Research article

Jensen, Ostrowski and Hermite-Hadamard type inequalities for h-convex stochastic processes by means of center-radius order relation

  • Received: 27 October 2022 Revised: 20 January 2023 Accepted: 06 February 2023 Published: 04 May 2023
  • MSC : 26A48, 26A51, 33B10, 39A12, 39B62

  • In optimization, convex and non-convex functions play an important role. Further, there is no doubt that convexity and stochastic processes are closely related. In this study, we introduce the notion of the hconvex stochastic process for center-radius order in the setting of interval-valued functions (IVFS) which is novel in literature. By using these notions we establish Jensen, Ostrowski, and Hermite-Hadamard (H.H) types inequalities for generalized interval-valued CRh-convex stochastic processes. Furthermore, the study provides useful examples to support its findings.

    Citation: Mujahid Abbas, Waqar Afzal, Thongchai Botmart, Ahmed M. Galal. Jensen, Ostrowski and Hermite-Hadamard type inequalities for h-convex stochastic processes by means of center-radius order relation[J]. AIMS Mathematics, 2023, 8(7): 16013-16030. doi: 10.3934/math.2023817

    Related Papers:

    [1] Ling Zhu, Zhengjie Sun . Refinements of Huygens- and Wilker- type inequalities. AIMS Mathematics, 2020, 5(4): 2967-2978. doi: 10.3934/math.2020191
    [2] Ling Zhu . New inequalities of Wilker’s type for circular functions. AIMS Mathematics, 2020, 5(5): 4874-4888. doi: 10.3934/math.2020311
    [3] Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541
    [4] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
    [5] Ling Zhu . New inequalities of Wilker's type for hyperbolic functions. AIMS Mathematics, 2020, 5(1): 376-384. doi: 10.3934/math.2020025
    [6] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [7] Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807
    [8] Sarah Elahi, Muhammad Aslam Noor . Integral inequalities for hyperbolic type preinvex functions. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597
    [9] Artion Kashuri, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Eman Al-Sarairah, Nejmeddine Chorfi . Novel inequalities for subadditive functions via tempered fractional integrals and their numerical investigations. AIMS Mathematics, 2024, 9(5): 13195-13210. doi: 10.3934/math.2024643
    [10] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
  • In optimization, convex and non-convex functions play an important role. Further, there is no doubt that convexity and stochastic processes are closely related. In this study, we introduce the notion of the hconvex stochastic process for center-radius order in the setting of interval-valued functions (IVFS) which is novel in literature. By using these notions we establish Jensen, Ostrowski, and Hermite-Hadamard (H.H) types inequalities for generalized interval-valued CRh-convex stochastic processes. Furthermore, the study provides useful examples to support its findings.



    The idea of statistical convergence was given by Zygmund [1] in the first edition of his monograph published in Warsaw in 1935. The concept of statistical convergence was introduced by Steinhaus [2] and Fast [3] and then reintroduced independently by Schoenberg [4]. Over the years and under different names, statistical convergence has been discussed in the Theory of Fourier Analysis, Ergodic Theory, Number Theory, Measure Theory, Trigonometric Series, Turnpike Theory and Banach Spaces. Later on it was further investigated from the sequence spaces point of view and linked with summability theory by Bilalov and Nazarova [5], Braha et al. [6], Cinar et al. [7], Colak [8], Connor [9], Et et al. ([10,11,12,13,14]), Fridy [15], Isik et al. ([16,17,18]), Kayan et al. [19], Kucukaslan et al. ([20,21]), Mohiuddine et al. [22], Nuray [23], Nuray and Aydın [24], Salat [25], Sengul et al. ([26,27,28,29]), Srivastava et al. ([30,31]) and many others.

    The idea of statistical convergence depends upon the density of subsets of the set N of natural numbers. The density of a subset E of N is defined by

    δ(E)=limn1nnk=1χE(k),

    provided that the limit exists, where χE is the characteristic function of the set E. It is clear that any finite subset of N has zero natural density and that

    δ(Ec)=1δ(E).

    A sequence x=(xk)kN is said to be statistically convergent to L if, for every ε>0, we have

    δ({kN:|xkL|ε})=0.

    In this case, we write \newline

    xkstatLaskorSlimkxk=L.

    In 1932, Agnew [32] introduced the concept of deferred Cesaro mean of real (or complex) valued sequences x=(xk) defined by

    (Dp,qx)n=1qnpnqnk=pn+1xk,n=1,2,3,

    where p=(pn) and q=(qn) are the sequences of non-negative integers satisfying

    pn<qnandlimnqn=. (1)

    Let K be a subset of N and denote the set {k:k(pn,qn],kK} by Kp,q(n).

    Deferred density of K is defined by

    δp,q(K)=limn1(qnpn)|Kp,q(n)|, provided the limit exists

    where, vertical bars indicate the cardinality of the enclosed set Kp,q(n). If qn=n, pn=0, then the deferred density coincides with natural density of K.

    A real valued sequence x=(xk) is said to be deferred statistically convergent to L, if for each ε>0

    limn1(qnpn)|{k(pn,qn]:|xkL|ε}|=0.

    In this case we write Sp,q-limxk=L. If qn=n, pn=0, for all nN, then deferred statistical convergence coincides with usual statistical convergence [20].

    In this section, we give some inclusion relations between statistical convergence of order α, deferred strong Cesàro summability of order α and deferred statistical convergence of order α in general metric spaces.

    Definition 1. Let (X,d) be a metric space, (pn) and (qn) be two sequences as above and 0<α1. A metric valued sequence x=(xk) is said to be Sd,αp,q-convergent (or deferred d-statistically convergent of order α) to x0 if there is x0X such that

    limn1(qnpn)α|{k(pn,qn]:xkBε(x0)}|=0,

    where Bε(x0)={xX:d(x,x0)<ε} is the open ball of radius ε and center x0. In this case we write Sd,αp,q-limxk=x0 or xkx0(Sd,αp,q). The set of all Sd,αp,q-statistically convergent sequences will be denoted by Sd,αp,q. If qn=n and pn=0, then deferred d-statistical convergence of order α coincides d -statistical convergence of order α denoted by Sd,α. In the special cases qn=n,pn=0 and α=1 then deferred d -statistical convergence of order α coincides d-statistical convergence denoted by Sd.

    Definition 2. Let (X,d) be a metric space, (pn) and (qn) be two sequences as above and 0<α1. A metric valued sequence x=(xk) is said to be strongly wd,αp,q-summable (or deferred strongly d-Ces àro summable of order α) to x0 if there is x0X such that

    limn1(qnpn)αqnk=pn+1d(xk,x0)=0.

    In this case we write wd,αp,q-limxk=x0 or xkx0(wd,αp,q). The set of all strongly wd,αp,q-summable sequences will be denoted by wd,αp,q. If qn=n and pn=0, for all nN, then deferred strong d-Cesàro summability of order α coincides strong d-Cesàro summability of order α denoted by wd,α. In the special cases qn=n,pn=0 and α=1 then deferred strong d-Cesàro summability of order α coincides strong d-Ces àro summability denoted by wd.

    Theorem 1. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1), (X,d) be a linear metric space and x=(xk),y=(yk) be metric valued sequences, then

    (i) If Sd,αp,q-limxk=x0 and Sd,αp,q-limyk=y0, then Sd,αp,q-lim(xk+yk)=x0+y0,

    (ii)If Sd,αp,q-limxk=x0 and cC, then Sd,αp,q-lim(cxk)=cx0,

    (iii) If Sd,αp,q-limxk=x0,Sd,αp,q-limyk=y0 and x,y(X), then Sd,αp,q-lim(xkyk)=x0y0.

    Proof. Omitted.

    Theorem 2. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α and β be two real numbers such that 0<αβ1. If a sequence x=(xk) is deferred strongly d-Cesàro summable of order α to x0, then it is deferred d-statistically convergent of order β to x0, but the converse is not true.

    Proof. First part of the proof is easy, so omitted. For the converse, take X=R and choose qn=n,pn=0 (for all nN),d(x,y)=|xy| and define a sequence x=(xk) by

    xk={3n,k=n20,kn2.

    Then for every ε>0, we have

    1(qnpn)α|{k(pn,qn]:xkBε(0)}|[n]nα0, as n,

    where 12<α1, that is xk0(Sd,αp,q). At the same time, we get

    1(qnpn)αqnk=pn+1d(xk,0)[n][3n]nα1

    for α=16 and

    1(qnpn)αqnk=pn+1d(xk,0)[n][3n]nα

    for 0<α<16, i.e., xk0(wd,αp,q) for 0<α16.

    From Theorem 2 we have the following results.

    Corollary 1. ⅰ) Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α be a real number such that 0<α1. If a sequence x=(xk) is deferred strongly d-Cesàro summable of order α to x0, then it is deferred d-statistically convergent of order α to x0, but the converse is not true.

    ⅱ) Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α be a real number such that 0<α1. If a sequence x=(xk) is deferred strongly d-Cesàro summable of order α to x0, then it is deferred d-statistically convergent to x0, but the converse is not true.

    ⅲ) Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1). If a sequence x=(xk) is deferred strongly d-Cesàro summable to x0, then it is deferred d-statistically convergent to x0, but the converse is not true.

    Remark Even if x=(xk) is a bounded sequence in a metric space, the converse of Theorem 2 (So Corollary 1 i) and ii)) does not hold, in general. To show this we give the following example.

    Example 1. Take X=R and choose qn=n,pn=0 (for all nN),d(x,y)=|xy| and define a sequence x=(xk) by

    xk={1k,kn30,k=n3n=1,2,....

    It is clear that x and it can be shown that xSd,αwd,α for 13<α<12.

    In the special case α=1, we can give the followig result.

    Theorem 3. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and x=(xk) is a bounded sequence in a metric space. If a sequence x=(xk) is deferred d-statistically convergent to x0, then it is deferred strongly d-Cesàro summable to x0.

    Proof. Let x=(xk) be deferred d-statistically convergent to x0 and ε>0 be given. Then there exists x0X such that

    limn1(qnpn)|{k(pn,qn]:xkBε(x0)}|=0,

    Since x=(xk) is a bounded sequence in a metric space X, there exists x0X and a positive real number M such that d(xk,x0)<M for all kN. So we have

    1(qnpn)qnk=pn+1d(xk,x0)=1(qnpn)qnk=pn+1d(xk,x0)εd(xk,x0)+1(qnpn)qnk=pn+1d(xk,x0)<εd(xk,x0)M(qnpn)|{k(pn,qn]:xkBε(x0)}|+ε

    Takin limit n, we get wdp,q-limxk=x0.

    Theorem 4. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α be a real number such that 0<α1. If liminfnqnpn>1, then Sd,αSd,αp,q.

    Proof. Suppose that liminfnqnpn>1; then there exists a ν>0 such that qnpn1+ν for sufficiently large n, which implies that

    (qnpnqn)α(ν1+ν)α1qαnνα(1+ν)α1(qnpn)α.

    If xkx0(Sd,α), then for every ε>0 and for sufficiently large n, we have

    1qαn|{kqn:xkBε(x0)}|1qαn|{k(pn,qn]:xkBε(x0)}|να(1+ν)α1(qnpn)α|{k(pn,qn]:xkBε(x0)}|.

    This proves the proof.

    Theorem 5. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α and β be two real numbers such that 0<αβ1. If limn(qnpn)αqβn=s>0, then Sd,αSd,βp,q.

    Proof. Let limn(qnpn)αqβn=s>0. Notice that for each ε>0 the inclusion

    {kqn:xkBε(x0)}{k(pn,qn]:xkBε(x0)}

    is satisfied and so we have the following inequality

    1qαn|{kqn:xkBε(x0)}|1qαn|{k(pn,qn]:xkBε(x0)}|1qβn|{k(pn,qn]:xkBε(x0)}|=(qnpn)αqβn1(qnpn)α|{k(pn,qn]:xkBε(x0)}|(qnpn)αqβn1(qnpn)β|{k(pn,qn]:xkBε(x0)}|.

    Therefore Sd,αSd,βp,q.

    Theorem 6. Let (pn),(qn),(pn) and (qn) be four sequences of non-negative real numbers such that

    pn<pn<qn<qn for all nN, (2)

    and α,β be fixed real numbers such that 0<αβ1, then

    (i) If

    limn(qnpn)α(qnpn)β=a>0 (3)

    then Sd,βp,qSd,αp,q,

    (ii) If

    limnqnpn(qnpn)β=1 (4)

    then Sd,αp,qSd,βp,q.

    Proof. (i) Let (3) be satisfied. For given ε>0 we have

    {k(pn,qn]:xkBε(x0)}{k(pn,qn]:xkBε(x0)},

    and so

    1(qnpn)β|{k(pn,qn]:xkBε(x0)}|(qnpn)α(qnpn)β1(qnpn)α|{k(pn,qn]:xkBε(x0)}|.

    Therefore Sd,βp,qSd,αp,q.

    (ii) Let (4) be satisfied and x=(xk) be a deferred d-statistically convergent sequence of order α to x0. Then for given ε>0, we have

    1(qnpn)β|{k(pn,qn]:xkBε(x0)}|1(qnpn)β|{k(pn,pn]:xkBε(x0)}|+1(qnpn)β|{k(qn,qn]:xkBε(x0)}|+1(qnpn)β|{k(pn,qn]:xkBε(x0)}|pnpn+qnqn(qnpn)β+1(qnpn)β|{k(pn,qn]:xkBε(x0)}|=(qnpn)(qnpn)(qnpn)β+1(qnpn)β|{k(pn,qn]:xkBε(x0)}|(qnpn)(qnpn)β(qnpn)β+1(qnpn)β|{k(pn,qn]:xkBε(x0)}|(qnpn(qnpn)β1)+1(qnpn)α|{k(pn,qn]:xkBε(x0)}|

    Therefore Sd,αp,qSd,βp,q.

    Theorem 7. Let (pn),(qn),(pn) and (qn) be four sequences of non-negative integers defined as in (2) and α,β be fixed real numbers such that 0<αβ1.

    (i) If (3) holds then wd,βp,qwd,αp,q,

    (ii) If (4) holds and x=(xk) be a bounded sequence, then wd,αp,qwd,βp,q.

    Proof.

    i) Omitted.

    ii) Suppose that wd,αp,q-limxk=x0 and (xk)(X). Then there exists some M>0 such that d(xk,x0)<M for all k, then

    1(qnpn)βqnk=pn+1d(xk,x0)=1(qnpn)β[pnk=pn+1+qnk=pn+1+qnk=qn+1]d(xk,x0)pnpn+qnqn(qnpn)βM+1(qnpn)βqnk=pn+1d(xk,x0)(qnpn)(qnpn)β(qnpn)βM+1(qnpn)αqnk=pn+1d(xk,x0)=(qnpn(qnpn)β1)M+1(qnpn)αqnk=pn+1d(xk,x0)

    Theorem 8. Let (pn),(qn),(pn) and (qn) be four sequences of non-negative integers defined as in (2) and α,β be fixed real numbers such that 0<αβ1. Then

    (i) Let (3) holds, if a sequence is strongly wd,βp,q-summable to x0, then it is Sd,αp,q-convergent to x0,

    (ii) Let (4) holds and x=(xk) be a bounded sequence in (X,d), if a sequence is Sd,αp,q-convergent to x0 then it is strongly wd,βp,q-summable to x0.

    Proof. (i) Omitted.

    (ii) Suppose that Sd,αp,q-limxk=x0 and (xk). Then there exists some M>0 such that d(xk,x0)<M for all k, then for every ε>0 we may write

    1(qnpn)βqnk=pn+1d(xk,x0)=1(qnpn)βqnpnk=qnpn+1d(xk,x0)+1(qnpn)βqnk=pn+1d(xk,x0)(qnpn)(qnpn)(qnpn)βM+1(qnpn)βqnk=pn+1d(xk,x0)(qnpn)(qnpn)β(qnpn)βM+1(qnpn)βqnk=pn+1d(xk,x0)(qnpn(qnpn)β1)M+1(qnpn)βqnk=pn+1d(xk,x0)εd(xk,x0)+1(qnpn)βqnk=pn+1d(xk,x0)<εd(xk,x0)(qnpn(qnpn)β1)M+M(qnpn)α|{k(pn,qn]:d(xk,x0)ε}|+qnpn(qnpn)βε.

    This completes the proof.

    The authors declare that they have no conflict of interests.



    [1] R. E. Moore, Interval analysis, Englewood Cliffs, Prentice-Hall, 1966.
    [2] J. M. Snyder, Interval analysis for computer graphics, Proceedings of the 19th annual conference on computer graphics and interactive techniques, 1992,121–130.
    [3] N. A. Gasilov, Ş. E. Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Comput., 22 (2018), 3817–3828.
    [4] D. Singh, B. A. Dar, Sufficiency and duality in non-smooth interval valued programming problems, J. Ind. Manag. Optim., 15 (2019), 647–665. https://doi.org/10.3934/jimo.2018063 doi: 10.3934/jimo.2018063
    [5] E. de Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE T. Neural Networ., 20 (2009), 638–653. http://doi.org/10.1109/TNN.2008.2011267 doi: 10.1109/TNN.2008.2011267
    [6] A. Almutairi, A. Kılıçman, New refinements of the Hadamard inequality on coordinated convex function, J. Inequal. Appl., 2019 (2019), 192. https://doi.org/10.1186/s13660-019-2143-2 doi: 10.1186/s13660-019-2143-2
    [7] H. Budak, T. Tunç, M. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, P. Am. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741
    [8] S. Rashid, H. Kalsoom, Z. Hammouch, R. Ashraf, New multi-parametrized estimates having pth-order differentiability in fractional calculus for predominating h-convex functions in Hilbert space, Symmetry, 12 (2020), 222. https://doi.org/10.3390/sym12020222 doi: 10.3390/sym12020222
    [9] X. J. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite-Hadamard and Jensen-type inequalities via Riemann integral operator for a generalized class of Godunova-Levin functions, J. Math., 2022 (2022), 3830324. https://doi.org/10.1155/2022/3830324 doi: 10.1155/2022/3830324
    [10] B. Feng, M. Ghafoor, Y. M. Chu, M. I. Qureshi, X. Feng, Hermite-Hadamard and Jensen's type inequalities for modified (p,h)-convex functions, AIMS Math., 6 (2029), 6959–6971. https://doi.org/10.3934/math.2020446 doi: 10.3934/math.2020446
    [11] C. Park, Y. M. Chu, M. S. Saleem, Hermite-Hadamard-type inequalities for ηh-convex functions via Ψ-Riemann-Liouville fractional integrals, Adv. Cont. Disc. Model., 1 (2022), 1–8. https://doi.org/10.1186/s13662-022-03745-1 doi: 10.1186/s13662-022-03745-1
    [12] P. Y. Yan, Q. Li, Y. M. Chu, S. Mukhtar, S. Waheed, On some fractional integral inequalities for generalized strongly modified h-convex function, AIMS Math., 5 (2020), 6620–6638. https://doi.org/10.3934/math.2020426 doi: 10.3934/math.2020426
    [13] M. A. Ali, H. Budak, G. Murtaza, Y. M. Chu, Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions, J. Inequal. Appl., 1 (2021), 1–18. https://doi.org/10.1186/s13660-021-02619-6 doi: 10.1186/s13660-021-02619-6
    [14] H. Kara, M. A. Ali, H. Budak, Hermite-Hadamard-Mercer type inclusions for interval-valued functions via Riemann-Liouville fractional integrals, Turk. J. Math., 6 (2022), 2193–2207. https://doi.org/10.55730/1300-0098.3263 doi: 10.55730/1300-0098.3263
    [15] W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued (h1,h2)-Godunova-Levin functions, AIMS Math., 7 (2022), 19372–19387. https://doi.org/10.3934/math.20221064 doi: 10.3934/math.20221064
    [16] W. Afzal, A. A. Lupaş, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical (h1,h2)-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970. https://doi.org/10.3390/math10162970 doi: 10.3390/math10162970
    [17] I. A. Baloch, Y. M. Chu, Petrovic-type inequalities for harmonic-convex functions, J. Funct. Space., 2020 (2020), 3075390. https://doi.org/10.1155/2020/3075390 doi: 10.1155/2020/3075390
    [18] E. R. Nwaeze, M. A. Khan, Y. M. Chu, Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions, Adv. Differ. Equ., 1 (2020), 1–17. https://doi.org/10.1186/s13662-020-02977-3 doi: 10.1186/s13662-020-02977-3
    [19] H. Kara, H. Budak, M. A. Ali, Weighted Hermite-Hadamard type inclusions for products of co-ordinated convex interval-valued functions, Adv. Differ. Equ., 1 (2021), 1–16. https://doi.org/10.1186/s13662-021-03261-8 doi: 10.1186/s13662-021-03261-8
    [20] T. Abdeljawad, S. Rashid, H. Khan, Y. M. Chu, New Hermite-Hadamard-type inequalities for-convex fuzzy-interval-valued functions, Adv. Differ. Equ., 1 (2021), 1–20. https://doi.org/10.1186/s13662-020-02782-y doi: 10.1186/s13662-020-02782-y
    [21] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 1 (2020), 1–17. https://doi.org/10.1186/s13662-021-03245-8 doi: 10.1186/s13662-021-03245-8
    [22] G. Sana, M. B. Khan, M. A. Noor, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. https://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001
    [23] M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 1 (2021), 1401–1418. https://dx.doi.org/10.2991/ijcis.d.210409.001 doi: 10.2991/ijcis.d.210409.001
    [24] T. Saeed, W. Afzal, K. Shabbir, S. Treanţă, M. D. Sen, Some novel estimates of Hermite-Hadamard and Jensen type inequalities for (h1,h2)-convex functions pertaining to total order relation, Mathematics, 10 (2022), 4777. https://doi.org/10.3390/math10244777 doi: 10.3390/math10244777
    [25] T. Saeed, W. Afzal, M. Abbas, S. Treanţă, M. D. Sen, Some new generalizations of integral inequalities for harmonical cr-(h1,h2)-Godunova Levin functions and applications, Mathematics, 10 (2022), 4540. https://doi.org/10.3390/math10234540 doi: 10.3390/math10234540
    [26] V. Stojiljkovic, Hermite Hadamard type inequalities involving (kp) fractional operator with (α, h- m)- p convexity, Eur. J. Pure. Appl. Math., 16 (2023), 503–522. https://doi.org/10.29020/nybg.ejpam.v16i1.4689 doi: 10.29020/nybg.ejpam.v16i1.4689
    [27] V. Stojiljkovic, A new conformable fractional derivative and applications, Seleccion. Mat., 9 (2022), 370–380. http://dx.doi.org/10.17268/sel.mat.2022.02.12 doi: 10.17268/sel.mat.2022.02.12
    [28] G. Mani, R. Ramaswamy, A. J. Gnanaprakasam, V. Stojiljkovic, Z. M. Fadail, S. Radenovic, Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space, AIMS Math., 8 (2023), 3269–3285. http://dx.doi.org/2010.3934/math.2023168
    [29] V. Stojiljković, R. Ramaswamy, O. A. A. Abdelnaby, S. Radenovic, Riemann-Liouville fractional inclusions for convex functions using interval valued setting, Mathematics, 10 (2022), 3491. https://doi.org/10.3390/math10193491 doi: 10.3390/math10193491
    [30] W. Afzal, K. Shabbir, S. Treanţă, K. Nonlaopon, Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions, AIMS Math., 8 (2022), 3303–3321. https://doi.org/10.3934/math.2023170 doi: 10.3934/math.2023170
    [31] K. Nikodem, On convex stochastic processes, Aequationes Math., 2 (1998), 427–446. https://dx.doi.org/10.1007/BF02190513 doi: 10.1007/BF02190513
    [32] M. Shaked, J. G. Shanthikumar, Stochastic convexity and its applications, Adv. Appl. Probab., 1 (1980), 184–197. https://dx.doi.org/10.1006ADA170112
    [33] A. Skowronski, On some properties of j-convex stochastic processes, Aequationes Math., 2 (1992), 249–258. https://dx.doi.org/10.1007/BF01830983 doi: 10.1007/BF01830983
    [34] D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequationes Math., 83 (2012), 143–151. https://dx.doi.org/10.1007/s00010-011-0090-1 doi: 10.1007/s00010-011-0090-1
    [35] S. Varoşanec, On hconvexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://dx.doi.org/10.1016/j.jmaa.2006.02.086
    [36] D. Barraez, L. Gonzalez, N. Merentes, On h-convex stochastic processes, Math. Aeterna, 5 (2015), 571–581.
    [37] J. El-Achky, S. Taoufiki, On (ph)-convex stochastic processes, J. Interdiscip. Math., 2 (2022), 1–12. https://doi.org/10.1080/09720502.2021.1938994 doi: 10.1080/09720502.2021.1938994
    [38] W. Afzal, T. Botmart, Some novel estimates of Jensen and Hermite-Hadamard inequalities for h-Godunova-Levin stochastic processes, AIMS Math., 8 (2023), 7277–7291. https://doi.org/10.3934/math.2023366 doi: 10.3934/math.2023366
    [39] M. Vivas-Cortez, M. S. Saleem, S. Sajid, Fractional version of Hermite-Hadamard-Mercer inequalities for convex stochastic processes via Ψk-Riemann-Liouville fractional integrals and its applications, Appl. Math., 16 (2022), 695–709. http://dx.doi.org/10.18576/amis/22nuevoformat20(1)2 doi: 10.18576/amis/22nuevoformat20(1)2
    [40] W. Afzal, E. Y. Prosviryakov, S. M. El-Deeb, Y. Almalki, Some new estimates of HermiteHadamard, Ostrowski and Jensen-type inclusions for h-convex stochastic process via interval-valued functions, Symmetry., 15 (2023), 831. https://doi.org/10.3390/sym15040831 doi: 10.3390/sym15040831
    [41] J. El-Achky, D. Gretete, M. Barmaki, Inequalities of Hermite-Hadamard type for stochastic process whose fourth derivatives absolute are quasi-convex, P-convex, s-convex and h-convex, J. Interdiscip. Math., 3 (2021), 1–17. https://doi.org/10.1080/09720502.2021.1887607 doi: 10.1080/09720502.2021.1887607
    [42] N. Sharma, R. Mishra, A. Hamdi, Hermite-Hadamard type integral inequalities for multidimensional general h-harmonic preinvex stochastic processes, Commun. Stat.-Theor. M., 4 (2020), 1–41. https://doi.org/10.1080/03610926.2020.1865403 doi: 10.1080/03610926.2020.1865403
    [43] H. Zhou, M. S. Saleem, M. Ghafoor, J. Li, Generalization of-convex stochastic processes and some classical inequalities, Math. Probl. Eng., 2020 (2020), 1583807. https://doi.org/10.1155/2020/1583807 doi: 10.1155/2020/1583807
    [44] W. Afzal, S. M. Eldin, W. Nazeer, A. M. Galal, Some integral inequalities for harmonical cr-h-Godunova-Levin stochastic processes, AIMS Math., 8 (2023), 13473–13491. https://doi.org/10.3934/math.2023683 doi: 10.3934/math.2023683
    [45] H. Budak, M. Z. Sarikaya, On generalized stochastic fractional integrals and related inequalities, Theor. Appl., 5 (2018), 471–481. https://doi.org/10.15559/18-VMSTA117 doi: 10.15559/18-VMSTA117
    [46] M. Tunc, Ostrowski-type inequalities via h-convex functions with applications to special means, J. Inequal. Appl., 1 (2013), 1–10. https://doi.org/10.1186/1029-242X-2013-326 doi: 10.1186/1029-242X-2013-326
    [47] L. Gonzales, J. Materano, M. V. Lopez, Ostrowski-type inequalities via h-convex stochastic processes, JP J. Math. Sci., 6 (2013), 15–29.
    [48] A. K. Bhunia, S. S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Comput. Ind. Eng., 74 (2014), 169–178. https://doi.org/10.3390/math10122089 doi: 10.3390/math10122089
    [49] W. Liu, F. Shi, G. Ye, D. Zhao, The properties of harmonically cr-h-convex function and its applications, Mathematics, 10 (2022), 2089. https://doi.org/10.1016/j.cie.2014.05.014 doi: 10.1016/j.cie.2014.05.014
    [50] W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treanţă, Some H-Godunova-Levin unction inequalities using center radius (Cr) order, Fractal Fract., 6 (2022), 518. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518
    [51] W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Math., 8 (2023), 1696–1712. https://doi.org/10.3934/math.2023087 doi: 10.3934/math.2023087
    [52] W. Afzal, K. Shabbir, T. Botmart, S. Treanţă, Some new estimates of well known inequalities for (h1,h2)-Godunova-Levin functions by means of center-radius order relation, AIMS Math., 8 (2022), 3101–3119. https://doi.org/10.3934/math.2023160 doi: 10.3934/math.2023160
    [53] P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math., 37 (2004), 299–308. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518
  • This article has been cited by:

    1. Yiting Wu, Gabriel Bercu, New refinements of Becker-Stark and Cusa-Huygens inequalities via trigonometric polynomials method, 2021, 115, 1578-7303, 10.1007/s13398-021-01030-6
    2. Ling Zhu, Wilker inequalities of exponential type for circular functions, 2021, 115, 1578-7303, 10.1007/s13398-020-00973-6
    3. Yogesh J. Bagul, Christophe Chesneau, Marko Kostić, On the Cusa–Huygens inequality, 2021, 115, 1578-7303, 10.1007/s13398-020-00978-1
    4. Lina Zhang, Xuesi Ma, Dimitri Mugnai, Some New Results of Mitrinović–Cusa’s and Related Inequalities Based on the Interpolation and Approximation Method, 2021, 2021, 2314-4785, 1, 10.1155/2021/5595650
    5. Yogesh J. Bagul, Bojan Banjac, Christophe Chesneau, Marko Kostić, Branko Malešević, New Refinements of Cusa-Huygens Inequality, 2021, 76, 1422-6383, 10.1007/s00025-021-01392-8
    6. Ling Zhu, High Precision Wilker-Type Inequality of Fractional Powers, 2021, 9, 2227-7390, 1476, 10.3390/math9131476
    7. Wei-Dong Jiang, New sharp inequalities of Mitrinovic-Adamovic type, 2023, 17, 1452-8630, 76, 10.2298/AADM210507010J
    8. Yogesh J. Bagul, Christophe Chesneau, Sharp Extensions of a Cusa-Huygens Type Inequality, 2024, 1829-1163, 1, 10.52737/18291163-2024.16.14-1-12
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1479) PDF downloads(68) Cited by(13)

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog