Research article

Asymptotic analysis of high frequency modes for thin elastic plates

  • Received: 07 March 2023 Revised: 15 May 2023 Accepted: 21 May 2023 Published: 02 June 2023
  • MSC : 35E20, 35C20, 74B05, 74K20, 74G10

  • In this paper, we show that the high frequency modes of a thin clamped plate and the associated eigenfunctions converge, as the thickness of the plate goes to zero, to the eigenvalues and the eigenfunctions of a two-dimensional eigenvalue problem associated to the stretching displacements of the plate.

    Citation: Nabil Kerdid. Asymptotic analysis of high frequency modes for thin elastic plates[J]. AIMS Mathematics, 2023, 8(8): 18618-18630. doi: 10.3934/math.2023948

    Related Papers:

    [1] Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015
    [2] Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185
    [3] Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248
    [4] Hari Mohan Srivastava, Muhammad Arif, Mohsan Raza . Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Mathematics, 2021, 6(6): 5869-5885. doi: 10.3934/math.2021347
    [5] Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang . Closure properties of generalized λ-Hadamard product for a class of meromorphic Janowski functions. AIMS Mathematics, 2021, 6(2): 1715-1726. doi: 10.3934/math.2021102
    [6] Zhuo Wang, Weichuan Lin . The uniqueness of meromorphic function shared values with meromorphic solutions of a class of q-difference equations. AIMS Mathematics, 2024, 9(3): 5501-5522. doi: 10.3934/math.2024267
    [7] Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357
    [8] Ekram E. Ali, Nicoleta Breaz, Rabha M. El-Ashwah . Subordinations and superordinations studies using q-difference operator. AIMS Mathematics, 2024, 9(7): 18143-18162. doi: 10.3934/math.2024886
    [9] Erhan Deniz, Hatice Tuǧba Yolcu . Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order. AIMS Mathematics, 2020, 5(1): 640-649. doi: 10.3934/math.2020043
    [10] Huo Tang, Muhammad Arif, Khalil Ullah, Nazar Khan, Bilal Khan . Majorization results for non vanishing analytic functions in different domains. AIMS Mathematics, 2022, 7(11): 19727-19738. doi: 10.3934/math.20221081
  • In this paper, we show that the high frequency modes of a thin clamped plate and the associated eigenfunctions converge, as the thickness of the plate goes to zero, to the eigenvalues and the eigenfunctions of a two-dimensional eigenvalue problem associated to the stretching displacements of the plate.



    Let denote the class of meromorphic function of the form:

    λ(ω)=1ω+t=0atωt, (1.1)

    which are analytic in the punctured open unit disc U={ω:ωC and 0<|ω|<1}=U{0}, where U=U{0}. Let δ(ω), be given by

    δ(ω)=1ω+t=0btωt, (1.2)

    then the Convolution (Hadamard product) of λ(ω) and δ(ω) is denoted and defined as:

    (λδ)(ω)=1ω+t=0atbtωt.

    In 1967, MacGregor [17] introduced the concept of majorization as follows.

    Definition 1. Let λ and δ be analytic in U. We say that λ is majorized by δ in U and written as λ(ω)δ(ω)ωU, if there exists a function φ(ω), analytic in U, satisfying

    |φ(ω)|1,  and  λ(ω)=φ(ω)δ(ω), ωU. (1.3)

    In 1970, Robertson [19] gave the idea of quasi-subordination as:

    Definition 2. A function λ(ω) is subordinate to δ(ω) in U and written as: λ(ω)δ(ω), if there exists a Schwarz function k(ω), which is holomorphic in U with |k(ω)|<1, such that λ(ω)=δ(k(ω)). Furthermore, if the function δ(ω) is univalent in U, then we have the following equivalence (see [16]):

    λ(ω)δ(ω)andλ(U)δ(U). (1.4)

    Further, λ(ω) is quasi-subordinate to δ(ω) in U and written is

    λ(ω)qδ(ω)  ( ωU),

    if there exist two analytic functions φ(ω) and k(ω) in U such that λ(ω)φ(ω) is analytic in U and

    |φ(ω)|1 and k(ω)|ω|<1  ωU,

    satisfying

      λ(ω)=φ(ω)δ(k(ω))  ωU. (1.5)

    (ⅰ) For φ(ω)=1 in (1.5), we have

      λ(ω)=δ(k(ω))  ωU,

    and we say that the λ function is subordinate to δ in U, denoted by (see [20])

    λ(ω)δ(ω)  ( ωU).

    (ⅱ) If k(ω)=ω, the quasi-subordination (1.5) becomes the majorization given in (1.3). For related work on majorization see [1,4,9,21].

    Let us consider the second order linear homogenous differential equation (see, Baricz [6]):

    ω2k(ω)+αωk(ω)+[βω2ν2+(1α)]k(ω)=0. (1.6)

    The function kν,α,β(ω), is known as generalized Bessel's function of first kind and is the solution of differential equation given in (1.6)

    kν,α,β(ω)=t=0(β)tΓ(t+1)Γ(t+ν+1+α+12)(ω2)2t+ν. (1.7)

    Let us denote

    Lν,α,βλ(ω)=2νΓ(ν+α+12)ων2+1kν,α,β(ω12),  =1ω+t=0(β)t+1Γ(ν+α+12)4t+1Γ(t+2)Γ(t+ν+1+α+12)(ω)t,

    where ν,α and β are positive real numbers. The operator Lν,α,β is a variation of the operator introduced by Deniz [7] (see also Baricz et al. [5]) for analytic functions. By using the convolution, we define the operator Lν,α,β as follows:

    ( Lν,α,βλ)(ω)=Lν,α,β(ω)λ(ω),=1ω+t=0(β)t+1Γ(ν+α+12)4t+1Γ(t+2)Γ(t+ν+1+α+12)at(ω)t. (1.8)

    The operator Lν,α,β was introduced and studied by Mostafa et al. [15] (see also [2]). From (1.8), we have

    ω(Lν,α,βλ(ω))j+1=(ν1+α+12)(Lν1,α,βλ(ω))j(ν+α+12)(Lν,α,βλ(ω))j. (1.9)

    By taking α=β=1, the above operator reduces to ( Lνλ)(ω) studied by Aouf et al. [2].

    Definition 3. Let 1B<A1,ηC{0},jW and ν,α,β>0. A function λ is said to be in the class Mν,jα,β(η,ϰ;A,B) of meromorphic functions of complex order η0 in U if and only if

    11η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)ϰ|1η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)|1+Aω1+Bω. (1.10)

    Remark 1.

    (i). For A=1,B=1 and ϰ=0, we denote the class

    Mν,jα,β(η,0;1,1)=Mν,jα,β(η).

    So, λMν,jα,β(η,ϰ;A,B) if and only if

    [11η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)]>0.

    (ii). For α=1,β=1, Mν,j1,1(η,0;1,1) reduces to the class Mν,j(η).

    [11η(ω(Lνλ(ω))j+1(Lνλ(ω))j+ν+j)]>0.

    Definition 4. A function λ is said to be in the class  Nν,jα,β(θ,b;A,B) of meromorphic spirllike functions of complex order b0 in U, if and only if

    1eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)1+Aω1+Bω, (1.11)

    where,

    (π2<θ<π2, 1β<A1,ηC{0}, jW, ν,α,β>0andωU ).

    (i). For A=1 and B=1, we set

    Nν,jα,β(θ,b;1,1)=Nν,jα,β(θ,b),

    where Nν,jα,β(θ,b) denote the class of functions λ satisfying the following inequality:

    [eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)]<1.

    (ii). For θ=0 and α=β=1 we write

    Nν,j1,1(0,b;1,1)=Nν,j(b),

    where Nν,j(b) denote the class of functions λ satisfying the following inequality:

    [1b(ω(Lνλ(ω))j+1(Lνλ(ω))j+j+1)]<1.

    A majorization problem for the normalized class of starlike functions has been examined by MacGregor [17] and Altintas et al. [3,4]. Recently, Eljamal et al. [8], Goyal et al. [12,13], Goswami et al. [10,11], Li et al. [14], Tang et al. [21,22] and Prajapat and Aouf [18] generalized these results for different classes of analytic functions.

    The objective of this paper is to examined the problems of majorization for the classes Mν,jα,β(η,ϰ;A,B) and Nν,jα,β(θ,b;A,B).

    In Theorem 1, we prove majorization property for the class Mν,jα,β(η,ϰ;A,B).

    Theorem 1. Let the function λ and suppose that δMν,jα,β(η,ϰ;A,B). If  (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U, then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r0), (2.1)

    where r0=r0(η,ϰ,ν,α,β,A,B) is the smallest positive roots of the equation

    ρ(ν1+α+12)[(AB)|η|1ϰ(α+12)|B|]r3(ν1+α+12)[ρ(α+12)+ρ2|B||B|]r2(ν1+α+12)[(AB)|η|1ϰ(α+12)|B|+ρ2|B|1]r+ρ(ν1+α+12)(α+12)=0. (2.2)

    Proof. Since δMν,jα,β(η,ϰ;A,B), we have

    11η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j)ϰ|1η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j)|=1+Ak(ω)1+Bk(ω), (2.3)

    where k(ω)=c1ω+c2ω2+..., is analytic and bounded functions in U with

     |k(ω)||ω|  (ωU). (2.4)

    Taking

    §(ω)=11η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j), (2.5)

    In (2.3), we have

    §(ω)ϰ|§(ω)1|=1+Ak(ω)1+Bk(ω),

    which implies

    §(ω)=1+(ABϰeiθ1ϰeiθ)k(ω)1+Bk(ω). (2.6)

    Using (2.6) in (2.5), we get

    ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j=ν+j+[(AB)η1ϰeiθ+(ν+j)B]k(ω)1+Bk(ω). (2.7)

    Application of Leibnitz's Theorem on (1.9) gives

    ω(Lν,α,βδ(ω))j+1=(ν1+α+12)(Lν1,α,βδ(ω))j(ν+j+α+12)(Lν,α,βδ(ω))j. (2.8)

    By using (2.8) in (2.7) and making simple calculations, we have

    (Lν1,α,βδ(ω))j(Lν,α,βδ(ω))j=α+12[(AB)η1ϰeiθ(α+12)B]k(ω)(1+Bk(ω))(ν1+α+12). (2.9)

    Or, equivalently

    (Lν,α,βδ(ω))j=(1+Bk(ω))(ν1+α+12)α+12[(AB)η1ϰeiθ(α+12)B]k(ω)(Lν1,α,βδ(ω))j. (2.10)

    Since |k(ω)||ω|, (2.10) gives us

    |(Lν,α,βδ(ω))j|[1+|B||ω|](ν1+α+12)α+12|(AB)η1ϰeiθ(α+12)B||ω||(Lν1,α,βδ(ω))j|[1+|B||ω|](ν1+α+12)α+12[(AB)|η|1ϰ(α+12)|B|]|ω||(Lν1,α,βδ(ω))j| (2.11)

    Since (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U. So from (1.3), we have

    (Lν,α,βλ(ω))j=φ(ω)(Lν,α,βδ(ω))j. (2.12)

    Differentiating (2.12) with respect to ω then multiplying with ω, we get

    (Lν,α,βλ(ω))j=ωφ(ω)(Lν,α,βδ(ω))j+ωφ(ω)(Lν,α,βδ(ω))j+1. (2.13)

    By using (2.8), (2.12) and (2.13), we have

    (Lν,α,βλ(ω))j+1=1(ν1+α+12)ωφ(ω)(Lν,α,βδ(ω))j+φ(ω)(Lν1,α,βδ(ω))j+1. (2.14)

    On the other hand, noticing that the Schwarz function φ satisfies the inequality

    |φ(ω)|1|φ(ω)|21|ω|2   (ωU). (2.15)

    Using (2.8) and (2.15) in (2.14), we get

    |(Lν,α,βλ(ω))j|[|φ(ω)|+ω(1|φ(ω)|2)[1+|B||ω|](ν1+α+12)(ν1+α+12)(1|ω|2)(α+12[(AB)|η|1ϰ(α+12)B]|ω|)]×|(Lν1,α,βδ(ω))j|,

    By taking

    |ω|=r,  |φ(ω)|=ρ    (0ρ1),

    reduces to the inequality

    |(Lν,α,βλ(ω))j|Φ1(ρ)(ν1+α+12)(1r2)(α+12[(AB)|η|1ϰ(α+12)B]r)|(Lν1,α,βδ(ω))j|,

    where

    Φ1(ρ)=[ρ(ν1+α+12)(1r2)(α+12[(AB)|η|1ϰ(α+12)B]r)+r(1ρ2)[1+|B|r](ν1+α+12)]=r[1+|B|r](ν1+α+12)ρ2+ρ(ν1+α+12)(1r2)(α+12[(AB)|η|1ϰ(α+12)B]r)+r[1+|B|r](ν1+α+12),           (2.16)

    takes in maximum value at ρ=1 with r0=r0(η,ϰ,ν,α,β,A,B) where r0 is the least positive root of the (2.2). Furthermore, if 0ξ0r0(η,ϰ,ν,α,β,A,B), then the function ψ1(ρ) defined by

    ψ1(ρ)=ξ0[1+|B|ξ0](ν1+α+12)ρ2+ρ(ν1+α+12)(1ξ20)(α+12[(AB)|η|1ϰ(α+12)B]ξ0)+ξ0[1+|B|ξ0](ν1+α+12),          (2.17)

    is an increasing function on the interval (0ρ1), so that

    ψ1(ρ)ψ1(1)=(ν1+α+12)(1ξ20)[α+12((AB)|η|1ϰ(α+12)B)ξ0](0ρ1, 0ξ0r0(η,ϰ,A,B)).

    Hence, upon setting ρ=1 in (2.17), we achieve (2.1).

    Special Cases: Let A=1 and B=1 in Theorem 1, we obtain the following corollary.

    Corollary 1. Let the function λ and suppose that δMν,jα,β(η,ϰ;A,B). If  (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U, then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r1),

    where r1=r1(η,ϰ,ν,α,β) is the least positive roots of the equation

    ρ(ν1+α+12)[2|η|1ϰ(α+12)]r3(ν1+α+12)[ρ(α+12)+ρ21]r2(ν1+α+12)[ρ{2|η|1ϰ(α+12)}+ρ21]r+ρ(ν1+α+12)(α+12)=0. (2.18)

    Here, r=1 is one of the roots (2.18) and the other roots are given by

    r1=k0k204ρ2(ν1+α+12)[2|η|1ϰ(α+12)](ν1+α+12)(α+12)2ρ(ν1+α+12)[2|η|1ϰ(α+12)],

    where

    k0=(ν1+α+12)[ρ{2|η|1ϰ2(α+12)}+ρ21].

    Taking ϰ=0 in corollary 1, we state the following:

    Corollary 2. Let the function λ and suppose that δMν,jα,β(η,ϰ;A,B). If  (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U, then

    |(Lv,α,βλ(ω))j+1||(Lv,α,βδ(ω))j+1|,(|ω|<r2),

    where r2=r2(η,ν,α,β) is the lowest positive roots of the equation

    ρ(ν1+α+12)[2|η|(α+12)]r3(ν1+α+12)[ρ(α+12)+ρ21]r2(ν1+α+12)[ρ{2|η|(α+12)}+ρ21]r+ρ(ν1+α+12)(α+12)=0, (2.19)

    given by

    r2=k1k214ρ2(ν1+α+12)[2|η|(α+12)](ν1+α+12)(α+12)2ρ(ν1+α+12)[2|η|(α+12)],

    where

    k1=(ν1+α+12)[ρ{2|η|2(α+12)}+ρ21].

    Taking α=β=1 in corollary 2, we get the following:

    Corollary 3. Let the function λ and suppose that δMν,jα,β(η,ϰ;A,B). If  (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U, then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r3),

    where r3=r3(η,ν) is the lowest positive roots of the equation

    ρν[2|η|1]r3ν[ρ+ρ21]r2ν[ρ(2|η|1)+ρ21]r+ρν=0, (2.20)

    given by

    r3=k2k224ρ2ν[2|η|1]ν2ρν[2|η|1],

    where

    k2=ν[ρ{2|η|2}+ρ21].

    Secondly, we exam majorization property for the class Nν,jα,β(θ,b;A,B).

    Theorem 2. Let the function λ and suppose that δNν,jα,β(θ,b;A,B). If

    (Lν,α,βλ(ω))j(Lν,α,βδ(ω))j,(j0,1,2...),

    then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r4), (3.1)

    where r4=r4(θ,b,ν,α,β,A,B) is the smallest positive roots of the equation

    ρ[|(BA)bcosθ+(ν+α+121)|B||]r3[ρ{ν+α+121}|B|(1ρ2)(ν1+α+12)]r2+[ρ{|(BA)bcosθ+(ν+α+121)|B||}+(1ρ2)(ν1+α+12)]r+ρ[ν+α+121]=0,(π2<θ<π2,1β<A1,ηC{0},ν,α,β>0,andωU). (3.2)

    Proof. Since δNν,jα,β(θ,b;A,B), so

    1eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)=1+Aω1+Bω, (3.3)

    where, k(ω) is defined as (2.4).

    From (3.3), we have

    ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j=[(BA)bcosθ(j+1)Beiθ]k(ω)(j+1)eiθeiθ(1+Bk(ω)). (3.4)

    Now, using (2.8) in (3.4) and making simple calculations, we obtain

    (Lν1,α,βδ(ω))j(Lν,α,βδ(ω))j=[(BA)bcosθ+(ν+α+121)Beiθ]k(ω)+[(ν+j+α+12)1]eiθeiθ(1+Bk(ω))(ν1+α+12), (3.5)

    which, in view of  |k(ω)||ω| (ωU), immediately yields the following inequality

    |(Lν,α,βδ(ω))j||eiθ|(1+|B||k(ω)|)(ν1+α+12)[|(BA)bcosθ+(ν+α+121)Beiθ|]|k(ω)|+[(ν+α+12)1]|eiθ|×|(Lν1,α,βδ(ω))j|. (3.6)

    Now, using (2.15) and (3.6) in (2.14) and working on the similar lines as in Theorem 1, we have

    |(Lν1,α,βλ(ω))j|[|φ(ω)|+|ω|(1|φ(ω)|2)(1+|B||ω|)(ν1+α+12)(1|ω|2)[{|(BA)bcosθ+(ν+α+121)B|}|ω|+[(ν+α+12)1]]]×|(Lν1,α,βδ(ω))j|.

    By setting |ω|=r,|φ(ω)|=ρ(0ρ1), leads us to the inequality

    |(Lν1,α,βλ(ω))j|[Φ2(ρ)(1r2)[{|(BA)bcosθ+(ν+α+121)B|}r+(ν+α+12)1]]×|(Lν1,α,βδ(ω))j|, (3.7)

    where the function Φ2(ρ) is given by

    Φ2(ρ)=ρ(1r2)[{|(BA)bcosθ+(ν+α+121)B|}r+(ν+α+12)1]+r(1ρ2)(1+Br)(ν1+α+12).

    Φ2(ρ) its maximum value at ρ=1 with r4=r4(θ,b,ν,α,β,A,B) given in (3.2). Moreover if 0ξ1r4(θ,b,ν,α,β,A,B), then the function.

    ψ2(ρ)=ρ(1ξ21)[{|(BA)bcosθ+(ν+α+121)B|}ξ1+(ν+α+12)1]+ξ1(1ρ2)(1+Bξ1)(ν1+α+12),

    increasing on the interval 0ρ1, so that ψ2(ρ) does not exceed

    ψ2(1)=(1ξ21)[{|(BA)bcosθ+(ν+α+121)B|}ξ1+(ν+α+12)1].

    Therefore, from this fact (3.7) gives the inequality (3.1). We complete the proof.

    Special Cases: Let A=1 and B=1 in Theorem 2, we obtain the following corollary.

    Corollary 4. Let the function λ and suppose that δNν,jα,β(θ,b;A,B). If

    (Lν,α,βλ(ω))j(Lν,α,βδ(ω))j,(j0,1,2,...),

    then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r5),

    where r5=r5(θ,b,ν,α,β) is the lowest positive roots of the equation

    ρ[|2bcosθ+(ν+α+121)|]r3[ρ{ν+α+121}(1ρ2)(ν1+α+12)]r2+[ρ{|2bcosθ+(ν+α+121)|}+(1ρ2)(ν1+α+12)]r+ρ[ν+α+121]=0. (3.8)

    Where r=1 is first roots and the other two roots are given by

    r5=κ0κ20+4ρ2[|2bcosθ+(ν+α+121)|][ν+α+121]2ρ[|2bcosθ+(ν+α+121)|],

    and

    κ0=[(1ρ2)(ν1+α+12)ρ{|2bcosθ+2(ν+α+121)|}].

    Which reduces to Corollary 4 for θ=0.

    Corollary 5. Let the function λ and suppose that δNν,jα,β(θ,b;A,B). If

    (Lν,α,βλ(ω))j(Lν,α,βδ(ω))j,(j0,1,2,...),

    then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r6),

    where r6=r6(b,ν,α,β) is the least positive roots of the equation

    ρ[|2b+(ν+α+121)|]r3[ρ{ν+α+121}(1ρ2)(ν1+α+12)]r2+[ρ{|2b+(ν+α+121)|}+(1ρ2)(ν1+α+12)]r+ρ[ν+α+121]=0, (3.9)

    given by

    r6=κ1κ21+4ρ2[|2b+(ν+α+121)|][ν+α+121]2ρ[|2b+(ν+α+121)|],

    and

    κ1=[(1ρ2)(ν1+α+12)ρ{|2b+2(ν+α+121)|}].

    Taking α=β=1 in corollary 5, we get.

    Corollary 6. Let the function λ and suppose that δNν,jα,β(θ,b;A,B). If

    (Lν,α,βλ(ω))j(Lν,α,βδ(ω))j,(j0,1,2,...),

    then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r7),

    where r7=r7(b,ν) is the lowest positive roots of the equation

    ρ|2b+ν|r3[ρν(1ρ2)ν]r2+[ρ|2b+ν|+(1ρ2)ν]r+ρ[ν]=0, (3.10)

    given by

    r7=κ2κ22+4ρ2[|2b+ν|][ν]2ρ[|2b+ν|],

    and

    κ2=[(1ρ2)νρ{|2b+2ν|}].

    In this paper, we explore the problems of majorization for the classes Mν,jα,β(η,ϰ;A,B) and Nν,jα,β(θ,b;A,B) by using a convolution operator Lν,α,β. These results generalizes and unify the theory of majorization which is an active part of current ongoing research in Geometric Function Theory. By specializing different parameters like ν,η,ϰ,θ and b, we obtain a number of important corollaries in Geometric Function Theory.

    The work here is supported by GUP-2019-032.

    The authors agree with the contents of the manuscript, and there is no conflict of interest among the authors.



    [1] P. G. Ciarlet, P. Destuynder, A justification of the two-dimensional linear plate model, J. Mec., 18 (1979), 315–344.
    [2] P. G. Ciarlet, H. Le Dret, R. Nzengwa, Junctions between three-dimensional and two-dimensional linear elastic structures, J. Math. Pures Appl., 68 (1989), 261–295.
    [3] H. Le Dret, Folded plates revisited, Comput. Mech., 5 (1989), 345–365. http://dx.doi.org/10.1007/BF01047051 doi: 10.1007/BF01047051
    [4] H. Le Dret, Modeling of a folded plate, Comput. Mech., 5 (1990), 401–416. https://doi.org/10.1007/BF01113445 doi: 10.1007/BF01113445
    [5] H. Le Dret, Modeling of the junction between two rods, J. Math. Pure Appl., 68 (1989), 365–397.
    [6] L. Trabucho, J. M. Viaño, Existence and characterization of higher-order terms in an asymptotic expansion method for linearized elastic beams, Asymptotic Anal., 2 (1989), 223–255. https://doi.org/10.3233/ASY-1989-2303 doi: 10.3233/ASY-1989-2303
    [7] P. G. Ciarlet, S. Kesavan, Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory, Comput. Methods Appl. Mech. Eng., 26 (1981), 0045–7825. http://dx.doi.org/10.1016/0045-7825(81)90091-8 doi: 10.1016/0045-7825(81)90091-8
    [8] H. Le Dret, Vibrations of a folded plate, ESAIM: M2AN, 24 (1990), 501–521. https://doi.org/10.1051/m2an/1990240405011 doi: 10.1051/m2an/1990240405011
    [9] F. Bourquin, P. G. Ciarlet, Modeling and justification of eigenvalue problems for junctions between elastic structures, J. Funct. Anal., 87 (1989), 392–427. https://doi.org/10.1016/0022-1236(89)90017-7 doi: 10.1016/0022-1236(89)90017-7
    [10] V. Lods, Modeling and justification of an eigenvalue problem for a plate inserted in a three-dimensional support, ESAIM: M2AN, 30 (1996), 413–444. http://dx.doi.org/10.1051/m2an/1996300404131 doi: 10.1051/m2an/1996300404131
    [11] N. Kerdid, Asymptotic behavior of the eigenvalue problem in a thin linearly elastic clamped rod when its thickness tends to zero, C. R. Acad. Sci. Ser. I: Math., 316 (1993), 755–758.
    [12] N. Kerdid, Modeling the vibrations of a multi-rod structure, ESAIM: M2AN, 31 (1997), 891–925. https://doi.org/10.1051/m2an/1997310708911 doi: 10.1051/m2an/1997310708911
    [13] S. Jimbo, A. Rodríguez Mulet, Asymptotic behavior of eigenfrequencies of a thin elastic rod with non-uniform cross-section, J. Math. Soc. Japan, 72 (2020), 119–154. https://doi.org/10.2969/jmsj/81198119 doi: 10.2969/jmsj/81198119
    [14] S. Jimbo, E. Ushikoshi, H. Yoshihara, Asymptotic behavior of the eigenfrequencies of a thin elastic rod with non-uniform cross-section of extremely oblate shape, Calc. Var. Partial Differ. Equ., 62 (2022), 11. https://doi.org/10.1007/s00526-022-02325-1 doi: 10.1007/s00526-022-02325-1
    [15] M. Serpilli, S. Lenci, Asymptotic modelling of the linear dynamics of laminated beams, Int. J. Solids Struct., 49 (2012), 1147–1157. http://dx.doi.org/10.1016/j.ijsolstr.2012.01.012 doi: 10.1016/j.ijsolstr.2012.01.012
    [16] J. Tamba˜ca, One-dimensional approximations of the eigenvalue problem of curved rods, Math. Methods Appl. Sci., 24 (2001), 927–948. https://doi.org/10.1002/mma.249 doi: 10.1002/mma.249
    [17] A. Gaudiello, D. Gómez, M. E. Pérez-Martínez, Asymptotic analysis of the high frequencies for the Laplace operator in a thin T-like shaped structure, J. Math. Pures Appl., 134 (2020), 299–327. http://dx.doi.org/10.1016/j.matpur.2019.06.005 doi: 10.1016/j.matpur.2019.06.005
    [18] H. Irago, N. Kerdid, J. M. Viaño, Asymptotic analysis of high frequency modes in thin rods, C. R. Acad. Sci. Ser. I: Math., 326 (1998), 1255–1260. https://doi.org/10.1016/S0764-4442(98)80238-3 doi: 10.1016/S0764-4442(98)80238-3
    [19] H. Irago, N. Kerdid, J. M. Viaño, Asymptotic analysis of torsional and stretching modes of thin rods, Quart. Appl. Math., 58 (2000), 495–510. http://dx.doi.org/10.1090/QAM/1770651 doi: 10.1090/QAM/1770651
  • This article has been cited by:

    1. Syed Ghoos Ali Shah, Saqib Hussain, Akhter Rasheed, Zahid Shareef, Maslina Darus, Fanglei Wang, Application of Quasisubordination to Certain Classes of Meromorphic Functions, 2020, 2020, 2314-8888, 1, 10.1155/2020/4581926
    2. Syed Ghoos Ali Shah, Saima Noor, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Maslina Darus, Rashad Asharabi, Analytic Functions Related with Starlikeness, 2021, 2021, 1563-5147, 1, 10.1155/2021/9924434
    3. Syed Ghoos Ali Shah, Saqib Hussain, Saima Noor, Maslina Darus, Ibrar Ahmad, Teodor Bulboaca, Multivalent Functions Related with an Integral Operator, 2021, 2021, 1687-0425, 1, 10.1155/2021/5882343
    4. Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus, q-Noor integral operator associated with starlike functions and q-conic domains, 2022, 7, 2473-6988, 10842, 10.3934/math.2022606
    5. Neelam Khan, Muhammad Arif, Maslina Darus, Abdellatif Ben Makhlouf, Majorization Properties for Certain Subclasses of Meromorphic Function of Complex Order, 2022, 2022, 1099-0526, 1, 10.1155/2022/2385739
    6. Ibrar Ahmad, Syed Ghoos Ali Shah, Saqib Hussain, Maslina Darus, Babar Ahmad, Firdous A. Shah, Fekete-Szegö Functional for Bi-univalent Functions Related with Gegenbauer Polynomials, 2022, 2022, 2314-4785, 1, 10.1155/2022/2705203
    7. F. Müge SAKAR, Syed Ghoos Ali SHAH, Saqib HUSSAİN, Akhter RASHEED, Muhammad NAEEM, q-Meromorphic closed-to-convex functions related with Janowski function, 2022, 71, 1303-5991, 25, 10.31801/cfsuasmas.883970
    8. Syed Ghoos Ali Shah, Sa’ud Al-Sa’di, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Imran Zulfiqar Cheema, Maslina Darus, Fekete-Szegö functional for a class of non-Bazilevic functions related to quasi-subordination, 2023, 56, 2391-4661, 10.1515/dema-2022-0232
    9. Abdul Basir, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Saowaluck Chasreechai, Thanin Sitthiwirattham, Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory, 2023, 12, 2075-1680, 885, 10.3390/axioms12090885
    10. Shatha S. Alhily, Alina Alb Lupas, Certain Class of Close-to-Convex Univalent Functions, 2023, 15, 2073-8994, 1789, 10.3390/sym15091789
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1335) PDF downloads(42) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog