Sudsutad et al. [8] and Noor et al. [9] obtained the quantum counterpart of this result and obtained associated q-analogues of trapezium like inequalities. Liu and Zhuang [10] obtained another quantum version of this identity via twice q-differentiable functions and obtained associated q-integral inequalities. Awan et al. [11] extended the results of Dragomir and Agarwal by obtaining a new post-quantum integral identity involving twice (p,q)-differentiable functions and twice (p,q)-differentiable preinvex functions. Du et al. [12] obtained certain quantum estimates on the parameterized integral inequalities and established some applications. Zhang et al. [13] found different types of quantum integral inequalities via (α,m)-convexity. Cortez et al. [14,15] derived some inequalities using generalized convex functions in quantum analysis.

    The main objective of this paper is to introduce the notion of generalized strongly convex functions using Raina's function. We derive two new general auxiliary results involving first and second order (p,q)-differentiable functions and Raina's function. Essentially using these identities and the generalized strongly convexity property of the functions, we also derive corresponding new generalized post-quantum analogues of Dragomir-Agarwal's inequalities. In order to discuss the relation with other results, we also discuss some special cases about generalized convex functions. To support our main results, we give applications to special means, to hypergeometric functions, to Mittag-Leffler functions and also to (p,q)-differentiable functions of first and second order that are bounded in absolute value. Finally, some conclusions and future research are provided as well. We hope that the ideas and techniques of this paper will inspire interested readers working in this field.

    In this section, we discuss our main results. First, we introduce the class of generalized strongly convex function involving Raina's function.

    Definition 5. Let ρ,λ>0 and σ=(σ(0),,σ(k),) be a bounded sequence of positive real numbers. A function Ψ:IRR is called generalized strongly convex, if

    Ψ(υ1+τRσρ,λ(υ2υ1))(1τ)Ψ(υ1)+τΨ(υ2)cτ(1τ)(Rσρ,λ(υ2υ1))2,

    c>0,τ[0,1] and υ1,υ2I.

    In this section, we derive two new post-quantum integral identities that will be used in a sequel.

    Lemma 2. Let Ψ:X=[υ1,υ1+Rσρ,λ(υ2υ1)]RR be a differentiable function and 0<q<p1. If υ1D(p,q)Ψ is integrable function on X, then

    1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q=qRσρ,λ(υ2υ1)p+q10(1(p+q)τ)υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))0d(p,q)τ. (2.1)

    Proof. Using the right hand side of (3.3), we have

    I:=qRσρ,λ(υ2υ1)p+qI1,

    and from the definitions of υ1D(p,q), and (p,q)-integral, we get

    I1:=10(1(p+q)τ)υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))0d(p,q)τ=10(1(p+q)τ)Ψ(υ1+τpRσρ,λ(υ2υ1))Ψ(υ1+qτRσρ,λ(υ2υ1))(pq)τRσρ,λ(υ2υ1)0d(p,q)τ=1Rσρ,λ(υ2υ1)[n=0Ψ(υ1+qnpnRσρ,λ(υ2υ1))Ψ(υ1+qn+1pn+1Rσρ,λ(υ2υ1))]p+qRσρ,λ(υ2υ1)[n=0qnpn+1Ψ(υ1+qnpnRσρ,λ(υ2υ1))n=0qnpn+1Ψ(υ1+qn+1pn+1Rσρ,λ(υ2υ1))]=Ψ(υ1+Rσρ,λ(υ2υ1))Ψ(υ1)Rσρ,λ(υ2υ1)p+qRσρ,λ(υ2υ1)[n=0qnpn+1Ψ(υ1+qnpnRσρ,λ(υ2υ1))1qn=1qnpnΨ(υ1+qnpnRσρ,λ(υ2υ1))]=Ψ(υ1+Rσρ,λ(υ2υ1))Ψ(υ1)Rσρ,λ(υ2υ1)p+qqRσρ,λ(υ2υ1)Ψ(υ1+Rσρ,λ(υ2υ1))p+qRσρ,λ(υ2υ1)n=0qnpn+1Ψ(υ1+qnpnRσρ,λ(υ2υ1))+p(p+q)qRσρ,λ(υ2υ1)n=0qnpn+1Ψ(υ1+qnpnRσρ,λ(υ2υ1))=pΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)qRσρ,λ(υ2υ1)+p+qpq(Rσρ,λ(υ2υ1))2υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)0d(p,q)τ.

    This completes the proof.

    The second identity for twice (p,q)-differentiable functions states as follows:

    Lemma 3. Let Ψ:X=[υ1,υ1+Rσρ,λ(υ2υ1)]RR be a twice differentiable function and 0<q<p1. If υ1D2(p,q)Ψ is integrable function on X, then

    p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ=pq2(Rσρ,λ(υ2υ1))2p+q10τ(1qτ)υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))0d(p,q)τ. (2.2)

    Proof. Firstly, applying the definition of υ1D2(p,q) differentiability, we have

    υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))=υ1D(p,q)(υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2υ1)))=qΨ(υ1+τp2Rσρ,λ(υ2υ1))(p+q)Ψ(υ1+pqτRσρ,λ(υ2υ1))+pΨ(υ1+τq2Rσρ,λ(υ2υ1))pq(pq)2τ2(Rσρ,λ(υ2υ1))2.

    Now, using the notion of (p,q)-integration, we get

    After multiplying both sides by pq2(Rσρ,λ(υ2υ1))2p+q, we obtain our required identity.

    We now derive some (p,q)-analogues of Dragomir-Agarwal like inequalities using first order and second order (p,q)-differentiable functions via generalized strongly convex function with modulus c>0. Let us recall the following notion that will be used in the sequel.

    [n](p,q):=pnqnpq,nN,0<q<p1.

    Theorem 1. Suppose that all the assumptions of Lemma 2 are satisfied and |υ1D(p,q)Ψ| is generalized strongly convex function, then

    |1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q|qRσρ,λ(υ2υ1)p+q[S1|υ1D(p,q)Ψ(υ1)|+S2|υ1D(p,q)Ψ(υ2)|cS3(Rσρ,λ(υ2υ1))2],

    where

    S1:=2pqp+q+(p+q)32(p+q)2+(p+q)2(p+q)2[2](p,q), (2.3)
    S2:=2(p+q)2(p+q)2[2](p,q)+(p+q)32(p+q)2[3](p,q), (2.4)

    and

    S3:=2(p+q)2(p+q)2[2](p,q)+(p+q)3+p+q2(p+q)4(p+q)3[3](p,q)+(p+q)41(p+q)4[4](p,q). (2.5)

    Proof. From Lemma 2, properties of modulus and using the generalized strongly convexity of |υ1D(p,q)Ψ|, we have

    |1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q|qRσρ,λ(υ2υ1)p+q10|(1(p+q)τ)||υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|0d(p,q)τqσρ,λ(υ2υ1)p+q[1p+q0(1(p+q)τ)|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|0d(p,q)τ+11p+q((p+q)τ1)|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|0d(p,q)τ]qRσρ,λ(υ2υ1)p+q[1p+q0(1(p+q)τ)[(1τ)|υ1D(p,q)Ψ(υ1)|+τ|υ1D(p,q)Ψ(υ2)|cτ(1τ)(Rσρ,λ(υ2υ1))2]0d(p,q)τ+11p+q((p+q)τ1)[(1τ)|υ1D(p,q)Ψ(υ1)|+τ|υ1D(p,q)Ψ(υ2)|cτ(1τ)(Rσρ,λ(υ2υ1))2]0d(p,q)τ].

    After simplification, we obtain our required result.

    Corollary 1. Letting c0+ in Theorem 1, then

    |1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q|qRσρ,λ(υ2υ1)p+q[S1|υ1D(p,q)Ψ(υ1)|+S2|υ1D(p,q)Ψ(υ2)|].

    Theorem 2. Suppose that all the assumptions of Lemma 2 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with m1, then

    |1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q|qRσρ,λ(υ2υ1)p+qS11m4[S1|υ1D(p,q)Ψ(υ1)|m+S2|υ1D(p,q)Ψ(υ2)|mcS3(Rσρ,λ(υ2υ1))2]1m,

    where S1,S2 and S3 are given by (2.3)–(2.5), respectively, and

    S4:=2(p+q)p+q+(p+q)((p+q)22)(p+q)2[2](p,q). (2.6)

    Proof. From Lemma 2, properties of modulus, power-mean inequality and using the generalized strongly convexity of |υ1D(p,q)Ψ|m, we have

    |1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q|qRσρ,λ(υ2υ1)p+q(10|(1(p+q)τ)|0d(p,q)τ)11m×(10|(1(p+q)τ)||υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|m0d(p,q)τ)1m=qRσρ,λ(υ2υ1)p+qS11m4[1p+q0(1(p+q)τ)|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|m0d(p,q)τ+11p+q((p+q)τ1)|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|m0d(p,q)τ]1mqRσρ,λ(υ2υ1)p+qS11m4[1p+q0(1(p+q)τ)[(1τ)|υ1D(p,q)Ψ(υ1)|m+τ|υ1D(p,q)Ψ(υ2)|mcτ(1τ)(Rσρ,λ(υ2υ1))2]0d(p,q)τ+11p+q((p+q)τ1)[(1τ)|υ1D(p,q)Ψ(υ1)|m+τ|υ1D(p,q)Ψ(υ2)|mcτ(1τ)(Rσρ,λ(υ2υ1))2]0d(p,q)τ]1m.

    After simplification, we obtain our required result.

    Corollary 2. Letting c0+ in Theorem 2, then

    |1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q|qRσρ,λ(υ2υ1)p+qS11m4[S1|υ1D(p,q)Ψ(υ1)|m+S2|υ1D(p,q)Ψ(υ2)|m]1m.

    Theorem 3. Suppose that all the assumptions of Lemma 2 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then

    |1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q|qRσρ,λ(υ2υ1)p+qS1l5[p+q1p+q|υ1D(p,q)Ψ(υ1)|m+1p+q|υ1D(p,q)Ψ(υ2)|mc(1p+q1p2+pq+q2)(Rσρ,λ(υ2υ1))2]1m,

    where

    S5:=(pq)1+qn=0[(1(p+q)qnpn+1)l+q((p+q)qnpn+11)l]. (2.7)

    Proof. From Lemma 2, properties of modulus, Hölder's inequality and using the generalized strongly convexity of |υ1D(p,q)Ψ|m, we have

    |1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q|qRσρ,λ(υ2υ1)p+q(10|(1(p+q)τ)|l0d(p,q)τ)1l×(10|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|m0d(p,q)τ)1mqRσρ,λ(υ2υ1)p+qS1l5[10[(1τ)|υ1D(p,q)Ψ(υ1)|m+τ|υ1D(p,q)Ψ(υ2)|mcτ(1τ)(Rσρ,λ(υ2υ1))2]0d(p,q)τ]1m.

    After simplification, we obtain our required result.

    Corollary 3. Letting c0+ in Theorem 3, then

    |1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q|qRσρ,λ(υ2υ1)p+qS1l5[p+q1p+q|υ1D(p,q)Ψ(υ1)|m+1p+q|υ1D(p,q)Ψ(υ2)|m]1m.

    Theorem 4. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ| is generalized strongly convex function, then

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+q[S6|υ1D2(p,q)Ψ(υ1)|+S7|υ1D2(p,q)Ψ(υ2)|cS8(Rσρ,λ(υ2υ1))2],

    where

    S6:=p2pq(p+q)(p2+pq+q2)+qp3+pq(p+q)+q3, (2.8)
    S7:=p3(p2+pq+q2)(p3+pq(p+q)+q3), (2.9)

    and

    S8:=1p+q1+qp3+pq(p+q)+q3+q[5](p,q). (2.10)

    Proof. From Lemma 3, properties of modulus and using the generalized strongly convexity of |υ1D2(p,q)Ψ|, we have

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+q10|τ(1qτ)||υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|0d(p,q)τpq2(Rσρ,λ(υ2υ1))2p+q[10τ(1qτ)[(1τ)|υ1D2(p,q)Ψ(υ1)|+τ|υ1D2(p,q)Ψ(υ2)|cτ(1τ)(Rσρ,λ(υ2υ1))2]0d(p,q)τ].

    This completes the proof.

    Corollary 4. Letting c0+ in Theorem 4, then

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+q[S6|υ1D2(p,q)Ψ(υ1)|+S7|υ1D2(p,q)Ψ(υ2)|].

    Theorem 5. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with m1, then

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+qS11m9[S6|υ1D2(p,q)Ψ(υ1)|m+S7|υ1D2(p,q)Ψ(υ2)|mcS8(Rσρ,λ(υ2υ1))2]1m,

    where S6, S7 and S8 are given by (2.8)–(2.10), respectively, and

    S9:=p2(p+q)(p2+pq+q2). (2.11)

    Proof. From Lemma 3, properties of modulus, power-mean inequality and using the generalized strongly convexity of |υ1D2(p,q)Ψ|m, we have

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+q(10|τ(1qτ)|0d(p,q)τ)11m×(10|τ(1qτ)||υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|m0d(p,q)τ)1m=pq2(Rσρ,λ(υ2υ1))2p+qS11m9[10τ(1qτ)|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|m0d(p,q)τ]1mpq2(Rσρ,λ(υ2υ1))2p+qS11m9[10τ(1qτ)[(1τ)|υ1D2(p,q)Ψ(υ1)|m+τ|υ1D2(p,q)Ψ(υ2)|mcτ(1τ)(Rσρ,λ(υ2υ1))2]0d(p,q)τ]1m.

    This completes the proof.

    Corollary 5. Letting c0+ in Theorem 5, then

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+qS11m9[S6|υ1D2(p,q)Ψ(υ1)|m+S7|υ1D2(p,q)Ψ(υ2)|m]1m.

    Theorem 6. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+qS1l10[p+q1p+q|υ1D2(p,q)Ψ(υ1)|m+1p+q|υ1D2(p,q)Ψ(υ2)|mc(1p+q1p2+pq+q2)(Rσρ,λ(υ2υ1))2]1m,

    where

    S10:=(pq)n=0qnpn+1(qnpn+1q2n+1p2n+2)l. (2.12)

    Proof. From Lemma 3, properties of modulus, Hölder's inequality and using the generalized strongly convexity of |υ1D2(p,q)Ψ|m, we have

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+q(10|τ(1qτ)|l0d(p,q)τ)1l×(10|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|m0d(p,q)τ)1m=pq2(Rσρ,λ(υ2υ1))2p+qS1l10[10|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|m0d(p,q)τ]1mpq2(Rσρ,λ(υ2υ1))2p+qS1l10[10[(1τ)|υ1D2(p,q)Ψ(υ1)|m+τ|υ1D2(p,q)Ψ(υ2)|mcτ(1τ)(Rσρ,λ(υ2υ1))2]0d(p,q)τ]1m.

    This completes the proof.

    Corollary 6. Letting c0+ in Theorem 22, then

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+qS1l10[p+q1p+q|υ1D2(p,q)Ψ(υ1)|m+1p+q|υ1D2(p,q)Ψ(υ2)|m]1m.

    Theorem 7. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+qS1l11[(1[m+1](p,q)1[m+2](p,q))|υ1D2(p,q)Ψ(υ1)|m+1[m+2](p,q)|υ1D2(p,q)Ψ(υ2)|mc(1[m+2](p,q)1[m+3](p,q))(Rσρ,λ(υ2υ1))2]1l,

    where

    S11:=(pq)n=0qnpn+1(1qn+1pn+1)l. (2.13)

    Proof. From Lemma 3, properties of modulus, Hölder's inequality and using the generalized strongly convexity of |υ1D2(p,q)Ψ|m, we have

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+q(10|(1qτ)|l0d(p,q)τ)1l×(10τm|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|m0d(p,q)τ)1m=pq2(Rσρ,λ(υ2υ1))2p+qS1l11[10τm|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|m0d(p,q)τ]1mpq2(Rσρ,λ(υ2υ1))2p+qS1l11[10τm[(1τ)|υ1D2(p,q)Ψ(υ1)|m+τ|υ1D2(p,q)Ψ(υ2)|mcτ(1τ)(Rσρ,λ(υ2υ1))2]0d(p,q)τ]1m.

    This completes the proof.

    Corollary 7. Letting c0+ in Theorem 7, then

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+qS1l11[(1[m+1](p,q)1[m+2](p,q))|υ1D2(p,q)Ψ(υ1)|m+1[m+2](p,q)|υ1D2(p,q)Ψ(υ2)|m]1l.

    Theorem 8. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+q(1[l+1](p,q))1l[S12|υ1D2(p,q)Ψ(υ1)|m+S13|υ1D2(p,q)Ψ(υ2)|mcS14(Rσρ,λ(υ2υ1))2]1m,

    where

    S12:=p+q1p+qn=0(1qn+1pn+1)m, (2.14)
    S13:=(pq)n=0q2np2n+2(1qn+1pn+1)m, (2.15)

    and

    S14:=p2+pq+q2(p+q)(p+q)(p2+pq+q2)n=0(1qn+1pn+1)m. (2.16)

    Proof. From Lemma 3, properties of modulus, Hölder's inequality and using the generalized strongly convexity of |υ1D2(p,q)Ψ|m, we have

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+q(10τl0d(p,q)τ)1l×(10(1qτ)m|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|m0d(p,q)τ)1m=pq2(Rσρ,λ(υ2υ1))2p+q(1[l+1](p,q))1l(10(1qτ)m|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2υ1))|m0d(p,q)τ)1mpq2(Rσρ,λ(υ2υ1))2p+q(1[l+1](p,q))1l[10(1qτ)m[(1τ)|υ1D2(p,q)Ψ(υ1)|m+τ|υ1D2(p,q)Ψ(υ2)|mcτ(1τ)(Rσρ,λ(υ2υ1))2]0d(p,q)τ]1m.

    This completes the proof.

    Corollary 8. Letting c0+ in Theorem 8, then

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+q(1[l+1](p,q))1l[S12|υ1D2(p,q)Ψ(υ1)|m+S13|υ1D2(p,q)Ψ(υ2)|m]1m.

    In this section, we discuss some applications of our main results.

    First of all, we recall some previously known concepts regarding special means. For different real numbers υ1<υ2, we have

    (1) The arithmetic mean: A(υ1,υ2)=υ1+υ22.

    (2) The generalized logarithmic mean: Ln(υ1,υ2)=[υ2n+1υ1n+1(υ2υ1)(n+1)]1n,nZ{1,0}.

    Proposition 1. Assume that all the assumptions of Theorem 1 are satisfied, then the following inequality holds

    |2A(pυ2n,qυ1n)p+q1[n](p,q)Lnn(υ1+p(υ2υ1),υ1)|q(υ2υ1)p+q[S1|(pυ2+(1p)υ1)n(qυ2+(1q)υ1)n(pq)(υ2υ1)|+S2|[n](p,q)υ1n1|],

    where S1 and S2 are given by (2.3) and (2.4), respectively.

    Proof. If we choose υ1D2(p,q)Ψ(x)=xn,Rσρ,λ(υ2υ1)=υ2υ1 and c=0 in Theorem 1, we obtain our required result.

    Example 1. If we take n=2,υ1=2,υ2=4, p=12 and q=13 in Proposition 1, then we have 0.4<9.42, which shows the validity of the result.

    Proposition 2. Assume that all the assumption of Theorem 2 are satisfied, then the following inequality holds

    |2A(pυ2n,qυ1n)p+q1[n](p,q)Lnn(υ1+p(υ2υ1),υ1)|q(υ2υ1)p+qS11m4[S1|(pυ2+(1p)υ1)n(qυ2+(1q)υ1)n(pq)(υ2υ1)|m+S2|[n](p,q)υ1n1|m]1m,

    where S1 and S2 are given by (2.3), (2.4), and S4 is given by (2.6), respectively.

    Proof. If we choose υ1D2(p,q)Ψ(x)=xn,Rσρ,λ(υ2υ1)=υ2υ1 and c=0 in Theorem 2, then we obtain our required result.

    Example 2. If we take n=2,m=2,υ1=2,υ2=4, p=12 and q=13 in Proposition 2, then we have 0.4<11.39, which shows the validity of the result.

    From relation (1.1), if we set ρ=1,λ=0 and σ(k)=(ϕ)k(ψ)k(η)k0, where ϕ,ψ and η are parameters may be real or complex values and (m)k is defined as (m)k=Γ(m+k)Γ(m) and its domain is restricted as |x|1, then we have the following hypergeometric function

    R(ϕ,ψ;η,x):=k=0(ϕ)k(ψ)kk!(η)kxk.

    So using above notations and all the results obtained in this paper, we have the following forms.

    Lemma 4. Let Ψ:X=[υ1,υ1+R(ϕ,ψ;η;υ2υ1)]RR be a differentiable function and 0<q<p1. If υ1D(p,q)Ψ is integrable function on X, then

    1pR(ϕ,ψ;η;υ2υ1)υ1+pR(ϕ,ψ;η;υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+R(ϕ,ψ;η;υ2υ1))+qΨ(υ1)p+q=qR(ϕ,ψ;η;υ2υ1)p+q10(1(p+q)τ)υ1D(p,q)Ψ(υ1+τR(ϕ,ψ;η;υ2υ1))0d(p,q)τ. (3.1)

    The second identity for twice (p,q)-differentiable functions states as follows:

    Lemma 5. Let Ψ:X=[υ1,υ1+R(ϕ,ψ;η;υ2υ1)]RR be a twice differentiable function and 0<q<p1. If υ1D2(p,q)Ψ is integrable function on X, then

    (3.2)

    Theorem 9. Suppose that all the assumptions of Lemma 4 are satisfied and |υ1D(p,q)Ψ| is generalized strongly convex function, then

    |1pR(ϕ,ψ;η;υ2υ1)υ1+pR(ϕ,ψ;η;υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+R(ϕ,ψ;η;υ2υ1))+qΨ(υ1)p+q|qR(ϕ,ψ;η;υ2υ1)p+q[S1|υ1D(p,q)Ψ(υ1)|+S2|υ1D(p,q)Ψ(υ2)|cS3(R(ϕ,ψ;η;υ2υ1))2],

    where S1,S2 and S3 are given by (2.3)–(2.5).

    Theorem 10. Suppose that all the assumptions of Lemma 4 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with m1, then

    where S1,S2 S3 and S4 are given by (2.3)–(2.6), respectively.

    Theorem 11. Suppose that all the assumptions of Lemma 4 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then

    |1pR(ϕ,ψ;η;υ2υ1)υ1+pR(ϕ,ψ;η;υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+R(ϕ,ψ;η;υ2υ1))+qΨ(υ1)p+q|qR(ϕ,ψ;η;υ2υ1)p+qS1l5[p+q1p+q|υ1D(p,q)Ψ(υ1)|m+1p+q|υ1D(p,q)Ψ(υ2)|mc(1p+q1p2+pq+q2)(R(ϕ,ψ;η;υ2υ1))2]1m,

    where S5 is given by (2.7).

    Theorem 12. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ| is generalized strongly convex function, then

    |p2Ψ(υ1+R(ϕ,ψ;η;υ2υ1))+qΨ(υ1)p+q1p2R(ϕ,ψ;η;υ2υ1)υ1+p2R(ϕ,ψ;η;υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(R(ϕ,ψ;η;υ2υ1))2p+q[S6|υ1D2(p,q)Ψ(υ1)|+S7|υ1D2(p,q)Ψ(υ2)|cS8(R(ϕ,ψ;η;υ2υ1))2],

    where S6,S7 and S8 are given as (2.8)–(2.10).

    Theorem 13. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with m1, then

    where S6, S7,S8 and S9 are given by (2.8)–(2.11), respectively.

    Theorem 14. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then

    |p2Ψ(υ1+R(ϕ,ψ;η;υ2υ1))+qΨ(υ1)p+q1p2R(ϕ,ψ;η;υ2υ1)υ1+p2R(ϕ,ψ;η;υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(R(ϕ,ψ;η;υ2υ1))2p+qS1l10[p+q1p+q|υ1D2(p,q)Ψ(υ1)|m+1p+q|υ1D2(p,q)Ψ(υ2)|mc(1p+q1p2+pq+q2)(R(ϕ,ψ;η;υ2υ1))2]1m.

    Theorem 15. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then

    |p2Ψ(υ1+R(ϕ,ψ;η;υ2υ1))+qΨ(υ1)p+q1p2R(ϕ,ψ;η;υ2υ1)υ1+p2R(ϕ,ψ;η;υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(R(ϕ,ψ;η;υ2υ1))2p+qS1l11[(1[m+1](p,q)1[m+2](p,q))|υ1D2(p,q)Ψ(υ1)|m+1[m+2](p,q)|υ1D2(p,q)Ψ(υ2)|mc(1[m+2](p,q)1[m+3](p,q))(R(ϕ,ψ;η;υ2υ1))2]1l,

    where S11 is given by (2.13).

    Theorem 16. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then

    |p2Ψ(υ1+R(ϕ,ψ;η;υ2υ1))+qΨ(υ1)p+q1p2R(ϕ,ψ;η;υ2υ1)υ1+p2R(ϕ,ψ;η;υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(R(ϕ,ψ;η;υ2υ1))2p+q(1[l+1](p,q))1l[S12|υ1D2(p,q)Ψ(υ1)|m+S13|υ1D2(p,q)Ψ(υ2)|mcS14(R(ϕ,ψ;η;υ2υ1))2]1m,

    where S12,S13,S14 are given by (2.14)–(2.16).

    Moreover if we take σ=(1,1,1,),λ=1 and ρ=ϕ with Re(ϕ)>0 in (1.1), then we obtain well-known Mittag–Leffler function:

    Rϕ(x)=k=01Γ(1+ϕk)xk.

    So using this function and all the results obtained in this paper, we have the following forms.

    Lemma 6. Let Ψ:X=[υ1,υ1+Rϕ(υ2υ1)]RR be a differentiable function and 0<q<p1. If υ1D(p,q)Ψ is integrable function on X, then

    1pRϕ(υ2υ1)υ1+pRϕ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rϕ(υ2υ1))+qΨ(υ1)p+q=qRϕ(υ2υ1)p+q10(1(p+q)τ)υ1D(p,q)Ψ(υ1+τRϕ(υ2υ1))0d(p,q)τ. (3.3)

    The second identity for twice (p,q)-differentiable functions states as follows:

    Lemma 7. Let Ψ:X=[υ1,υ1+Rϕ(υ2υ1)]RR be a twice differentiable function and 0<q<p1. If υ1D2(p,q)Ψ is integrable function on X, then

    p2Ψ(υ1+Rϕ(υ2υ1))+qΨ(υ1)p+q1p2Rϕ(υ2υ1)υ1+p2Rϕ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ=pq2(Rϕ(υ2υ1))2p+q10τ(1qτ)υ1D2(p,q)Ψ(υ1+τRϕ(υ2υ1))0d(p,q)τ. (3.4)

    Theorem 17. Suppose that all the assumptions of Lemma 6 are satisfied and |υ1D(p,q)Ψ| is generalized strongly convex function, then

    |1pRϕ(υ2υ1)υ1+pRϕ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rϕ(υ2υ1))+qΨ(υ1)p+q|qRϕ(υ2υ1)p+q[S1|υ1D(p,q)Ψ(υ1)|+S2|υ1D(p,q)Ψ(υ2)|cS3(Rϕ(υ2υ1))2],

    where S1,S2 and S3 are (2.3)–(2.5).

    Theorem 18. Suppose that all the assumptions of Lemma 6 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with m1, then

    |1pRϕ(υ2υ1)υ1+pRϕ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rϕ(υ2υ1))+qΨ(υ1)p+q|qRϕ(υ2υ1)p+qS11m4[S1|υ1D(p,q)Ψ(υ1)|m+S2|υ1D(p,q)Ψ(υ2)|mcS3(Rϕ(υ2υ1))2]1m,

    where S1,S2 S3S4p are given by (2.3)–(2.6), respectively.

    Theorem 19. Suppose that all the assumptions of Lemma 6 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then

    |1pRϕ(υ2υ1)υ1+pRϕ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rϕ(υ2υ1))+qΨ(υ1)p+q|qRϕ(υ2υ1)p+qS1l5[p+q1p+q|υ1D(p,q)Ψ(υ1)|m+1p+q|υ1D(p,q)Ψ(υ2)|mc(1p+q1p2+pq+q2)(Rϕ(υ2υ1))2]1m,

    where S5 is given by (2.7).

    Theorem 20. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ| is generalized strongly convex function, then

    |p2Ψ(υ1+Rϕ(υ2υ1))+qΨ(υ1)p+q1p2Rϕ(υ2υ1)υ1+p2Rϕ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rϕ(υ2υ1))2p+q[S6|υ1D2(p,q)Ψ(υ1)|+S7|υ1D2(p,q)Ψ(υ2)|cS8(Rϕ(υ2υ1))2],

    where S6,S7 and S8 are given (2.8)–(2.10).

    Theorem 21. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with m1, then

    |p2Ψ(υ1+Rϕ(υ2υ1))+qΨ(υ1)p+q1p2Rϕ(υ2υ1)υ1+p2Rϕ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rϕ(υ2υ1))2p+qS11m9[S6|υ1D2(p,q)Ψ(υ1)|m+S7|υ1D2(p,q)Ψ(υ2)|mcS8(Rϕ(υ2υ1))2]1m,

    where S6, S7,S8 and S9 are given by (2.8)–(2.11), respectively.

    Theorem 22. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then

    |p2Ψ(υ1+Rϕ(υ2υ1))+qΨ(υ1)p+q1p2Rϕ(υ2υ1)υ1+p2Rϕ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rϕ(υ2υ1))2p+qS1l10[p+q1p+q|υ1D2(p,q)Ψ(υ1)|m+1p+q|υ1D2(p,q)Ψ(υ2)|mc(1p+q1p2+pq+q2)(Rϕ(υ2υ1))2]1m.

    Theorem 23. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then

    |p2Ψ(υ1+Rϕ(υ2υ1))+qΨ(υ1)p+q1p2Rϕ(υ2υ1)υ1+p2Rϕ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rϕ(υ2υ1))2p+qS1l11[(1[m+1](p,q)1[m+2](p,q))|υ1D2(p,q)Ψ(υ1)|m+1[m+2](p,q)|υ1D2(p,q)Ψ(υ2)|mc(1[m+2](p,q)1[m+3](p,q))(Rϕ(υ2υ1))2]1l,

    where S11 is given by (2.13).

    Theorem 24. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then

    |p2Ψ(υ1+Rϕ(υ2υ1))+qΨ(υ1)p+q1p2Rϕ(υ2υ1)υ1+p2Rϕ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rϕ(υ2υ1))2p+q(1[l+1](p,q))1l[S12|υ1D2(p,q)Ψ(υ1)|m+S13|υ1D2(p,q)Ψ(υ2)|mcS14(Rϕ(υ2υ1))2]1m,

    where S12,S13 and S14 are given by (2.14)–(2.16).

    In this section, we discuss applications regarding bounded functions in absolute value of the results obtained from our main results. We suppose that the following two conditions are satisfied:

    |υ1D(p,q)Ψ|Δ1and|υ1D2(p,q)Ψ|Δ2,

    and 0<q<p1.

    Applying the above conditions, we have the following results.

    Corollary 9. Under the assumptions of Theorem 1, the following inequality holds

    |1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q|qRσρ,λ(υ2υ1)p+q[Δ1(S1+S2)cS3(Rσρ,λ(υ2υ1))2].

    Corollary 10. Under the assumptions of Theorem 2, the following inequality holds

    |1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q|qRσρ,λ(υ2υ1)p+qS11m4[Δm1(S1+S2)cS3(Rσρ,λ(υ2υ1))2]1m.

    Corollary 11. Under the assumptions of Theorem 3, the following inequality holds

    |1pRσρ,λ(υ2υ1)υ1+pRσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τpΨ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q|qRσρ,λ(υ2υ1)p+qS1l5[Δm1c(1p+q1p2+pq+q2)(Rσρ,λ(υ2υ1))2]1m.

    Corollary 12. Under the assumptions of Theorem 4, the following inequality holds

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+q[Δ2(S6+S7)cS8(Rσρ,λ(υ2υ1))2].

    Corollary 13. Under the assumptions of Theorem 5, the following inequality holds

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+qS11m9[Δm2(S6+S7)cS8(Rσρ,λ(υ2υ1))2]1m.

    Corollary 14. Under the assumptions of Theorem 22, the following inequality holds

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+qS1l10[Δm2c(1p+q1p2+pq+q2)(Rσρ,λ(υ2υ1))2]1m.

    Corollary 15. Under the assumptions of Theorem 7, the following inequality holds

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+qS1l11[Δm2[m+1](p,q)c(1[m+2](p,q)1[m+3](p,q))(Rσρ,λ(υ2υ1))2]1l.

    Corollary 16. Under the assumptions of Theorem 8, the following inequality holds

    |p2Ψ(υ1+Rσρ,λ(υ2υ1))+qΨ(υ1)p+q1p2Rσρ,λ(υ2υ1)υ1+p2Rσρ,λ(υ2υ1)υ1Ψ(τ)υ1d(p,q)τ|pq2(Rσρ,λ(υ2υ1))2p+q(1[l+1](p,q))1l[Δm2(S12+S13)cS14(Rσρ,λ(υ2υ1))2]1m.

    In this paper, we introduced the class of generalized strongly convex functions using Raina's function. We have derived two new general auxiliary results involving first and second order (p,q)-differentiable functions and Raina's function. Essentially using these identities and the generalized strongly convexity property of the functions, we also established corresponding new generalized post-quantum analogues of Dragomir-Agarwal's inequalities. We have discussed in details some special cases about generalized convex functions. The efficiency of our main results is also demonstrated with the help of application. We have offered applications to special means, to hypergeometric functions, to Mittag-Leffler functions and also to (p,q)-differentiable functions of first and second order that are bounded in absolute value. We will derive as future works several new post-quantum interesting inequalities using Chebyshev, Markov, Young and Minkowski inequalities. Since the class of generalized strongly convex functions have large applications in many mathematical areas, they can be applied to obtain several results in convex analysis, special functions, quantum mechanics, related optimization theory, and mathematical inequalities and may stimulate further research in different areas of pure and applied sciences. Studies relating convexity, partial convexity, and preinvex functions (as contractive operators) may have useful applications in complex interdisciplinary studies, such as maximizing the likelihood from multiple linear regressions involving Gauss-Laplace distribution. For more details, please see [16,17,18,19,20,21,22,23].

    The authors would like to thank the editor and the anonymous reviewers for their valuable comments and suggestions. This research was funded by Dirección de Investigación from Pontificia Universidad Católica del Ecuador in the research project entitled "Some integrals inequalities and generalized convexity" (Algunas desigualdades integrales para funciones con algún tipo de convexidad generalizada y aplicaciones).

    The authors declare no conflict of interest.



    [1] K. Amini, F. Rostami, G. Caristi, An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations, Optimization, 67 (2018), 637–650. https://doi.org/10.1080/02331934.2018.1435655 doi: 10.1080/02331934.2018.1435655
    [2] H. Dan, N. Yamashita, M. Fukushima, Convergence properties of the inexact Levenberg-Marquardt method under local error bound, Optim. Method. Softw., 17 (2002), 605–626. http://dx.doi.org/10.1080/1055678021000049345 doi: 10.1080/1055678021000049345
    [3] F. Facchinei, C. Kanzow, A nonsmooth inexact Newton method for the solution of large scale nonlinear complementarity problems, Math. Program., 76 (1997), 493–512. https://doi.org/10.1007/bf02614395 doi: 10.1007/bf02614395
    [4] J. Y. Fan, J. Y. Pan, Inexact Levenberg-Marquardt method for nonlinear equations, Discrete Cont. Dyn.-B, 4 (2004), 1223–1232. http://dx.doi.org/10.3934/dcdsb.2004.4.1223 doi: 10.3934/dcdsb.2004.4.1223
    [5] J. Y. Fan, J. Y. Pan, On the convergence rate of the inexact Levenberg-Marquardt method, J. Ind. Manag. Optim., 7 (2011), 199–210. http://dx.doi.org/10.3934/jimo.2011.7.199 doi: 10.3934/jimo.2011.7.199
    [6] J. Y. Fan, Y. X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing, 74 (2005), 23–39. https://doi.org/10.1007/s00607-004-0083-1 doi: 10.1007/s00607-004-0083-1
    [7] A. Fischera, P. K. Shuklaa, M. Wang, On the inexactness level of robust Levenberg-Marquardt methods, Optimization, 59 (2010), 273–287. https://doi.org/10.1080/02331930801951256 doi: 10.1080/02331930801951256
    [8] G. W. Stewart, J. G. Sun, Matrix Perturbation Theory, San Diego: Academic Press, 1990.
    [9] J. Y. Tang, J. C. Zhou, Quadratic convergence analysis of a nonmonotone Levenberg-Marquardt type method for the weighted nonlinear complementarity problem, Comput. Optim. Appl., 80 (2021), 213–244. http://dx.doi.org/10.1007/S10589-021-00300-8 doi: 10.1007/S10589-021-00300-8
    [10] J. Y. Tang, H. C. Zhang, A nonmonotone smoothing Newton algorithm for weighted complementarity problems, J. Optim Theory Appl., 189 (2021), 679–715. http://dx.doi.org/10.1007/S10957-021-01839-6 doi: 10.1007/S10957-021-01839-6
    [11] H. Y. Wang, J. Y. Fan, Convergence rate of the Levenberg-Marquardt method under Hölderian local error bound, Optim. Methods Softw., 35 (2020), 767–786. http://dx.doi.org/10.1080/10556788.2019.1694927 doi: 10.1080/10556788.2019.1694927
    [12] H. Y. Wang, J. Y. Fan, Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound, J. Ind. Manag. Optim., 17 (2021), 2265–2275. http://doi.org/10.3934/jimo.2020068 doi: 10.3934/jimo.2020068
    [13] N. Yamashita, M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, Computing, 15 (2001), 239–249. http://doi.org/10.1007/978-3-7091-6217-0-18 doi: 10.1007/978-3-7091-6217-0-18
    [14] M. Zeng, G. Zhou, Improved convergence results of an efficient Levenberg-Marquardt method for nonlinear equations, J. Appl. Math. Comput., 68 (2022), 3655–367. http://doi.org/10.1007/S12190-021-01599-6 doi: 10.1007/S12190-021-01599-6
    [15] L. Zheng, L. Chen, Y. F. Ma, A variant of the Levenberg-Marquardt method with adaptive parameters for systems of nonlinear equations, AIMS Math., 7 (2021), 1241–1256. http://doi.org/10.3934/math.2022073 doi: 10.3934/math.2022073
    [16] L. Zheng, L. Chen, Y. X. Tang, Convergence rate of the modified Levenberg-Marquardt method under Hölderian local error bound, Open Math., 20 (2022), 998–1012. http://dx.doi.org/10.1515/MATH-2022-0485 doi: 10.1515/MATH-2022-0485
  • This article has been cited by:

    1. Feiteng Cheng, Qinghai Zhao, Zibin Mao, Fajie Wang, Mechanical Response of Gradient Lattice Structures Based on Topology Optimization, 2024, 26, 1438-1656, 10.1002/adem.202301887
    2. Mingtao Cui, Wennan Cui, Wang Li, Xiaobo Wang, A polygonal topology optimization method based on the alternating active-phase algorithm, 2024, 32, 2688-1594, 1191, 10.3934/era.2024057
    3. Mohammed Hameed Hafeeth, Ying Liu, An efficient volume-preserving binary filter for additive manufacturing in topology optimization, 2024, 0305-215X, 1, 10.1080/0305215X.2024.2382799
    4. Martin Sotola, Pavel Marsalek, David Rybansky, Jan Kopacka, Dusan Gabriel, Ondrej Jezek, Ludek Kovar, Josef Tejc, Miloslav Pasek, Radim Halama, Michal Barnovsky, Application of Surface-Based Smoothing Methods for Topology Optimization Results, 2024, 16, 1758-8251, 10.1142/S1758825124500868
    5. Jianping Zhang, Tao Chen, Haiming Zhang, Shuying Wu, Lei Zhao, Zhijian Zuo, Topology optimization of orthotropic multi-material microstructures with maximum thermal conductivity based on element-free Galerkin method, 2024, 1040-7782, 1, 10.1080/10407782.2024.2379616
    6. Wangyu Liu, Guanghui Huang, Weigui Xie, An efficient cross-platform multi-material topology optimization approach occupying enhanced BESO method, 2024, 0025-6455, 10.1007/s11012-024-01916-w
    7. Hongshuo Fan, Jianli Liu, Haobo Zhang, Tao Nie, Jingui Yu, Jianzhong Yang, Zhaohui Xia, Evolutionary topology optimization for elastoplastic structures via isogeometric analysis, 2025, 0305-215X, 1, 10.1080/0305215X.2024.2443738
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1558) PDF downloads(61) Cited by(0)

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog