Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Three-way decisions with complex q-rung orthopair 2-tuple linguistic decision-theoretic rough sets based on generalized Maclaurin symmetric mean operators

  • Received: 04 February 2023 Revised: 04 March 2023 Accepted: 02 April 2023 Published: 24 May 2023
  • MSC : 03B52, 03E72, 28E10, 68T27, 94D05

  • In this manuscript, we generalized the notions of three-way decisions (3WD) and decision theoretic rough sets (DTRS) in the framework of Complex q-rung orthopair 2-tuple linguistic variables (CQRO2-TLV) and then deliberated some of its important properties. Moreover, we considered some very useful and prominent aggregation operators in the framework of CQRO2-TLV, while further observing the importance of the generalized Maclurin symmetric mean (GMSM) due to its applications in symmetry analysis, interpolation techniques, analyzing inequalities, measuring central tendency, mathematical analysis and many other real life problems. We initiated complex q-rung orthopair 2-tuple linguistic (CQRO2-TL) information and GMSM to introduce the CQRO2-TL GMSM (CQRO2-TLGMSM) operator and the weighted CQRO2-TL GMSM (WCQRO2-TLGMSM) operator, and then demonstrated their properties such as idempotency, commutativity, monotonicity and boundedness. We also investigated a CQRO2-TL DTRS model. In the end, a comparative study is given to prove the authenticity, supremacy, and effectiveness of our proposed notions.

    Citation: Zeeshan Ali, Tahir Mahmood, Muhammad Bilal Khan. Three-way decisions with complex q-rung orthopair 2-tuple linguistic decision-theoretic rough sets based on generalized Maclaurin symmetric mean operators[J]. AIMS Mathematics, 2023, 8(8): 17943-17980. doi: 10.3934/math.2023913

    Related Papers:

    [1] Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park . Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054
    [2] Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park . Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378
    [3] K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383
    [4] Maysaa Al-Qurashi, Mohammed Shehu Shagari, Saima Rashid, Y. S. Hamed, Mohamed S. Mohamed . Stability of intuitionistic fuzzy set-valued maps and solutions of integral inclusions. AIMS Mathematics, 2022, 7(1): 315-333. doi: 10.3934/math.2022022
    [5] Lingxiao Lu, Jianrong Wu . Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces. AIMS Mathematics, 2022, 7(5): 8574-8587. doi: 10.3934/math.2022478
    [6] Nazek Alessa, K. Tamilvanan, G. Balasubramanian, K. Loganathan . Stability results of the functional equation deriving from quadratic function in random normed spaces. AIMS Mathematics, 2021, 6(3): 2385-2397. doi: 10.3934/math.2021145
    [7] Zhihua Wang . Approximate mixed type quadratic-cubic functional equation. AIMS Mathematics, 2021, 6(4): 3546-3561. doi: 10.3934/math.2021211
    [8] Nour Abed Alhaleem, Abd Ghafur Ahmad . Intuitionistic fuzzy normed prime and maximal ideals. AIMS Mathematics, 2021, 6(10): 10565-10580. doi: 10.3934/math.2021613
    [9] Sizhao Li, Xinyu Han, Dapeng Lang, Songsong Dai . On the stability of two functional equations for (S,N)-implications. AIMS Mathematics, 2021, 6(2): 1822-1832. doi: 10.3934/math.2021110
    [10] Zhihua Wang, Choonkil Park, Dong Yun Shin . Additive ρ-functional inequalities in non-Archimedean 2-normed spaces. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116
  • In this manuscript, we generalized the notions of three-way decisions (3WD) and decision theoretic rough sets (DTRS) in the framework of Complex q-rung orthopair 2-tuple linguistic variables (CQRO2-TLV) and then deliberated some of its important properties. Moreover, we considered some very useful and prominent aggregation operators in the framework of CQRO2-TLV, while further observing the importance of the generalized Maclurin symmetric mean (GMSM) due to its applications in symmetry analysis, interpolation techniques, analyzing inequalities, measuring central tendency, mathematical analysis and many other real life problems. We initiated complex q-rung orthopair 2-tuple linguistic (CQRO2-TL) information and GMSM to introduce the CQRO2-TL GMSM (CQRO2-TLGMSM) operator and the weighted CQRO2-TL GMSM (WCQRO2-TLGMSM) operator, and then demonstrated their properties such as idempotency, commutativity, monotonicity and boundedness. We also investigated a CQRO2-TL DTRS model. In the end, a comparative study is given to prove the authenticity, supremacy, and effectiveness of our proposed notions.



    In 1940, Ulam [24] posed the stability problem concerning group homomorphisms. For Banach spaces, the problem was solved by Hyers [7] in the case of approximate additive mappings. And then Hyers' result was extended by Aoki [1] and Rassias [18] for additive mappings and linear mappings, respectively. In 1994, another further generalization, the so-called generalized Hyer-Ulam stability, was obtained by Gavruta [6]. Later, the stability of several functional equations has been extensively discussed by many mathematicians and there are many interesting results concerning this problem (see [2,8,9,10,19,20] and references therein); also, some stability results of different functional equations and inequalities were studied and generalized [5,11,12,15,16,17,26] in various matrix normed spaces like matrix fuzzy normed spaces, matrix paranormed spaces and matrix non-Archimedean random normed spaces.

    In 2017, Wang and Xu [25] introduced the following functional equation

    2k[f(x+ky)+f(kx+y)]=k(1s+k+ks+2k2)f(x+y)+k(1s3k+ks+2k2)f(xy)+2kf(kx)+2k(s+kks2k2)f(x)+2(1ks)f(ky)+2ksf(y) (1.1)

    where s is a parameter, k>1 and s12k. It is easy to verify that f(x)=ax+bx2(xR) satisfies the functional Eq (1.1), where a,b are arbitrary constants. They considered the general solution of the functional Eq (1.1), and then determined the generalized Hyers-Ulam stability of the functional Eq (1.1) in quasi-Banach spaces by applying the direct method.

    The main purpose of this paper is to employ the direct and fixed point methods to establish the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces. The paper is organized as follows: In Sections 1 and 2, we present a brief introduction and introduce related basic definitions and preliminary results, respectively. In Section 3, we prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by applying the direct method. In Section 4, we prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by applying the fixed point method. Our results may be viewed as a continuation of the previous contribution of the authors in the setting of fuzzy stability (see [14,17]).

    For the sake of completeness, in this section, we present some basic definitions and preliminary results, which will be useful to investigate the Hyers-Ulam stability results in matrix intuitionistic fuzzy normed spaces. The notions of continuous t-norm and continuous t-conorm can be found in [14,22]. Using these, an intuitionistic fuzzy normed space (for short, IFNS) is defined as follows:

    Definition 2.1. ([14,21]) The five-tuple (X,μ,ν,,) is said to be an IFNS if X is a vector space, is a continuous t-norm, is a continuous t-conorm, and μ,ν are fuzzy sets on X×(0,) satisfy the following conditions. For every x,yX and s,t>0,

    (i) μ(x,t)+ν(x,t)1;

    (ii) μ(x,t)>0, (iii) μ(x,t)=1 if and only if x=0;

    (iii) μ(αx,t)=μ(x,t|α|) for each α0, (v) μ(x,t)μ(y,s)μ(x+y,t+s);

    (iv) μ(x,):(0,)[0,1] is continuous;

    (v) limtμ(x,t)=1 and limt0μ(x,t)=0;

    (vi) ν(x,t)<1, (ix) ν(x,t)=0 if and only if x=0;

    (vii) ν(αx,t)=ν(x,t|α|) for each α0, (xi) ν(x,t)ν(y,s)ν(x+y,t+s);

    (xiii) ν(x,):(0,)[0,1] is continuous;

    (ix) limtν(x,t)=0 and limt0ν(x,t)=1.

    In this case, (μ,ν) is called an intuitionistic fuzzy norm.

    The following concepts of convergence and Cauchy sequences are considered in [14,21]:

    Let (X,μ,ν,,) be an IFNS. Then, a sequence {xk} is said to be intuitionistic fuzzy convergent to xX if for every ε>0 and t>0, there exists k0N such that

    μ(xkx,t)>1ε

    and

    ν(xkx,t)<ε

    for all kk0. In this case we write

    (μ,ν)limxk=x.

    The sequence {xk} is said to be an intuitionistic fuzzy Cauchy sequence if for every ε>0 and t>0, there exists k0N such that

    μ(xkx,t)>1ε

    and

    ν(xkx,t)<ε

    for all k,k0. (X,μ,ν,,) is said to be complete if every intuitionistic fuzzy Cauchy sequence in (X,μ,ν,,) is intuitionistic fuzzy convergent in (X,μ,ν,,).

    Following [11,12], we will also use the following notations: The set of all m×n-matrices in X will be denoted by Mm,n(X). When m=n, the matrix Mm,n(X) will be written as Mn(X). The symbols ejM1,n(C) will denote the row vector whose jth component is 1 and the other components are 0. Similarly, EijMn(C) will denote the n×n matrix whose (i,j)-component is 1 and the other components are 0. The n×n matrix whose (i,j)-component is x and the other components are 0 will be denoted by EijxMn(X).

    Let (X,) be a normed space. Note that (X,{n}) is a matrix normed space if and only if (Mn(X),n) is a normed space for each positive integer n and

    AxBkABxn

    holds for AMk,n, x=[xij]Mn(X) and BMn,k, and that (X,{n}) is a matrix Banach space if and only if X is a Banach space and (X,{n}) is a matrix normed space.

    Following [23], we introduce the concept of a matrix intuitionistic fuzzy normed space as follows:

    Definition 2.2. ([23]) Let (X,μ,ν,,) be an intuitionistic fuzzy normed space, and the symbol θ for a rectangular matrix of zero elements over X. Then:

    (1) (X,{μn},{νn},,) is called a matrix intuitionistic fuzzy normed space (briefly, MIFNS) if for each positive integer n, (Mn(X),μn,νn,,) is an intuitionistic fuzzy normed space, μn and νn satisfy the following conditions:

    (i) μn+m(θ+x,t)=μn(x,t),νn+m(θ+x,t)=νn(x,t) for all t>0, x=[xij]Mn(X), θMn(X);

    (ii) μk(AxB,t)μn(x,tAB), νk(AxB,t)νn(x,tAB) for all t>0, AMk,n(R), x=[xij]Mn(X) and BMn,k(R) with AB0.

    (2) (X,{μn},{νn},,) is called a matrix intuitionistic fuzzy Banach space if (X,μ,ν,,) is an intuitionistic fuzzy Banach space and (X,{μn},{νn},,) is a matrix intuitionistic fuzzy normed space.

    The following Lemma 2.3 was found in [23].

    Lemma 2.3. ([23]) Let (X,{μn},{νn},,) be a matrix intuitionistic fuzzy normed space. Then,

    (1) μn(Eklx,t)=μ(x,t), νn(Eklx,t)=ν(x,t) for all t>0 and xX.

    (2) For all [xij]Mn(X) and t=ni,j=1tij>0,

    μ(xkl,t)μn([xij],t)min{μ(xij,tij):i,j=1,2,,n},μ(xkl,t)μn([xij],t)min{μ(xij,tn2):i,j=1,2,,n},

    and

    ν(xkl,t)νn([xij],t)max{ν(xij,tij):i,j=1,2,,n},ν(xkl,t)νn([xij],t)max{ν(xij,tn2):i,j=1,2,,n}.

    (3) limmxm=x if and only if limmxijm=xij for xm=[xijm],x=[xij]Mn(X).

    For explicit later use, we also recall the following Lemma 2.4 is due to Diaz and Margolis [4], which will play an important role in proving our stability results in this paper.

    Lemma 2.4. (The fixed point alternative theorem [4]) Let (E,d) be a complete generalized metric space and J: EE be a strictly contractive mapping with Lipschitz constant L<1. Then for each fixed element xE, either

    d(Jnx,Jn+1x)=,n0,

    or

    d(Jnx,Jn+1x)<,nn0,

    for some natural number n0. Moreover, if the second alternative holds then:

    (i) The sequence {Jnx} is convergent to a fixed point y of J.

    (ii)y is the unique fixed point of J in the set E:={yEd(Jn0x,y)<+} and d(y,y)11Ld(y,Jy),x,yE.

    From now on, let (X,{μn},{νn},,) be a matrix intuitionistic fuzzy normed space and (Y,{μn},{νn},,) be a matrix intuitionistic fuzzy Banach space. In this section, we will prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by using the direct method. For the sake of convenience, given mapping f: XY, we define the difference operators Df: X2Y and Dfn: Mn(X2)Mn(Y) of the functional Eq (1.1) by

    Df(a,b):=2k[f(a+kb)+f(ka+b)]k(1s+k+ks+2k2)f(a+b)k(1s3k+ks+2k2)f(ab)2kf(ka)2k(s+kks2k2)f(a)2(1ks)f(kb)2ksf(b),Dfn([xij],[yij]):=2k[fn([xij]+k[yij])+fn(k[xij]+[yij])]k(1s+k+ks+2k2)fn([xij]+[yij])k(1s3k+ks+2k2)fn([xij][yij])2kfn(k[xij])2k(s+kks2k2)fn([xij])2(1ks)fn(k[yij])2ksfn([yij])

    for all a,bX and all x=[xij],y=[yij]Mn(X).

    We start with the following lemmas which will be used in this paper.

    Lemma 3.1. ([25]) Let V and W be real vector spaces. If an odd mapping f: VW satisfies the functional Eq (1.1), then f is additive.

    Lemma 3.2. ([25]) Let V and W be real vector spaces. If an even mapping f: VW satisfies the functional Eq (1.1), then f is quadratic.

    Theorem 3.3. Let φo: X2[0,) be a function such that for some real number α with 0<α<k,

    φo(ka,kb)=αφo(a,b) (3.1)

    for all a,bX. Suppose that an odd mapping f: XY satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φo(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φo(xij,yij)t+ni,j=1φo(xij,yij) (3.2)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exists a unique additive mapping A: XY such that

    {μn(fn([xij])An([xij]),t)(kα)(2k+s1)t(kα)(2k+s1)t+n2ni,j=1φo(0,xij),νn(fn([xij])An([xij]),t)n2ni,j=1φo(0,xij)(kα)(2k+s1)t+n2ni,j=1φo(0,xij) (3.3)

    for all x=[xij]Mn(X) and all t>0.

    Proof. When n=1, (3.2) is equivalent to

    μ(Df(a,b),t)tt+φo(a,b)andν(Df(a,b),t)φo(a,b)t+φo(a,b) (3.4)

    for all a,bX and all t>0. Putting a=0 in (3.4), we have

    {μ(2(2k+s1)f(kb)2(2k+s1)kf(b),t)tt+φo(0,b),ν(2(2k+s1)f(kb)2(2k+s1)kf(b),t)φo(0,b)t+φo(0,b) (3.5)

    for all bX and all t>0. Replacing a by kpa in (3.5) and using (3.1), we get

    {μ(f(kp+1a)kp+1f(kpa)kp,t2k(2k+s1)kp)tt+αpφo(0,a),ν(f(kp+1a)kp+1f(kpa)kp,t2k(2k+s1)kp)αpφo(0,a)t+αpφo(0,a) (3.6)

    for all aX and all t>0. It follows from (3.6) that

    {μ(f(kp+1a)kp+1f(kpa)kp,αpt2k(2k+s1)kp)tt+φo(0,a),ν(f(kp+1a)kp+1f(kpa)kp,αpt2k(2k+s1)kp)φo(0,a)t+φo(0,a) (3.7)

    for all aX and all t>0. It follows from

    f(kpa)kpf(a)=p1=0(f(k+1a)k+1f(ka)k)

    and (3.7) that

    {μ(f(kpa)kpf(a),p1=0αt2k(2k+s1)k)p1=0μ(f(k+1a)k+1f(ka)k,αt2k(2k+s1)k)tt+φo(0,a),ν(f(kpa)kpf(a),p1=0αt2k(2k+s1)k)p1=0ν(f(k+1a)k+1f(ka)k,αt2k(2k+s1)k)φo(0,a)t+φo(0,a) (3.8)

    for all aX and all t>0, where

    pj=0aj=a1a2ap,   pj=0aj=a1a2ap.

    By replacing a with kqa in (3.8), we have

    {μ(f(kp+qa)kp+qf(kqa)kq,p1=0αt2k(2k+s1)k+q)tt+αqφo(0,a),ν(f(kp+qa)kp+qf(kqa)kq,p1=0αt2k(2k+s1)k+q)αqφo(0,a)t+αqφo(0,a) (3.9)

    for all aX, t>0, p>0 and q>0. Thus

    {μ(f(kp+qa)kp+qf(kqa)kq,p+q1=qαt2k(2k+s1)k)tt+φo(0,a),ν(f(kp+qa)kp+qf(kqa)kq,p+q1=qαt2k(2k+s1)k)φo(0,a)t+φo(0,a) (3.10)

    for all aX, t>0, p>0 and q>0. Hence

    {μ(f(kp+qa)kp+qf(kqa)kq,t)tt+p+q1=qα2k(2k+s1)kφo(0,a),ν(f(kp+qa)kp+qf(kqa)kq,t)p+q1=qα2k(2k+s1)kφo(0,a)t+p+q1=qα2k(2k+s1)kφo(0,a) (3.11)

    for all aX, t>0, p>0 and q>0. Since 0<α<k and

    =0α2k(2k+s1)k<,

    the Cauchy criterion for convergence in IFNS shows that {f(kpa)kp} is a Cauchy sequence in (Y,μ,ν,,). Since (Y,μ,ν,,) is an intuitionistic fuzzy Banach space, this sequence converges to some point A(a)Y. So one can define the mapping A: XY such that

    A(a):=(μ,ν)limpf(kpa)kp.

    Moreover, if we put q=0 in (3.11), we get

    {μ(f(kpa)kpf(a),t)tt+p1=0α2k(2k+s1)kφo(0,a),ν(f(kpa)kpf(a),t)p1=0α2k(2k+s1)kφo(0,a)t+p1=0α2k(2k+s1)kφo(0,a) (3.12)

    for all aX, t>0 and p>0. Thus, we obtain

    {μ(f(a)A(a),t)μ(f(a)f(kpa)kp,t2)μ(f(kpa)kpA(a),t2)tt+p1=0αk(2k+s1)kφo(0,a),ν(f(a)A(a),t)ν(f(a)f(kpa)kp,t2)ν(f(kpa)kpA(a),t2)p1=0αk(2k+s1)kφo(0,a)t+p1=0αk(2k+s1)kφo(0,a) (3.13)

    for every aX, t>0 and large p. Taking the limit as p and using the definition of IFNS, we get

    {μ(f(a)A(a),t)(kα)(2k+s1)t(kα)(2k+s1)t+φo(0,a),ν(f(a)A(a),t)φo(0,a)(kα)(2k+s1)t+φo(0,a). (3.14)

    Replacing a and b by kpa and kpb in (3.4), respectively, and using (3.1), we obtain

    μ(1kpDf(kpa,kpb),t)tt+(αk)pφo(a,b)andν(1kpDf(kpa,kpb),t)(αk)pφo(a,b)t+(αk)pφo(a,b) (3.15)

    for all a,bX and all t>0. Letting p in (3.15), we obtain

    μ(DA(a,b),t)=1andν(DA(a,b),t)=0 (3.16)

    for all a,bX and all t>0. This means that A satisfies the functional Eq (1.1). Since f: XY is an odd mapping, and using the definition A, we have A(a)=A(a) for all aX. Thus by Lemma 3.1, the mapping A: XY is additive. To prove the uniqueness of A, let A: XY be another additive mapping satisfying (3.14). Let n=1. Then we have

    {μ(A(a)A(a),t)=μ(A(kpa)kpA(kpa)kp,t)μ(A(kpa)kpf(kpa)kp,t2)μ(f(kpa)kpA(kpa)kp,t2)(kα)(2k+s1)t(kα)(2k+s1)t+2(αk)pφo(0,a),ν(A(a)A(a),t)=ν(A(kpa)kpA(kpa)kp,t)ν(A(kpa)kpf(kpa)kp,t2)ν(f(kpa)kpA(kpa)kp,t2)2(αk)pφo(0,a)(kα)(2k+s1)t+2(αk)pφo(0,a) (3.17)

    for all aX, t>0 and p>0. Letting p in (3.17), we get

    μ(A(a)A(a),t)=1andν(A(a)A(a),t)=0

    for all aX and t>0. Hence we get A(a)=A(a) for all aX. Thus the mapping A: XY is a unique additive mapping.

    By Lemma 2.3 and (3.14), we get

    {μn(fn([xij])An([xij]),t)min{μ(f(xij)A(xij),tn2):i,j=1,,n} (kα)(2k+s1)t(kα)(2k+s1)t+n2ni,j=1φo(0,xij),νn(fn([xij])An([xij]),t)max{ν(f(xij)A(xij),tn2):i,j=1,,n} n2ni,j=1φo(0,xij)(kα)(2k+s1)t+n2ni,j=1φo(0,xij)

    for all x=[xij]Mn(X) and all t>0. Thus A: XY is a unique additive mapping satisfying (3.3), as desired. This completes the proof of the theorem.

    Theorem 3.4. Let φe: X2[0,) be a function such that for some real number α with 0<α<k2,

    φe(ka,kb)=αφe(a,b) (3.18)

    for all a,bX. Suppose that an even mapping f: XY with f(0)=0 satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φe(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φe(xij,yij)t+ni,j=1φe(xij,yij) (3.19)

    for all x=[xij], y=[yij]Mn(X) and all t>0. Then there exists a unique quadratic mapping Q: XY such that

    {μn(fn([xij])Qn([xij]),t)(k2α)(2k+s1)t(k2α)(2k+s1)t+n2ni,j=1φe(0,xij),νn(fn([xij])Qn([xij]),t)n2ni,j=1φe(0,xij)(k2α)(2k+s1)t+n2ni,j=1φe(0,xij) (3.20)

    for all x=[xij]Mn(X) and all t>0.

    Proof. When n=1, (3.19) is equivalent to

    μ(Df(a,b),t)tt+φe(a,b)andν(Df(a,b),t)φe(a,b)t+φe(a,b) (3.21)

    for all a,bX and all t>0. Letting a=0 in (3.21), we obtain

    {μ(2(2k+s1)f(kb)2(2k+s1)k2f(b),t)tt+φe(0,b),ν(2(2k+s1)f(kb)2(2k+s1)k2f(b),t)φe(0,b)t+φe(0,b) (3.22)

    for all bX and all t>0. Replacing a by kpa in (3.22) and using (3.18), we get

    {μ(f(kp+1a)k2(p+1)f(kpa)k2p,t2k2(2k+s1)k2p)tt+αpφe(0,a),ν(f(kp+1a)k2(p+1)f(kpa)k2p,t2k2(2k+s1)k2p)αpφe(0,a)t+αpφe(0,a) (3.23)

    for all aX and all t>0. It follows from (3.23) that

    {μ(f(kp+1a)k2(p+1)f(kpa)k2p,αpt2k2(2k+s1)k2p)tt+φe(0,a),ν(f(kp+1a)k2(p+1)f(kpa)k2p,αpt2k2(2k+s1)k2p)φe(0,a)t+φe(0,a) (3.24)

    for all aX and all t>0. It follows from

    f(kpa)k2pf(a)=p1=0(f(k+1a)k2(+1)f(ka)k2)

    and (3.24) that

    {μ(f(kpa)k2pf(a),p1=0αt2k2(2k+s1)k2)p1=0μ(f(k+1a)k2(+1)f(ka)k2,αt2k2(2k+s1)k2)tt+φe(0,a),ν(f(kpa)k2pf(a),p1=0αt2k2(2k+s1)k2)p1=0ν(f(k+1a)k2(+1)f(ka)k2,αt2k2(2k+s1)k2)φe(0,a)t+φe(0,a) (3.25)

    for all aX and all t>0, where

    pj=0aj=a1a2ap,   pj=0aj=a1a2ap.

    By replacing a with kqa in (3.25), we have

    {μ(f(kp+qa)k2(p+q)f(kqa)k2q,p1=0αt2k2(2k+s1)k2(+q))tt+αqφe(0,a),ν(f(kp+qa)k2(p+q)f(kqa)k2q,p1=0αt2k2(2k+s1)k2(+q))αqφe(0,a)t+αqφe(0,a) (3.26)

    for all aX, t>0, p>0 and q>0. Thus

    {μ(f(kp+qa)k2(p+q)f(kqa)k2q,p+q1=qαt2k2(2k+s1)k2)tt+φe(0,a),ν(f(kp+qa)k2(p+q)f(kqa)k2q,p+q1=qαt2k2(2k+s1)k2)φe(0,a)t+φe(0,a) (3.27)

    for all aX, t>0, p>0 and q>0. Hence

    {μ(f(kp+qa)k2(p+q)f(kqa)k2q,t)tt+p+q1=qα2k2(2k+s1)k2φe(0,a),ν(f(kp+qa)k2(p+q)f(kqa)k2q,t)p+q1=qα2k2(2k+s1)k2φe(0,a)t+p+q1=qα2k2(2k+s1)k2φe(0,a) (3.28)

    for all aX, t>0, p>0 and q>0. Since 0<α<k2 and

    =0α2k2(2k+s1)k2<,

    the Cauchy criterion for convergence in IFNS shows that {f(kpa)k2p} is a Cauchy sequence in (Y,μ,ν,,). Since (Y,μ,ν,,) is an intuitionistic fuzzy Banach space, this sequence converges to some point Q(a)Y. So one can define the mapping Q: XY such that

    Q(a):=(μ,ν)limpf(kpa)k2p.

    Moreover, if we put q=0 in (3.28), we get

    {μ(f(kpa)k2pf(a),t)tt+p1=0α2k2(2k+s1)k2φe(0,a),ν(f(kpa)k2pf(a),t)p1=0α2k2(2k+s1)k2φe(0,a)t+p1=0α2k2(2k+s1)k2φe(0,a) (3.29)

    for all aX, t>0 and p>0. Thus, we obtain

    {μ(f(a)Q(a),t)μ(f(a)f(kpa)k2p,t2)μ(f(kpa)k2pQ(a),t2)tt+p1=0αk2(2k+s1)k2φe(0,a),ν(f(a)Q(a),t)ν(f(a)f(kpa)k2p,t2)ν(f(kpa)k2pQ(a),t2)p1=0αk2(2k+s1)k2φe(0,a)t+p1=0αk2(2k+s1)k2φe(0,a) (3.30)

    for every aX, t>0 and large p. Taking the limit as p and using the definition of IFNS, we get

    {μ(f(a)Q(a),t)(k2α)(2k+s1)t(k2α)(2k+s1)t+φe(0,a),ν(f(a)Q(a),t)φe(0,a)(k2α)(2k+s1)t+φe(0,a). (3.31)

    Replacing a and b by kpa and kpb in (3.21), respectively, and using (3.18), we obtain

    μ(1k2pDf(kpa,kpb),t)tt+(αk2)pφe(a,b),ν(1k2pDf(kpa,kpb),t)(αk2)pφe(a,b)t+(αk2)pφe(a,b) (3.32)

    for all a,bX and all t>0. Letting p in (3.32), we obtain

    μ(DQ(a,b),t)=1andν(DQ(a,b),t)=0 (3.33)

    for all a,bX and all t>0. This means that Q satisfies the functional Eq (1.1). Since f: XY is an even mapping, and using the definition Q, we have Q(a)=Q(a) for all aX. Thus by Lemma 3.2, the mapping Q: XY is quadratic. To prove the uniqueness of Q, let Q: XY be another quadratic mapping satisfying (3.31). Let n=1. Then we have

    {μ(Q(a)Q(a),t)=μ(Q(kpa)k2pQ(kpa)k2p,t)  μ(Q(kpa)k2pf(kpa)k2p,t2)μ(f(kpa)k2pQ(kpa)k2p,t2)  (k2α)(2k+s1)t(k2α)(2k+s1)t+2(αk2)pφe(0,a),ν(Q(a)Q(a),t)=ν(Q(kpa)k2pQ(kpa)k2p,t)  ν(Q(kpa)k2pf(kpa)k2p,t2)ν(f(kpa)kpQ(kpa)k2p,t2)  2(αk2)pφe(0,a)(k2α)(2k+s1)t+2(αk2)pφe(0,a) (3.34)

    for all aX, t>0 and p>0. Letting p in (3.34), we get

    μ(Q(a)Q(a),t)=1andν(Q(a)Q(a),t)=0

    for all aX and t>0. Hence we get Q(a)=Q(a) for all aX. Thus the mapping Q: XY is a unique quadratic mapping.

    By Lemma 2.3 and (3.31), we get

    {μn(fn([xij])Qn([xij]),t)min{μ(f(xij)Q(xij),tn2):i,j=1,,n}(k2α)(2k+s1)t(k2α)(2k+s1)t+n2ni,j=1φe(0,xij),νn(fn([xij])Qn([xij]),t)max{ν(f(xij)Q(xij),tn2):i,j=1,,n}n2ni,j=1φe(0,xij)(k2α)(2k+s1)t+n2ni,j=1φe(0,xij)

    for all x=[xij]Mn(X) and all t>0. Thus Q: XY is a unique quadratic mapping satisfying (3.20), as desired. This completes the proof of the theorem.

    Theorem 3.5. Let φ: X2[0,) be a function such that for some real number α with 0<α<k,

    φ(ka,kb)=αφ(a,b) (3.35)

    for all a,bX. Suppose that a mapping f: XY with f(0)=0 satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φ(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φ(xij,yij)t+ni,j=1φ(xij,yij) (3.36)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exist a unique quadratic mapping Q: XY and a unique additive mapping A: XY such that

    {μn(fn([xij])Qn([xij])An([xij]),t)(kα)(2k+s1)t(kα)(2k+s1)t+2n2ni,j=1˜φ(0,xij),νn(fn([xij])Qn([xij])An([xij]),t)2n2ni,j=1˜φ(0,xij)(kα)(2k+s1)t+2n2ni,j=1˜φ(0,xij) (3.37)

    for all x=[xij]Mn(X) and all t>0, ˜φ(a,b)=φ(a,b)+φ(a,b) for all a,bX.

    Proof. When n=1, (3.36) is equivalent to

    μ(Df(a,b),t)tt+φ(a,b)andν(Df(a,b),t)φ(a,b)t+φ(a,b) (3.38)

    for all a,bX and all t>0. Let

    fe(a)=f(a)+f(a)2

    for all all aX. Then fe(0)=0,fe(a)=fe(a). And we have

    {μ(Dfe(a,b),t)=μ(12Df(a,b)+12Df(a,b),t)=μ(Df(a,b)+Df(a,b),2t)μ(Df(a,b),t)μ(Df(a,b),t)min{μ(Df(a,b),t),μ(Df(a,b),t)}tt+˜φ(a,b),ν(Dfe(a,b),t)=ν(12Df(a,b)+12Df(a,b),t)=ν(Df(a,b)+Df(a,b),2t)ν(Df(a,b),t)ν(Df(a,b),t)max{ν(Df(a,b),t),ν(Df(a,b),t)}˜φ(a,b)t+˜φ(a,b) (3.39)

    for all aX and all t>0. Let

    fo(a)=f(a)f(a)2

    for all all aX. Then f0(0)=0,fo(a)=fo(a). And we obtain

    {μ(Dfo(a,b),t)=μ(12Df(a,b)12Df(a,b),t)=μ(Df(a,b)Df(a,b),2t)μ(Df(a,b),t)μ(Df(a,b),t)=min{μ(Df(a,b),t),μ(Df(a,b),t)}tt+˜φ(a,b),ν(Dfo(a,b),t)=ν(12Df(a,b)12Df(a,b),t)=ν(Df(a,b)Df(a,b),2t)ν(Df(a,b),t)ν(Df(a,b),t)=max{ν(Df(a,b),t),ν(Df(a,b),t)}˜φ(a,b)t+˜φ(a,b) (3.40)

    for all aX and all t>0. It follows that the definition of ˜φ that ˜φ(ka,kb)=α˜φ(a,b) for all a,bX. It is easy to check that the condition of Theorems 3.3 and 3.4 are satisfying. Then applying the proofs of Theorems 3.3 and 3.4, we know that there exists a unique quadratic mapping Q: XY and a unique additive mapping A: XY satisfying

    {μ(fe(a)Q(a),t)(k2α)(2k+s1)t(k2α)(2k+s1)t+˜φ(0,a),ν(fe(a)Q(a),t)˜φ(0,a)(k2α)(2k+s1)t+˜φ(0,a) (3.41)

    and

    {μ(fo(a)A(a),t)(kα)(2k+s1)t(kα)(2k+s1)t+˜φ(0,a),ν(fo(a)A(a),t)˜φ(0,a)(kα)(2k+s1)t+˜φ(0,a) (3.42)

    for all aX and all t>0. Therefore

    {μ(f(a)Q(a)A(a),t)=μ(fe(a)Q(a)+fo(a)A(a),t)μ(fe(a)Q(a),t2)μ(fo(a)A(a),t2)=min{μ(fe(a)Q(a),t2),μ(fo(a)A(a),t2)}min{(k2α)(2k+s1)t(k2α)(2k+s1)t+2˜φ(0,a),(kα)(2k+s1)t(kα)(2k+s1)t+2˜φ(0,a)}=(kα)(2k+s1)t(kα)(2k+s1)t+2˜φ(0,a),ν(f(a)Q(a)A(a),t)=ν(fe(a)Q(a)+fo(a)A(a),t)ν(fe(a)Q(a),t2)ν(fo(a)A(a),t2)=max{ν(fe(a)Q(a),t2),ν(fo(a)A(a),t2)}max{2˜φ(0,a)(k2α)(2k+s1)t+2˜φ(0,a),2˜φ(0,a)(kα)(2k+s1)t+2˜φ(0,a)}=2˜φ(0,a)(kα)(2k+s1)t+2˜φ(0,a). (3.43)

    By Lemma 2.3 and (3.43), we have

    {μn(fn([xij])Qn([xij])An([xij]),t)min{μ(f(xij)Q(xij)A(xij),tn2):i,j=1,,n}(kα)(2k+s1)t(kα)(2k+s1)t+2n2ni,j=1˜φ(0,xij),νn(fn([xij])Qn([xij])An([xij]),t)max{ν(f(xij)Q(xij)A(xij),tn2):i,j=1,,n}2n2ni,j=1˜φ(0,xij)(kα)(2k+s1)t+2n2ni,j=1˜φ(0,xij)

    for all x=[xij]Mn(X) and all t>0. Thus Q: XY is a unique quadratic mapping and a unique additive mapping A: XY satisfying (3.37), as desired. This completes the proof of the theorem.

    Corollary 3.6. Let r,θ be positive real numbers with r<1. Suppose that a mapping f: XY with f(0)=0 satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1θ(xijr+yijr),νn(Dfn([xij],[yij]),t)ni,j=1θ(xijr+yijr)t+ni,j=1θ(xijr+yijr) (3.44)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exist a unique quadratic mapping Q: XY and a unique additive mapping A: XY such that

    {μn(fn([xij])Qn([xij])An([xij]),t)(kkr)(2k+s1)t(kkr)(2k+s1)t+4n2ni,j=1θxijr,νn(fn([xij])Qn([xij])An([xij]),t)4n2ni,j=1θxijr(kkr)(2k+s1)t+4n2ni,j=1θxijr (3.45)

    for all x=[xij]Mn(X) and all t>0.

    Proof. The proof follows from Theorem 3.5 by taking φ(a,b)=θ(ar+br) for all a,bX, we obtain the desired result.

    In this section, we will prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by applying the fixed point method.

    Theorem 4.1. Let φo: X2[0,) be a function such that for some real number ρ with 0<ρ<1 and

    φo(a,b)=ρkφo(ka,kb) (4.1)

    for all a,bX. Suppose that an odd mapping f: XY satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φo(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φo(xij,yij)t+ni,j=1φo(xij,yij) (4.2)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exists a unique additive mapping A: XY such that

    {μn(fn([xij])An([xij]),t)2k(2k+s1)(1ρ)t2k(2k+s1)(1ρ)t+ρn2ni,j=1φo(0,xij),νn(fn([xij])An([xij]),t)ρn2ni,j=1φo(0,xij)2k(2k+s1)(1ρ)t+ρn2ni,j=1φo(0,xij) (4.3)

    for all x=[xij]Mn(X) and all t>0.

    Proof. When n=1, similar to the proof of Theorem 3.3, we have

    {μ(2(2k+s1)f(ka)2(2k+s1)kf(a),t)tt+φo(0,a),ν(2(2k+s1)f(ka)2(2k+s1)kf(a),t)φo(0,a)t+φo(0,a) (4.4)

    for all aX and all t>0.

    Let S1={g1:XY}, and introduce a generalized metric d1 on S1 as follows:

    d1(g1,h1):=inf{λR+|{μ(g1(a)h1(a),λt)tt+φo(0,a),ν(g1(a)h1(a),λt)φo(0,a)t+φo(0,a),aX,t>0}.

    It is easy to prove that (S1,d1) is a complete generalized metric space ([3,13]). Now, we define the mapping J1: S1S1 by

    J1g1(a):=kg1(ak),for allg1S1andaX. (4.5)

    Let g1,h1S1 and let λR+ be an arbitrary constant with d1(g1,h1)λ. From the definition of d1, we get

    {μ(g1(a)h1(a),λt)tt+φo(0,a),ν(g1(a)h1(a),λt)φo(0,a)t+φo(0,a)

    for all aX and t>0. Therefore, using (4.1), we get

    {μ(J1g1(a)J1h1(a),λρt)=μ(kg1(ak)kh1(ak),λρt)=μ(g1(ak)h1(ak),λρtk)ρktρkt+ρkφo(0,a)=tt+φo(0,a),ν(J1g1(a)J1h1(a),λρt)=ν(kg1(ak)kh1(ak),λρt)=ν(g1(ak)h1(ak),λρtk)ρkφo(0,a)ρkt+ρkφo(0,a)=φo(0,a)t+φo(0,a) (4.6)

    for some ρ<1, all aX and all t>0. Hence, it holds that d1(J1g1,J1h1)λρ, that is, d1(J1g1,J1h1)ρd1(g1,h1) for all g1,h1S1.

    Furthermore, by (4.1) and (4.4), we obtain the inequality

    d(f,J1f)ρ2k(2k+s1).

    It follows from Lemma 2.4 that the sequence Jp1f converges to a fixed point A of J1, that is, for all aX and all t>0,

    A:XY,A(a):=(μ,ν)limpkpf(akp) (4.7)

    and

    A(ka)=kA(a). (4.8)

    Meanwhile, A is the unique fixed point of J1 in the set

    S1={g1S1:d1(f,g1)<}.

    Thus, there exists a λR+ such that

    {μ(f(a)A(a),λt)tt+φo(0,a),ν(f(a)A(a),λt)φo(0,a)t+φo(0,a)

    for all aX and all t>0. Also,

    d1(f,A)11ρd(f,J1f)ρ2k(1ρ)(2k+s1).

    This means that the following inequality

    {μ(f(a)A(a),t)2k(2k+s1)(1ρ)t2k(2k+s1)(1ρ)t+ρφo(0,a),ν(f(a)A(a),t)ρφo(0,a)2k(2k+s1)(1ρ)t+ρφo(0,a) (4.9)

    holds for all aX and all t>0. It follows from (3.4) and (4.1) that

    μ(kpDf(akp,bkp),t)tt+ρpφo(a,b),ν(kpDf(akp,bkp),t)ρpφo(a,b)t+ρpφo(a,b) (4.10)

    for all a,bX and all t>0. Letting p in (4.10), we obtain

    μ(DA(a,b),t)=1andν(DA(a,b),t)=0 (4.11)

    for all a,bX and all t>0. This means that A satisfies the functional Eq (1.1). Since f: XY is an odd mapping, and using the definition A, we have A(a)=A(a) for all aX. Thus by Lemma 3.1, the mapping A: XY is additive.

    By Lemma 2.3 and (4.9), we get

    {μn(fn([xij])An([xij]),t)min{μ(f(xij)A(xij),tn2):i,j=1,,n}2k(2k+s1)(1ρ)t2k(2k+s1)(1ρ)t+ρn2ni,j=1φo(0,xij),νn(fn([xij])An([xij]),t)max{ν(f(xij)A(xij),tn2):i,j=1,,n}ρn2ni,j=1φo(0,xij)2k(2k+s1)(1ρ)t+ρn2ni,j=1φo(0,xij)

    for all x=[xij]Mn(X) and all t>0. Thus A: XY is a unique additive mapping satisfying (4.3), as desired. This completes the proof of the theorem.

    Theorem 4.2. Let φe: X2[0,) be a function such that for some real number ρ with 0<ρ<1 and

    φe(a,b)=ρk2φe(ka,kb) (4.12)

    for all a,bX. Suppose that an even mapping f: XY satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φe(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φe(xij,yij)t+ni,j=1φe(xij,yij) (4.13)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exists a unique quadratic mapping Q: XY such that

    {μn(fn([xij])Qn([xij]),t)2k2(2k+s1)(1ρ)t2k2(2k+s1)(1ρ)t+ρn2ni,j=1φe(0,xij),νn(fn([xij])Qn([xij]),t)ρn2ni,j=1φe(0,xij)2k2(2k+s1)(1ρ)t+ρn2ni,j=1φe(0,xij) (4.14)

    for all x=[xij]Mn(X) and all t>0.

    Proof. When n=1, similar to the proof of Theorem 3.4, we obtain

    {μ(2(2k+s1)f(ka)2(2k+s1)k2f(a),t)tt+φe(0,a),ν(2(2k+s1)f(ka)2(2k+s1)k2f(a),t)φe(0,a)t+φe(0,a) (4.15)

    for all aX and all t>0.

    Let S2:={g2:XY}, and introduce a generalized metric d2 on S2 as follows:

    d2(g2,h2):=inf{λR+|{μ(g2(a)h2(a),λt)tt+φe(0,a),ν(g2(a)h2(a),λt)φe(0,a)t+φe(0,a),aX,t>0}.

    It is easy to prove that (S2,d2) is a complete generalized metric space ([3,13]). Now, we define the mapping J2: S2S2 by

    J2g2(a):=k2g2(ak),for allg2S2andaX. (4.16)

    Let g2,h2S2 and let λR+ be an arbitrary constant with d2(g2,h2)λ. From the definition of d2, we get

    {μ(g2(a)h2(a),λt)tt+φe(0,a),ν(g2(a)h2(a),λt)φe(0,a)t+φe(0,a)

    for all aX and t>0. Therefore, using (4.12), we get

    {μ(J2g2(a)J2h2(a),λρt)=μ(k2g2(ak)k2h2(ak),λρt)=μ(g2(ak)h2(ak),λρtk2)ρk2tρk2t+ρk2φe(0,a)=tt+φe(0,a),ν(J2g2(a)J2h2(a),λρt)=ν(k2g2(ak)k2h2(ak),λρt)=ν(g2(ak)h2(ak),λρtk2)ρk2φe(0,a)ρk2t+ρk2φe(0,a)=φe(0,a)t+φe(0,a) (4.17)

    for some ρ<1, all aX and all t>0. Hence, it holds that d2(J2g2,J2h2)λρ, that is, d2(J2g2,J2h2)ρd2(g2,h2) for all g2,h2S2.

    Furthermore, by (4.12) and (4.15), we obtain the inequality

    d(f,J2f)ρ2k2(2k+s1).

    It follows from Lemma 2.4 that the sequence Jp2f converges to a fixed point Q of J2, that is, for all aX and all t>0,

    Q:XY,Q(a):=(μ,ν)limpk2pf(akp) (4.18)

    and

    Q(ka)=k2Q(a). (4.19)

    Meanwhile, Q is the unique fixed point of J2 in the set

    S2={g2S2:d2(f,g2)<}.

    Thus there exists a λR+ such that

    {μ(f(a)Q(a),λt)tt+φe(0,a),ν(f(a)Q(a),λt)φe(0,a)t+φe(0,a)

    for all aX and all t>0. Also,

    d2(f,Q)11ρd(f,J2f)ρ2k2(1ρ)(2k+s1).

    This means that the following inequality

    {μ(f(a)Q(a),t)2k2(2k+s1)(1ρ)t2k2(2k+s1)(1ρ)t+ρφe(0,a),ν(f(a)Q(a),t)ρφe(0,a)2k2(2k+s1)(1ρ)t+ρφe(0,a) (4.20)

    holds for all aX and all t>0. The rest of the proof is similar to the proof of Theorem 4.1. This completes the proof of the theorem.

    Theorem 4.3. Let φ: X2[0,) be a function such that for some real number ρ with 0<ρ<k,

    φ(a,b)=ρk2φ(ka,kb) (4.21)

    for all a,bX. Suppose that a mapping f: XY with f(0)=0 satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φ(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φ(xij,yij)t+ni,j=1φ(xij,yij) (4.22)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exist a unique quadratic mapping Q: XY and a unique additive mapping A: XY such that

    {μn(fn([xij])Qn([xij])An([xij]),t)k(2k+s1)(1ρ)tk(2k+s1)(1ρ)t+ρn2ni,j=1˜φ(0,xij),νn(fn([xij])Qn([xij])An([xij]),t)ρn2ni,j=1˜φ(0,xij)k(2k+s1)(1ρ)t+ρn2ni,j=1˜φ(0,xij) (4.23)

    for all x=[xij]Mn(X) and all t>0, ˜φ(a,b)=φ(a,b)+φ(a,b) for all a,bX.

    Proof. The proof follows from Theorems 4.1 and 4.2, and a method similar to Theorem 3.5. This completes the proof of the theorem.

    Corollary 4.4. Let r,θ be positive real numbers with r>2. Suppose that a mapping f: XY with f(0)=0 satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1θ(xijr+yijr),νn(Dfn([xij],[yij]),t)ni,j=1θ(xijr+yijr)t+ni,j=1θ(xijr+yijr) (4.24)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exist a unique quadratic mapping Q: XY and a unique additive mapping A: XY such that

    {μn(fn([xij])Qn([xij])An([xij]),t)(2k+s1)(krk2)t(2k+s1)(krk2)t+2kn2ni,j=1θxijr,νn(fn([xij])Qn([xij])An([xij]),t)2kn2ni,j=1θxijr(2k+s1)(krk2)t+2kn2ni,j=1θxijr (4.25)

    for all x=[xij]Mn(X) and all t>0.

    Proof. Taking φ(a,b)=θ(ar+br) for all a,bX and ρ=k2r in Theorem 4.3, we get the desired result.

    We use the direct and fixed point methods to investigate the Hyers-Ulam stability of the functional Eq (1.1) in the framework of matrix intuitionistic fuzzy normed spaces. We therefore provide a link two various discipline: matrix intuitionistic fuzzy normed spaces and functional equations. We generalized the Hyers-Ulam stability results of the functional Eq (1.1) from quasi-Banach spaces to matrix intuitionistic fuzzy normed spaces. These circumstances can be applied to other significant functional equations.

    The author declare he has not used Artificial Intelligence (AI) tools in the creation of this article.

    The author is grateful to the referees for their helpful comments and suggestions that help to improve the quality of the manuscript.

    The author declares no conflict of interest in this paper.



    [1] V. I. Yukalov, D. Sornette, Physics of risk and uncertainty in quantum decision making, Eur. Phys. J. B, 71 (2009), 533–548. https://doi.org/10.1140/epjb/e2009-00245-9 doi: 10.1140/epjb/e2009-00245-9
    [2] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [3] K. Atanassov, Intuitionistic fuzzy sets, In: Intuitionistic Fuzzy Sets, Heidelberg: Physica, 1986. https://doi.org/10.1007/978-3-7908-1870-3_1
    [4] R. R. Yager, Pythagorean fuzzy subsets, 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 doi: 10.1109/IFSA-NAFIPS.2013.6608375
    [5] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [6] P. Liu, P. Wang, Some q‐rung orthopair fuzzy aggregation operators and their applications to multiple‐attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280. https://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
    [7] H. Garg, S. M. Chen, Multiattribute group decision making based on neutrality aggregation operators of q-rung orthopair fuzzy sets, Inform. Sci., 517 (2020), 427–447. https://doi.org/10.1016/j.ins.2019.11.035 doi: 10.1016/j.ins.2019.11.035
    [8] X. Peng, J. Dai, H. Garg, Exponential operation and aggregation operator for q‐rung orthopair fuzzy set and their decision‐making method with a new score function, Int. J. Intell. Syst., 33 (2018), 2255–2282. https://doi.org/10.1002/int.22028 doi: 10.1002/int.22028
    [9] Y. Xing, R. Zhang, Z. Zhou, J. Wang, Some q-rung orthopair fuzzy point weighted aggregation operators for multi-attribute decision making, Soft Comput., 23 (2019), 11627–11649. https://doi.org/10.1007/s00500-018-03712-7 doi: 10.1007/s00500-018-03712-7
    [10] P. Wang, J. Wang, G. Wei, C. Wei, Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications, Mathematics, 7 (2019), 340. https://doi.org/10.3390/math7040340 doi: 10.3390/math7040340
    [11] W. S. Du, Minkowski‐type distance measures for generalized orthopair fuzzy sets, Int. J. Intell. Syst., 33 (2018), 802–817. https://doi.org/10.1002/int.21968 doi: 10.1002/int.21968
    [12] D. Liu, X. Chen, D. Peng, Some cosine similarity measures and distance measures between q‐rung orthopair fuzzy sets, Int. J. Intell. Syst., 34 (2019), 1572–1587. https://doi.org/10.1002/int.22108 doi: 10.1002/int.22108
    [13] X. Peng, L. Liu, Information measures for q‐rung orthopair fuzzy sets, Int. J. Intell. Syst., 34 (2019), 1795–1834. https://doi.org/10.1002/int.22115 doi: 10.1002/int.22115
    [14] P. Liu, P. Wang, Multiple-attribute decision-making based on Archimedean Bonferroni Operators of q-rung orthopair fuzzy numbers, IEEE T. Fuzzy Syst., 27 (2018), 834–848. https://doi.org/10.1109/TFUZZ.2018.2826452 doi: 10.1109/TFUZZ.2018.2826452
    [15] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE T. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
    [16] A. M. D. J. S. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, AIP Conf. Proc., 1482 (2012), 464–470. https://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515
    [17] K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition, Complex Intell. Syst., 6 (2019), 15–27. https://doi.org/10.1007/s40747-019-0103-6 doi: 10.1007/s40747-019-0103-6
    [18] M. Akram, S. Naz, A novel decision-making approach under complex Pythagorean fuzzy environment, Math. Comput. Appl., 24 (2019), 73–103. https://doi.org/10.3390/mca24030073 doi: 10.3390/mca24030073
    [19] P. Liu, Z. Ali, T. Mahmood, A method to multi-attribute group decision-making problem with complex q-rung orthopair linguistic information based on heronian mean operators, Int. J. Comput. Intell. Syst., 12 (2019), 1465–1496. https://doi.org/10.2991/ijcis.d.191030.002 doi: 10.2991/ijcis.d.191030.002
    [20] P. Liu, T. Mahmood, Z. Ali, Complex Q-rung orthopair fuzzy aggregation operators and their applications in multi-attribute group decision making, Information, 11 (2019), 5–27. https://doi.org/10.3390/info11010005 doi: 10.3390/info11010005
    [21] T. Mahmood, Z. Ali, Entropy measure and TOPSIS method based on correlation coefficient using complex q-rung orthopair fuzzy information and its application to multi-attribute decision making, Soft Comput., 25 (2021), 1249–1275. https://doi.org/10.1007/s00500-020-05218-7 doi: 10.1007/s00500-020-05218-7
    [22] Z. Ali, T. Mahmood, Maclaurin symmetric mean operators and their applications in the environment of complex q-rung orthopair fuzzy sets, Comput. Appl. Math., 39 (2020), 161–187. https://doi.org/10.1007/s40314-020-01145-3 doi: 10.1007/s40314-020-01145-3
    [23] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-Ⅲ, Inform. Sci., 9 (1975), 43–80. https://doi.org/10.1016/0020-0255(75)90017-1 doi: 10.1016/0020-0255(75)90017-1
    [24] F. Herrera, L. Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE T. Fuzzy Syst., 8 (2000), 746–752. https://doi.org/10.1109/91.890332 doi: 10.1109/91.890332
    [25] F. Herrera, L. Martinez, An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making, Int. J. Uncertainty, Fuzziness Knowl.-Based Syst., 8 (2000), 539–562. https://doi.org/10.1142/S0218488500000381 doi: 10.1142/S0218488500000381
    [26] L. Martı, F. Herrera, An overview on the 2-tuple linguistic model for computing with words in decision making: Extensions, applications and challenges, Inform. Sci., 207 (2012), 1–18. https://doi.org/10.1016/j.ins.2012.04.025 doi: 10.1016/j.ins.2012.04.025
    [27] Y. Li, P. Liu, Some Heronian mean operators with 2-tuple linguistic information and their application to multiple attribute group decision making, Technol. Eco. Develop. Econ., 21 (2007), 797–814.
    [28] D. Liang, D. Liu, W. Pedrycz, P. Hu, Triangular fuzzy decision-theoretic rough sets, Int. J. Approx. Reason., 54 (2013), 1087–1106. https://doi.org/10.1016/j.ijar.2013.03.014 doi: 10.1016/j.ijar.2013.03.014
    [29] X. Jia, W. Liao, Z. Tang, L. Shang, Minimum cost attribute reduction in decision-theoretic rough set models, Inform. Sci., 219 (2013), 151–167. https://doi.org/10.1016/j.ins.2012.07.010 doi: 10.1016/j.ins.2012.07.010
    [30] D. Liu, T. Li, D. Ruan, Probabilistic model criteria with decision-theoretic rough sets, Inform. Sci., 181 (2011), 3709–3722. https://doi.org/10.1016/j.ins.2011.04.039 doi: 10.1016/j.ins.2011.04.039
    [31] Y. Yao, Y. Zhao, Attribute reduction in decision-theoretic rough set models, Inform. Sci., 178 (2008), 3356–3373. https://doi.org/10.1016/j.ins.2008.05.010 doi: 10.1016/j.ins.2008.05.010
    [32] D. Liu, Y. Yao, T. Li, Three-way investment decisions with decision-theoretic rough sets, Int. J. Comput. Intell. Syst., 4 (2011), 66–74.
    [33] D. Liu, T. Li, D. Liang, Three-way government decision analysis with decision-theoretic rough sets, Int. J. Uncertainty, Fuzziness Knowl.-Based Syst., 20 (2012), 119–132. https://doi.org/10.1142/S0218488512400090 doi: 10.1142/S0218488512400090
    [34] P. Liu, H. Yang, Three-way decisions with intuitionistic uncertain linguistic decision-theoretic rough sets based on generalized Maclaurin symmetric mean operators, Int. J. Fuzzy Syst., 22 (2020), 653–667. https://doi.org/10.1007/s40815-019-00718-7 doi: 10.1007/s40815-019-00718-7
    [35] Y. Ju, A. Wang, J. Ma, H. Gao, E. D. Santibanez Gonzalez, Some q‐rung orthopair fuzzy 2‐tuple linguistic Muirhead mean aggregation operators and their applications to multiple‐attribute group decision making, Int. J. Intell. Syst., 35 (2020), 184–213. https://doi.org/10.1002/int.22205 doi: 10.1002/int.22205
    [36] P. Liu, H. Gao, Multicriteria decision making based on generalized Maclaurin symmetric means with multi-hesitant fuzzy linguistic information, Symmetry, 10 (2018), 81–107. https://doi.org/10.3390/sym10040081 doi: 10.3390/sym10040081
    [37] D. Liang, D. Liu, Deriving three-way decisions from intuitionistic fuzzy decision-theoretic rough sets, Inform. Sci., 300 (2015), 28–48. https://doi.org/10.1016/j.ins.2014.12.036 doi: 10.1016/j.ins.2014.12.036
    [38] D. E. Tamir, N. D. Rishe, A. Kandel, Complex fuzzy sets and complex fuzzy logic an overview of theory and applications, In: Fifty years of fuzzy logic and its applications, Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-19683-1_31
    [39] W. Ullah, M. Ibrar, A. Khan, M. Khan, Multiple attribute decision making problem using GRA method with incomplete weight information based on picture hesitant fuzzy setting, Int. J. Intell. Syst., 36 (2021), 866–889. https://doi.org/10.1002/int.22324 doi: 10.1002/int.22324
    [40] L. Yang, X. H. Wu, J. Qian, A Novel Multicriteria Group Decision-Making Approach with Hesitant Picture Fuzzy Linguistic Information, Math. Probl. Eng., 2020 (2020), 6394028. https://doi.org/10.1155/2020/6394028 doi: 10.1155/2020/6394028
    [41] M. Ali, F. Smarandache, Complex neutrosophic set, Neural Comput. Appl., 28 (2017), 1817–1834. https://doi.org/10.1007/s00521-015-2154-y doi: 10.1007/s00521-015-2154-y
    [42] S. Broumi, A. Bakali, M. Talea, F. Smarandache, P. K. Singh, V. Uluçay, et al., Bipolar complex neutrosophic sets and its application in decision making problem, In: Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-00045-5_26
    [43] M. Q. Wu, T. Y. Chen, J. P. Fan, Divergence measure of T-spherical fuzzy sets and its applications in pattern recognition, IEEE Access, 8 (2019), 10208–10221. https://doi.org/10.1109/ACCESS.2019.2963260 doi: 10.1109/ACCESS.2019.2963260
    [44] F. Zhao, Z. Zeng, H. Liu, R. Lan, J. Fan, Semi-supervised Approach to Surrogate-assisted Multiobjective Kernel Intuitionistic Fuzzy Clustering Algorithm for Color Image Segmentation, IEEE T. Fuzzy Syst., 28 (2020), 1023–1034. https://doi.org/10.1109/TFUZZ.2020.2973121 doi: 10.1109/TFUZZ.2020.2973121
    [45] T. Mahmood, A Novel Approach toward Bipolar Soft Sets and Their Applications, J. Math., 2020 (2020), 4690808. https://doi.org/10.1155/2020/4690808 doi: 10.1155/2020/4690808
    [46] D. Wu, X. Tan, Multitasking Genetic Algorithm (MTGA) for Fuzzy System Optimization, IEEE T. Fuzzy Syst., 28 (2020), 1050–1061. https://doi.org/10.1109/TFUZZ.2020.2968863 doi: 10.1109/TFUZZ.2020.2968863
    [47] A. Caliskan, Z. A. Cil, H. Badem, D. Karaboga, Regression Based Neuro-Fuzzy Network Trained by ABC Algorithm for High-Density Impulse Noise Elimination, IEEE T. Fuzzy Syst., 28 (2020), 1084–1095. https://doi.org/10.1109/TFUZZ.2020.2973123 doi: 10.1109/TFUZZ.2020.2973123
    [48] S. Harifi, M. Khalilian, J. Mohammadzadeh, S. Ebrahimnejad, Optimizing a Neuro-Fuzzy System based on nature inspired Emperor Penguins Colony optimization algorithm, IEEE T. Fuzzy Syst., 28 (2020), 1110–1124. https://doi.org/10.1109/TFUZZ.2020.2984201 doi: 10.1109/TFUZZ.2020.2984201
    [49] P. Dziwiński, L. Bartczuk, A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic, IEEE T. Fuzzy Syst., 28 (2019), 1140–1154. https://doi.org/10.1109/TFUZZ.2019.2957263 doi: 10.1109/TFUZZ.2019.2957263
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1738) PDF downloads(66) Cited by(5)

Figures and Tables

Figures(5)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog