
Dengue fever, a vector-borne disease, has affected the whole world in general and the Indian subcontinent in particular for the last three decades. Dengue fever has a significant economic and health impact worldwide; it is essential to develop new mathematical models to study not only the dynamics of the disease but also to suggest cost-effective mechanisms to control disease. In this paper, we design modified facts about the dynamics of this disease more realistically by formulating a new basic ShEhIhRh host population and SvIv vector population integer order model, later converting it into a fractional-order model with the help of the well-known Atangana-Baleanu derivative. In this design, we introduce two more compartments, such as the treatment compartment Th, and the protected traveler compartment Ph in the host population to produce ShEhIhThRhPh. We present some observational results by investigating the model for the existence of a unique solution as well as by proving the positivity and boundedness of the solution. We compute reproduction number R0 by using a next-generation matrix method to estimate the contagious behavior of the infected humans by the disease. In addition, we prove that disease free and endemic equilibrium points are locally and globally stable with restriction to reproduction number R0. The second goal of this article is to formulate an optimal control problem to study the effect of the control strategy. We implement the Toufik-Atangana scheme for the first time to solve both of the state and adjoint fractional differential equations with the ABC derivative operator. The numerical results show that the fractional order and the different constant treatment rates affect the dynamics of the disease. With an increase in the fractional order and the treatment rate, exposed and infected humans, as well as the infected mosquitoes, decrease. However, the optimal control analysis reveals that the implemented optimal control strategy is very effective for disease control.
Citation: Asma Hanif, Azhar Iqbal Kashif Butt. Atangana-Baleanu fractional dynamics of dengue fever with optimal control strategies[J]. AIMS Mathematics, 2023, 8(7): 15499-15535. doi: 10.3934/math.2023791
[1] | Mohamed S. Eliwa, Essam A. Ahmed . Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms. AIMS Mathematics, 2023, 8(1): 29-60. doi: 10.3934/math.2023002 |
[2] | Neama Salah Youssef Temraz . Analysis of stress-strength reliability with m-step strength levels under type I censoring and Gompertz distribution. AIMS Mathematics, 2024, 9(11): 30728-30744. doi: 10.3934/math.20241484 |
[3] | A. M. Abd El-Raheem, Ehab M. Almetwally, M. S. Mohamed, E. H. Hafez . Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results. AIMS Mathematics, 2021, 6(5): 5222-5255. doi: 10.3934/math.2021310 |
[4] | Veronica Kariuki, Anthony Wanjoya, Oscar Ngesa, Mahmoud M. Mansour, Enayat M. Abd Elrazik, Ahmed Z. Afify . The accelerated failure time regression model under the extended-exponential distribution with survival analysis. AIMS Mathematics, 2024, 9(6): 15610-15638. doi: 10.3934/math.2024754 |
[5] | Bing Long, Zaifu Jiang . Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data. AIMS Mathematics, 2023, 8(7): 15332-15351. doi: 10.3934/math.2023784 |
[6] | Tahani A. Abushal, Alaa H. Abdel-Hamid . Inference on a new distribution under progressive-stress accelerated life tests and progressive type-II censoring based on a series-parallel system. AIMS Mathematics, 2022, 7(1): 425-454. doi: 10.3934/math.2022028 |
[7] | H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed . Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550 |
[8] | Ahmed R. El-Saeed, Ahmed T. Ramadan, Najwan Alsadat, Hanan Alohali, Ahlam H. Tolba . Analysis of progressive Type-Ⅱ censoring schemes for generalized power unit half-logistic geometric distribution. AIMS Mathematics, 2023, 8(12): 30846-30874. doi: 10.3934/math.20231577 |
[9] | Hanan Haj Ahmad, Ehab M. Almetwally, Dina A. Ramadan . A comparative inference on reliability estimation for a multi-component stress-strength model under power Lomax distribution with applications. AIMS Mathematics, 2022, 7(10): 18050-18079. doi: 10.3934/math.2022994 |
[10] | Mazen Nassar, Refah Alotaibi, Ahmed Elshahhat . Reliability analysis at usual operating settings for Weibull Constant-stress model with improved adaptive Type-Ⅱ progressively censored samples. AIMS Mathematics, 2024, 9(7): 16931-16965. doi: 10.3934/math.2024823 |
Dengue fever, a vector-borne disease, has affected the whole world in general and the Indian subcontinent in particular for the last three decades. Dengue fever has a significant economic and health impact worldwide; it is essential to develop new mathematical models to study not only the dynamics of the disease but also to suggest cost-effective mechanisms to control disease. In this paper, we design modified facts about the dynamics of this disease more realistically by formulating a new basic ShEhIhRh host population and SvIv vector population integer order model, later converting it into a fractional-order model with the help of the well-known Atangana-Baleanu derivative. In this design, we introduce two more compartments, such as the treatment compartment Th, and the protected traveler compartment Ph in the host population to produce ShEhIhThRhPh. We present some observational results by investigating the model for the existence of a unique solution as well as by proving the positivity and boundedness of the solution. We compute reproduction number R0 by using a next-generation matrix method to estimate the contagious behavior of the infected humans by the disease. In addition, we prove that disease free and endemic equilibrium points are locally and globally stable with restriction to reproduction number R0. The second goal of this article is to formulate an optimal control problem to study the effect of the control strategy. We implement the Toufik-Atangana scheme for the first time to solve both of the state and adjoint fractional differential equations with the ABC derivative operator. The numerical results show that the fractional order and the different constant treatment rates affect the dynamics of the disease. With an increase in the fractional order and the treatment rate, exposed and infected humans, as well as the infected mosquitoes, decrease. However, the optimal control analysis reveals that the implemented optimal control strategy is very effective for disease control.
Statistical models can be used to describe and forecast real-world occurrences. Several extended distributions have been widely employed in data modeling throughout the last few decades. Recent advances have focused on establishing new families that expand well-known distributions while providing tremendous flexibility in modeling data in practice [62,63]. A large field of statistics aims at developing distributions with innovative characteristics to create flexible models for data interpretation. In reality, a new distribution can provide a new modeling perspective and a deeper description of the underlying mechanisms establishing the data. A more robust family of distributions is produced by these phenomena of parameter addition, which is effectively used to model data sets from the fields of engineering, economics, biological research, and environmental sciences. Consequently, several well-known generating families of distributions in this respect include the generalized odd Burr III-G [31], truncated Cauchy power Weibull-G [8], the generalized transmuted-G [50], generalized inverted Kumaraswamy-G [35], truncated Burr X-G [16], odd generalized N-H-G [3], sine extended odd Fréchet-G [36], generalized odd log-logistic [26], arcsine exponentiated-X family [33], generalized truncated Fréchet [61], tan-G [56], extended cosine-G [46], type II exponentiated half logistic-G [4], logistic-G [59], sine-G [40], cosine-G [57], alpha power transformed family of distributions [41], and for more detail see [4,5,17,43,51]. In 2020, Ijaz [34] presented a new family of generalized distributions called the GAP family of distributions and they defined its cumulative distribution function (CDF), probability density function (PDF) as
F(x)=τ1−G(x)G(x),τ>0,x∈R | (1.1) |
and
f(x)=τ1−G(x)g(x)[1−log(τ)G(x)],τ>0,x∈R. | (1.2) |
Many authors used the CDF (1.1) and PDF (1.2) to get new generalizations and new sub-models of the Gull alpha power (GAP) family of distributions as the exponentiated generalized Gull alpha power family of distributions [39], Gull alpha power Ampadu family of distributions [12], Kumaraswamy-Gull alpha power Rayleigh distribution [42], and exponentiated Gull alpha power exponential distribution [38].
The exponentiated exponential (EE) distribution has been demonstrated to be useful in a variety of applications such as life testing, survival analysis, and dependability. This distribution, which is a particular case of the exponentiated Weibull distribution [44,45], was studied in [29]. The CDF and PDF of the EE distribution with scale parameter a and shape parameter b are provided via
G(x;a,b)=(1−e−ax)b,x,a,b>0 | (1.3) |
and
g(x;a,b)=abe−ax(1−e−ax)b−1,x,a,b>0. | (1.4) |
According to the flexibility of the EE distribution, many statisticians utilized it to create new generalizations of the EE distribution, like the beta EE distribution [19], Marshall-Olkin EE distribution [52], half-Cauchy EE distribution [22], odd Lomax EE distribution [54], and modified slashed EE distribution [14].
When investigations, including the lifespan of test units, must end before full observation, censored data emerges in real-world testing trials. For a number of reasons, including time constraints and financial considerations, censoring is a frequent and necessary routine action. The many forms of censorship have been well studied; types I and II censorship are the most common. A generalized censorship technique known as progressive censored schemes has lately garnered significant attention in the literature compared to standard censorship designs because of its effective use of available resources. The (PTIC) is one of several progressive censored Type-II systems. When a specific number of lifetime test units are consistently removed from the test at the end of each post-test interval, this pattern is seen. According to a study by Balakrishnan et al. [15], it can realistically predict the termination time and provides additional design freedom by permitting test units to be terminated during non-terminal time periods.
We now talk about accelerated life tests (ALTs), which are ways to get more data in a shorter amount of time by stressing out items more than they would under normal operating settings. Time and money can be significantly saved with such testing. Hakamipour [30] describes the step-stress accelerated life test (SSALT) as one form of ALT. Typically, the researcher starts with a stress level that is slightly over normal condition and gradually increases it at pre-specified time intervals during the test. The test goes on until the time limit is achieved and censoring takes place, or until the full sample of things fails. For more information about SSALT under PTIC, see [9,10].
The major goal of this paper is to add to the literature by introducing the Gull alpha power exponentiated exponential distribution (GAPEED) as a novel three-parameter model based on the GAP family of distributions. The subsequent points give adequate cause for examining it:
(1) The GAPEED is a very flexible model whose PDF can be asymmetric (decreasing, unimodal, and right-skewed).
(2) The hazard function (hrf) shape of the GAPEED includes increasing, upside-down and decreasing shapes.
(3) The GAPEED has a closed-form quantile function; it is easy to compute numerous properties and generate random numbers using it.
(4) The parameters of the GAPEED can be estimated utilizing eight different methods of estimation: The maximum likelihood (ML), Anderson-Darling (AD), right-tail Anderson-Darling (RTAD), left-tailed Anderson-Darling (LTAD), Cramér-von Mises (CVM), least-squares (LS), weighted least-squares (WLS), and maximum product of spacing (MPS).
(5) The importance and the flexibility of the GAPEED is discussed using three real datasets, and the GAPEED gives a better fit than well-known distributions such as the Topp-Leone modified Weibull (TLMW), Type II exponentiated half logistic power Lomax (TIIEHLPL), exponential Lomax (EL), Kumaraswamy Weibull (KW), generalized modified Weibull (GMW), Marshall- Olkin alpha power extended Weibull (MOAPEW), exponential Weibull (EW), exponentiated generalized alpha power exponential (EGAPEx), Kavya-Manoharan generalized exponential (KMGEx), exponentiated half logistic inverted Nadarajah- Haghighi (EHLINH), exponentiated exponential (ExEx), and odd Weibull inverse Topp-Leone (OWITL).
(6) We suggest utilizing the GAPEED model to create bivariate SSALTs under PTIC. The optimal test strategy for our suggested bivariate SSALT under PTIC is found by minimizing the asymptotic variance of the MLEs of the scale parameter's.
The remainder of this article is structured as follows: In Section 2, a new three-parameter model utilizing the EE distribution as the parent distribution in the GAP family is presented and discussed. Some important statistical features of the GAPEED are demonstrated in Section 3. Eight different estimation methods, ML, AD, CVM, MPS, LS, RTAD, WLS, and LTAD for the distribution parameters, are proposed in Section 4. In Section 5, we use a Monte Carlo technique to evaluate the quality of different estimators. To illustrate the importance of the GAPEED, we employed three real datasets in Section 6. In Section 7, the bivariate SSALT under the progressive type-I censoring (PTIC) model is discussed. Finally, the paper with concluding remarks.
The GAPEED can be formulated by inserting (1.3) and (1.4) into (1.1) and (1.2), and then the CDF of the new suggested model is defined as
F(x;a,b,τ)=(1−e−ax)bτ1−(1−e−ax)b,x>0,a,b,τ>0 | (2.1) |
and its PDF is defined as follows
f(x;a,b,τ)=abe−ax(1−e−ax)b−1τ1−(1−e−ax)b[1−log(τ)(1−e−ax)b]. | (2.2) |
The survival function, hazard rate function (hrf), reversed hrf, and cumulative hrf are provided as
s(x;a,b,τ)=1−(1−e−ax)bτ1−(1−e−ax)b, |
h(x;a,b,τ)=abe−ax(1−e−ax)b−1τ1−(1−e−ax)b[1−log(τ)(1−e−ax)b]1−(1−e−ax)bτ1−(1−e−ax)b, |
ς(x;a,b,τ)=ab[1−log(τ)(1−e−ax)b]eax−1 |
and
H(x;a,b,τ)=−log[1−(1−e−ax)bτ1−(1−e−ax)b]. |
Figure 1 shows the plots of the PDF and hrf for the GAPEED for different values of parameters. From Figure 1, we can note that the PDF of the GAPEED can be decreasing, unimodal, and right skewed but the hrf can be decreasing, increasing, and up-side-down.
The quantile function, defined as Q(p;a,b,τ)=F−1(p;a,b,τ),p∈(0, 1), is computed by inverting Eq (1.1) as
p=τG(x)τG(x). |
Then, we can rewrite the above equation as
−plog(τ)τ=−G(x)log(τ)e−G(x)log(τ). |
As a result, through the use of the negative Lambert W function, represented by W−1(.), we obtain the quantile function of the GAPEED as
Q(p;a,b,τ)=−1alog[1−(−W−1[−plog(τ)τ]log(τ))1b]. |
Specifically, by inserting p=0.25, 0.5, and 0.75, we obtain the first, second (median), and third quantiles. Furthermore, relying on the quantiles, Bowley's skewness (α1) and Moor's kurtosis (α2) are provided via
α1=Q(0.75;a,b,τ)−2Q(0.5;a,b,τ)+Q(0.25;a,b,τ)Q(0.75;a,b,τ)−Q(0.25;a,b,τ) |
and
α2=Q(0.875;a,b,τ)−Q(0.625;a,b,τ)+Q(0.375;a,b,τ)−Q(0.125;a,b,τ)Q(0.75;a,b,τ)−Q(0.25;a,b,τ), |
respectively. These metrics provide helpful details about the GAPEED skewness and kurtosis modeling capabilities and have the benefit of being specified for all parameter values. The plots of α1 and α2 for the GAPEED are given in Figure 2.
The rth ordinary moments are essential statistics for determining the measures of dispersion for any distribution. Assume that X∼ GAPEED (a,b,τ) for x>0, then the rth ordinary moments of X can computed via
μ′r=∫∞0xrf(x)dx=ab∫∞0xre−ax(1−e−ax)b−1τ1−(1−e−ax)b[1−log(τ)(1−e−ax)b]dx | (3.1) |
by using the power series
τm=∞∑i=0(log(τ))ii!mi. | (3.2) |
Inserting (3.2) into (3.1), then
μ′r=ab∞∑i=0(log(τ))ii!∫∞0xre−ax(1−e−ax)b−1[1−(1−e−ax)b]i[1−log(τ)(1−e−ax)b]dx. | (3.3) |
Employing the binomial expansion
(1−x)β=∞∑j=0(−1)j(βj)xj | (3.4) |
and inserting (3.4) into (3.3), we get
μ′r=ab∞∑i,j=0(−1)j(ij)(log(τ))ii!∫∞0xre−ax(1−e−ax)b(j+1)−1[1−log(τ)(1−e−ax)b]dx. | (3.5) |
We can rewrite the above Eq (3.5) as
μ′r=∞∑i,j=0πi,j∫∞0xr[e−ax(1−e−ax)b(j+1)−1−log(τ)e−ax(1−e−ax)b(j+2)−1]dx, | (3.6) |
where πi,j=ab(−1)j(ij)(log(τ))ii!. Again, using the binomial expansion (3.4) in (3.6), then the rth ordinary moments of the GAPEED are given by
μ′r=∞∑i,j,k=0πi,j,k∫∞0xre−a(k+1)xdx=∞∑i,j,k=0πi,j,kΓ(r+1)[a(k+1)]r+1, | (3.7) |
where πi,j,k=(−1)kπi,j[(b(j+1)−1k)−(b(j+2)−1k)log(τ)].
Table 1 shows some numerical values of μ′1, μ′2, μ′3, μ′4, variance (σ2), coefficient of variation (CV), skewness, and kurtosis. Also, some 3D plots of moments are provided in Figure 3.
Parameters | Measures | |||||||||
a | b | τ | μ′1 | μ′2 | μ′3 | μ′4 | σ2 | CV | skewness | kurtosis |
0.5 | 0.75 | 0.25 | 2.68979 | 12.4088 | 79.9101 | 662.52 | 5.17387 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 1.74385 | 6.75901 | 40.1156 | 319.514 | 3.71799 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 2.0773 | 7.90377 | 45.4087 | 353.528 | 3.5886 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 1.68603 | 5.38955 | 27.4263 | 198.4 | 2.54684 | 0.94653 | 5.75592 | 12.5055 | ||
0.75 | 0.75 | 0.25 | 1.79319 | 5.51503 | 23.6771 | 130.868 | 2.2995 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 1.16257 | 3.004 | 11.8861 | 63.1139 | 1.65244 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 1.38487 | 3.51279 | 13.4544 | 69.8326 | 1.59493 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 1.12402 | 2.39536 | 8.12631 | 39.1901 | 1.13193 | 0.94653 | 5.75592 | 12.5055 | ||
1.5 | 0.75 | 0.25 | 0.896596 | 1.37876 | 2.95963 | 8.17926 | 0.574874 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 0.581283 | 0.751001 | 1.48576 | 3.94462 | 0.41311 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 0.692433 | 0.878196 | 1.68181 | 4.36454 | 0.398733 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 0.562011 | 0.598839 | 1.01579 | 2.44938 | 0.282982 | 0.94653 | 5.75592 | 12.5055 | ||
2.5 | 0.75 | 0.25 | 0.537958 | 0.496353 | 0.63928 | 1.06003 | 0.206955 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 0.34877 | 0.27036 | 0.320925 | 0.511223 | 0.14872 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 0.41546 | 0.316151 | 0.36327 | 0.565644 | 0.143544 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 0.337207 | 0.215582 | 0.21941 | 0.31744 | 0.101874 | 0.94653 | 5.75592 | 12.5055 |
The moment-generating function for the GAPEED can be computed from (3.7) as
Mx(t)=∫∞0etxf(x)dx=∞∑i,j,k=0πi,j,k∫∞0xre−[a(k+1)−t]xdx=∞∑i,j,k=0πi,j,kΓ(r+1)[a(k+1)−t]r+1. |
The sth lower and upper incomplete moments of the GAPEED are computed as
ωs(t)=∞∑i,j,k=0πi,j,k∫t0xse−a(k+1)xdx=∞∑i,j,k=0πi,j,kγ(s+1,a(k+1)t)[a(k+1)]s+1, |
and
υs(t)=∞∑i,j,k=0πi,j,k∫∞txse−a(k+1)xdx=∞∑i,j,k=0πi,j,kΓ(s+1,a(k+1)t)[a(k+1)]s+1, |
where γ(.,.) and Γ(.,.) are the lower and upper incomplete gamma functions.
This section introduces traditional estimation methods specifically designed for estimating the parameters of the GAPEED. These methods are applied in a simulation setting to assess their effectiveness and performance. A total of eight estimation methods are considered for this purpose. Each method involves deriving an estimate by optimizing an objective function to either maximize or minimize a specific value. The estimation setting and the definitions of the functions to be optimized are provided in detail below.
Suppose we have a random sample of values, denoted as x1,x2,…,xn, drawn from a random variable that follows the GAPEED. In order to estimate the parameters of the GAPEED, we employ various estimation methods. The first method is maximum likelihood estimation (MLE), where the estimators are obtained by maximizing a specific function which is defined as
logL=n∑i=1log(τ1−(1−e−axi)b)+n∑i=1log(1−log(τ)(1−e−axi)b)+bn∑i=1log(1−e−axi)−n∑i=1log(eaxi−1)+nlog(ab). |
Next, we utilize Anderson-Darling estimation (ADE) [13] technique for estimating the GAPEED parameters. By considering an ordered sample of values, denoted as x(1),x(2),…,x(n), we minimize a certain function to derive the estimators, which is defined as
A=−n−1nn∑i=1(2i−1)[log(τ)(1−(1−e−ax(i))b)+blog(1−e−ax(i))+log(1−(1−e−ax(i))bτ1−(1−e−ax(i))b)]. |
Similarly, we employ the right-tail Anderson-Darling estimation (RADE) [13] by minimizing a specific function, defined as
R=n2−2n∑i=1(1−e−ax(i))bτ1−(1−e−ax(i))b−1nn∑i=1(2i−1)log(1−(1−e−ax(i))bτ1−(1−e−ax(i))b). |
Additionally, the left-tailed Anderson-Darling estimation (LTADE) [47] is utilized to estimate the GAPEED parameters. This estimation method involves minimizing a particular function to obtain the estimators and is defined as
L=−32n+2n∑i=1(1−e−ax(i))bτ1−(1−e−ax(i))b−1nn∑i=1(2i−1)[log(τ)(1−(1−e−ax(i))b)+blog(1−e−ax(i))]. |
Furthermore, we consider Cramér-von Mises estimation (CVME) [23], where the estimators are obtained by minimizing a specific function defined as
C=112n+n∑i=1[(1−e−ax(i))bτ1−(1−e−ax(i))b−2i−12n]2. |
Another estimation method employed is least-squares estimation (LSE) [58], which involves minimizing a certain function to derive the estimators. This function is defined as follows
V=n∑i=1[(1−e−ax(i))bτ1−(1−e−ax(i))b−in+1]2. |
Additionally, we employ weighted least-squares estimation (WLSE) [58] by minimizing a particular function, and it is defined as
W=n∑i=1(n+1)2(n+2)i(n−i+1)[(1−e−ax(i))bτ1−(1−e−ax(i))b−in+1]2. |
Lastly, the maximum product of spacing estimation (MPSE) [37] method is utilized, where the estimators are obtained by maximizing a specific function. This function is defined as
Υ=1n+1n+1∑i=1log(ϑi), |
where
ϑi=(1−e−ax(i))bτ1−(1−e−ax(i))b−(1−e−ax(i−1))bτ1−(1−e−ax(i−1))b. |
One frequently employed technique for creating confidence intervals (CIs) for parameters relies on the asymptotic normality of MLE and MPS. This method employs the Fisher information matrix, represented as I(θθ), where θθ=(τ,a,b), which is obtained from the second derivatives of the natural logarithm of the likelihood function or product spacing function, calculated at the estimated parameter values ^θθ=(ˆτ,ˆa,ˆb). The asymptotic variance-covariance matrix of the parameter vector θθ can be articulated as follows:
I(^θθ)=−[IˆaˆaIˆbˆaIˆbˆbIˆηˆaIˆηˆbIˆηˆη,]. | (4.1) |
The matrix representing the variances and covariances of the estimated parameters, identified as V(^θθ), is determined by taking the inverse of the Fisher information matrix, denoted as I−1(^θθ). To create CIs for the parameter vector θθ based on the MLE's asymptotic normality, one can calculate a 100(1−α)% confidence interval for each parameter using the following procedure:
To calculate the CI for a use this formula: ˆa±Z0.025√Vˆaˆa.
To calculate the CI for b use this formula: ˆb±Z0.025√Vˆbˆb.
To calculate the CI for η use this formula: ˆη±Z0.025√Vˆaˆa.
In this context, Z0.025 denotes the critical value from the standard normal distribution's right tail, with a probability of α2. The values Vˆaˆa, Vˆbˆb, and Vˆηˆη correspond to the diagonal components of the variance-covariance matrix V(^θθ).
In our comprehensive simulation study, we investigate the performance of our proposed model using various sample sizes: n=35, 70, 150, 300 and 600. To generate representative datasets, we employ the inversion of the CDF of our proposed model. For each sample size, we randomly generate datasets based on the following parameter values: θθ=(τ,a,b)={(τ=0.5,a=0.25,b=0.75),(τ=1.5,a=0.75,b=0.5), (τ=2,a=0.5,b=1.5),(τ=2,a=1.5,b=2),(τ=0.75,a=2,b=3),(τ=0.25,a=3,b=0.25)}. This process is repeated five thousand of times. By varying the sample sizes and incorporating diverse parameter combinations, our simulation study aims to comprehensively evaluate the performance of the proposed model across different data scenarios.
To thoroughly examine the effectiveness of the considered estimation methods, we employ a range of measures that comprehensively evaluate their performance. These measures serve as valuable benchmarks in assessing the quality of the estimators and provide insights into their accuracy, efficiency, and robustness. The following measures are employed to assess the effectiveness of the estimation methods [20,53,60]:
● Average of bias:
Bias=1nn∑m=1|^θθi−θθ|, |
where L represents the number of iterations and ^θθi is the considered estimate for θθ at the m-th iteration sample.
● Mean squared error:
MSE=1nn∑m=1(^θθ−θθ)2. |
● Mean relative error:
MRE=1nn∑m=1|^θθ−θθ|θθ. |
● Average absolute difference:
Dabs=1nkk∑m=1n∑j=1|F(xij;θθ)−F(xij;^θθ)|, |
where F(x;θθ)=F(x) and xij denotes the values obtained at the m-th iteration sample and j-th component of this sample.
● Maximum absolute difference
Dmax=1nn∑m=1maxj=1,…,n|F(xij;θθ)−F(xij;^θθ)|. |
● Average squared absolute error:
ASAE=1nn∑m=1|x(i)−ˆx(i)|x(L)−x(1), |
where x(i) are the ascending ordered observations. The results of simulating the proposed model parameters using different estimation techniques are presented in Tables 2–7. A graphical representation for some numerical values is presented in Figures 4 and 5. A comprehensive analysis of these tables reveals the following key observations:
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.32671{1} | 0.58371{5} | 0.56143{2} | 0.57133{3} | 0.60648{6} | 0.63277{8} | 0.5738{4} | 0.61215{7} |
ˆa | 0.04966{1} | 0.06013{4} | 0.0625{6} | 0.05958{3} | 0.06715{8} | 0.06343{7} | 0.05815{2} | 0.06028{5} | ||
ˆb | 0.24844{1} | 0.28129{4} | 0.28515{5} | 0.29203{6} | 0.27907{2} | 0.29342{7} | 0.28051{3} | 0.31435{8} | ||
MSE | ˆτ | 0.16299{1} | 0.59664{5} | 0.52583{2} | 0.58252{4} | 0.61607{6} | 0.721{7} | 0.55021{3} | 0.93333{8} | |
ˆa | 0.00411{1} | 0.00549{4} | 0.00611{6} | 0.0054{3} | 0.00663{7.5} | 0.00663{7.5} | 0.00519{2} | 0.00574{5} | ||
ˆb | 0.10323{1} | 0.11811{4} | 0.12803{6} | 0.11815{5} | 0.1178{3} | 0.14159{8} | 0.11156{2} | 0.14151{7} | ||
MRE | ˆτ | 0.65343{1} | 1.16742{5} | 1.12285{2} | 1.14267{3} | 1.21295{6} | 1.26554{8} | 1.1476{4} | 1.22429{7} | |
ˆa | 0.19865{1} | 0.24052{4} | 0.25{6} | 0.23833{3} | 0.2686{8} | 0.2537{7} | 0.23258{2} | 0.2411{5} | ||
ˆb | 0.33126{1} | 0.37506{4} | 0.3802{5} | 0.38937{6} | 0.37209{2} | 0.39123{7} | 0.37402{3} | 0.41913{8} | ||
Dabs | 0.04372{2} | 0.04281{1} | 0.04653{7} | 0.04411{3} | 0.04606{5} | 0.04624{6} | 0.0448{4} | 0.04683{8} | ||
Dmax | 0.07294{3} | 0.07168{2} | 0.07905{8} | 0.07157{1} | 0.0766{5} | 0.07807{6} | 0.07418{4} | 0.07819{7} | ||
ASAE | 0.02941{7} | 0.02686{2} | 0.02879{5} | 0.02748{4} | 0.02895{6} | 0.02682{1} | 0.02728{3} | 0.03173{8} | ||
∑Ranks | 21{1} | 44{3.5} | 60{5} | 44{3.5} | 64.5{6} | 79.5{7} | 36{2} | 83{8} | ||
70 | BIAS | ˆτ | 0.31314{1} | 0.47069{3} | 0.48998{5} | 0.49062{6} | 0.50913{7} | 0.54111{8} | 0.47654{4} | 0.46785{2} |
ˆa | 0.03421{1} | 0.04143{2} | 0.04746{6} | 0.04299{3} | 0.04804{7} | 0.04809{8} | 0.04356{4} | 0.04532{5} | ||
ˆb | 0.21631{1} | 0.2507{5} | 0.23911{2} | 0.27064{7} | 0.24898{3} | 0.24985{4} | 0.25229{6} | 0.2829{8} | ||
MSE | ˆτ | 0.1496{1} | 0.41058{4} | 0.43118{5} | 0.45507{7} | 0.44542{6} | 0.55159{8} | 0.40366{3} | 0.39192{2} | |
ˆa | 0.00191{1} | 0.00286{2} | 0.0034{6} | 0.00317{4} | 0.00368{8} | 0.00366{7} | 0.00308{3} | 0.00328{5} | ||
ˆb | 0.07529{1} | 0.08986{4} | 0.0849{2} | 0.10267{7} | 0.08698{3} | 0.09562{6} | 0.09{5} | 0.11517{8} | ||
MRE | ˆτ | 0.62627{1} | 0.94139{3} | 0.97995{5} | 0.98124{6} | 1.01826{7} | 1.08221{8} | 0.95309{4} | 0.93571{2} | |
ˆa | 0.13684{1} | 0.16572{2} | 0.18984{6} | 0.17197{3} | 0.19217{7} | 0.19238{8} | 0.17425{4} | 0.18128{5} | ||
ˆb | 0.28842{1} | 0.33426{5} | 0.31881{2} | 0.36085{7} | 0.33197{3} | 0.33314{4} | 0.33638{6} | 0.3772{8} | ||
Dabs | 0.03037{1} | 0.03108{3} | 0.03275{8} | 0.03089{2} | 0.03226{5} | 0.03245{6} | 0.03186{4} | 0.03262{7} | ||
Dmax | 0.05103{2} | 0.05227{3} | 0.05581{8} | 0.05055{1} | 0.05432{5} | 0.05561{7} | 0.0531{4} | 0.05469{6} | ||
ASAE | 0.01852{7} | 0.01764{3} | 0.01828{5} | 0.01771{4} | 0.0183{6} | 0.01677{1} | 0.01726{2} | 0.02027{8} | ||
∑Ranks | 19{1} | 39{2} | 60{5} | 57{4} | 67{7} | 75{8} | 49{3} | 66{6} | ||
150 | BIAS | ˆτ | 0.27897{1} | 0.33896{2} | 0.4218{7} | 0.37504{5} | 0.40603{6} | 0.43235{8} | 0.36118{4} | 0.33952{3} |
ˆa | 0.02475{1} | 0.02809{2} | 0.03377{8} | 0.02817{3} | 0.03358{7} | 0.03171{6} | 0.0292{4} | 0.03094{5} | ||
ˆb | 0.17834{1} | 0.19969{2} | 0.22885{6} | 0.23606{8} | 0.21943{4} | 0.23111{7} | 0.20646{3} | 0.22692{5} | ||
MSE | ˆτ | 0.12003{1} | 0.21771{3} | 0.32049{7} | 0.26977{5} | 0.2889{6} | 0.35196{8} | 0.2381{4} | 0.18081{2} | |
ˆa | 0.00097{1} | 0.00137{2} | 0.00186{7} | 0.00155{5} | 0.00189{8} | 0.00175{6} | 0.00149{3} | 0.00151{4} | ||
ˆb | 0.05034{1} | 0.05811{2} | 0.07333{5} | 0.08301{8} | 0.06651{4} | 0.07845{7} | 0.06122{3} | 0.07669{6} | ||
MRE | ˆτ | 0.55795{1} | 0.67793{2} | 0.84359{7} | 0.75008{5} | 0.81206{6} | 0.86469{8} | 0.72235{4} | 0.67904{3} | |
ˆa | 0.09901{1} | 0.11236{2} | 0.1351{8} | 0.11269{3} | 0.13434{7} | 0.12685{6} | 0.11682{4} | 0.12378{5} | ||
ˆb | 0.23779{1} | 0.26626{2} | 0.30514{6} | 0.31475{8} | 0.29257{4} | 0.30814{7} | 0.27529{3} | 0.30257{5} | ||
Dabs | 0.02145{2} | 0.02295{7} | 0.0217{3} | 0.02129{1} | 0.02288{6} | 0.023{8} | 0.02213{4} | 0.0225{5} | ||
Dmax | 0.03601{2} | 0.03845{6} | 0.03771{4} | 0.03525{1} | 0.03891{7} | 0.03973{8} | 0.03688{3} | 0.03798{5} | ||
ASAE | 0.011{5} | 0.01062{3} | 0.01139{6} | 0.01092{4} | 0.01146{7} | 0.01039{1} | 0.01045{2} | 0.01269{8} | ||
∑Ranks | 18{1} | 35{2} | 74{7} | 56{4.5} | 72{6} | 80{8} | 41{3} | 56{4.5} | ||
300 | BIAS | ˆτ | 0.20018{1} | 0.243{4} | 0.29528{6} | 0.23781{3} | 0.31369{7} | 0.33876{8} | 0.23778{2} | 0.25695{5} |
ˆa | 0.01707{1} | 0.01972{4} | 0.02215{6} | 0.01893{3} | 0.02216{7} | 0.02177{5} | 0.01829{2} | 0.02228{8} | ||
ˆb | 0.13506{1} | 0.15636{3} | 0.18002{6} | 0.17262{5} | 0.19427{7} | 0.20028{8} | 0.15561{2} | 0.16985{4} | ||
MSE | ˆτ | 0.0643{1} | 0.1019{4} | 0.14664{6} | 0.08922{2} | 0.16416{7} | 0.21518{8} | 0.08995{3} | 0.10932{5} | |
ˆa | 0.00047{1} | 0.00066{4} | 0.00082{6} | 0.00056{2.5} | 0.00088{8} | 0.00087{7} | 0.00056{2.5} | 0.00081{5} | ||
ˆb | 0.03228{1} | 0.03756{3} | 0.0464{4} | 0.05353{7} | 0.05263{6} | 0.05765{8} | 0.03636{2} | 0.04878{5} | ||
MRE | ˆτ | 0.40037{1} | 0.486{4} | 0.59055{6} | 0.47561{3} | 0.62739{7} | 0.67751{8} | 0.47557{2} | 0.5139{5} | |
ˆa | 0.06829{1} | 0.07887{4} | 0.08859{6} | 0.0757{3} | 0.08866{7} | 0.0871{5} | 0.07315{2} | 0.08912{8} | ||
ˆb | 0.18008{1} | 0.20848{3} | 0.24002{6} | 0.23017{5} | 0.25903{7} | 0.26704{8} | 0.20748{2} | 0.22646{4} | ||
Dabs | 0.01493{1} | 0.01579{5} | 0.0158{6} | 0.0154{3} | 0.01595{7} | 0.01566{4} | 0.01501{2} | 0.01623{8} | ||
Dmax | 0.02495{1} | 0.02657{4} | 0.0273{6} | 0.02576{3} | 0.02745{7} | 0.02722{5} | 0.02546{2} | 0.02772{8} | ||
ASAE | 0.00711{5} | 0.00685{2} | 0.00726{6} | 0.007{4} | 0.00737{7} | 0.0066{1} | 0.00688{3} | 0.008{8} | ||
∑Ranks | 16{1} | 44{4} | 70{5} | 43.5{3} | 84{8} | 75{7} | 26.5{2} | 73{6} | ||
600 | BIAS | ˆτ | 0.14883{1} | 0.18347{4} | 0.22873{7} | 0.16341{2} | 0.2235{6} | 0.23795{8} | 0.17744{3} | 0.18749{5} |
ˆa | 0.01222{1} | 0.01372{4} | 0.01577{7} | 0.01259{2} | 0.01528{6} | 0.01437{5} | 0.01333{3} | 0.01579{8} | ||
ˆb | 0.09866{1} | 0.12057{3} | 0.14941{7} | 0.12377{5} | 0.14754{6} | 0.15886{8} | 0.11439{2} | 0.12134{4} | ||
MSE | ˆτ | 0.03594{1} | 0.05294{4} | 0.07897{7} | 0.04896{2} | 0.07454{6} | 0.08434{8} | 0.04983{3} | 0.05618{5} | |
ˆa | 0.00024{1} | 3e−04{4} | 0.00039{7} | 0.00025{2} | 0.00038{6} | 0.00033{5} | 0.00028{3} | 4e−04{8} | ||
ˆb | 0.01685{1} | 0.02314{3} | 0.03354{7} | 0.03316{6} | 0.03195{5} | 0.03586{8} | 0.02149{2} | 0.02667{4} | ||
MRE | ˆτ | 0.29767{1} | 0.36695{4} | 0.45746{7} | 0.32682{2} | 0.447{6} | 0.47591{8} | 0.35489{3} | 0.37498{5} | |
ˆa | 0.04889{1} | 0.05487{4} | 0.06308{7} | 0.05037{2} | 0.0611{6} | 0.05747{5} | 0.05332{3} | 0.06316{8} | ||
ˆb | 0.13154{1} | 0.16077{3} | 0.19922{7} | 0.16503{5} | 0.19672{6} | 0.21182{8} | 0.15252{2} | 0.16179{4} | ||
Dabs | 0.0111{4.5} | 0.01086{2} | 0.01153{8} | 0.01074{1} | 0.01151{7} | 0.0111{4.5} | 0.011{3} | 0.01132{6} | ||
Dmax | 0.01861{3} | 0.01858{2} | 0.02{8} | 0.01805{1} | 0.01977{7} | 0.01944{5} | 0.01862{4} | 0.01945{6} | ||
ASAE | 0.00463{5} | 0.00449{2} | 0.00477{7} | 0.00458{4} | 0.00468{6} | 0.00423{1} | 0.00453{3} | 0.0053{8} | ||
∑Ranks | 21.5{1} | 42{4} | 85{8} | 34{2.5} | 72{6} | 72.5{7} | 34{2.5} | 71{5} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.52028{1} | 0.68928{3} | 0.70994{5} | 0.69622{4} | 0.75178{7} | 0.67815{2} | 0.72398{6} | 1.13877{8} |
ˆa | 0.31117{5} | 0.30596{4} | 0.34262{7} | 0.29874{2} | 0.32249{6} | 0.29648{1} | 0.30057{3} | 0.40126{8} | ||
ˆb | 0.10184{1} | 0.12191{2} | 0.12619{4} | 0.12737{5} | 0.14134{8} | 0.12264{3} | 0.13027{7} | 0.12801{6} | ||
MSE | ˆτ | 0.39328{1} | 0.62488{3} | 0.63359{4} | 0.64832{5} | 0.70817{7} | 0.59038{2} | 0.6678{6} | 5.81642{8} | |
ˆa | 0.19077{6} | 0.16766{4} | 0.21757{7} | 0.13867{1} | 0.1814{5} | 0.15924{3} | 0.14761{2} | 0.28201{8} | ||
ˆb | 0.01765{1} | 0.02526{3} | 0.02541{4} | 0.02837{7} | 0.03057{8} | 0.02415{2} | 0.02725{5} | 0.02764{6} | ||
MRE | ˆτ | 0.34685{1} | 0.45952{3} | 0.47329{5} | 0.46415{4} | 0.50118{7} | 0.4521{2} | 0.48266{6} | 0.75918{8} | |
ˆa | 0.41489{5} | 0.40795{4} | 0.45682{7} | 0.39832{2} | 0.42998{6} | 0.39531{1} | 0.40076{3} | 0.53502{8} | ||
ˆb | 0.20368{1} | 0.24381{2} | 0.25237{4} | 0.25474{5} | 0.28267{8} | 0.24528{3} | 0.26055{7} | 0.25601{6} | ||
Dabs | 0.04223{1} | 0.04403{2} | 0.04672{8} | 0.04455{3} | 0.04648{7} | 0.04513{4} | 0.04515{5} | 0.04614{6} | ||
Dmax | 0.07079{1} | 0.07367{3} | 0.07922{8} | 0.07196{2} | 0.07766{6} | 0.07539{5} | 0.07491{4} | 0.07795{7} | ||
ASAE | 0.02942{7} | 0.02673{4} | 0.02904{5} | 0.02425{1} | 0.02924{6} | 0.02505{2} | 0.02572{3} | 0.03359{8} | ||
∑Ranks | 31{2} | 37{3} | 68{6} | 41{4} | 81{7} | 30{1} | 57{5} | 87{8} | ||
70 | BIAS | ˆτ | 0.44843{1} | 0.55647{2} | 0.60703{6} | 0.59899{5} | 0.61789{7} | 0.59399{4} | 0.5885{3} | 0.81136{8} |
ˆa | 0.21823{1} | 0.23547{2} | 0.28101{7} | 0.24595{4} | 0.27126{6} | 0.24022{3} | 0.25611{5} | 0.34138{8} | ||
ˆb | 0.07119{1} | 0.07899{2} | 0.09493{7} | 0.09127{4} | 0.09464{6} | 0.09441{5} | 0.08918{3} | 0.09618{8} | ||
MSE | ˆτ | 0.29594{1} | 0.41655{2} | 0.47968{5} | 0.50918{7} | 0.49378{6} | 0.47083{4} | 0.46093{3} | 1.11606{8} | |
ˆa | 0.08284{1} | 0.08655{2} | 0.13227{7} | 0.08818{3} | 0.12046{6} | 0.09121{4} | 0.10373{5} | 0.1922{8} | ||
ˆb | 0.00891{1} | 0.01107{2} | 0.01553{5.5} | 0.01731{8} | 0.01553{5.5} | 0.01424{4} | 0.01391{3} | 0.01668{7} | ||
MRE | ˆτ | 0.29895{1} | 0.37098{2} | 0.40469{6} | 0.39933{5} | 0.41193{7} | 0.39599{4} | 0.39233{3} | 0.5409{8} | |
ˆa | 0.29097{1} | 0.31396{2} | 0.37468{7} | 0.32794{4} | 0.36168{6} | 0.32029{3} | 0.34148{5} | 0.45517{8} | ||
ˆb | 0.14238{1} | 0.15797{2} | 0.18985{7} | 0.18254{4} | 0.18928{6} | 0.18881{5} | 0.17837{3} | 0.19237{8} | ||
Dabs | 0.03152{2.5} | 0.03098{1} | 0.03327{6} | 0.03152{2.5} | 0.03365{7} | 0.03254{5} | 0.0324{4} | 0.03395{8} | ||
Dmax | 0.05225{3} | 0.05176{1} | 0.0565{6} | 0.05216{2} | 0.05677{7} | 0.05497{5} | 0.05425{4} | 0.05832{8} | ||
ASAE | 0.01684{5} | 0.0164{4} | 0.01827{7} | 0.01516{2} | 0.01819{6} | 0.01497{1} | 0.01597{3} | 0.02063{8} | ||
∑Ranks | 19.5{1} | 24{2} | 76.5{7} | 50.5{5} | 75.5{6} | 47{4} | 44{3} | 95{8} | ||
150 | BIAS | ˆτ | 0.35036{1} | 0.41902{2} | 0.48817{6} | 0.48135{5} | 0.50235{7} | 0.47052{4} | 0.45634{3} | 0.61217{8} |
ˆa | 0.15767{1} | 0.18619{2} | 0.21414{6} | 0.20254{5} | 0.22223{7} | 0.18666{3} | 0.18946{4} | 0.26043{8} | ||
ˆb | 0.04827{1} | 0.05232{3} | 0.06485{7} | 0.05135{2} | 0.06782{8} | 0.06386{6} | 0.05683{4} | 0.06102{5} | ||
MSE | ˆτ | 0.18777{1} | 0.25158{2} | 0.32527{5} | 0.352{7} | 0.34253{6} | 0.31557{4} | 0.28732{3} | 0.5778{8} | |
ˆa | 0.04089{1} | 0.05247{3} | 0.07072{6} | 0.06092{5} | 0.07443{7} | 0.05186{2} | 0.05349{4} | 0.10477{8} | ||
ˆb | 0.00404{1} | 0.00479{2} | 0.00774{7} | 0.00548{3} | 0.00827{8} | 0.00696{6} | 0.00551{4} | 0.00665{5} | ||
MRE | ˆτ | 0.23357{1} | 0.27934{2} | 0.32544{6} | 0.3209{5} | 0.3349{7} | 0.31368{4} | 0.30422{3} | 0.40811{8} | |
ˆa | 0.21023{1} | 0.24825{2} | 0.28552{6} | 0.27005{5} | 0.29631{7} | 0.24888{3} | 0.25261{4} | 0.34723{8} | ||
ˆb | 0.09655{1} | 0.10464{3} | 0.12969{7} | 0.1027{2} | 0.13565{8} | 0.12772{6} | 0.11365{4} | 0.12204{5} | ||
Dabs | 0.02102{1} | 0.02184{3} | 0.02231{5} | 0.02208{4} | 0.02368{8} | 0.02251{6} | 0.02177{2} | 0.02282{7} | ||
Dmax | 0.03532{1} | 0.03657{2} | 0.03853{6} | 0.0366{3} | 0.04015{8} | 0.03831{5} | 0.03668{4} | 0.03957{7} | ||
ASAE | 0.00991{5} | 0.0094{3} | 0.0108{7} | 0.00918{2} | 0.01075{6} | 0.00871{1} | 0.00976{4} | 0.01271{8} | ||
∑Ranks | 16{1} | 29{2} | 74{6} | 48{4} | 87{8} | 50{5} | 43{3} | 85{7} | ||
300 | BIAS | ˆτ | 0.26655{1} | 0.33434{3} | 0.37325{6} | 0.34711{4} | 0.39467{7} | 0.36499{5} | 0.33138{2} | 0.48508{8} |
ˆa | 0.12193{1} | 0.14744{4} | 0.16883{6} | 0.15015{5} | 0.17776{7} | 0.14515{2} | 0.14696{3} | 0.21805{8} | ||
ˆb | 0.03505{1} | 0.03905{4} | 0.04169{5} | 0.03599{2} | 0.04485{7} | 0.04629{8} | 0.03769{3} | 0.04173{6} | ||
MSE | ˆτ | 0.11494{1} | 0.16891{3} | 0.19839{4} | 0.22068{7} | 0.21592{6} | 0.20154{5} | 0.16587{2} | 0.37566{8} | |
ˆa | 0.0244{1} | 0.03273{4} | 0.0429{6} | 0.03661{5} | 0.04653{7} | 0.03141{2} | 0.03249{3} | 0.07079{8} | ||
ˆb | 0.00192{1} | 0.00236{4} | 0.00295{6} | 0.00211{2} | 0.00333{7} | 0.00349{8} | 0.00226{3} | 0.00285{5} | ||
MRE | ˆτ | 0.1777{1} | 0.22289{3} | 0.24883{6} | 0.23141{4} | 0.26311{7} | 0.24333{5} | 0.22092{2} | 0.32339{8} | |
ˆa | 0.16257{1} | 0.19658{4} | 0.2251{6} | 0.2002{5} | 0.23701{7} | 0.19353{2} | 0.19595{3} | 0.29074{8} | ||
ˆb | 0.0701{1} | 0.07811{4} | 0.08338{5} | 0.07198{2} | 0.08971{7} | 0.09259{8} | 0.07539{3} | 0.08345{6} | ||
Dabs | 0.0149{1} | 0.01559{4} | 0.0158{5} | 0.01556{3} | 0.01608{7} | 0.01621{8} | 0.01505{2} | 0.01595{6} | ||
Dmax | 0.02507{1} | 0.02657{4} | 0.02735{5} | 0.02614{3} | 0.02778{7} | 0.02768{6} | 0.02561{2} | 0.02806{8} | ||
ASAE | 0.00607{5} | 0.00598{4} | 0.0069{7} | 0.00571{2} | 0.00682{6} | 0.00559{1} | 0.00593{3} | 0.00804{8} | ||
∑Ranks | 16{1} | 45{4} | 67{6} | 44{3} | 82{7} | 60{5} | 31{2} | 87{8} | ||
600 | BIAS | ˆτ | 0.19544{1} | 0.23541{3} | 0.30543{6} | 0.22954{2} | 0.30719{7} | 0.2498{5} | 0.24212{4} | 0.36224{8} |
ˆa | 0.08322{1} | 0.10415{4} | 0.13813{6} | 0.10194{2} | 0.13953{7} | 0.1021{3} | 0.10419{5} | 0.1712{8} | ||
ˆb | 0.02563{2} | 0.02682{3} | 0.03267{8} | 0.02544{1} | 0.03225{7} | 0.03151{6} | 0.0275{4} | 0.02908{5} | ||
MSE | ˆτ | 0.06188{1} | 0.09047{2} | 0.14058{7} | 0.12175{5} | 0.13924{6} | 0.10305{4} | 0.09293{3} | 0.21849{8} | |
ˆa | 0.01115{1} | 0.01707{3} | 0.02836{6} | 0.01967{5} | 0.02862{7} | 0.01637{2} | 0.01746{4} | 0.04409{8} | ||
ˆb | 0.00105{2} | 0.00116{3} | 0.00174{8} | 0.00103{1} | 0.00162{7} | 0.00159{6} | 0.00118{4} | 0.00135{5} | ||
MRE | ˆτ | 0.13029{1} | 0.15694{3} | 0.20362{6} | 0.15302{2} | 0.20479{7} | 0.16653{5} | 0.16141{4} | 0.24149{8} | |
ˆa | 0.11096{1} | 0.13886{4} | 0.18417{6} | 0.13592{2} | 0.18604{7} | 0.13613{3} | 0.13892{5} | 0.22827{8} | ||
ˆb | 0.05126{2} | 0.05365{3} | 0.06534{8} | 0.05088{1} | 0.06449{7} | 0.06302{6} | 0.055{4} | 0.05817{5} | ||
Dabs | 0.01057{1} | 0.01082{3} | 0.01131{7} | 0.0107{2} | 0.01154{8} | 0.01116{5} | 0.01097{4} | 0.01124{6} | ||
Dmax | 0.01792{1} | 0.01849{3} | 0.01965{6} | 0.01801{2} | 0.02001{8} | 0.01931{5} | 0.01869{4} | 0.01979{7} | ||
ASAE | 0.00367{3} | 0.00378{5} | 0.00448{7} | 0.00364{2} | 0.00445{6} | 0.0035{1} | 0.00376{4} | 0.0053{8} | ||
∑Ranks | 17{1} | 39{3} | 81{6} | 27{2} | 84{7.5} | 51{5} | 49{4} | 84{7.5} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.53211{2} | 0.62026{4} | 0.75084{7} | 0.47271{1} | 0.63274{6} | 0.62076{5} | 0.55091{3} | 0.88774{8} |
ˆa | 0.17954{7} | 0.14419{3} | 0.15786{5} | 0.13798{1} | 0.16003{6} | 0.14116{2} | 0.14743{4} | 0.20721{8} | ||
ˆb | 0.29362{3} | 0.2843{2} | 0.33553{5} | 0.27643{1} | 0.34292{7} | 0.34139{6} | 0.29688{4} | 0.35737{8} | ||
MSE | ˆτ | 0.48119{1} | 3.73487{7} | 5.47953{8} | 0.75293{2} | 1.38498{5} | 1.30859{4} | 0.81897{3} | 1.74615{6} | |
ˆa | 0.05597{7} | 0.03354{3} | 0.04117{5} | 0.02854{1} | 0.04153{6} | 0.03226{2} | 0.03661{4} | 0.06468{8} | ||
ˆb | 0.15312{3} | 0.13705{2} | 0.20378{7} | 0.11466{1} | 0.19627{6} | 0.19503{5} | 0.16026{4} | 0.25206{8} | ||
MRE | ˆτ | 0.26605{2} | 0.31013{4} | 0.37542{7} | 0.23636{1} | 0.31637{6} | 0.31038{5} | 0.27546{3} | 0.44387{8} | |
ˆa | 0.35909{7} | 0.28838{3} | 0.31573{5} | 0.27597{1} | 0.32006{6} | 0.28232{2} | 0.29486{4} | 0.41442{8} | ||
ˆb | 0.19574{3} | 0.18953{2} | 0.22369{5} | 0.18428{1} | 0.22862{7} | 0.2276{6} | 0.19792{4} | 0.23825{8} | ||
Dabs | 0.04307{1} | 0.0449{4} | 0.04669{7} | 0.04388{2} | 0.04491{5} | 0.04571{6} | 0.04461{3} | 0.04673{8} | ||
Dmax | 0.07024{1} | 0.07378{3} | 0.07974{7} | 0.07148{2} | 0.07603{5} | 0.07639{6} | 0.07422{4} | 0.08325{8} | ||
ASAE | 0.03049{7} | 0.02701{3} | 0.02932{6} | 0.02714{4} | 0.02773{5} | 0.0261{1} | 0.02631{2} | 0.03283{8} | ||
∑Ranks | 44{4} | 40{2} | 74{7} | 18{1} | 70{6} | 50{5} | 42{3} | 94{8} | ||
70 | BIAS | ˆτ | 0.51021{6} | 0.46181{3} | 0.55823{7} | 0.32583{1} | 0.50722{5} | 0.4729{4} | 0.44219{2} | 0.72147{8} |
ˆa | 0.14444{7} | 0.11709{3} | 0.12932{6} | 0.10479{1} | 0.12807{5} | 0.10663{2} | 0.11767{4} | 0.16304{8} | ||
ˆb | 0.21298{4} | 0.19057{1} | 0.22769{7} | 0.19871{2} | 0.22471{5} | 0.22894{8} | 0.20491{3} | 0.22533{6} | ||
MSE | ˆτ | 0.42994{5} | 0.35419{2} | 0.59732{7} | 0.22679{1} | 0.51238{6} | 0.42894{4} | 0.35475{3} | 0.92497{8} | |
ˆa | 0.03539{7} | 0.02113{4} | 0.02531{5} | 0.01663{1} | 0.02539{6} | 0.01784{2} | 0.02057{3} | 0.0383{8} | ||
ˆb | 0.07882{5} | 0.06102{2} | 0.08373{6} | 0.05998{1} | 0.07835{4} | 0.08602{7} | 0.07017{3} | 0.08803{8} | ||
MRE | ˆτ | 0.25511{6} | 0.2309{3} | 0.27912{7} | 0.16292{1} | 0.25361{5} | 0.23645{4} | 0.2211{2} | 0.36073{8} | |
ˆa | 0.28889{7} | 0.23418{3} | 0.25864{6} | 0.20958{1} | 0.25613{5} | 0.21326{2} | 0.23534{4} | 0.32609{8} | ||
ˆb | 0.14198{4} | 0.12705{1} | 0.15179{7} | 0.13248{2} | 0.14981{5} | 0.15263{8} | 0.13661{3} | 0.15022{6} | ||
Dabs | 0.03036{2} | 0.03145{4} | 0.03273{6} | 0.02999{1} | 0.03228{5} | 0.03339{8} | 0.03132{3} | 0.03284{7} | ||
Dmax | 0.05009{2} | 0.05184{3} | 0.05627{7} | 0.04922{1} | 0.05469{5} | 0.05545{6} | 0.05225{4} | 0.0576{8} | ||
ASAE | 0.01841{6} | 0.01732{3} | 0.0189{7} | 0.01759{4} | 0.01822{5} | 0.01671{1} | 0.01717{2} | 0.0212{8} | ||
∑Ranks | 61{5.5} | 32{2} | 78{7} | 17{1} | 61{5.5} | 56{4} | 36{3} | 91{8} | ||
150 | BIAS | ˆτ | 0.43313{5} | 0.38216{3} | 0.4568{6} | 0.2421{1} | 0.46034{7} | 0.38646{4} | 0.36914{2} | 0.55156{8} |
ˆa | 0.11342{7} | 0.09493{4} | 0.10673{5} | 0.07841{1} | 0.10869{6} | 0.09064{2} | 0.09329{3} | 0.13012{8} | ||
ˆb | 0.13544{3} | 0.13508{2} | 0.15218{6} | 0.12937{1} | 0.15998{8} | 0.14971{5} | 0.13655{4} | 0.15561{7} | ||
MSE | ˆτ | 0.3042{5} | 0.23781{3} | 0.35945{6} | 0.11844{1} | 0.37455{7} | 0.26349{4} | 0.23662{2} | 0.47541{8} | |
ˆa | 0.02075{7} | 0.01375{4} | 0.01716{5} | 0.00947{1} | 0.01836{6} | 0.013{2} | 0.01327{3} | 0.02369{8} | ||
ˆb | 0.03131{4} | 0.02853{2} | 0.03592{5} | 0.02519{1} | 0.03888{8} | 0.03726{7} | 0.03049{3} | 0.03632{6} | ||
MRE | ˆτ | 0.21657{5} | 0.19108{3} | 0.2284{6} | 0.12105{1} | 0.23017{7} | 0.19323{4} | 0.18457{2} | 0.27578{8} | |
ˆa | 0.22685{7} | 0.18986{4} | 0.21346{5} | 0.15681{1} | 0.21737{6} | 0.18128{2} | 0.18657{3} | 0.26023{8} | ||
ˆb | 0.0903{3} | 0.09005{2} | 0.10145{6} | 0.08625{1} | 0.10665{8} | 0.09981{5} | 0.09104{4} | 0.10374{7} | ||
Dabs | 0.02029{1} | 0.02158{4} | 0.02244{8} | 0.02061{2} | 0.02192{6} | 0.02201{7} | 0.0213{3} | 0.02178{5} | ||
Dmax | 0.0336{1} | 0.0357{4} | 0.0381{8} | 0.03368{2} | 0.03725{6} | 0.03676{5} | 0.03557{3} | 0.03761{7} | ||
ASAE | 0.01084{5} | 0.01034{2} | 0.01173{7} | 0.01071{4} | 0.01128{6} | 0.00996{1} | 0.01055{3} | 0.01309{8} | ||
∑Ranks | 53{5} | 37{3} | 73{6} | 17{1} | 81{7} | 48{4} | 35{2} | 88{8} | ||
300 | BIAS | ˆτ | 0.38726{6} | 0.33359{2} | 0.38992{7} | 0.18992{1} | 0.37128{5} | 0.35983{4} | 0.34388{3} | 0.46204{8} |
ˆa | 0.09738{7} | 0.0794{2} | 0.09391{6} | 0.06178{1} | 0.08945{5} | 0.08286{3} | 0.08352{4} | 0.11042{8} | ||
ˆb | 0.09272{1} | 0.10093{4} | 0.11688{7} | 0.09282{2} | 0.11978{8} | 0.10638{5} | 0.10064{3} | 0.11367{6} | ||
MSE | ˆτ | 0.23046{6} | 0.1782{2} | 0.24446{7} | 0.08426{1} | 0.2303{5} | 0.21335{4} | 0.19028{3} | 0.31359{8} | |
ˆa | 0.01471{7} | 0.00985{2} | 0.01326{6} | 0.0063{1} | 0.01233{5} | 0.01072{4} | 0.01051{3} | 0.01694{8} | ||
ˆb | 0.01347{2} | 0.0154{3} | 0.02142{7} | 0.0127{1} | 0.02166{8} | 0.01781{5} | 0.01588{4} | 0.02005{6} | ||
MRE | ˆτ | 0.19363{6} | 0.16679{2} | 0.19496{7} | 0.09496{1} | 0.18564{5} | 0.17992{4} | 0.17194{3} | 0.23102{8} | |
ˆa | 0.19476{7} | 0.1588{2} | 0.18781{6} | 0.12356{1} | 0.17891{5} | 0.16573{3} | 0.16703{4} | 0.22084{8} | ||
ˆb | 0.06181{1} | 0.06728{4} | 0.07792{7} | 0.06188{2} | 0.07985{8} | 0.07092{5} | 0.0671{3} | 0.07578{6} | ||
Dabs | 0.01458{2} | 0.01466{3} | 0.01637{8} | 0.01442{1} | 0.01585{5} | 0.01586{6} | 0.01526{4} | 0.01617{7} | ||
Dmax | 0.02429{2} | 0.02455{3} | 0.02772{8} | 0.0237{1} | 0.02703{6} | 0.02665{5} | 0.0255{4} | 0.02769{7} | ||
ASAE | 0.00677{5} | 0.0067{3} | 0.00736{7} | 0.00671{4} | 0.00725{6} | 0.00629{1} | 0.00664{2} | 0.00836{8} | ||
∑Ranks | 52{5} | 32{2} | 83{7} | 17{1} | 71{6} | 49{4} | 40{3} | 88{8} | ||
600 | BIAS | ˆτ | 0.33439{6} | 0.29901{2} | 0.33425{5} | 0.12434{1} | 0.34928{7} | 0.307{3} | 0.31014{4} | 0.38531{8} |
ˆa | 0.08166{6} | 0.0727{3} | 0.07959{5} | 0.04277{1} | 0.08482{7} | 0.07253{2} | 0.0737{4} | 0.09209{8} | ||
ˆb | 0.0686{2} | 0.07273{4} | 0.0851{7} | 0.06697{1} | 0.08853{8} | 0.07975{5} | 0.07184{3} | 0.08318{6} | ||
MSE | ˆτ | 0.16634{5} | 0.13955{2} | 0.17655{6} | 0.05129{1} | 0.18951{7} | 0.15596{4} | 0.1493{3} | 0.20575{8} | |
ˆa | 0.01011{6} | 0.00794{2} | 0.00965{5} | 0.0035{1} | 0.01076{7} | 0.00839{4} | 0.00828{3} | 0.01148{8} | ||
ˆb | 0.00734{2} | 0.00804{3} | 0.01118{7} | 0.00685{1} | 0.01207{8} | 0.00953{5} | 0.00809{4} | 0.01058{6} | ||
MRE | ˆτ | 0.1672{6} | 0.14951{2} | 0.16712{5} | 0.06217{1} | 0.17464{7} | 0.1535{3} | 0.15507{4} | 0.19266{8} | |
ˆa | 0.16331{6} | 0.1454{3} | 0.15918{5} | 0.08554{1} | 0.16963{7} | 0.14506{2} | 0.14741{4} | 0.18418{8} | ||
ˆb | 0.04573{2} | 0.04849{4} | 0.05674{7} | 0.04465{1} | 0.05902{8} | 0.05317{5} | 0.0479{3} | 0.05545{6} | ||
Dabs | 0.01052{1} | 0.01059{3} | 0.01098{5} | 0.01057{2} | 0.01117{7} | 0.0113{8} | 0.01068{4} | 0.01106{6} | ||
Dmax | 0.01751{2} | 0.01784{3} | 0.01888{5} | 0.01736{1} | 0.01914{7} | 0.01915{8} | 0.01798{4} | 0.01898{6} | ||
ASAE | 0.00424{4} | 0.0042{2} | 0.00469{7} | 0.00438{5} | 0.00466{6} | 0.00396{1} | 0.00422{3} | 0.00525{8} | ||
∑Ranks | 48{4} | 33{2} | 69{6} | 17{1} | 86{7.5} | 50{5} | 43{3} | 86{7.5} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.51619{2} | 0.63113{6} | 0.67423{7} | 0.51172{1} | 0.61334{4} | 0.62651{5} | 0.55707{3} | 0.88577{8} |
ˆa | 0.4211{6} | 0.39524{5} | 0.43673{7} | 0.34427{1} | 0.38438{3} | 0.36625{2} | 0.38901{4} | 0.57667{8} | ||
ˆb | 0.42122{2} | 0.42702{3} | 0.52173{8} | 0.40397{1} | 0.48285{6} | 0.45722{5} | 0.44181{4} | 0.4914{7} | ||
MSE | ˆτ | 0.44269{1} | 1.40915{6} | 0.97253{5} | 0.79973{4} | 0.78856{3} | 4.65109{8} | 0.70986{2} | 1.63292{7} | |
ˆa | 0.28044{6} | 0.24296{5} | 0.31317{7} | 0.18465{1} | 0.23352{4} | 0.21626{2} | 0.23222{3} | 0.50968{8} | ||
ˆb | 0.32216{2} | 0.33661{4} | 0.5635{8} | 0.25378{1} | 0.4679{6} | 0.37052{5} | 0.3353{3} | 0.47121{7} | ||
MRE | ˆτ | 0.2581{2} | 0.31556{6} | 0.33711{7} | 0.25586{1} | 0.30667{4} | 0.31326{5} | 0.27853{3} | 0.44288{8} | |
ˆa | 0.28073{6} | 0.26349{5} | 0.29115{7} | 0.22951{1} | 0.25625{3} | 0.24417{2} | 0.25934{4} | 0.38445{8} | ||
ˆb | 0.21061{2} | 0.21351{3} | 0.26087{8} | 0.20198{1} | 0.24143{6} | 0.22861{5} | 0.2209{4} | 0.2457{7} | ||
Dabs | 0.04173{1} | 0.04563{4} | 0.04698{8} | 0.04308{2} | 0.0467{7} | 0.04585{5} | 0.04476{3} | 0.04629{6} | ||
Dmax | 0.06876{1} | 0.07601{4} | 0.08059{7} | 0.07069{2} | 0.07795{6} | 0.07656{5} | 0.07406{3} | 0.08173{8} | ||
ASAE | 0.03095{7} | 0.02759{4} | 0.02937{6} | 0.02711{3} | 0.02798{5} | 0.02651{1} | 0.02653{2} | 0.03252{8} | ||
∑Ranks | 38{2.5} | 55{5} | 85{7} | 19{1} | 57{6} | 50{4} | 38{2.5} | 90{8} | ||
70 | BIAS | ˆτ | 0.47926{5} | 0.46754{4} | 0.5632{7} | 0.3673{1} | 0.55214{6} | 0.46172{2} | 0.46383{3} | 0.67025{8} |
ˆa | 0.36435{7} | 0.30602{3} | 0.3521{6} | 0.27605{1} | 0.33303{5} | 0.29119{2} | 0.31509{4} | 0.43801{8} | ||
ˆb | 0.29223{3} | 0.29115{2} | 0.3284{7} | 0.28673{1} | 0.33862{8} | 0.31389{5} | 0.30284{4} | 0.31591{6} | ||
MSE | ˆτ | 0.37454{3} | 0.36448{2} | 0.56211{7} | 0.2657{1} | 0.53431{6} | 0.39635{5} | 0.37914{4} | 0.72289{8} | |
ˆa | 0.20482{7} | 0.14296{3} | 0.18606{6} | 0.11389{1} | 0.17027{5} | 0.1266{2} | 0.15246{4} | 0.27299{8} | ||
ˆb | 0.14415{3} | 0.13708{2} | 0.17917{7} | 0.13026{1} | 0.19342{8} | 0.16635{5} | 0.15758{4} | 0.1689{6} | ||
MRE | ˆτ | 0.23963{5} | 0.23377{4} | 0.2816{7} | 0.18365{1} | 0.27607{6} | 0.23086{2} | 0.23191{3} | 0.33512{8} | |
ˆa | 0.2429{7} | 0.20401{3} | 0.23473{6} | 0.18403{1} | 0.22202{5} | 0.19413{2} | 0.21006{4} | 0.29201{8} | ||
ˆb | 0.14612{3} | 0.14557{2} | 0.1642{7} | 0.14337{1} | 0.16931{8} | 0.15694{5} | 0.15142{4} | 0.15796{6} | ||
Dabs | 0.03043{1} | 0.03146{3} | 0.03257{5} | 0.03117{2} | 0.03291{7} | 0.03307{8} | 0.03149{4} | 0.03263{6} | ||
Dmax | 0.04996{1} | 0.05229{4} | 0.0556{7} | 0.05107{2} | 0.05559{6} | 0.05467{5} | 0.05214{3} | 0.05719{8} | ||
ASAE | 0.01855{6} | 0.01739{3} | 0.01871{7} | 0.01758{4} | 0.01813{5} | 0.01678{1} | 0.01729{2} | 0.02109{8} | ||
∑Ranks | 51{5} | 35{2} | 79{7} | 17{1} | 75{6} | 44{4} | 43{3} | 88{8} | ||
150 | BIAS | ˆτ | 0.4392{5} | 0.39379{3} | 0.45566{7} | 0.27549{1} | 0.44834{6} | 0.38128{2} | 0.41046{4} | 0.54089{8} |
ˆa | 0.31014{7} | 0.26139{3} | 0.28645{5} | 0.21856{1} | 0.28762{6} | 0.24802{2} | 0.26741{4} | 0.3628{8} | ||
ˆb | 0.19985{3} | 0.19591{1} | 0.21751{6} | 0.19621{2} | 0.22876{8} | 0.21446{5} | 0.20679{4} | 0.2256{7} | ||
MSE | ˆτ | 0.31057{5} | 0.2424{2} | 0.33171{7} | 0.13533{1} | 0.32597{6} | 0.25702{3} | 0.26429{4} | 0.43436{8} | |
ˆa | 0.15063{7} | 0.10087{3} | 0.12317{6} | 0.07577{1} | 0.12274{5} | 0.09392{2} | 0.10589{4} | 0.18107{8} | ||
ˆb | 0.06714{4} | 0.05805{1} | 0.07483{6} | 0.05816{2} | 0.08113{7} | 0.07187{5} | 0.06713{3} | 0.08227{8} | ||
MRE | ˆτ | 0.2196{5} | 0.19689{3} | 0.22783{7} | 0.13775{1} | 0.22417{6} | 0.19064{2} | 0.20523{4} | 0.27044{8} | |
ˆa | 0.20676{7} | 0.17426{3} | 0.19097{5} | 0.14571{1} | 0.19175{6} | 0.16535{2} | 0.17827{4} | 0.24186{8} | ||
ˆb | 0.09993{3} | 0.09795{1} | 0.10875{6} | 0.09811{2} | 0.11438{8} | 0.10723{5} | 0.10339{4} | 0.1128{7} | ||
Dabs | 0.02083{1} | 0.02159{4} | 0.02178{5} | 0.02125{2.5} | 0.02218{6} | 0.02294{8} | 0.02125{2.5} | 0.02263{7} | ||
Dmax | 0.03432{1} | 0.03586{4} | 0.03724{5} | 0.03487{2} | 0.03795{6} | 0.03803{7} | 0.03566{3} | 0.03867{8} | ||
ASAE | 0.0109{5} | 0.01075{3.5} | 0.01143{7} | 0.01075{3.5} | 0.0111{6} | 0.01011{1} | 0.01051{2} | 0.01296{8} | ||
∑Ranks | 53{5} | 31.5{2} | 72{6} | 20{1} | 76{7} | 44{4} | 42.5{3} | 93{8} | ||
300 | BIAS | ˆτ | 0.38358{5} | 0.35025{3} | 0.40996{7} | 0.20918{1} | 0.38933{6} | 0.35514{4} | 0.34544{2} | 0.47301{8} |
ˆa | 0.25949{7} | 0.22513{3} | 0.25895{6} | 0.15794{1} | 0.25286{5} | 0.2244{2} | 0.23092{4} | 0.31424{8} | ||
ˆb | 0.14384{3} | 0.14219{2} | 0.16653{7} | 0.13428{1} | 0.16744{8} | 0.15275{5} | 0.14455{4} | 0.16515{6} | ||
MSE | ˆτ | 0.22395{5} | 0.18899{3} | 0.25726{7} | 0.08634{1} | 0.23811{6} | 0.21275{4} | 0.18524{2} | 0.31153{8} | |
ˆa | 0.10146{7} | 0.07569{2} | 0.0982{6} | 0.04298{1} | 0.09473{5} | 0.07846{3} | 0.07943{4} | 0.13087{8} | ||
ˆb | 0.03255{4} | 0.0313{2} | 0.04249{7} | 0.02688{1} | 0.04388{8} | 0.03491{5} | 0.03196{3} | 0.04248{6} | ||
MRE | ˆτ | 0.19179{5} | 0.17513{3} | 0.20498{7} | 0.10459{1} | 0.19466{6} | 0.17757{4} | 0.17272{2} | 0.2365{8} | |
ˆa | 0.17299{7} | 0.15009{3} | 0.17264{6} | 0.10529{1} | 0.16858{5} | 0.1496{2} | 0.15394{4} | 0.20949{8} | ||
ˆb | 0.07192{3} | 0.07109{2} | 0.08327{7} | 0.06714{1} | 0.08372{8} | 0.07638{5} | 0.07227{4} | 0.08258{6} | ||
Dabs | 0.01502{2} | 0.01519{4} | 0.01582{6} | 0.01471{1} | 0.01536{5} | 0.01593{7} | 0.01513{3} | 0.01595{8} | ||
Dmax | 0.02487{2} | 0.02543{4} | 0.02719{7} | 0.02418{1} | 0.02652{5} | 0.02678{6} | 0.02539{3} | 0.02738{8} | ||
ASAE | 0.00687{5} | 0.00666{2} | 0.00739{7} | 0.00686{4} | 0.00722{6} | 0.00639{1} | 0.0067{3} | 0.00837{8} | ||
∑Ranks | 55{5} | 33{2} | 80{7} | 15{1} | 73{6} | 48{4} | 38{3} | 90{8} | ||
600 | BIAS | ˆτ | 0.34337{5} | 0.29599{2} | 0.35608{7} | 0.12837{1} | 0.34858{6} | 0.30958{4} | 0.30911{3} | 0.4042{8} |
ˆa | 0.22922{7} | 0.19345{3} | 0.22519{5} | 0.09817{1} | 0.22778{6} | 0.19235{2} | 0.20261{4} | 0.27243{8} | ||
ˆb | 0.10161{2} | 0.10663{3} | 0.12649{8} | 0.09413{1} | 0.12277{6} | 0.11287{5} | 0.10742{4} | 0.12442{7} | ||
MSE | ˆτ | 0.17598{6} | 0.13529{2} | 0.18281{7} | 0.04448{1} | 0.17429{5} | 0.15427{4} | 0.14265{3} | 0.22018{8} | |
ˆa | 0.07869{7} | 0.05647{2} | 0.07356{6} | 0.02176{1} | 0.07329{5} | 0.05829{3} | 0.06038{4} | 0.09527{8} | ||
ˆb | 0.01627{2} | 0.01766{3} | 0.02538{8} | 0.01352{1} | 0.02319{6} | 0.01936{5} | 0.01824{4} | 0.02403{7} | ||
MRE | ˆτ | 0.17169{5} | 0.14799{2} | 0.17804{7} | 0.06418{1} | 0.17429{6} | 0.15479{4} | 0.15455{3} | 0.2021{8} | |
ˆa | 0.15282{7} | 0.12897{3} | 0.15012{5} | 0.06545{1} | 0.15185{6} | 0.12823{2} | 0.13507{4} | 0.18162{8} | ||
ˆb | 0.0508{2} | 0.05331{3} | 0.06325{8} | 0.04706{1} | 0.06139{6} | 0.05644{5} | 0.05371{4} | 0.06221{7} | ||
Dabs | 0.01056{2} | 0.0106{3} | 0.01125{7} | 0.0103{1} | 0.01164{8} | 0.01124{6} | 0.0107{4} | 0.01089{5} | ||
Dmax | 0.01782{2} | 0.01801{3} | 0.01931{7} | 0.017{1} | 0.01973{8} | 0.01893{6} | 0.01812{4} | 0.01874{5} | ||
ASAE | 0.00429{2} | 0.0043{3} | 0.00478{7} | 0.0045{5} | 0.00457{6} | 0.00406{1} | 0.00431{4} | 0.00534{8} | ||
∑Ranks | 49{5} | 32{2} | 82{7} | 16{1} | 74{6} | 47{4} | 45{3} | 87{8} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.41263{1} | 0.63117{3} | 0.61646{2} | 0.68971{6} | 0.66123{4} | 0.69605{7} | 0.6614{5} | 0.73592{8} |
ˆa | 0.3458{1} | 0.40339{3} | 0.40077{2} | 0.43258{6} | 0.43443{7} | 0.46564{8} | 0.41928{5} | 0.40721{4} | ||
ˆb | 0.90474{2} | 0.95946{6} | 0.95309{4} | 0.95489{5} | 0.92977{3} | 0.88{1} | 0.96175{7} | 1.06824{8} | ||
MSE | ˆτ | 0.23196{1} | 0.53768{3} | 0.47197{2} | 0.65139{7} | 0.55116{4} | 0.64812{6} | 0.57172{5} | 0.87411{8} | |
ˆa | 0.19495{1} | 0.25654{3} | 0.25032{2} | 0.28251{5} | 0.28292{6} | 0.33262{8} | 0.27497{4} | 0.28509{7} | ||
ˆb | 1.40385{7} | 1.37779{5} | 1.33026{3} | 1.37841{6} | 1.24057{1} | 1.28937{2} | 1.33079{4} | 1.7756{8} | ||
MRE | ˆτ | 0.55017{1} | 0.84156{3} | 0.82195{2} | 0.91961{6} | 0.88164{4} | 0.92807{7} | 0.88187{5} | 0.98123{8} | |
ˆa | 0.1729{1} | 0.20169{3} | 0.20039{2} | 0.21629{6} | 0.21721{7} | 0.23282{8} | 0.20964{5} | 0.20361{4} | ||
ˆb | 0.30158{2} | 0.31982{6} | 0.3177{4} | 0.3183{5} | 0.30992{3} | 0.29333{1} | 0.32058{7} | 0.35608{8} | ||
Dabs | 0.04253{1} | 0.04336{2} | 0.04718{8} | 0.04338{3} | 0.04551{5} | 0.04671{7} | 0.04479{4} | 0.04664{6} | ||
Dmax | 0.07112{2} | 0.07194{3} | 0.0792{8} | 0.07007{1} | 0.07453{5} | 0.07777{6} | 0.07355{4} | 0.07787{7} | ||
ASAE | 0.02959{7} | 0.02756{3} | 0.02928{6} | 0.02713{2} | 0.02829{5} | 0.02772{4} | 0.02691{1} | 0.03129{8} | ||
∑Ranks | 27{1} | 43{2} | 45{3} | 58{6} | 54{4} | 65{7} | 56{5} | 84{8} | ||
70 | BIAS | ˆτ | 0.37728{1} | 0.57428{3} | 0.57379{2} | 0.61526{7} | 0.60356{5} | 0.60726{6} | 0.58819{4} | 0.61897{8} |
ˆa | 0.25016{1} | 0.31949{2} | 0.33757{4} | 0.35113{7} | 0.34537{6} | 0.35421{8} | 0.33813{5} | 0.3285{3} | ||
ˆb | 0.68242{1} | 0.79998{5} | 0.77034{3} | 0.82325{6} | 0.83417{8} | 0.69139{2} | 0.78972{4} | 0.82557{7} | ||
MSE | ˆτ | 0.20498{1} | 0.47839{4} | 0.45179{2} | 0.57434{7} | 0.47675{3} | 0.53826{6} | 0.48684{5} | 0.5989{8} | |
ˆa | 0.09985{1} | 0.15258{2} | 0.17907{4} | 0.20305{8} | 0.18005{5} | 0.18882{7} | 0.17375{3} | 0.18104{6} | ||
ˆb | 0.77461{2} | 1.01864{6} | 0.8902{3} | 1.13061{8} | 1.01306{5} | 0.74376{1} | 0.95657{4} | 1.08045{7} | ||
MRE | ˆτ | 0.50303{1} | 0.76571{3} | 0.76505{2} | 0.82035{7} | 0.80474{5} | 0.80968{6} | 0.78426{4} | 0.8253{8} | |
ˆa | 0.12508{1} | 0.15974{2} | 0.16879{4} | 0.17557{7} | 0.17268{6} | 0.1771{8} | 0.16906{5} | 0.16425{3} | ||
ˆb | 0.22747{1} | 0.26666{5} | 0.25678{3} | 0.27442{6} | 0.27806{8} | 0.23046{2} | 0.26324{4} | 0.27519{7} | ||
Dabs | 0.03062{2} | 0.03064{3} | 0.03404{8} | 0.03001{1} | 0.03304{7} | 0.03289{6} | 0.03251{4} | 0.03252{5} | ||
Dmax | 0.05131{2} | 0.05151{3} | 0.05754{8} | 0.04967{1} | 0.05555{7} | 0.05553{6} | 0.05366{4} | 0.0546{5} | ||
ASAE | 0.01854{7} | 0.01731{4} | 0.01828{6} | 0.01722{2} | 0.01814{5} | 0.01725{3} | 0.01692{1} | 0.01936{8} | ||
∑Ranks | 21{1} | 42{2} | 49{4} | 67{6} | 70{7} | 61{5} | 47{3} | 75{8} | ||
150 | BIAS | ˆτ | 0.31212{1} | 0.45159{2} | 0.49391{4} | 0.50158{6} | 0.49767{5} | 0.51173{8} | 0.47926{3} | 0.50467{7} |
ˆa | 0.18389{1} | 0.24619{2} | 0.26366{5} | 0.26623{6} | 0.27263{8} | 0.26155{3} | 0.26205{4} | 0.26637{7} | ||
ˆb | 0.51055{1} | 0.58914{2} | 0.64746{7} | 0.59531{4} | 0.65501{8} | 0.62579{5} | 0.59382{3} | 0.63847{6} | ||
MSE | ˆτ | 0.14708{1} | 0.33233{2} | 0.35351{3} | 0.44757{8} | 0.36746{5} | 0.41305{7} | 0.36255{4} | 0.4025{6} | |
ˆa | 0.05157{1} | 0.09975{2} | 0.10789{3} | 0.12791{8} | 0.11535{6} | 0.1123{5} | 0.11096{4} | 0.1174{7} | ||
ˆb | 0.47277{1} | 0.61572{4} | 0.6529{5} | 0.7086{8} | 0.67921{6} | 0.59584{2} | 0.60046{3} | 0.70453{7} | ||
MRE | ˆτ | 0.41616{1} | 0.60212{2} | 0.65854{4} | 0.66877{6} | 0.66356{5} | 0.68231{8} | 0.63901{3} | 0.67289{7} | |
ˆa | 0.09195{1} | 0.1231{2} | 0.13183{5} | 0.13311{6} | 0.13632{8} | 0.13078{3} | 0.13102{4} | 0.13318{7} | ||
ˆb | 0.17018{1} | 0.19638{2} | 0.21582{7} | 0.19844{4} | 0.21834{8} | 0.2086{5} | 0.19794{3} | 0.21282{6} | ||
Dabs | 0.02081{1} | 0.02156{3} | 0.02279{7.5} | 0.02171{4} | 0.02269{6} | 0.02221{5} | 0.02123{2} | 0.02279{7.5} | ||
Dmax | 0.03496{1} | 0.0362{4} | 0.0389{8} | 0.03607{3} | 0.03834{5} | 0.03836{6} | 0.03583{2} | 0.03862{7} | ||
ASAE | 0.01105{5} | 0.0105{3} | 0.0111{7} | 0.01079{4} | 0.01108{6} | 0.01049{2} | 0.01039{1} | 0.01196{8} | ||
∑Ranks | 16{1} | 30{2} | 65.5{5} | 67{6} | 76{7} | 59{4} | 36{3} | 82.5{8} | ||
300 | BIAS | ˆτ | 0.26159{1} | 0.33734{2} | 0.40449{6} | 0.3744{4} | 0.41347{7} | 0.42097{8} | 0.34325{3} | 0.37827{5} |
ˆa | 0.14993{1} | 0.18532{3} | 0.20625{7} | 0.19513{4} | 0.20695{8} | 0.19719{5} | 0.18169{2} | 0.20501{6} | ||
ˆb | 0.37223{1} | 0.41779{2} | 0.508{7} | 0.44601{4} | 0.50594{6} | 0.52145{8} | 0.42076{3} | 0.45303{5} | ||
MSE | ˆτ | 0.10953{1} | 0.20094{2} | 0.26331{5} | 0.29301{7} | 0.28568{6} | 0.30513{8} | 0.20537{3} | 0.24655{4} | |
ˆa | 0.03556{1} | 0.05977{3} | 0.06975{4} | 0.07768{8} | 0.07525{7} | 0.07119{5} | 0.05699{2} | 0.07212{6} | ||
ˆb | 0.29126{1} | 0.31942{2} | 0.43464{6} | 0.48268{8} | 0.44893{7} | 0.43375{5} | 0.32104{3} | 0.39031{4} | ||
MRE | ˆτ | 0.34879{1} | 0.44978{2} | 0.53932{6} | 0.49921{4} | 0.5513{7} | 0.56129{8} | 0.45767{3} | 0.50436{5} | |
ˆa | 0.07496{1} | 0.09266{3} | 0.10313{7} | 0.09757{4} | 0.10347{8} | 0.09859{5} | 0.09085{2} | 0.1025{6} | ||
ˆb | 0.12408{1} | 0.13926{2} | 0.16933{7} | 0.14867{4} | 0.16865{6} | 0.17382{8} | 0.14025{3} | 0.15101{5} | ||
Dabs | 0.01478{1} | 0.01563{4} | 0.01625{8} | 0.01541{3} | 0.01591{6} | 0.01623{7} | 0.01493{2} | 0.01584{5} | ||
Dmax | 0.02519{1} | 0.02694{4} | 0.02821{8} | 0.02592{3} | 0.02751{6} | 0.02814{7} | 0.02552{2} | 0.0274{5} | ||
ASAE | 0.00695{4} | 0.00682{3} | 0.00721{7} | 0.00697{5} | 0.00704{6} | 0.00671{1} | 0.0068{2} | 0.00775{8} | ||
∑Ranks | 15{1} | 32{3} | 78{7} | 58{4} | 80{8} | 75{6} | 30{2} | 64{5} | ||
600 | BIAS | ˆτ | 0.19336{1} | 0.23349{2} | 0.28978{6} | 0.23372{3} | 0.30777{7} | 0.30949{8} | 0.23507{4} | 0.2662{5} |
ˆa | 0.10937{1} | 0.12304{2} | 0.14902{6} | 0.12842{4} | 0.15724{8} | 0.13825{5} | 0.12621{3} | 0.15464{7} | ||
ˆb | 0.26801{1} | 0.30194{4} | 0.37263{6} | 0.27088{2} | 0.38556{7} | 0.42662{8} | 0.29441{3} | 0.30703{5} | ||
MSE | ˆτ | 0.06126{1} | 0.10127{2} | 0.15044{6} | 0.13095{4} | 0.16716{8} | 0.16478{7} | 0.10547{3} | 0.13164{5} | |
ˆa | 0.0189{1} | 0.02821{2} | 0.04017{6} | 0.03537{4} | 0.04408{8} | 0.03582{5} | 0.02981{3} | 0.04188{7} | ||
ˆb | 0.12688{1} | 0.15549{2} | 0.25123{6} | 0.18801{4} | 0.28486{7} | 0.29794{8} | 0.15848{3} | 0.18934{5} | ||
MRE | ˆτ | 0.25781{1} | 0.31131{2} | 0.38638{6} | 0.31162{3} | 0.41036{7} | 0.41265{8} | 0.31343{4} | 0.35494{5} | |
ˆa | 0.05468{1} | 0.06152{2} | 0.07451{6} | 0.06421{4} | 0.07862{8} | 0.06912{5} | 0.06311{3} | 0.07732{7} | ||
ˆb | 0.08934{1} | 0.10065{4} | 0.12421{6} | 0.09029{2} | 0.12852{7} | 0.14221{8} | 0.09814{3} | 0.10234{5} | ||
Dabs | 0.01062{2} | 0.01055{1} | 0.01157{7} | 0.01098{3} | 0.01158{8} | 0.01113{5} | 0.01112{4} | 0.0113{6} | ||
Dmax | 0.0181{1} | 0.01823{2} | 0.02019{8} | 0.01873{3} | 0.0201{7} | 0.01976{6} | 0.01902{4} | 0.01972{5} | ||
ASAE | 0.00457{5} | 0.00443{3} | 0.00471{6} | 0.00456{4} | 0.00473{7} | 0.0044{2} | 0.00435{1} | 0.00516{8} | ||
∑Ranks | 17{1} | 28{2} | 75{6.5} | 40{4} | 89{8} | 75{6.5} | 38{3} | 70{5} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.28261{2} | 0.4647{5} | 0.48379{7} | 0.41025{3} | 0.42315{4} | 0.51017{8} | 0.47272{6} | 0.26393{1} |
ˆa | 0.70395{1} | 0.78929{3} | 0.91784{8} | 0.77174{2} | 0.90659{7} | 0.82398{4} | 0.83444{5} | 0.84481{6} | ||
ˆb | 0.11892{2} | 0.13452{6} | 0.13845{7} | 0.12898{4} | 0.11407{1} | 0.14639{8} | 0.13051{5} | 0.12794{3} | ||
MSE | ˆτ | 0.14259{1} | 0.54086{5} | 0.58623{6} | 0.45928{3} | 0.52049{4} | 0.67661{8} | 0.60141{7} | 0.18215{2} | |
ˆa | 0.92929{2} | 0.99608{3} | 1.35102{8} | 0.89166{1} | 1.27505{7} | 1.08694{4} | 1.10922{5} | 1.17679{6} | ||
ˆb | 0.02632{3} | 0.03369{6} | 0.03609{7} | 0.02757{4} | 0.02515{2} | 0.03881{8} | 0.03305{5} | 0.02449{1} | ||
MRE | ˆτ | 1.13045{2} | 1.85879{5} | 1.93515{7} | 1.64101{3} | 1.6926{4} | 2.04067{8} | 1.8909{6} | 1.05573{1} | |
ˆa | 0.23465{1} | 0.2631{3} | 0.30595{8} | 0.25725{2} | 0.3022{7} | 0.27466{4} | 0.27815{5} | 0.2816{6} | ||
ˆb | 0.47569{2} | 0.53808{6} | 0.5538{7} | 0.5159{4} | 0.45626{1} | 0.58556{8} | 0.52205{5} | 0.51177{3} | ||
Dabs | 0.04268{1} | 0.04508{3} | 0.04693{8} | 0.04333{2} | 0.04525{4} | 0.04586{6} | 0.0455{5} | 0.04675{7} | ||
Dmax | 0.0706{1} | 0.07457{3} | 0.07976{8} | 0.0712{2} | 0.07566{5} | 0.07738{7} | 0.07522{4} | 0.07734{6} | ||
ASAE | 0.02998{6} | 0.02782{4} | 0.02947{5} | 0.02765{3} | 0.03091{7} | 0.02581{1} | 0.02751{2} | 0.03566{8} | ||
∑Ranks | 24{1} | 52{4} | 86{8} | 33{2} | 53{5} | 74{7} | 60{6} | 50{3} | ||
70 | BIAS | ˆτ | 0.26535{2} | 0.35171{5} | 0.40366{7} | 0.29134{3} | 0.35289{6} | 0.42263{8} | 0.34207{4} | 0.24784{1} |
ˆa | 0.47336{1} | 0.55386{3} | 0.64736{7} | 0.55627{4} | 0.64889{8} | 0.61187{6} | 0.54143{2} | 0.59785{5} | ||
ˆb | 0.09971{1} | 0.11155{5} | 0.11542{6} | 0.10741{3} | 0.10532{2} | 0.12794{8} | 0.10844{4} | 0.11607{7} | ||
MSE | ˆτ | 0.12711{1} | 0.28471{4} | 0.4177{7} | 0.22138{3} | 0.33996{6} | 0.48266{8} | 0.30172{5} | 0.13702{2} | |
ˆa | 0.36529{1} | 0.48714{4} | 0.68965{8} | 0.48295{2} | 0.66234{7} | 0.6146{6} | 0.48359{3} | 0.58995{5} | ||
ˆb | 0.01575{1} | 0.02146{5} | 0.02598{7} | 0.01737{2} | 0.02098{4} | 0.03058{8} | 0.02191{6} | 0.01909{3} | ||
MRE | ˆτ | 1.06141{2} | 1.40685{5} | 1.61465{7} | 1.16535{3} | 1.41156{6} | 1.6905{8} | 1.3683{4} | 0.99135{1} | |
ˆa | 0.15779{1} | 0.18462{3} | 0.21579{7} | 0.18542{4} | 0.2163{8} | 0.20396{6} | 0.18048{2} | 0.19928{5} | ||
ˆb | 0.39883{1} | 0.44619{5} | 0.46169{6} | 0.42965{3} | 0.42127{2} | 0.51178{8} | 0.43376{4} | 0.46429{7} | ||
Dabs | 0.02997{1} | 0.03175{4} | 0.03324{8} | 0.03081{2} | 0.03247{5} | 0.0327{7} | 0.03127{3} | 0.03251{6} | ||
Dmax | 0.0499{1} | 0.05326{4} | 0.05658{8} | 0.05081{2} | 0.05486{6} | 0.05572{7} | 0.05218{3} | 0.05438{5} | ||
ASAE | 0.01808{5} | 0.0179{4} | 0.01884{6} | 0.01751{3} | 0.0192{7} | 0.01618{1} | 0.01733{2} | 0.02197{8} | ||
∑Ranks | 18{1} | 51{4} | 84{8} | 34{2} | 67{6} | 81{7} | 42{3} | 55{5} | ||
150 | BIAS | ˆτ | 0.20572{2} | 0.23878{4} | 0.31697{8} | 0.216{3} | 0.29435{7} | 0.28901{6} | 0.25867{5} | 0.20305{1} |
ˆa | 0.30956{1} | 0.34668{2} | 0.42934{7} | 0.34894{3} | 0.4327{8} | 0.39302{5} | 0.36418{4} | 0.41109{6} | ||
ˆb | 0.07839{1} | 0.08716{2} | 0.09845{8} | 0.08897{3} | 0.09366{5} | 0.09844{7} | 0.09049{4} | 0.09505{6} | ||
MSE | ˆτ | 0.0763{2} | 0.11584{4} | 0.24604{8} | 0.08934{3} | 0.21433{6} | 0.22492{7} | 0.14363{5} | 0.07388{1} | |
ˆa | 0.15388{1} | 0.18414{2} | 0.29541{8} | 0.19105{3} | 0.29359{7} | 0.25171{5} | 0.20937{4} | 0.26876{6} | ||
ˆb | 0.00994{1} | 0.01226{3} | 0.01875{7} | 0.01132{2} | 0.01714{6} | 0.01897{8} | 0.014{5} | 0.01332{4} | ||
MRE | ˆτ | 0.82287{2} | 0.95511{4} | 1.26786{8} | 0.86398{3} | 1.17741{7} | 1.15604{6} | 1.03466{5} | 0.81219{1} | |
ˆa | 0.10319{1} | 0.11556{2} | 0.14311{7} | 0.11631{3} | 0.14423{8} | 0.13101{5} | 0.12139{4} | 0.13703{6} | ||
ˆb | 0.31354{1} | 0.34864{2} | 0.39378{8} | 0.35589{3} | 0.37463{5} | 0.39376{7} | 0.36195{4} | 0.38019{6} | ||
Dabs | 0.02072{1} | 0.02107{2} | 0.0225{7} | 0.02189{4} | 0.02263{8} | 0.02228{6} | 0.02197{5} | 0.02181{3} | ||
Dmax | 0.03401{1} | 0.03512{2} | 0.03847{8} | 0.03585{3} | 0.03844{7} | 0.038{6} | 0.0367{4} | 0.03682{5} | ||
ASAE | 0.01108{5} | 0.0106{3} | 0.01135{6} | 0.01106{4} | 0.01179{7} | 0.00992{1} | 0.01047{2} | 0.01254{8} | ||
∑Ranks | 19{1} | 32{2} | 90{8} | 37{3} | 81{7} | 69{6} | 51{4} | 53{5} | ||
300 | BIAS | ˆτ | 0.16066{1} | 0.18134{3} | 0.23938{8} | 0.17022{2} | 0.22051{6} | 0.23877{7} | 0.1881{4} | 0.18849{5} |
ˆa | 0.22654{2} | 0.24264{3} | 0.2944{7} | 0.22178{1} | 0.28817{6} | 0.26568{5} | 0.25777{4} | 0.30304{8} | ||
ˆb | 0.06214{1} | 0.07012{2} | 0.08156{6} | 0.07737{4} | 0.07758{5} | 0.08871{8} | 0.07058{3} | 0.08471{7} | ||
MSE | ˆτ | 0.04415{2} | 0.05978{4} | 0.11788{7} | 0.04234{1} | 0.10883{6} | 0.13383{8} | 0.06789{5} | 0.05456{3} | |
ˆa | 0.08313{2} | 0.09201{3} | 0.14205{8} | 0.07858{1} | 0.13512{6} | 0.11565{5} | 0.10225{4} | 0.13876{7} | ||
ˆb | 0.00617{1} | 0.00773{2} | 0.01181{7} | 0.00837{4} | 0.01107{6} | 0.015{8} | 0.00814{3} | 0.01064{5} | ||
MRE | ˆτ | 0.64263{1} | 0.72534{3} | 0.95752{8} | 0.68088{2} | 0.88205{6} | 0.95509{7} | 0.75242{4} | 0.75394{5} | |
ˆa | 0.07551{2} | 0.08088{3} | 0.09813{7} | 0.07393{1} | 0.09606{6} | 0.08856{5} | 0.08592{4} | 0.10101{8} | ||
ˆb | 0.24856{1} | 0.28049{2} | 0.32624{6} | 0.30949{4} | 0.31033{5} | 0.35482{8} | 0.2823{3} | 0.33885{7} | ||
Dabs | 0.01473{2} | 0.01494{3} | 0.01581{6} | 0.01432{1} | 0.01598{7} | 0.01578{5} | 0.01551{4} | 0.01624{8} | ||
Dmax | 0.02441{2} | 0.02498{3} | 0.02726{8} | 0.02345{1} | 0.027{5} | 0.02708{6} | 0.02606{4} | 0.02724{7} | ||
ASAE | 0.00706{5} | 0.00686{3} | 0.00722{6} | 0.00694{4} | 0.00749{7} | 0.00632{1} | 0.00684{2} | 0.0084{8} | ||
∑Ranks | 22{1} | 34{3} | 84{8} | 26{2} | 71{5} | 73{6} | 44{4} | 78{7} | ||
600 | BIAS | ˆτ | 0.13045{1} | 0.14467{4} | 0.1922{7} | 0.13076{2} | 0.18277{6} | 0.19589{8} | 0.15452{5} | 0.14197{3} |
ˆa | 0.1464{1} | 0.17091{3} | 0.19656{6} | 0.15933{2} | 0.20011{7} | 0.18356{5} | 0.17299{4} | 0.21255{8} | ||
ˆb | 0.05408{1} | 0.05771{2} | 0.0699{7} | 0.06108{4} | 0.06848{6} | 0.07427{8} | 0.06095{3} | 0.06422{5} | ||
MSE | ˆτ | 0.02716{2} | 0.03419{4} | 0.06868{7} | 0.02593{1} | 0.0615{6} | 0.08038{8} | 0.03947{5} | 0.03024{3} | |
ˆa | 0.03481{1} | 0.04524{3} | 0.06127{6} | 0.04288{2} | 0.06229{7} | 0.05226{5} | 0.04678{4} | 0.06879{8} | ||
ˆb | 0.00463{1} | 0.00511{2} | 0.00825{7} | 0.00581{4} | 0.00774{6} | 0.01049{8} | 0.0057{3} | 0.00661{5} | ||
MRE | ˆτ | 0.52182{1} | 0.57868{4} | 0.76881{7} | 0.52302{2} | 0.73109{6} | 0.78357{8} | 0.61806{5} | 0.56786{3} | |
ˆa | 0.0488{1} | 0.05697{3} | 0.06552{6} | 0.05311{2} | 0.0667{7} | 0.06119{5} | 0.05766{4} | 0.07085{8} | ||
ˆb | 0.21631{1} | 0.23082{2} | 0.27958{7} | 0.24431{4} | 0.27392{6} | 0.29709{8} | 0.24381{3} | 0.25689{5} | ||
Dabs | 0.00998{1} | 0.01059{3} | 0.01162{8} | 0.01045{2} | 0.01138{7} | 0.01125{6} | 0.01098{4} | 0.01118{5} | ||
Dmax | 0.01645{1} | 0.01762{3} | 0.01993{8} | 0.01726{2} | 0.01949{7} | 0.01935{6} | 0.01833{4} | 0.01893{5} | ||
ASAE | 0.00442{3} | 0.00443{4} | 0.00475{7} | 0.00444{5} | 0.00472{6} | 0.00408{1} | 0.00436{2} | 0.00545{8} | ||
∑Ranks | 15{1} | 37{3} | 83{8} | 32{2} | 77{7} | 76{6} | 46{4} | 66{5} |
First, it is important to note that all the parameter estimation methods for the proposed model demonstrate a high level of reliability, with estimated values that are very close to the actual values. This indicates the precision and accuracy of the estimation techniques employed in capturing the underlying characteristics of the proposed model.
Second, as the sample size n increases, each scenario's calculated measures exhibit a decreasing trend. This observation highlights the influence of sample size on the performance of the estimation methods. Larger sample sizes tend to lead to more precise and accurate parameter estimates. In CIs, Asymptotic CI (ACI) approaches are used for MLE and MPS. The length of ACIs can be denoted as LACI. The confidence level is 95%. Also, the coverage probability (CP) are obtained for MLE and MPS methods. See Tables 9 and 10.
Parameter | n | MLE | ADE | CVME | MPSE | OLSE | RTADE | WLSE | LTADE |
τ=0.5, a=0.25, b=0.75 | 35 | 4 | 2 | 7 | 1 | 6 | 5 | 3 | 8 |
70 | 5.5 | 2 | 7 | 1 | 5.5 | 4 | 3 | 8 | |
150 | 5 | 3 | 6 | 1 | 7 | 4 | 2 | 8 | |
300 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
600 | 4 | 2 | 6 | 1 | 7.5 | 5 | 3 | 7.5 | |
τ=1.5, a=0.75, b=0.5 | 35 | 2.5 | 5 | 7 | 1 | 6 | 4 | 2.5 | 8 |
70 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
150 | 5 | 2 | 6 | 1 | 7 | 4 | 3 | 8 | |
300 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
600 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
τ=2, a=0.5, b=1.5 | 35 | 1 | 3.5 | 5 | 3.5 | 6 | 7 | 2 | 8 |
70 | 1 | 2 | 5 | 4 | 7 | 8 | 3 | 6 | |
150 | 1 | 2 | 7 | 4.5 | 6 | 8 | 3 | 4.5 | |
300 | 1 | 4 | 5 | 3 | 8 | 7 | 2 | 6 | |
600 | 1 | 4 | 8 | 2.5 | 6 | 7 | 2.5 | 5 | |
τ=2, a=1.5, b=2 | 35 | 2 | 3 | 6 | 4 | 7 | 1 | 5 | 8 |
70 | 1 | 2 | 7 | 5 | 6 | 4 | 3 | 8 | |
150 | 1 | 2 | 6 | 4 | 8 | 5 | 3 | 7 | |
300 | 1 | 4 | 6 | 3 | 7 | 5 | 2 | 8 | |
600 | 1 | 3 | 6 | 2 | 7.5 | 5 | 4 | 7.5 | |
τ=0.75, a=2, b=3 | 35 | 1 | 2 | 3 | 6 | 4 | 7 | 5 | 8 |
70 | 1 | 2 | 4 | 6 | 7 | 5 | 3 | 8 | |
150 | 1 | 2 | 5 | 6 | 7 | 4 | 3 | 8 | |
300 | 1 | 3 | 7 | 4 | 8 | 6 | 2 | 5 | |
600 | 1 | 2 | 6.5 | 4 | 8 | 6.5 | 3 | 5 | |
τ=0.25, a=3, b=0.25 | 35 | 1 | 4 | 8 | 2 | 5 | 7 | 6 | 3 |
70 | 1 | 4 | 8 | 2 | 6 | 7 | 3 | 5 | |
150 | 1 | 2 | 8 | 3 | 7 | 6 | 4 | 5 | |
300 | 1 | 3 | 8 | 2 | 5 | 6 | 4 | 7 | |
600 | 1 | 3 | 8 | 2 | 7 | 6 | 4 | 5 | |
∑ Ranks | 67.0 | 80.5 | 193.5 | 82.5 | 195.5 | 159.5 | 95.0 | 206.5 | |
Overall Rank | 1 | 2 | 6 | 3 | 7 | 5 | 4 | 8 |
MLE | MPS | |||||||||
n | Lower | Upper | LACI | CP | Lower | Upper | LACI | CP | ||
a=0.25 | 35 | a | 0.1424 | 0.3840 | 0.2416 | 95.2% | 0.1240 | 0.3716 | 0.2475 | 97.4% |
b | 0.3074 | 1.3956 | 1.0881 | 96.2% | 0.1761 | 1.3511 | 1.1751 | 98.6% | ||
τ | -0.1474 | 1.3940 | 1.5415 | 94.6% | -0.2409 | 1.3937 | 1.6346 | 95.6% | ||
70 | a | 0.1680 | 0.3336 | 0.1655 | 95.8% | 0.1571 | 0.3300 | 0.1730 | 96.0% | |
b | 0.3442 | 1.2438 | 0.8996 | 94.6% | 0.2876 | 1.1783 | 0.8907 | 96.8% | ||
τ | -0.0981 | 1.3002 | 1.3983 | 94.2% | -0.0982 | 1.1923 | 1.2906 | 96.8% | ||
b=0.75 | 150 | a | 0.1940 | 0.3084 | 0.1144 | 94.2% | 0.1890 | 0.3050 | 0.1160 | 96.4% |
b | 0.4466 | 1.0598 | 0.6132 | 93.2% | 0.4220 | 1.0220 | 0.6001 | 96.4% | ||
τ | 0.0900 | 0.9525 | 0.8625 | 94.0% | 0.1039 | 0.8881 | 0.7841 | 95.0% | ||
τ=0.5 | 300 | a | 0.2082 | 0.2896 | 0.0814 | 95.2% | 0.2092 | 0.2852 | 0.0761 | 96.4% |
b | 0.4659 | 1.0316 | 0.5657 | 94.8% | 0.5239 | 0.9391 | 0.4153 | 96.2% | ||
τ | 0.0907 | 0.9503 | 0.8596 | 93.6% | 0.2218 | 0.7761 | 0.5543 | 95.8% | ||
600 | a | 0.2172 | 0.2825 | 0.0654 | 94.2% | 0.2162 | 0.2805 | 0.0643 | 95.4% | |
b | 0.5764 | 0.9262 | 0.3498 | 93.6% | 0.5853 | 0.8925 | 0.3073 | 95.2% | ||
τ | 0.2346 | 0.7904 | 0.5559 | 94.6% | 0.2858 | 0.7160 | 0.4302 | 96.0% | ||
a=0.75 | 35 | a | 0.3749 | 1.7629 | 1.3880 | 96.8% | 0.2215 | 1.6978 | 1.4762 | 98.2% |
b | 0.1733 | 0.7843 | 0.6110 | 91.0% | 0.1273 | 0.7737 | 0.6464 | 92.8% | ||
τ | 0.0167 | 2.3436 | 2.3269 | 99.8% | -0.1434 | 2.5520 | 2.6954 | 100.0% | ||
70 | a | 0.5547 | 1.4283 | 0.8736 | 95.2% | 0.4283 | 1.4450 | 1.0167 | 97.8% | |
b | 0.1933 | 0.7132 | 0.5198 | 92.0% | 0.1226 | 0.7452 | 0.6226 | 93.8% | ||
τ | 0.1180 | 2.1860 | 2.0680 | 94.2% | -0.1264 | 2.4289 | 2.5553 | 100.0% | ||
b=0.5 | 150 | a | 0.6664 | 1.3496 | 0.6831 | 94.8% | 0.5957 | 1.3420 | 0.7462 | 97.8% |
b | 0.2169 | 0.6506 | 0.4337 | 93.0% | 0.2726 | 0.6031 | 0.3306 | 93.2% | ||
τ | 0.1519 | 1.9431 | 1.7911 | 94.4% | 0.3050 | 1.8915 | 1.5865 | 93.0% | ||
τ=1.5 | 300 | a | 0.7354 | 1.2244 | 0.4890 | 95.2% | 0.6828 | 1.2239 | 0.5411 | 96.6% |
b | 0.3296 | 0.5786 | 0.2489 | 95.4% | 0.3910 | 0.5441 | 0.1531 | 89.8% | ||
τ | 0.5329 | 1.7045 | 1.1716 | 95.6% | 0.7327 | 1.6352 | 0.9025 | 90.8% | ||
600 | a | 0.8075 | 1.1805 | 0.3730 | 95.2% | 0.7656 | 1.1558 | 0.3902 | 98.6% | |
b | 0.3372 | 0.5607 | 0.2236 | 97.4% | 0.4507 | 0.4944 | 0.0438 | 49.6% | ||
τ | 0.5921 | 1.5764 | 0.9843 | 96.6% | 0.9952 | 1.3684 | 0.3732 | 65.0% | ||
a=0.5 | 35 | a | 0.0841 | 3.0983 | 3.0142 | 99.4% | 0.5964 | 2.4213 | 1.8249 | 97.0% |
b | 0.7792 | 3.3199 | 2.5407 | 96.4% | 0.9277 | 2.9819 | 2.0541 | 96.2% | ||
τ | -4.1397 | 11.2084 | 15.3481 | 96.8% | 0.5888 | 5.0887 | 4.5000 | 96.8% | ||
70 | a | 0.3513 | 2.9435 | 2.5922 | 98.6% | 0.7959 | 2.3551 | 1.5592 | 97.6% | |
b | 1.1282 | 2.8535 | 1.7253 | 95.8% | 1.2526 | 2.6453 | 1.3927 | 95.4% | ||
τ | -2.3903 | 7.7478 | 10.1381 | 94.6% | 0.7896 | 3.9179 | 3.1283 | 96.6% | ||
b=1.5 | 150 | a | 0.4155 | 3.0630 | 2.6474 | 95.6% | 0.8704 | 2.4470 | 1.5766 | 98.4% |
b | 1.2344 | 2.6437 | 1.4093 | 95.8% | 1.4967 | 2.3945 | 0.8979 | 95.0% | ||
τ | -1.8044 | 6.2974 | 8.1017 | 93.8% | 0.7386 | 3.4610 | 2.7224 | 99.2% | ||
τ=2 | 300 | a | 0.7300 | 2.9444 | 2.2144 | 89.4% | 0.9837 | 2.4903 | 1.5066 | 96.4% |
b | 1.4469 | 2.5415 | 1.0947 | 93.2% | 1.6720 | 2.3314 | 0.6594 | 95.2% | ||
τ | -0.7896 | 4.4351 | 5.2247 | 92.8% | 0.8241 | 2.8969 | 2.0728 | 96.8% | ||
600 | a | 0.8443 | 3.0427 | 2.1984 | 88.0% | 1.1938 | 2.4879 | 1.2942 | 91.4% | |
b | 1.4851 | 2.4993 | 1.0142 | 91.4% | 1.8123 | 2.2369 | 0.4246 | 89.2% | ||
τ | -0.9598 | 4.2972 | 5.2570 | 91.6% | 0.8832 | 2.5574 | 1.6742 | 90.4% |
MLE | MPS | |||||||||
n | Lower | Upper | LACI | CP | Lower | Upper | LACI | CP | ||
a=1.5 | 35 | a | 0.0841 | 3.0983 | 3.0142 | 99.4% | 0.5964 | 2.4213 | 1.8249 | 97.0% |
b | 0.7792 | 3.3199 | 2.5407 | 96.4% | 0.9277 | 2.9819 | 2.0541 | 96.2% | ||
τ | -4.1397 | 11.2084 | 15.3481 | 96.8% | 0.5888 | 5.0887 | 4.5000 | 96.8% | ||
70 | a | 0.3513 | 2.9435 | 2.5922 | 98.6% | 0.7959 | 2.3551 | 1.5592 | 97.6% | |
b | 1.1282 | 2.8535 | 1.7253 | 95.8% | 1.2526 | 2.6453 | 1.3927 | 95.4% | ||
τ | -2.3903 | 7.7478 | 10.1381 | 94.6% | 0.7896 | 3.9179 | 3.1283 | 96.6% | ||
b=2 | 150 | a | 0.4155 | 3.0630 | 2.6474 | 95.6% | 0.8704 | 2.4470 | 1.5766 | 98.4% |
b | 1.2344 | 2.6437 | 1.4093 | 95.8% | 1.4967 | 2.3945 | 0.8979 | 95.0% | ||
τ | -1.8044 | 6.2974 | 8.1017 | 93.8% | 0.7386 | 3.4610 | 2.7224 | 99.2% | ||
τ=2 | 300 | a | 0.7300 | 2.9444 | 2.2144 | 89.4% | 0.9837 | 2.4903 | 1.5066 | 96.4% |
b | 1.4469 | 2.5415 | 1.0947 | 93.2% | 1.6720 | 2.3314 | 0.6594 | 95.2% | ||
τ | -0.7896 | 4.4351 | 5.2247 | 92.8% | 0.8241 | 2.8969 | 2.0728 | 96.8% | ||
600 | a | 0.8443 | 3.0427 | 2.1984 | 88.0% | 1.1938 | 2.4879 | 1.2942 | 91.4% | |
b | 1.4851 | 2.4993 | 1.0142 | 91.4% | 1.8123 | 2.2369 | 0.4246 | 89.2% | ||
τ | -0.9598 | 4.2972 | 5.2570 | 91.6% | 0.8832 | 2.5574 | 1.6742 | 90.4% | ||
a=2 | 35 | a | 1.4516 | 3.0180 | 1.5664 | 95.2% | 1.2272 | 3.0073 | 1.7800 | 98.6% |
b | 1.2482 | 5.2132 | 3.9651 | 95.8% | 0.8513 | 4.9181 | 4.0668 | 99.2% | ||
τ | -0.2282 | 1.6153 | 1.8435 | 95.6% | -0.4111 | 1.7960 | 2.2071 | 94.0% | ||
70 | a | 1.6144 | 2.7305 | 1.1160 | 95.0% | 1.4843 | 2.7390 | 1.2547 | 97.6% | |
b | 1.4910 | 4.6090 | 3.1180 | 96.2% | 1.1561 | 4.5050 | 3.3489 | 99.0% | ||
τ | -0.0943 | 1.4316 | 1.5259 | 95.2% | -0.2493 | 1.5585 | 1.8078 | 94.8% | ||
b=3 | 150 | a | 1.7896 | 2.5391 | 0.7496 | 95.4% | 1.7365 | 2.5418 | 0.8053 | 96.2% |
b | 1.7926 | 4.1551 | 2.3625 | 96.2% | 1.6447 | 4.0422 | 2.3974 | 96.8% | ||
τ | 0.0645 | 1.1806 | 1.1161 | 96.6% | 0.0097 | 1.1917 | 1.1821 | 97.0% | ||
τ=0.75 | 300 | a | 1.9039 | 2.4287 | 0.5249 | 95.8% | 1.8799 | 2.4292 | 0.5493 | 97.4% |
b | 2.1524 | 3.7909 | 1.6385 | 94.2% | 1.9889 | 3.7889 | 1.8000 | 97.2% | ||
τ | 0.1813 | 1.0293 | 0.8480 | 95.4% | 0.1349 | 1.0399 | 0.9050 | 97.0% | ||
600 | a | 1.9724 | 2.3730 | 0.4006 | 95.6% | 1.9612 | 2.3715 | 0.4103 | 96.0% | |
b | 2.3438 | 3.5541 | 1.2102 | 94.2% | 2.3352 | 3.4916 | 1.1564 | 95.4% | ||
τ | 0.2739 | 0.9082 | 0.6344 | 95.0% | 0.2774 | 0.8905 | 0.6131 | 96.2% | ||
a=3 | 35 | a | 1.9729 | 4.6161 | 2.6432 | 95.8% | 1.8782 | 4.3354 | 2.4572 | 97.0% |
b | -0.0293 | 0.7353 | 0.7646 | 97.0% | -0.0398 | 0.6755 | 0.7154 | 98.0% | ||
τ | -0.4116 | 1.4397 | 1.8512 | 94.0% | -0.4786 | 1.4140 | 1.8926 | 95.4% | ||
70 | a | 2.4063 | 3.9743 | 1.5680 | 94.2% | 2.2750 | 3.9640 | 1.6890 | 94.2% | |
b | -0.0284 | 0.5486 | 0.5770 | 94.8% | -0.0534 | 0.5696 | 0.6230 | 97.4% | ||
τ | -0.3834 | 1.0028 | 1.3862 | 93.4% | -0.4462 | 1.0793 | 1.5255 | 93.6% | ||
b=0.25 | 150 | a | 2.6660 | 3.7299 | 1.0639 | 93.4% | 2.6852 | 3.6862 | 1.0010 | 94.4% |
b | 0.0336 | 0.4138 | 0.3803 | 94.2% | -0.0209 | 0.5050 | 0.5260 | 91.6% | ||
τ | -0.2258 | 0.6358 | 0.8616 | 93.8% | -0.3280 | 0.8359 | 1.1640 | 88.4% | ||
τ=0.25 | 300 | a | 2.8201 | 3.5448 | 0.7248 | 94.0% | 2.9279 | 3.5496 | 0.6216 | 93.8% |
b | 0.0642 | 0.3265 | 0.2624 | 92.6% | 0.2438 | 0.3026 | 0.0587 | 98.2% | ||
τ | -0.1524 | 0.4342 | 0.5866 | 92.8% | 0.3140 | 0.3670 | 0.0530 | 97.3% | ||
600 | a | 2.9387 | 3.4003 | 0.4616 | 94.8% | 2.9697 | 3.1695 | 0.1998 | 98.1% | |
b | 0.1070 | 0.2593 | 0.1523 | 95.4% | 0.3550 | 0.1831 | -0.1719 | 96.9% | ||
τ | -0.0465 | 0.2697 | 0.3162 | 95.4% | 0.4718 | 0.1116 | -0.3601 | 97.5% |
Considering the results derived from the simulation analysis and the subsequent evaluations of rankings in Tables 2–8, we can identify several significant conclusions:
● The property of consistency among the estimators was observed in this investigation. This property signifies that, as the sample size, denoted as n, expands, the estimators tend to approach the true parameter values. This convergence not only reaffirms the robustness of these estimators but also underscores their appropriateness for various statistical inference purposes.
● As the sample size "n" increased, a noticeable trend in bias reduction was evident across all the estimating techniques under investigation. This observation highlights larger sample sizes' positive influence on the parameter estimation's precision and impartiality. This phenomenon can be attributed to the decreasing impact of random variations within more extensive datasets.
● With the expansion of the sample size "n", another significant observation pertaining to the consistent reduction is the MSE across all the estimators. The MSE is a comprehensive estimation performance indicator, encompassing bias and variance. The evident decline in the MSE underscores the enhancement in overall estimation accuracy with larger sample sizes.
● For the other measures (MRE,Dabs,Dmax,ASAE), we can see that, as the sample size increases, all of these methods' values decrease.
● Based on the overall evaluation of the estimation strategies, the MLE technique emerges as the most effective method for estimating the parameters of the proposed model. As shown in Table 8, which presents the overall ranks for all estimation strategies, the MLE achieves the lowest total score of 67.0. This result further emphasizes the superiority of the MLE technique in accurately estimating the parameters of the proposed model in the context of this study.
To prove that the proposed model is better than previous distributions, a comparison must be made using some data from previous studies. From the previous studies, we note that the basic distribution under study focused on the data of medical field. The three datasets under study have a basic relationship with the medical field in various ways. The GAPEED was applied to the various three datasets, and the outcomes of this comparison were produced with the TLMW [11], TIIEHLPL [32], EL [27], KW [25], GMW [21], MOAPEW [6], EW [24], EGAPEx [28], KMGEx [1], EHLINH [1], ExEx [48], and OWITL [7].
Furthermore, in order to assess the EGAPE model's validity in comparison to other competing models, we utilized various goodness-of-fit metrics, including the Kolmogorov-Smirnov (K-S) statistic with its p-value, Cramer-von Mises (CVM), and Anderson-Darling (AD), as well as other criteria measures like Bayesian information (BI), Akaike information (AI), corrected AI (CAI), and Hannan-Quinn information (HQI). All goodness-of-fit metrics are all taken into account when comparing the fits of all models. We utilize R software and the Maximum Likelihood Estimation (MLE) method to estimate the parameters of the specified distributions and to assess the goodness-of-fit metrics.
Data I: This data set was utilized as "1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0" by Barco et al. [18], and the data shows how quickly 20 people felt better after taking an analgesic.
Data II: The most recent data cited by [2,11], showing the number of daily confirmed death cases linked to COVID-19. The data consists of 89 observed values with an average daily death rate of 18.72. The data set is given as follows: "1, 1, 2, 4, 5, 1, 1, 3, 6, 6, 4, 1, 5, 6, 6, 8, 5, 7, 7, 9, 9, 15, 17, 11, 13, 5, 14, 5, 13, 9, 19, 15, 11, 14, 12, 11, 7, 13, 10, 20, 22, 21, 12, 14, 9, 14, 7, 16, 17, 13, 21, 11, 11, 8, 11, 12, 15, 21, 20, 18, 15, 14, 21, 16, 11, 28, 29, 19, 14, 19, 29, 34, 34, 46, 46, 47, 36, 38, 40, 32, 39, 34, 35, 36, 35, 45, 62." Recently, papers [2,11] used this data, for which the Topp-Leone modified Weibull (TLMW) [11] has the best results where the KSPV reached 0.7280, while in this paper the KSPV reached 0.7453, and this is better than the another comparative models.
Data III: Survival rates for Guinea pigs infected with virulent tubercle bacilli are shown in the set of data [55]. Guinea pigs were chosen for this experiment for a number of reasons, one of which is that it is believed that they are extremely vulnerable to human tuberculosis. The information set is as follows: 0.10, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24 1.30, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.
Tables 11–Tables 16 present the MLE of the parameters for the GAPEED as well as other distributions, together with standard error (SE) values of the parameters and goodness of fit metrics for each distribution. In order to obtain the likelihood with SE, we first used the "maxLik" package, which implements the Newton Raphson (NR) method of maximization, and the variance covariance matrix. Second, we compare the fits with other distributions to determine if the relevant datasets genuinely fit the GAPEED or not using the goodness-of-fit test. Among all the models that have been fitted to these datasets, the GAPEED provides the lowest values for the KSD, AI, BI, CAI, HAI, CVM, and AD statistics. It also provides the highest value for the P-value when compared to other distributions. Figures 6–14 have been discussed for GAPEED.
α | β | τ | θ | λ | ||
EGAPE | Estimates | 1.8897 | 29.0863 | 1.7697 | ||
SE | 0.5609 | 21.0642 | 0.8618 | |||
EL | Estimates | 77.2175 | 12.0930 | 3.6927 | ||
SE | 116.8405 | 17.6372 | 7.7470 | |||
KW | Estimates | 30.4293 | 0.3994 | 1.7768 | 1.4045 | |
SE | 35.9424 | 0.4654 | 0.8620 | 0.6895 | ||
EW | Estimates | 2.757653 | 13.05099 | 11.26919 | ||
SE | 0.425237 | 16.18943 | 25.32466 | |||
MOAPEW | Estimates | 0.0048 | 0.4068 | 0.1943 | 0.4860 | 0.0038 |
SE | 0.0070 | 0.1936 | 0.0756 | 0.2005 | 0.0011 | |
KMGE | Estimates | 32.4295 | 2.0003 | |||
SE | 20.6526 | 0.4056 | ||||
EHLINH | Estimates | 6.7046 | 28.4439 | 0.0674 | ||
SE | 2.0967 | 65.6860 | 0.1601 | |||
ExEx | Estimates | 133.3134 | 0.0028 | |||
SE | 78.3222 | 0.0015 | ||||
OWITL | Estimates | 2.9015 | 79.0976 | 0.3261 | ||
SE | 0.4311 | 115.5561 | 0.1408 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.1163 | 0.9495 | 37.8850 | 40.8722 | 39.3850 | 38.4682 | 0.0427 | 0.2510 |
EL | 0.1211 | 0.9308 | 37.5124 | 40.4996 | 39.0124 | 38.0955 | 0.0391 | 0.2260 |
KW | 0.1392 | 0.8329 | 39.9867 | 43.9696 | 42.6534 | 40.7642 | 0.0498 | 0.2913 |
MOAPEW | 0.1853 | 0.4984 | 47.2771 | 50.2643 | 48.7771 | 47.8603 | 0.1866 | 1.0986 |
EW | 0.1853 | 0.4984 | 47.2771 | 50.2643 | 48.7771 | 47.8603 | 0.1866 | 1.0986 |
KMGE | 0.1206 | 0.9330 | 35.9024 | 37.8938 | 36.6082 | 36.2911 | 0.0438 | 0.2576 |
EHLINH | 0.1294 | 0.8912 | 37.9113 | 40.8985 | 39.4113 | 38.4944 | 0.0457 | 0.2641 |
ExEx | 0.4041 | 0.0029 | 59.5574 | 61.5489 | 60.2633 | 59.9461 | 0.1761 | 1.0400 |
OWITL | 0.1783 | 0.5481 | 44.5537 | 47.5409 | 46.0537 | 45.1369 | 0.1441 | 0.8519 |
α | β | τ | θ | λ | ||
EGAPE | Estimates | 0.0886 | 1.4401 | 0.6050 | ||
SE | 0.0157 | 0.5555 | 0.6115 | |||
TLMW | Estimates | 0.0106 | 0.0101 | 1.2689 | 1.2680 | |
SE | 0.0740 | 0.0276 | 0.2493 | 1.0647 | ||
TIIEHLPL | Estimates | 1.7143 | 0.1844 | 28.8074 | 166.7427 | |
SE | 2.9734 | 0.2303 | 71.7154 | 27.4533 | ||
EL | Estimates | 1.8125 | 11.2464 | 123.1732 | ||
SE | 0.3163 | 8.1168 | 102.2685 | |||
KW | Estimates | 1.2083 | 2.3127 | 0.0326 | 1.1786 | |
SE | 0.9050 | 6.4453 | 0.0641 | 0.6493 | ||
GMW | Estimates | 0.0370 | 1.2290 | 0.0015 | 1.1750 | |
SE | 0.0939 | 0.9993 | 0.0140 | 0.7523 | ||
MOAPEW | Estimates | 0.3553 | 0.2575 | 0.1384 | 0.0058 | 0.0087 |
SE | 0.5066 | 0.0104 | 0.1008 | 0.0018 | 0.0078 | |
EW | Estimates | 0.2312 | 0.0085 | 0.2914 | ||
SE | 0.0152 | 0.0058 | 0.1531 | |||
KMGE | Estimates | 1.8212 | 0.0675 | |||
SE | 0.2588 | 0.0091 | ||||
EHLINH | Estimates | 19.5686 | 0.2837 | 1589.2263 | ||
SE | 15.3431 | 0.0490 | 237.2804 | |||
ExEx | Estimates | 3.4494 | 0.0117 | |||
SE | 1.9636 | 0.0079 | ||||
OWITL | Estimates | 1.1721 | 0.0508 | 1.1382 | ||
SE | 0.4598 | 0.0350 | 0.5937 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.0728 | 0.7453 | 662.0716 | 669.4693 | 662.3608 | 665.0504 | 0.0869 | 0.5958 |
TLMW | 0.0740 | 0.7280 | 663.9288 | 673.7924 | 664.4166 | 667.9005 | 0.0901 | 0.6041 |
TIIEHLPL | 0.0816 | 0.6084 | 665.4572 | 675.3208 | 665.9450 | 669.4290 | 0.0814 | 0.6494 |
EL | 0.0845 | 0.5635 | 663.7241 | 671.1218 | 664.0132 | 666.7029 | 0.0761 | 0.6190 |
KW | 0.0752 | 0.7090 | 663.9278 | 673.7914 | 664.4156 | 667.8996 | 0.0920 | 0.6121 |
GMW | 0.0768 | 0.6834 | 663.8639 | 673.7276 | 664.3517 | 667.8357 | 0.0943 | 0.6201 |
MOAPEW | 0.0762 | 0.6929 | 665.7249 | 678.0545 | 666.4657 | 670.6897 | 0.0879 | 0.5993 |
EW | 0.1110 | 0.2336 | 667.4458 | 674.8435 | 667.7349 | 670.4246 | 0.2186 | 1.2041 |
KMGE | 0.0861 | 0.5389 | 662.3907 | 669.8323 | 662.5335 | 665.3766 | 0.0763 | 0.6177 |
EHLINH | 0.0864 | 0.5345 | 664.3826 | 671.7803 | 664.6718 | 667.3615 | 0.0853 | 0.7083 |
ExEx | 0.0919 | 0.4547 | 662.8435 | 669.7753 | 662.9863 | 665.8294 | 0.1603 | 0.9021 |
OWITL | 0.0771 | 0.6787 | 662.6932 | 669.5910 | 662.9824 | 665.6721 | 0.0996 | 0.6511 |
α | β | τ | θ | ||
EGAPE | Estimates | 1.2948 | 0.9091 | 0.0079 | |
SE | 0.1631 | 0.6367 | 0.0242 | ||
TLMW | Estimates | 0.2497 | 0.2004 | 1.2916 | 2.7723 |
SE | 0.9087 | 0.7554 | 0.7622 | 1.5924 | |
TIIEHLPL | Estimates | 0.0927 | 1.3381 | 2.4967 | 138.0944 |
SE | 0.2557 | 0.8698 | 1.5475 | 532.9272 | |
EL | Estimates | 3.8657 | 36.6762 | 30.4730 | |
SE | 0.8248 | 61.0255 | 53.2398 | ||
KW | Estimates | 3.9049 | 3.8098 | 0.6329 | 0.7832 |
SE | 9.9178 | 25.2951 | 0.8289 | 1.7951 | |
GMW | Estimates | 1.4999 | 7.0403 | 0.1177 | 0.5813 |
SE | 0.7081 | 2.0431 | 0.0250 | 0.1381 | |
EW | Estimates | 1.8162 | 36.6594 | 5.3695 | |
SE | 0.1607 | 70.2187 | 9.0321 | ||
EGAPEx | Estimates | 2.2303 | 3.0157 | 3.0038 | 0.4497 |
SE | 4.3322 | 1.7338 | 3.8605 | 0.5913 | |
KMGE | Estimates | 3.7890 | 0.9720 | ||
SE | 0.7019 | 0.1221 | |||
EHLINH | Estimates | 34.1057 | 0.3627 | 94.1204 | |
SE | 38.2904 | 0.0934 | 165.6271 | ||
ExEx | Estimates | 70.0000 | 0.0051 | ||
SE | 81.8420 | 0.0059 | |||
OWITL | Estimates | 1.8011 | 19.0880 | 0.3149 | |
SE | 0.1713 | 23.2625 | 0.1740 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.0826 | 0.7094 | 192.5995 | 199.4295 | 192.9524 | 195.3185 | 0.0881 | 0.5118 |
TLMW | 0.0885 | 0.6253 | 196.1265 | 205.2332 | 196.7235 | 199.7519 | 0.0915 | 0.5657 |
TIIEHLPL | 0.0874 | 0.6408 | 196.0386 | 205.1453 | 196.6356 | 199.6640 | 0.0747 | 0.4823 |
EL | 0.0944 | 0.5429 | 194.7195 | 201.5495 | 195.0725 | 197.4386 | 0.0770 | 0.5188 |
KW | 0.0896 | 0.6103 | 196.1880 | 205.2947 | 196.7850 | 199.8134 | 0.0933 | 0.5735 |
GMW | 0.0905 | 0.5967 | 197.2302 | 206.3369 | 197.8272 | 200.8556 | 0.1064 | 0.6601 |
EW | 0.1056 | 0.3984 | 197.6848 | 204.5148 | 198.0377 | 200.4038 | 0.1662 | 0.9792 |
EGAPEx | 0.0874 | 0.6411 | 196.1340 | 205.2406 | 196.7310 | 199.7594 | 0.0917 | 0.5652 |
KMGE | 0.0906 | 0.5961 | 193.4319 | 200.9853 | 193.6058 | 196.2446 | 0.0970 | 0.5771 |
EHLINH | 0.1011 | 0.4537 | 195.7417 | 202.5717 | 196.0946 | 198.4607 | 0.0976 | 0.6161 |
ExEx | 0.2118 | 0.0031 | 210.6588 | 215.2121 | 210.8327 | 212.4715 | 0.2429 | 1.4240 |
OWITL | 0.0929 | 0.5634 | 194.6419 | 201.4719 | 194.9949 | 197.3610 | 0.0921 | 0.5773 |
Profile likelihood and uniqueness proof of GAPEED parameters have been discussed in Figures 7, 8, 10, 11, 13, and 14. The results in Tables 12, 14, and 16 show that the GAPEED is the most effective model to fit these datasets when compared to the other distributions indicated in Tables 12, 14, and 16. Graphical representations in Figures 6, 9, and 12 reflect these findings.
The majority of research employs just one accelerating stress variable. There are situations when increasing one stress variable does not produce enough failure data. For further acceleration, two stress factors might be required. Two stress variables are examined in this paper. It will be possible to better comprehend the impact of two stress variables functioning simultaneously if two stress variables are included in a test design. Furthermore, the test units' failure time is assumed by the author to follow a GAPEED model. The bivariate SSALT under PTIC is discussed in this section. The MLE of the model parameters is also examined.
The bivariate SSALT under PTIC is as follows: Each stress variable (SV) has two levels when using the bivariate SSALT. Let Hs represent the variable l's stress level (SL) s, where l=1,2 and s=0,1,2. H10 and H20 illustrate typical operational scenarios. Allow the experiment to run for T1, during which n1 failures will be logged, with all n units starting at the 1st step with SLs (K11,K21).
The 1st SV is raised from H11 to H12 at time T1, c1 units are removed at random from the remaining N−n1 units, and the 1st SV is raised from H11 to H12. Until the predetermined time tau2 is calculated at time tau2 from the remaining N−n1−c1−n2 units, the second phase is repeated.
The other SV is increased from H21 to H22 at the conclusion of the 2nd step. Up until when T is reached, at which point n2 units fail this stage, the test is repeated. All of the surviving units c3=N−n1−c1−n2−c2−n3 are taken out of the test at time T.
In the first phase, GAPEED with cdf in Eq (2.1) is used to calculate the life of test units. A log-linear function of SLs exists for the scale parameter αi at test step i for i=1, 2, and 3.
Step 1. ln(α1)=B0+B1H11+B2H21;
Step 2. ln(α2)=B0+B1H12+B2H21;
Step 3. ln(α3)=B0+B1H12+B2H22,
where B0, B1, and B2 are unidentified parameters that vary based on the test technique and the product. The two pressures are thought to be unrelated to one another.
The model of cumulative exposure is also considered. Regardless of how the chance is calculated, the remaining life in this model is completely based on the current cumulative failure probability and the current SL [49].
The shape parameter β is constant for all SLs. The cumulative distribution function (cdf) of the test unit lifespan for the bivariate SSALT and cumulative exposure models is then:
Fi(x)={(1−e−a1x)bτ1−(1−e−a1x)b0≤x≤T1,(1−e−[a1T1+a2(x−T1)])bτ1−(1−e−[a1T1+a2(x−T1)])bT1≤x≤T2,(1−e−[a1T1+a2(T2−T1)+a3(x−T2)])bτ1−(1−e−[a1T1+a2(T2−T1)+a3(x−T2)])bT2≤x≤T, | (7.1) |
where i=1,2,3. The pdf of bivariate SSALT for this can be written as
f1(x)=1ea1x−1{a1b(1−e−a1x)bτ1−(1−e−a1x)b[1−log(τ)(1−e−a1x)b]},0≤x≤T1, | (7.2) |
f2(x)=1e(a1T1+a2(x−T1))−1{a2b(1−e−(a1T1+a2(x−T1)))bτ1−(1−e−(a1T1+a2(x−T1)))b[1−log(τ)(1−e−(a1T1+a2(x−T1)))b]},T1≤x≤T2, | (7.3) |
and
f3(x)=1e(a1T1+a2(T2−T1)+a3(x−T2))−1{a3b(1−e−(a1T1+a2(T2−T1)+a3(x−T2)))bτ1−(1−e−(a1T1+a2(T2−T1)+a3(x−T2)))b[1−log(τ)(1−e−(a1T1+a2(T2−T1)+a3(x−T2)))b]}T2≤x≤T3. | (7.4) |
Assume that in a bivariate SSALT, x_{ij} represents the observations produced from a PTIC sample with random deletions, where i = 1, 2, 3, j = 1, 2, ..., n_i . Each unit is excluded from the test with the same probability p , and the number of items removed from the test at any one time is distributed binomially. In other words,
\begin{equation} C_i = \left\{ \begin{array}{c} c_1 \approx binomial(N-n_1, p), \\ c_2|c_1 = c_2 \approx binomial(N-n_1-n_2-c_1, p), \\ c_3 = N-n_1-n_2-n_3-c_1-c_2. \end{array} \right. \end{equation} | (7.5) |
The joint log-LLF of the bivariate SSALT model under the PTIC sample is as follows if C_i is independent of x_{ij} for all i .
\begin{equation} L(\Theta, p|C) = L_1\left(\Theta\right) P(c_1, p) P(c_2|c_1, p), \end{equation} | (7.6) |
where
\begin{equation} L_1(\Theta) = \prod\limits_{i = 1}^{3} \prod\limits_{j = 1}^{n_i} f_i(x_{ij}) \left[1-F_i(x_{ij})\right]^{c_i} , \end{equation} | (7.7) |
where in (7.1)–(7.4), F_i(x_{ij}) and f_i(x_{ij}) will be replaced for F_i(x_{ij}) and f_i(x_{ij}) , respectively.
The ML estimators of the model under bivariate SSALT based on the PTIC sample are shown in Tables 17 and 18, respectively, when p = 0 and p = 0.2. The results in Tables 17 and 18 indicate that the model's effectiveness rises as the probability of binomial elimination rises and the AINC and BINC values fall.
Data | T_1 | T_2 | T_3 | n_1 | n_2 | n_3 | \alpha_1 | \alpha_2 | \alpha_3 | \beta | \tau | Llog | AI | BI |
I | 1.6 | 1.9 | 3 | 6 | 7 | 5 | 2.5353 | 4.2746 | 3.3228 | 1.8354 | 0.0020 | -7.2028 | 24.4055 | 29.3842 |
3.5 | 6 | 2.4710 | 3.8668 | 2.3909 | 2.0295 | 0.0031 | -10.4644 | 30.9287 | 35.9074 | |||||
2.2 | 3 | 9 | 3 | 2.5416 | 3.5990 | 5.0954 | 1.9838 | 0.0026 | -7.1745 | 24.3490 | 29.3277 | |||
3.5 | 4 | 2.5352 | 3.0753 | 2.9460 | 1.9840 | 0.0008 | -10.8706 | 31.7412 | 36.7198 | |||||
1.8 | 1.9 | 3 | 11 | 2 | 5 | 2.8502 | 4.7026 | 3.3463 | 1.4596 | 0.0034 | -7.6071 | 25.2142 | 30.1929 | |
3.5 | 6 | 2.7474 | 4.0312 | 2.4071 | 1.7368 | 0.0024 | -10.7940 | 31.5879 | 36.5666 | |||||
2.2 | 3 | 4 | 3 | 2.9864 | 3.0214 | 5.1299 | 1.3835 | 0.0007 | -7.4430 | 24.8859 | 29.8646 | |||
3.5 | 4 | 2.8427 | 2.4470 | 2.9661 | 1.9249 | 0.0025 | -10.9378 | 31.8756 | 36.8543 | |||||
II | 8 | 14 | 22 | 22 | 21 | 24 | 0.0842 | 0.1251 | 0.3435 | 1.4147 | 0.8461 | -207.0863 | 424.1727 | 436.5022 |
38 | 36 | 0.0463 | 0.0689 | 0.1152 | 1.3591 | 1.4858 | -278.0608 | 566.1216 | 578.4511 | |||||
18 | 30 | 35 | 14 | 0.1071 | 0.1562 | 0.2666 | 1.2760 | 0.3879 | -231.5655 | 473.1311 | 485.4606 | |||
38 | 22 | 0.0929 | 0.1258 | 0.1248 | 1.2874 | 0.4486 | -278.8941 | 567.7881 | 580.1177 | |||||
10 | 14 | 30 | 28 | 15 | 28 | 0.0546 | 0.0970 | 0.2060 | 1.4255 | 1.5355 | -229.6798 | 469.3596 | 481.6891 | |
38 | 36 | 0.0473 | 0.0790 | 0.1146 | 1.3702 | 1.5078 | -277.6793 | 565.3585 | 577.6881 | |||||
18 | 30 | 29 | 14 | 0.0908 | 0.1687 | 0.2639 | 1.3715 | 0.6488 | -230.6346 | 471.2691 | 483.5987 | |||
38 | 22 | 0.0642 | 0.1176 | 0.1199 | 1.4065 | 1.0223 | -278.2243 | 566.4487 | 578.7782 | |||||
III | 1.1 | 1.6 | 2.4 | 21 | 17 | 18 | 1.9285 | 1.9888 | 3.3652 | 2.1804 | 0.0428 | -42.3850 | 94.7701 | 106.1534 |
3 | 26 | 1.8135 | 1.6050 | 2.1656 | 2.1324 | 0.0408 | -61.6277 | 133.2554 | 144.6387 | |||||
1.9 | 2.4 | 25 | 10 | 1.9262 | 2.1187 | 4.8965 | 2.1808 | 0.0427 | -41.3863 | 92.7727 | 104.1560 | |||
3 | 18 | 1.8140 | 1.6102 | 2.5898 | 2.1043 | 0.0396 | -60.9120 | 131.8240 | 143.2073 | |||||
1.3 | 1.6 | 2.4 | 30 | 8 | 18 | 2.0586 | 1.6644 | 3.3873 | 2.4176 | 0.0402 | -42.2304 | 94.4608 | 105.8442 | |
3 | 26 | 1.8815 | 1.2926 | 2.1763 | 2.2743 | 0.0399 | -61.2000 | 132.4000 | 143.7833 | |||||
1.9 | 2.4 | 16 | 10 | 2.0571 | 1.9902 | 4.9177 | 2.4155 | 0.0401 | -41.4372 | 92.8744 | 104.2577 | |||
3 | 18 | 1.8835 | 1.4376 | 2.6025 | 2.2621 | 0.0392 | -60.5813 | 131.1625 | 142.5459 |
Data | T_1 | T_2 | T_3 | n_1 | n_2 | n_3 | \alpha_1 | \alpha_2 | \alpha_3 | \beta | \tau | Llog | AI | BI |
I | 1.6 | 1.9 | 3 | 6 | 7 | 2 | 2.7800 | 6.6237 | 5.1808 | 1.5332 | 0.0019 | -1.3345 | 12.6689 | 17.6476 |
3.5 | 3 | 2.6606 | 5.5631 | 2.0821 | 1.5061 | 0.0026 | -5.5431 | 21.0862 | 26.0648 | |||||
2.2 | 3.1 | 9 | 2 | 2.5638 | 4.3445 | 2.5229 | 1.7539 | 0.0021 | -6.6903 | 23.3806 | 28.3592 | |||
3.5 | 2 | 2.5638 | 4.3445 | 2.5229 | 1.7539 | 0.0001 | -6.6903 | 23.3806 | 28.3592 | |||||
1.8 | 1.9 | 3 | 11 | 1 | 2 | 3.3879 | 5.5803 | 2.5550 | 1.4507 | 0.0012 | -4.0139 | 18.0277 | 23.0064 | |
3.5 | 3 | 3.5248 | 3.7242 | 1.6542 | 2.0645 | 0.0018 | -7.1073 | 24.2145 | 29.1932 | |||||
2.2 | 3 | 3 | 1 | 3.2535 | 4.6798 | 10.2574 | 1.5629 | 0.0019 | -3.0837 | 16.1675 | 21.1461 | |||
3.5 | 1 | 3.2535 | 4.6798 | 10.2574 | 1.5629 | 0.0029 | -3.0837 | 16.1675 | 21.1461 | |||||
II | 8 | 14 | 22 | 22 | 18 | 16 | 0.1221 | 0.1552 | 0.3637 | 1.3846 | 0.5564 | -171.7641 | 353.5283 | 365.8578 |
38 | 25 | 0.0621 | 0.0835 | 0.1128 | 1.4401 | 1.4256 | -226.8644 | 463.7287 | 476.0583 | |||||
18 | 22 | 29 | 5 | 0.1362 | 0.2049 | 0.5140 | 1.3076 | 0.3588 | -171.8571 | 353.7143 | 366.0438 | |||
38 | 15 | 0.1127 | 0.1369 | 0.1093 | 1.2970 | 0.4134 | -230.3447 | 470.6895 | 483.0190 | |||||
10 | 14 | 22 | 28 | 12 | 16 | 0.0711 | 0.1187 | 0.3461 | 1.5427 | 1.6947 | -169.7180 | 349.4361 | 361.7656 | |
38 | 24 | 0.0584 | 0.0858 | 0.1120 | 1.4557 | 1.6740 | -220.9976 | 451.9953 | 464.3248 | |||||
18 | 22 | 24 | 5 | 0.1297 | 0.2358 | 0.5680 | 1.3375 | 0.4332 | -173.7040 | 357.4080 | 369.7376 | |||
38 | 13 | 0.1069 | 0.1581 | 0.1051 | 1.3487 | 0.5302 | -224.0241 | 458.0481 | 470.3777 | |||||
III | 1.1 | 1.6 | 2.4 | 21 | 13 | 9 | 2.2016 | 2.4738 | 4.1560 | 2.3470 | 0.0482 | -27.9595 | 65.9191 | 77.3024 |
3 | 13 | 2.1023 | 2.0038 | 2.3040 | 2.2828 | 0.0463 | -39.9871 | 89.9742 | 101.3575 | |||||
1.9 | 2.4 | 21 | 5 | 2.0900 | 2.4406 | 5.7452 | 2.3197 | 0.0480 | -32.3110 | 74.6221 | 86.0054 | |||
3 | 9 | 2.0104 | 1.9690 | 2.9062 | 2.2560 | 0.0457 | -43.2342 | 96.4684 | 107.8517 | |||||
1.3 | 1.6 | 2.4 | 30 | 6 | 10 | 2.3723 | 1.9721 | 3.2473 | 2.7184 | 0.0406 | -32.2770 | 74.5541 | 85.9374 | |
3 | 14 | 2.2271 | 1.5491 | 2.2233 | 2.5817 | 0.0408 | -42.5040 | 95.0080 | 106.3914 | |||||
1.9 | 2.4 | 12 | 8 | 2.2277 | 1.8942 | 4.5920 | 2.5778 | 0.0406 | -36.5661 | 83.1323 | 94.5156 | |||
3 | 10 | 2.1666 | 1.6701 | 3.5295 | 2.5178 | 0.0404 | -41.6866 | 93.3732 | 104.7565 |
In this article, we derived and studied a new three-parameter lifetime distribution called the GAPEED. Some important statistical and mathematical features (quantile function, ordinary moments, incomplete moments, and moment generating function) were computed. Eight different estimation methods for the distribution parameters, ML, AD, CVM, MPS, LS, RTAD, WLS, and LTAD, were proposed. The Monte Carlo technique was employed to evaluate the quality of different estimators. The importance and flexibility of the GAPEED were demonstrated by utilizing three real datasets. For the GAPEED model, a bivariate SSALT based on PTIC was presented. An optimal test plan under PTIC is expressed by minimizing the asymptotic variance of the MLE of the log of the scale parameter at design stress. Tables 17 and 18 compare the approaches based on various binomial removal values. We conclude from these findings that the effectiveness of this model increases as the value of the binomial removals rises.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23142).
This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23142).
The authors declare no conflict of interest.
[1] |
D. W. Vaughn, S. Green, S. Kalayanarooj, B. L. Innis, S. Nimmannitya, S. Suntayakorn, et al., Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity, J. Infect. Dis., 181 (2000), 2–9. http://doi.org/10.1086/315215 doi: 10.1086/315215
![]() |
[2] |
C. Li, Y. Lu, J. Liu, X. Wu, Climate change and dengue fever transmission in China: Evidences and challenges, Sci. Total Environ., 622–623 (2018), 493–501. http://doi.org/ 10.1016/j.scitotenv.2017.11.326 doi: 10.1016/j.scitotenv.2017.11.326
![]() |
[3] | A. Abidemi, N. A. B. Aziz, Analysis of deterministic models for dengue disease transmission dynamics with vaccination perspective in Johor, Malaysia, Int. J. Appl. Comput. Math., 8 (2022). https://doi.org/10.1007/s40819-022-01250-3 |
[4] | A. Dwivedi, R. Keval, Analysis for transmission of dengue disease with different class of human population, Epidemiol. Method., 10 (2021). https://doi.org/10.1515/em-2020-0046 |
[5] | E. Soewono, A. K. Supriatna, A two-dimensional model for the transmission of dengue fever disease, B. Malays. Math. Sci. So., 24 (2001), 49–57. |
[6] | A. Abidemi, H. O. Fatoyinbo, J. K. K. Asamoah, Analysis of dengue fever transmission dynamics with multiple controls: A mathematical approach, In: 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 2020,971–978. https://doi.org/10.1109/DASA51403.2020.9317064 |
[7] | P. Pongsumpun, Mathematical model of dengue disease with the incubation period of virus, World Aca. Sci. Eng. Tech., 44 (2009), 328–332. |
[8] | S. T. R. Pinho, C. P. Ferreira, L. Esteva, F. R. Barreto, V. M. Silva, M. G. L. Teixeira, Modelling the dynamics of dengue real epidemics, Philos. T. Roy. Soc. Math. Phys. Eng. Sci., 368 (2010). https://doi.org/10.1098/rsta.2010.0278 |
[9] | R. Kongnuy, P. Pongsumpun, Mathematical modeling for dengue transmission with the effect of season, Int. J. Biol. Med. Sci., 7 (2011). |
[10] | S. Side, S. M. Noorani, A SIR model for spread of dengue fever disease (simulation for South Sulawesi, Indonesia and Selangor, Malaysia), World J. Model. Simul., 9 (2013), 96–105. |
[11] |
S. Gakkhar, N. C. Chavda, Impact of awareness on the spread of dengue infection in human population, Appl. Math., 4 (2013), 142–147. http://dx.doi.org/10.4236/am.2013.48A020 doi: 10.4236/am.2013.48A020
![]() |
[12] |
E. Bonyah, M. A. Khan, K. O. Okosun, J. F. Gómez-Aguilar, On the co-infection of dengue fever and Zika virus, Optim. Control Appl. Method., 40 (2019), 394–421. https://doi.org/10.1002/oca.2483 doi: 10.1002/oca.2483
![]() |
[13] | J. K. K. Asamoah, E. Yankson, E. Okyere, G. Q. Sun, Z. Jin, R. Jan, et al., Optimal control and cost-effectiveness analysis for dengue fever model with asymptomatic and partial immune individuals, Results Phys., 31 (2021). https://doi.org/10.1016/j.rinp.2021.104919 |
[14] |
R. Jan, S. Boulaaras, Analysis of fractional order dynamics of dengue infection with non-linear incidence functions, T. I. Meas. Control, 44 (2022), 2630–2641. https://doi.org/10.1177/01423312221085049 doi: 10.1177/01423312221085049
![]() |
[15] | R. Jan, S. Boulaaras, S. Alyobi, K. Rajagopal, M. Jawad, Fractional dynamics of the transmission phenomena of dengue infection with vaccination, Discrete Cont. Dyn. Syst.-S, 2022. https://doi.org/10.3934/dcdss.2022154 |
[16] | K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer Science and Business Media, Berlin, 2010. |
[17] | M. Saeedian, M. Khalighi, N. Azimi-Tafreshi, G. Jafari, M. Ausloos, Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model, Phys. Rev., 95 (2017). https://doi.org/10.1103/PhysRevE.95.022409 |
[18] |
K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dynam., 71 (2013), 613–619. https://doi.org/10.1007/s11071-012-0475-2 doi: 10.1007/s11071-012-0475-2
![]() |
[19] |
M. A. Khan, S. Ullah, M. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chaos Soliton. Fract., 116 (2018), 227–238. https://doi.org/10.1016/j.chaos.2018.09.039 doi: 10.1016/j.chaos.2018.09.039
![]() |
[20] |
S. Ullah, M. A. Khan, M. Farooq, A fractional model for the dynamics of tuberculosis virus, Chaos Soliton. Fract., 116 (2018), 63–71. https://doi.org/10.1016/j.chaos.2018.09.001 doi: 10.1016/j.chaos.2018.09.001
![]() |
[21] |
H. W. Berhe, S. Qureshi, A. A. Shaikh, Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis, Chaos Soliton. Fract., 131 (2020), 109536, https://doi.org/10.1016/j.chaos.2019.109536 doi: 10.1016/j.chaos.2019.109536
![]() |
[22] |
S. Qureshi, Z. N. Memon, Monotonically decreasing behavior of measles epidemic well captured by Atangana-Baleanu-Caputo fractional operator under real measles data of Pakistan, Chaos Soliton. Fract., 131 (2020), 109478, https://doi.org/10.1016/j.chaos.2019.109478 doi: 10.1016/j.chaos.2019.109478
![]() |
[23] | S. E. Alhazmi, S. A. M. Abdelmohsen, M. A. Alyami, A. Ali, J. K. K. Asamoah, A novel analysis of generalized perturbed Zakharov-Kuznetsov equation of fractional-order arising in dusty Plasma by natural transform decomposition method, Hindawi J. Nanomater., 2022 (2022). https://doi.org/10.1155/2022/7036825 |
[24] | L. Zhang, E. Addai, J. Ackora-Prah, Y. D. Arthur, J. K. K. Asamoah, Fractional-order Ebola-Malaria coinfection model with a focus on detection and treatment rate, Hindawi Comput. Math. Method. Med., 2022 (2022). https://doi.org/10.1155/2022/6502598 |
[25] | R. Alharbi, R. Jan, S. Alyobi, Y. Altayeb, Z. Khan, Mathematical modeling and stability analysis of the dynamics of monkeypox via fractional calculus, Fractals, 30 (2022). https://doi.org/10.1142/S0218348X22402666 |
[26] |
E. Addai, L. L. Zhang, J. Ackora-Prah, J. F. Gordon, J. K. K. Asamoah, J. F. Essel, Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets, Physica A, 603 (2022), 127809. https://doi.org/10.1016/j.physa.2022.127809 doi: 10.1016/j.physa.2022.127809
![]() |
[27] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, Mathematics in Science and Engineering, 1998. |
[28] |
J. Ackora-Prah, B. Seidu, E. Okyere, J. K. K. Asamoah, Fractal-fractional Caputo maize streak virus disease model, Fractal Fract., 7 (2023), 189. https://doi.org/10.3390/fractalfract7020189 doi: 10.3390/fractalfract7020189
![]() |
[29] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1–13. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |
[30] | A. I. K. Butt, M. Imran, S. Batool, M. A. Nuwairan, Theoretical analysis of a COVID-19 CF-fractional model to optimally control the spread of pandemic, Symmetry, 15 (2023). https://doi.org/10.3390/sym15020380 |
[31] | E. Addai, L. L. Zhang, A. K. Preko, J. K. K. Asamoah, Fractional order epidemiological model of SARS-CoV-2 dynamism involving Alzheimer's disease, Healthcare Anal., 2 (2022). https://doi.org/10.1016/j.health.2022.100114 |
[32] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
![]() |
[33] |
R. Jan, S. Alyobi, M. Inc, A. S. Alshomrani, M. Farooq, A robust study of the transmission dynamics of malaria through non-local and non-singular kernel, AIMS Math., 8 (2023), 7618–7640. https://doi.org/10.3934/math.2023382 doi: 10.3934/math.2023382
![]() |
[34] | J. K. K. Asamoah, Fractal fractional model and numerical scheme based on Newton polynomial for Q fever disease under Atangana-Baleanu derivative, Results Phys., 34 (2022). https://doi.org/10.1016/j.rinp.2022.105189 |
[35] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 2006. |
[36] | S. Ullah, M. A. Khan, M. Farooq, E. O. Alzahrani, A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative, Discrete Cont. Dyn. Syst.-S, 13 (2018). https://doi.org/10.3934/dcdss.2020055 |
[37] |
K. Shah, F. Jarad, T. Abdeljawad, On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative, Alex. Eng. J., 59 (2020), 2305–2313. https://doi.org/10.1016/j.aej.2020.02.022 doi: 10.1016/j.aej.2020.02.022
![]() |
[38] | K. M. Altaf, A. Atangana, Dynamics of Ebola disease in the framework of different fractional derivatives, Entropy, 21 (2019). https://doi.org/10.3390/e21030303 |
[39] |
J. Losada, J. J. Nieto, Properties of a fractional derivative without singular kernel, Prog. Fract. Diff. Appl., 1 (2015), 87–92. https://doi.org/10.12785/pfda/010202 doi: 10.12785/pfda/010202
![]() |
[40] | J. K. K. Asamoah, E. Okyere, E. Yankson, A. A. Opoku, A. Adom-Konadu, E. Acheampong, et al., Non-fractional and fractional mathematical analysis and simulations for Q fever, Chaos Soliton. Fract., 156 (2022). https://doi.org/10.1016/j.chaos.2022.111821 |
[41] | H. Wang, H. Jahanshahi, M. K. Wang, S. Bekiros, J. Liu, A. A. Aly, A Caputo-Fabrizio fractional-order model of HIV/AIDS with a treatment compartment: Sensitivity analysis and optimal control strategies, Entropy, 23 (2021). https://doi.org/10.3390/e23050610 |
[42] | C. T. Deressa, Y. O. Mussa, G. F. Duressa, Optimal control and sensitivity analysis for transmission dynamics of coronavirus, Results Phys., 19 (2020). https://doi.org/10.1016/j.rinp.2020.103642 |
[43] |
T. T. Yusuf, F. Benyah, Optimal strategy for controlling the spread of HIV/AIDS disease: A case study of South Africa, J. Biol. Dyn., 6 (2012), 475–494. https://doi.org/10.1080/17513758.2011.628700 doi: 10.1080/17513758.2011.628700
![]() |
[44] |
E. Bonyah, M. L. Juga, C. W. Chukwu, Fatmawati, A fractional order dangue fever model in the context of protected travelers, Alex. Eng. J., 61 (2022), 927–936. https://doi.org/10.1016/j.aej.2021.04.070 doi: 10.1016/j.aej.2021.04.070
![]() |
[45] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1999. |
[46] |
D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag Leffler kernel, Commun. Nonlinear Sci., 59 (2018), 444–462. https://doi.org/10.1016/j.cnsns.2017.12.003 doi: 10.1016/j.cnsns.2017.12.003
![]() |
[47] |
A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivative with fractional order, Chaos Soliton. Fract., 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012 doi: 10.1016/j.chaos.2016.02.012
![]() |
[48] | E. Kreyszig, Introductry functional analysis with application, John Wiley and Sons, New York, 1993. |
[49] | V. I. Arnold, Ordinary differential equations, MIT Press, London, UK, 1998. |
[50] | W. Ahmad, M. Abbas, M. Rafiq, D. Baleanu, Mathematical analysis for the effect of voluntary vaccination on the propagation of Corona virus pandemic, Results Phys., 31 (2021), https://doi.org/10.1016/j.rinp.2021.104917 |
[51] |
W. Ahmad, M. Abbas, Effect of quarantine on transmission dynamics of Ebola virus epidemic: A mathematical analysis, Eur. Phys. J. Plus, 136 (2021), 1–33. https://doi.org/10.1140/epjp/s13360-021-01360-9 doi: 10.1140/epjp/s13360-021-01360-9
![]() |
[52] |
W. Ahmad, M. Rafiq, M. Abbas, Mathematical analysis to control the spread of Ebola virus epidemic through voluntary vaccination, Eur. Phys. J. Plus, 135 (2020), 1–34. https://doi.org/10.1140/epjp/s13360-020-00683-3 doi: 10.1140/epjp/s13360-020-00683-3
![]() |
[53] | M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017). https://doi.org/10.1140/epjp/i2017-11717-0 |
[54] |
M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
![]() |
[55] |
R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Method. Appl. Sci., 37 (2014), 1668–1686. https://doi.org/10.1002/mma.2928 doi: 10.1002/mma.2928
![]() |
[56] | S. Lenhart, J. T. Workman, Optimal control applied to biological models, CRC Press, 2007. |
[57] | H. M. Ali, F. L. Pereira, S. M. Gama, A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems, Math. Method. Appl. Sci., 39 (2016). https://doi.org/10.1002/mma.3811 |
[58] |
C. Vargas-De-Len, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci., 24 (2015), 75–85. https://doi.org/10.1016/j.cnsns.2014.12.013 doi: 10.1016/j.cnsns.2014.12.013
![]() |
[59] | J. P. LaSalle, The stability of dynamical systems, SIAM, Philadelphia, PA, 1976. |
1. | M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr, Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields, 2024, 9, 2473-6988, 17634, 10.3934/math.2024857 | |
2. | Ronghua Wang, Beiqing Gu, Xiaoling Xu, RELIABILITY STATISTICAL ANALYSIS OF TWO-PARAMETER EXPONENTIAL DISTRIBUTION UNDER CONSTANT STRESS ACCELERATED LIFE TEST WITH INVERSE POWER LAW MODEL, 2024, 14, 2156-907X, 2993, 10.11948/20240017 | |
3. | Naif Alotaibi, Actuarial and various entropy measures for a new extended log Kumaraswamy model: Properties and applications, 2025, 126, 11100168, 377, 10.1016/j.aej.2025.04.039 |
Parameters | Measures | |||||||||
a | b | \tau | \mu^\prime_1 | \mu^\prime_2 | \mu^\prime_3 | \mu^\prime_4 | \sigma^2 | CV | skewness | kurtosis |
0.5 | 0.75 | 0.25 | 2.68979 | 12.4088 | 79.9101 | 662.52 | 5.17387 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 1.74385 | 6.75901 | 40.1156 | 319.514 | 3.71799 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 2.0773 | 7.90377 | 45.4087 | 353.528 | 3.5886 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 1.68603 | 5.38955 | 27.4263 | 198.4 | 2.54684 | 0.94653 | 5.75592 | 12.5055 | ||
0.75 | 0.75 | 0.25 | 1.79319 | 5.51503 | 23.6771 | 130.868 | 2.2995 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 1.16257 | 3.004 | 11.8861 | 63.1139 | 1.65244 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 1.38487 | 3.51279 | 13.4544 | 69.8326 | 1.59493 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 1.12402 | 2.39536 | 8.12631 | 39.1901 | 1.13193 | 0.94653 | 5.75592 | 12.5055 | ||
1.5 | 0.75 | 0.25 | 0.896596 | 1.37876 | 2.95963 | 8.17926 | 0.574874 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 0.581283 | 0.751001 | 1.48576 | 3.94462 | 0.41311 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 0.692433 | 0.878196 | 1.68181 | 4.36454 | 0.398733 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 0.562011 | 0.598839 | 1.01579 | 2.44938 | 0.282982 | 0.94653 | 5.75592 | 12.5055 | ||
2.5 | 0.75 | 0.25 | 0.537958 | 0.496353 | 0.63928 | 1.06003 | 0.206955 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 0.34877 | 0.27036 | 0.320925 | 0.511223 | 0.14872 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 0.41546 | 0.316151 | 0.36327 | 0.565644 | 0.143544 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 0.337207 | 0.215582 | 0.21941 | 0.31744 | 0.101874 | 0.94653 | 5.75592 | 12.5055 |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.32671 ^{\{ 1 \}} | 0.58371 ^{\{ 5 \}} | 0.56143 ^{\{ 2 \}} | 0.57133 ^{\{ 3 \}} | 0.60648 ^{\{ 6 \}} | 0.63277 ^{\{ 8 \}} | 0.5738 ^{\{ 4 \}} | 0.61215 ^{\{ 7 \}} |
\hat{a} | 0.04966 ^{\{ 1 \}} | 0.06013 ^{\{ 4 \}} | 0.0625 ^{\{ 6 \}} | 0.05958 ^{\{ 3 \}} | 0.06715 ^{\{ 8 \}} | 0.06343 ^{\{ 7 \}} | 0.05815 ^{\{ 2 \}} | 0.06028 ^{\{ 5 \}} | ||
\hat{b} | 0.24844 ^{\{ 1 \}} | 0.28129 ^{\{ 4 \}} | 0.28515 ^{\{ 5 \}} | 0.29203 ^{\{ 6 \}} | 0.27907 ^{\{ 2 \}} | 0.29342 ^{\{ 7 \}} | 0.28051 ^{\{ 3 \}} | 0.31435 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.16299 ^{\{ 1 \}} | 0.59664 ^{\{ 5 \}} | 0.52583 ^{\{ 2 \}} | 0.58252 ^{\{ 4 \}} | 0.61607 ^{\{ 6 \}} | 0.721 ^{\{ 7 \}} | 0.55021 ^{\{ 3 \}} | 0.93333 ^{\{ 8 \}} | |
\hat{a} | 0.00411 ^{\{ 1 \}} | 0.00549 ^{\{ 4 \}} | 0.00611 ^{\{ 6 \}} | 0.0054 ^{\{ 3 \}} | 0.00663 ^{\{ 7.5 \}} | 0.00663 ^{\{ 7.5 \}} | 0.00519 ^{\{ 2 \}} | 0.00574 ^{\{ 5 \}} | ||
\hat{b} | 0.10323 ^{\{ 1 \}} | 0.11811 ^{\{ 4 \}} | 0.12803 ^{\{ 6 \}} | 0.11815 ^{\{ 5 \}} | 0.1178 ^{\{ 3 \}} | 0.14159 ^{\{ 8 \}} | 0.11156 ^{\{ 2 \}} | 0.14151 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.65343 ^{\{ 1 \}} | 1.16742 ^{\{ 5 \}} | 1.12285 ^{\{ 2 \}} | 1.14267 ^{\{ 3 \}} | 1.21295 ^{\{ 6 \}} | 1.26554 ^{\{ 8 \}} | 1.1476 ^{\{ 4 \}} | 1.22429 ^{\{ 7 \}} | |
\hat{a} | 0.19865 ^{\{ 1 \}} | 0.24052 ^{\{ 4 \}} | 0.25 ^{\{ 6 \}} | 0.23833 ^{\{ 3 \}} | 0.2686 ^{\{ 8 \}} | 0.2537 ^{\{ 7 \}} | 0.23258 ^{\{ 2 \}} | 0.2411 ^{\{ 5 \}} | ||
\hat{b} | 0.33126 ^{\{ 1 \}} | 0.37506 ^{\{ 4 \}} | 0.3802 ^{\{ 5 \}} | 0.38937 ^{\{ 6 \}} | 0.37209 ^{\{ 2 \}} | 0.39123 ^{\{ 7 \}} | 0.37402 ^{\{ 3 \}} | 0.41913 ^{\{ 8 \}} | ||
D_{abs} | 0.04372 ^{\{ 2 \}} | 0.04281 ^{\{ 1 \}} | 0.04653 ^{\{ 7 \}} | 0.04411 ^{\{ 3 \}} | 0.04606 ^{\{ 5 \}} | 0.04624 ^{\{ 6 \}} | 0.0448 ^{\{ 4 \}} | 0.04683 ^{\{ 8 \}} | ||
D_{max} | 0.07294 ^{\{ 3 \}} | 0.07168 ^{\{ 2 \}} | 0.07905 ^{\{ 8 \}} | 0.07157 ^{\{ 1 \}} | 0.0766 ^{\{ 5 \}} | 0.07807 ^{\{ 6 \}} | 0.07418 ^{\{ 4 \}} | 0.07819 ^{\{ 7 \}} | ||
ASAE | 0.02941 ^{\{ 7 \}} | 0.02686 ^{\{ 2 \}} | 0.02879 ^{\{ 5 \}} | 0.02748 ^{\{ 4 \}} | 0.02895 ^{\{ 6 \}} | 0.02682 ^{\{ 1 \}} | 0.02728 ^{\{ 3 \}} | 0.03173 ^{\{ 8 \}} | ||
\sum Ranks | 21 ^{\{ 1 \}} | 44 ^{\{ 3.5 \}} | 60 ^{\{ 5 \}} | 44 ^{\{ 3.5 \}} | 64.5 ^{\{ 6 \}} | 79.5 ^{\{ 7 \}} | 36 ^{\{ 2 \}} | 83 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.31314 ^{\{ 1 \}} | 0.47069 ^{\{ 3 \}} | 0.48998 ^{\{ 5 \}} | 0.49062 ^{\{ 6 \}} | 0.50913 ^{\{ 7 \}} | 0.54111 ^{\{ 8 \}} | 0.47654 ^{\{ 4 \}} | 0.46785 ^{\{ 2 \}} |
\hat{a} | 0.03421 ^{\{ 1 \}} | 0.04143 ^{\{ 2 \}} | 0.04746 ^{\{ 6 \}} | 0.04299 ^{\{ 3 \}} | 0.04804 ^{\{ 7 \}} | 0.04809 ^{\{ 8 \}} | 0.04356 ^{\{ 4 \}} | 0.04532 ^{\{ 5 \}} | ||
\hat{b} | 0.21631 ^{\{ 1 \}} | 0.2507 ^{\{ 5 \}} | 0.23911 ^{\{ 2 \}} | 0.27064 ^{\{ 7 \}} | 0.24898 ^{\{ 3 \}} | 0.24985 ^{\{ 4 \}} | 0.25229 ^{\{ 6 \}} | 0.2829 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.1496 ^{\{ 1 \}} | 0.41058 ^{\{ 4 \}} | 0.43118 ^{\{ 5 \}} | 0.45507 ^{\{ 7 \}} | 0.44542 ^{\{ 6 \}} | 0.55159 ^{\{ 8 \}} | 0.40366 ^{\{ 3 \}} | 0.39192 ^{\{ 2 \}} | |
\hat{a} | 0.00191 ^{\{ 1 \}} | 0.00286 ^{\{ 2 \}} | 0.0034 ^{\{ 6 \}} | 0.00317 ^{\{ 4 \}} | 0.00368 ^{\{ 8 \}} | 0.00366 ^{\{ 7 \}} | 0.00308 ^{\{ 3 \}} | 0.00328 ^{\{ 5 \}} | ||
\hat{b} | 0.07529 ^{\{ 1 \}} | 0.08986 ^{\{ 4 \}} | 0.0849 ^{\{ 2 \}} | 0.10267 ^{\{ 7 \}} | 0.08698 ^{\{ 3 \}} | 0.09562 ^{\{ 6 \}} | 0.09 ^{\{ 5 \}} | 0.11517 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.62627 ^{\{ 1 \}} | 0.94139 ^{\{ 3 \}} | 0.97995 ^{\{ 5 \}} | 0.98124 ^{\{ 6 \}} | 1.01826 ^{\{ 7 \}} | 1.08221 ^{\{ 8 \}} | 0.95309 ^{\{ 4 \}} | 0.93571 ^{\{ 2 \}} | |
\hat{a} | 0.13684 ^{\{ 1 \}} | 0.16572 ^{\{ 2 \}} | 0.18984 ^{\{ 6 \}} | 0.17197 ^{\{ 3 \}} | 0.19217 ^{\{ 7 \}} | 0.19238 ^{\{ 8 \}} | 0.17425 ^{\{ 4 \}} | 0.18128 ^{\{ 5 \}} | ||
\hat{b} | 0.28842 ^{\{ 1 \}} | 0.33426 ^{\{ 5 \}} | 0.31881 ^{\{ 2 \}} | 0.36085 ^{\{ 7 \}} | 0.33197 ^{\{ 3 \}} | 0.33314 ^{\{ 4 \}} | 0.33638 ^{\{ 6 \}} | 0.3772 ^{\{ 8 \}} | ||
D_{abs} | 0.03037 ^{\{ 1 \}} | 0.03108 ^{\{ 3 \}} | 0.03275 ^{\{ 8 \}} | 0.03089 ^{\{ 2 \}} | 0.03226 ^{\{ 5 \}} | 0.03245 ^{\{ 6 \}} | 0.03186 ^{\{ 4 \}} | 0.03262 ^{\{ 7 \}} | ||
D_{max} | 0.05103 ^{\{ 2 \}} | 0.05227 ^{\{ 3 \}} | 0.05581 ^{\{ 8 \}} | 0.05055 ^{\{ 1 \}} | 0.05432 ^{\{ 5 \}} | 0.05561 ^{\{ 7 \}} | 0.0531 ^{\{ 4 \}} | 0.05469 ^{\{ 6 \}} | ||
ASAE | 0.01852 ^{\{ 7 \}} | 0.01764 ^{\{ 3 \}} | 0.01828 ^{\{ 5 \}} | 0.01771 ^{\{ 4 \}} | 0.0183 ^{\{ 6 \}} | 0.01677 ^{\{ 1 \}} | 0.01726 ^{\{ 2 \}} | 0.02027 ^{\{ 8 \}} | ||
\sum Ranks | 19 ^{\{ 1 \}} | 39 ^{\{ 2 \}} | 60 ^{\{ 5 \}} | 57 ^{\{ 4 \}} | 67 ^{\{ 7 \}} | 75 ^{\{ 8 \}} | 49 ^{\{ 3 \}} | 66 ^{\{ 6 \}} | ||
150 | BIAS | \hat{\tau} | 0.27897 ^{\{ 1 \}} | 0.33896 ^{\{ 2 \}} | 0.4218 ^{\{ 7 \}} | 0.37504 ^{\{ 5 \}} | 0.40603 ^{\{ 6 \}} | 0.43235 ^{\{ 8 \}} | 0.36118 ^{\{ 4 \}} | 0.33952 ^{\{ 3 \}} |
\hat{a} | 0.02475 ^{\{ 1 \}} | 0.02809 ^{\{ 2 \}} | 0.03377 ^{\{ 8 \}} | 0.02817 ^{\{ 3 \}} | 0.03358 ^{\{ 7 \}} | 0.03171 ^{\{ 6 \}} | 0.0292 ^{\{ 4 \}} | 0.03094 ^{\{ 5 \}} | ||
\hat{b} | 0.17834 ^{\{ 1 \}} | 0.19969 ^{\{ 2 \}} | 0.22885 ^{\{ 6 \}} | 0.23606 ^{\{ 8 \}} | 0.21943 ^{\{ 4 \}} | 0.23111 ^{\{ 7 \}} | 0.20646 ^{\{ 3 \}} | 0.22692 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.12003 ^{\{ 1 \}} | 0.21771 ^{\{ 3 \}} | 0.32049 ^{\{ 7 \}} | 0.26977 ^{\{ 5 \}} | 0.2889 ^{\{ 6 \}} | 0.35196 ^{\{ 8 \}} | 0.2381 ^{\{ 4 \}} | 0.18081 ^{\{ 2 \}} | |
\hat{a} | 0.00097 ^{\{ 1 \}} | 0.00137 ^{\{ 2 \}} | 0.00186 ^{\{ 7 \}} | 0.00155 ^{\{ 5 \}} | 0.00189 ^{\{ 8 \}} | 0.00175 ^{\{ 6 \}} | 0.00149 ^{\{ 3 \}} | 0.00151 ^{\{ 4 \}} | ||
\hat{b} | 0.05034 ^{\{ 1 \}} | 0.05811 ^{\{ 2 \}} | 0.07333 ^{\{ 5 \}} | 0.08301 ^{\{ 8 \}} | 0.06651 ^{\{ 4 \}} | 0.07845 ^{\{ 7 \}} | 0.06122 ^{\{ 3 \}} | 0.07669 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.55795 ^{\{ 1 \}} | 0.67793 ^{\{ 2 \}} | 0.84359 ^{\{ 7 \}} | 0.75008 ^{\{ 5 \}} | 0.81206 ^{\{ 6 \}} | 0.86469 ^{\{ 8 \}} | 0.72235 ^{\{ 4 \}} | 0.67904 ^{\{ 3 \}} | |
\hat{a} | 0.09901 ^{\{ 1 \}} | 0.11236 ^{\{ 2 \}} | 0.1351 ^{\{ 8 \}} | 0.11269 ^{\{ 3 \}} | 0.13434 ^{\{ 7 \}} | 0.12685 ^{\{ 6 \}} | 0.11682 ^{\{ 4 \}} | 0.12378 ^{\{ 5 \}} | ||
\hat{b} | 0.23779 ^{\{ 1 \}} | 0.26626 ^{\{ 2 \}} | 0.30514 ^{\{ 6 \}} | 0.31475 ^{\{ 8 \}} | 0.29257 ^{\{ 4 \}} | 0.30814 ^{\{ 7 \}} | 0.27529 ^{\{ 3 \}} | 0.30257 ^{\{ 5 \}} | ||
D_{abs} | 0.02145 ^{\{ 2 \}} | 0.02295 ^{\{ 7 \}} | 0.0217 ^{\{ 3 \}} | 0.02129 ^{\{ 1 \}} | 0.02288 ^{\{ 6 \}} | 0.023 ^{\{ 8 \}} | 0.02213 ^{\{ 4 \}} | 0.0225 ^{\{ 5 \}} | ||
D_{max} | 0.03601 ^{\{ 2 \}} | 0.03845 ^{\{ 6 \}} | 0.03771 ^{\{ 4 \}} | 0.03525 ^{\{ 1 \}} | 0.03891 ^{\{ 7 \}} | 0.03973 ^{\{ 8 \}} | 0.03688 ^{\{ 3 \}} | 0.03798 ^{\{ 5 \}} | ||
ASAE | 0.011 ^{\{ 5 \}} | 0.01062 ^{\{ 3 \}} | 0.01139 ^{\{ 6 \}} | 0.01092 ^{\{ 4 \}} | 0.01146 ^{\{ 7 \}} | 0.01039 ^{\{ 1 \}} | 0.01045 ^{\{ 2 \}} | 0.01269 ^{\{ 8 \}} | ||
\sum Ranks | 18 ^{\{ 1 \}} | 35 ^{\{ 2 \}} | 74 ^{\{ 7 \}} | 56 ^{\{ 4.5 \}} | 72 ^{\{ 6 \}} | 80 ^{\{ 8 \}} | 41 ^{\{ 3 \}} | 56 ^{\{ 4.5 \}} | ||
300 | BIAS | \hat{\tau} | 0.20018 ^{\{ 1 \}} | 0.243 ^{\{ 4 \}} | 0.29528 ^{\{ 6 \}} | 0.23781 ^{\{ 3 \}} | 0.31369 ^{\{ 7 \}} | 0.33876 ^{\{ 8 \}} | 0.23778 ^{\{ 2 \}} | 0.25695 ^{\{ 5 \}} |
\hat{a} | 0.01707 ^{\{ 1 \}} | 0.01972 ^{\{ 4 \}} | 0.02215 ^{\{ 6 \}} | 0.01893 ^{\{ 3 \}} | 0.02216 ^{\{ 7 \}} | 0.02177 ^{\{ 5 \}} | 0.01829 ^{\{ 2 \}} | 0.02228 ^{\{ 8 \}} | ||
\hat{b} | 0.13506 ^{\{ 1 \}} | 0.15636 ^{\{ 3 \}} | 0.18002 ^{\{ 6 \}} | 0.17262 ^{\{ 5 \}} | 0.19427 ^{\{ 7 \}} | 0.20028 ^{\{ 8 \}} | 0.15561 ^{\{ 2 \}} | 0.16985 ^{\{ 4 \}} | ||
MSE | \hat{\tau} | 0.0643 ^{\{ 1 \}} | 0.1019 ^{\{ 4 \}} | 0.14664 ^{\{ 6 \}} | 0.08922 ^{\{ 2 \}} | 0.16416 ^{\{ 7 \}} | 0.21518 ^{\{ 8 \}} | 0.08995 ^{\{ 3 \}} | 0.10932 ^{\{ 5 \}} | |
\hat{a} | 0.00047 ^{\{ 1 \}} | 0.00066 ^{\{ 4 \}} | 0.00082 ^{\{ 6 \}} | 0.00056 ^{\{ 2.5 \}} | 0.00088 ^{\{ 8 \}} | 0.00087 ^{\{ 7 \}} | 0.00056 ^{\{ 2.5 \}} | 0.00081 ^{\{ 5 \}} | ||
\hat{b} | 0.03228 ^{\{ 1 \}} | 0.03756 ^{\{ 3 \}} | 0.0464 ^{\{ 4 \}} | 0.05353 ^{\{ 7 \}} | 0.05263 ^{\{ 6 \}} | 0.05765 ^{\{ 8 \}} | 0.03636 ^{\{ 2 \}} | 0.04878 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.40037 ^{\{ 1 \}} | 0.486 ^{\{ 4 \}} | 0.59055 ^{\{ 6 \}} | 0.47561 ^{\{ 3 \}} | 0.62739 ^{\{ 7 \}} | 0.67751 ^{\{ 8 \}} | 0.47557 ^{\{ 2 \}} | 0.5139 ^{\{ 5 \}} | |
\hat{a} | 0.06829 ^{\{ 1 \}} | 0.07887 ^{\{ 4 \}} | 0.08859 ^{\{ 6 \}} | 0.0757 ^{\{ 3 \}} | 0.08866 ^{\{ 7 \}} | 0.0871 ^{\{ 5 \}} | 0.07315 ^{\{ 2 \}} | 0.08912 ^{\{ 8 \}} | ||
\hat{b} | 0.18008 ^{\{ 1 \}} | 0.20848 ^{\{ 3 \}} | 0.24002 ^{\{ 6 \}} | 0.23017 ^{\{ 5 \}} | 0.25903 ^{\{ 7 \}} | 0.26704 ^{\{ 8 \}} | 0.20748 ^{\{ 2 \}} | 0.22646 ^{\{ 4 \}} | ||
D_{abs} | 0.01493 ^{\{ 1 \}} | 0.01579 ^{\{ 5 \}} | 0.0158 ^{\{ 6 \}} | 0.0154 ^{\{ 3 \}} | 0.01595 ^{\{ 7 \}} | 0.01566 ^{\{ 4 \}} | 0.01501 ^{\{ 2 \}} | 0.01623 ^{\{ 8 \}} | ||
D_{max} | 0.02495 ^{\{ 1 \}} | 0.02657 ^{\{ 4 \}} | 0.0273 ^{\{ 6 \}} | 0.02576 ^{\{ 3 \}} | 0.02745 ^{\{ 7 \}} | 0.02722 ^{\{ 5 \}} | 0.02546 ^{\{ 2 \}} | 0.02772 ^{\{ 8 \}} | ||
ASAE | 0.00711 ^{\{ 5 \}} | 0.00685 ^{\{ 2 \}} | 0.00726 ^{\{ 6 \}} | 0.007 ^{\{ 4 \}} | 0.00737 ^{\{ 7 \}} | 0.0066 ^{\{ 1 \}} | 0.00688 ^{\{ 3 \}} | 0.008 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 44 ^{\{ 4 \}} | 70 ^{\{ 5 \}} | 43.5 ^{\{ 3 \}} | 84 ^{\{ 8 \}} | 75 ^{\{ 7 \}} | 26.5 ^{\{ 2 \}} | 73 ^{\{ 6 \}} | ||
600 | BIAS | \hat{\tau} | 0.14883 ^{\{ 1 \}} | 0.18347 ^{\{ 4 \}} | 0.22873 ^{\{ 7 \}} | 0.16341 ^{\{ 2 \}} | 0.2235 ^{\{ 6 \}} | 0.23795 ^{\{ 8 \}} | 0.17744 ^{\{ 3 \}} | 0.18749 ^{\{ 5 \}} |
\hat{a} | 0.01222 ^{\{ 1 \}} | 0.01372 ^{\{ 4 \}} | 0.01577 ^{\{ 7 \}} | 0.01259 ^{\{ 2 \}} | 0.01528 ^{\{ 6 \}} | 0.01437 ^{\{ 5 \}} | 0.01333 ^{\{ 3 \}} | 0.01579 ^{\{ 8 \}} | ||
\hat{b} | 0.09866 ^{\{ 1 \}} | 0.12057 ^{\{ 3 \}} | 0.14941 ^{\{ 7 \}} | 0.12377 ^{\{ 5 \}} | 0.14754 ^{\{ 6 \}} | 0.15886 ^{\{ 8 \}} | 0.11439 ^{\{ 2 \}} | 0.12134 ^{\{ 4 \}} | ||
MSE | \hat{\tau} | 0.03594 ^{\{ 1 \}} | 0.05294 ^{\{ 4 \}} | 0.07897 ^{\{ 7 \}} | 0.04896 ^{\{ 2 \}} | 0.07454 ^{\{ 6 \}} | 0.08434 ^{\{ 8 \}} | 0.04983 ^{\{ 3 \}} | 0.05618 ^{\{ 5 \}} | |
\hat{a} | 0.00024 ^{\{ 1 \}} | 3e-04 ^{\{ 4 \}} | 0.00039 ^{\{ 7 \}} | 0.00025 ^{\{ 2 \}} | 0.00038 ^{\{ 6 \}} | 0.00033 ^{\{ 5 \}} | 0.00028 ^{\{ 3 \}} | 4e-04 ^{\{ 8 \}} | ||
\hat{b} | 0.01685 ^{\{ 1 \}} | 0.02314 ^{\{ 3 \}} | 0.03354 ^{\{ 7 \}} | 0.03316 ^{\{ 6 \}} | 0.03195 ^{\{ 5 \}} | 0.03586 ^{\{ 8 \}} | 0.02149 ^{\{ 2 \}} | 0.02667 ^{\{ 4 \}} | ||
MRE | \hat{\tau} | 0.29767 ^{\{ 1 \}} | 0.36695 ^{\{ 4 \}} | 0.45746 ^{\{ 7 \}} | 0.32682 ^{\{ 2 \}} | 0.447 ^{\{ 6 \}} | 0.47591 ^{\{ 8 \}} | 0.35489 ^{\{ 3 \}} | 0.37498 ^{\{ 5 \}} | |
\hat{a} | 0.04889 ^{\{ 1 \}} | 0.05487 ^{\{ 4 \}} | 0.06308 ^{\{ 7 \}} | 0.05037 ^{\{ 2 \}} | 0.0611 ^{\{ 6 \}} | 0.05747 ^{\{ 5 \}} | 0.05332 ^{\{ 3 \}} | 0.06316 ^{\{ 8 \}} | ||
\hat{b} | 0.13154 ^{\{ 1 \}} | 0.16077 ^{\{ 3 \}} | 0.19922 ^{\{ 7 \}} | 0.16503 ^{\{ 5 \}} | 0.19672 ^{\{ 6 \}} | 0.21182 ^{\{ 8 \}} | 0.15252 ^{\{ 2 \}} | 0.16179 ^{\{ 4 \}} | ||
D_{abs} | 0.0111 ^{\{ 4.5 \}} | 0.01086 ^{\{ 2 \}} | 0.01153 ^{\{ 8 \}} | 0.01074 ^{\{ 1 \}} | 0.01151 ^{\{ 7 \}} | 0.0111 ^{\{ 4.5 \}} | 0.011 ^{\{ 3 \}} | 0.01132 ^{\{ 6 \}} | ||
D_{max} | 0.01861 ^{\{ 3 \}} | 0.01858 ^{\{ 2 \}} | 0.02 ^{\{ 8 \}} | 0.01805 ^{\{ 1 \}} | 0.01977 ^{\{ 7 \}} | 0.01944 ^{\{ 5 \}} | 0.01862 ^{\{ 4 \}} | 0.01945 ^{\{ 6 \}} | ||
ASAE | 0.00463 ^{\{ 5 \}} | 0.00449 ^{\{ 2 \}} | 0.00477 ^{\{ 7 \}} | 0.00458 ^{\{ 4 \}} | 0.00468 ^{\{ 6 \}} | 0.00423 ^{\{ 1 \}} | 0.00453 ^{\{ 3 \}} | 0.0053 ^{\{ 8 \}} | ||
\sum Ranks | 21.5 ^{\{ 1 \}} | 42 ^{\{ 4 \}} | 85 ^{\{ 8 \}} | 34 ^{\{ 2.5 \}} | 72 ^{\{ 6 \}} | 72.5 ^{\{ 7 \}} | 34 ^{\{ 2.5 \}} | 71 ^{\{ 5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.52028 ^{\{ 1 \}} | 0.68928 ^{\{ 3 \}} | 0.70994 ^{\{ 5 \}} | 0.69622 ^{\{ 4 \}} | 0.75178 ^{\{ 7 \}} | 0.67815 ^{\{ 2 \}} | 0.72398 ^{\{ 6 \}} | 1.13877 ^{\{ 8 \}} |
\hat{a} | 0.31117 ^{\{ 5 \}} | 0.30596 ^{\{ 4 \}} | 0.34262 ^{\{ 7 \}} | 0.29874 ^{\{ 2 \}} | 0.32249 ^{\{ 6 \}} | 0.29648 ^{\{ 1 \}} | 0.30057 ^{\{ 3 \}} | 0.40126 ^{\{ 8 \}} | ||
\hat{b} | 0.10184 ^{\{ 1 \}} | 0.12191 ^{\{ 2 \}} | 0.12619 ^{\{ 4 \}} | 0.12737 ^{\{ 5 \}} | 0.14134 ^{\{ 8 \}} | 0.12264 ^{\{ 3 \}} | 0.13027 ^{\{ 7 \}} | 0.12801 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.39328 ^{\{ 1 \}} | 0.62488 ^{\{ 3 \}} | 0.63359 ^{\{ 4 \}} | 0.64832 ^{\{ 5 \}} | 0.70817 ^{\{ 7 \}} | 0.59038 ^{\{ 2 \}} | 0.6678 ^{\{ 6 \}} | 5.81642 ^{\{ 8 \}} | |
\hat{a} | 0.19077 ^{\{ 6 \}} | 0.16766 ^{\{ 4 \}} | 0.21757 ^{\{ 7 \}} | 0.13867 ^{\{ 1 \}} | 0.1814 ^{\{ 5 \}} | 0.15924 ^{\{ 3 \}} | 0.14761 ^{\{ 2 \}} | 0.28201 ^{\{ 8 \}} | ||
\hat{b} | 0.01765 ^{\{ 1 \}} | 0.02526 ^{\{ 3 \}} | 0.02541 ^{\{ 4 \}} | 0.02837 ^{\{ 7 \}} | 0.03057 ^{\{ 8 \}} | 0.02415 ^{\{ 2 \}} | 0.02725 ^{\{ 5 \}} | 0.02764 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.34685 ^{\{ 1 \}} | 0.45952 ^{\{ 3 \}} | 0.47329 ^{\{ 5 \}} | 0.46415 ^{\{ 4 \}} | 0.50118 ^{\{ 7 \}} | 0.4521 ^{\{ 2 \}} | 0.48266 ^{\{ 6 \}} | 0.75918 ^{\{ 8 \}} | |
\hat{a} | 0.41489 ^{\{ 5 \}} | 0.40795 ^{\{ 4 \}} | 0.45682 ^{\{ 7 \}} | 0.39832 ^{\{ 2 \}} | 0.42998 ^{\{ 6 \}} | 0.39531 ^{\{ 1 \}} | 0.40076 ^{\{ 3 \}} | 0.53502 ^{\{ 8 \}} | ||
\hat{b} | 0.20368 ^{\{ 1 \}} | 0.24381 ^{\{ 2 \}} | 0.25237 ^{\{ 4 \}} | 0.25474 ^{\{ 5 \}} | 0.28267 ^{\{ 8 \}} | 0.24528 ^{\{ 3 \}} | 0.26055 ^{\{ 7 \}} | 0.25601 ^{\{ 6 \}} | ||
D_{abs} | 0.04223 ^{\{ 1 \}} | 0.04403 ^{\{ 2 \}} | 0.04672 ^{\{ 8 \}} | 0.04455 ^{\{ 3 \}} | 0.04648 ^{\{ 7 \}} | 0.04513 ^{\{ 4 \}} | 0.04515 ^{\{ 5 \}} | 0.04614 ^{\{ 6 \}} | ||
D_{max} | 0.07079 ^{\{ 1 \}} | 0.07367 ^{\{ 3 \}} | 0.07922 ^{\{ 8 \}} | 0.07196 ^{\{ 2 \}} | 0.07766 ^{\{ 6 \}} | 0.07539 ^{\{ 5 \}} | 0.07491 ^{\{ 4 \}} | 0.07795 ^{\{ 7 \}} | ||
ASAE | 0.02942 ^{\{ 7 \}} | 0.02673 ^{\{ 4 \}} | 0.02904 ^{\{ 5 \}} | 0.02425 ^{\{ 1 \}} | 0.02924 ^{\{ 6 \}} | 0.02505 ^{\{ 2 \}} | 0.02572 ^{\{ 3 \}} | 0.03359 ^{\{ 8 \}} | ||
\sum Ranks | 31 ^{\{ 2 \}} | 37 ^{\{ 3 \}} | 68 ^{\{ 6 \}} | 41 ^{\{ 4 \}} | 81 ^{\{ 7 \}} | 30 ^{\{ 1 \}} | 57 ^{\{ 5 \}} | 87 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.44843 ^{\{ 1 \}} | 0.55647 ^{\{ 2 \}} | 0.60703 ^{\{ 6 \}} | 0.59899 ^{\{ 5 \}} | 0.61789 ^{\{ 7 \}} | 0.59399 ^{\{ 4 \}} | 0.5885 ^{\{ 3 \}} | 0.81136 ^{\{ 8 \}} |
\hat{a} | 0.21823 ^{\{ 1 \}} | 0.23547 ^{\{ 2 \}} | 0.28101 ^{\{ 7 \}} | 0.24595 ^{\{ 4 \}} | 0.27126 ^{\{ 6 \}} | 0.24022 ^{\{ 3 \}} | 0.25611 ^{\{ 5 \}} | 0.34138 ^{\{ 8 \}} | ||
\hat{b} | 0.07119 ^{\{ 1 \}} | 0.07899 ^{\{ 2 \}} | 0.09493 ^{\{ 7 \}} | 0.09127 ^{\{ 4 \}} | 0.09464 ^{\{ 6 \}} | 0.09441 ^{\{ 5 \}} | 0.08918 ^{\{ 3 \}} | 0.09618 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.29594 ^{\{ 1 \}} | 0.41655 ^{\{ 2 \}} | 0.47968 ^{\{ 5 \}} | 0.50918 ^{\{ 7 \}} | 0.49378 ^{\{ 6 \}} | 0.47083 ^{\{ 4 \}} | 0.46093 ^{\{ 3 \}} | 1.11606 ^{\{ 8 \}} | |
\hat{a} | 0.08284 ^{\{ 1 \}} | 0.08655 ^{\{ 2 \}} | 0.13227 ^{\{ 7 \}} | 0.08818 ^{\{ 3 \}} | 0.12046 ^{\{ 6 \}} | 0.09121 ^{\{ 4 \}} | 0.10373 ^{\{ 5 \}} | 0.1922 ^{\{ 8 \}} | ||
\hat{b} | 0.00891 ^{\{ 1 \}} | 0.01107 ^{\{ 2 \}} | 0.01553 ^{\{ 5.5 \}} | 0.01731 ^{\{ 8 \}} | 0.01553 ^{\{ 5.5 \}} | 0.01424 ^{\{ 4 \}} | 0.01391 ^{\{ 3 \}} | 0.01668 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.29895 ^{\{ 1 \}} | 0.37098 ^{\{ 2 \}} | 0.40469 ^{\{ 6 \}} | 0.39933 ^{\{ 5 \}} | 0.41193 ^{\{ 7 \}} | 0.39599 ^{\{ 4 \}} | 0.39233 ^{\{ 3 \}} | 0.5409 ^{\{ 8 \}} | |
\hat{a} | 0.29097 ^{\{ 1 \}} | 0.31396 ^{\{ 2 \}} | 0.37468 ^{\{ 7 \}} | 0.32794 ^{\{ 4 \}} | 0.36168 ^{\{ 6 \}} | 0.32029 ^{\{ 3 \}} | 0.34148 ^{\{ 5 \}} | 0.45517 ^{\{ 8 \}} | ||
\hat{b} | 0.14238 ^{\{ 1 \}} | 0.15797 ^{\{ 2 \}} | 0.18985 ^{\{ 7 \}} | 0.18254 ^{\{ 4 \}} | 0.18928 ^{\{ 6 \}} | 0.18881 ^{\{ 5 \}} | 0.17837 ^{\{ 3 \}} | 0.19237 ^{\{ 8 \}} | ||
D_{abs} | 0.03152 ^{\{ 2.5 \}} | 0.03098 ^{\{ 1 \}} | 0.03327 ^{\{ 6 \}} | 0.03152 ^{\{ 2.5 \}} | 0.03365 ^{\{ 7 \}} | 0.03254 ^{\{ 5 \}} | 0.0324 ^{\{ 4 \}} | 0.03395 ^{\{ 8 \}} | ||
D_{max} | 0.05225 ^{\{ 3 \}} | 0.05176 ^{\{ 1 \}} | 0.0565 ^{\{ 6 \}} | 0.05216 ^{\{ 2 \}} | 0.05677 ^{\{ 7 \}} | 0.05497 ^{\{ 5 \}} | 0.05425 ^{\{ 4 \}} | 0.05832 ^{\{ 8 \}} | ||
ASAE | 0.01684 ^{\{ 5 \}} | 0.0164 ^{\{ 4 \}} | 0.01827 ^{\{ 7 \}} | 0.01516 ^{\{ 2 \}} | 0.01819 ^{\{ 6 \}} | 0.01497 ^{\{ 1 \}} | 0.01597 ^{\{ 3 \}} | 0.02063 ^{\{ 8 \}} | ||
\sum Ranks | 19.5 ^{\{ 1 \}} | 24 ^{\{ 2 \}} | 76.5 ^{\{ 7 \}} | 50.5 ^{\{ 5 \}} | 75.5 ^{\{ 6 \}} | 47 ^{\{ 4 \}} | 44 ^{\{ 3 \}} | 95 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.35036 ^{\{ 1 \}} | 0.41902 ^{\{ 2 \}} | 0.48817 ^{\{ 6 \}} | 0.48135 ^{\{ 5 \}} | 0.50235 ^{\{ 7 \}} | 0.47052 ^{\{ 4 \}} | 0.45634 ^{\{ 3 \}} | 0.61217 ^{\{ 8 \}} |
\hat{a} | 0.15767 ^{\{ 1 \}} | 0.18619 ^{\{ 2 \}} | 0.21414 ^{\{ 6 \}} | 0.20254 ^{\{ 5 \}} | 0.22223 ^{\{ 7 \}} | 0.18666 ^{\{ 3 \}} | 0.18946 ^{\{ 4 \}} | 0.26043 ^{\{ 8 \}} | ||
\hat{b} | 0.04827 ^{\{ 1 \}} | 0.05232 ^{\{ 3 \}} | 0.06485 ^{\{ 7 \}} | 0.05135 ^{\{ 2 \}} | 0.06782 ^{\{ 8 \}} | 0.06386 ^{\{ 6 \}} | 0.05683 ^{\{ 4 \}} | 0.06102 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.18777 ^{\{ 1 \}} | 0.25158 ^{\{ 2 \}} | 0.32527 ^{\{ 5 \}} | 0.352 ^{\{ 7 \}} | 0.34253 ^{\{ 6 \}} | 0.31557 ^{\{ 4 \}} | 0.28732 ^{\{ 3 \}} | 0.5778 ^{\{ 8 \}} | |
\hat{a} | 0.04089 ^{\{ 1 \}} | 0.05247 ^{\{ 3 \}} | 0.07072 ^{\{ 6 \}} | 0.06092 ^{\{ 5 \}} | 0.07443 ^{\{ 7 \}} | 0.05186 ^{\{ 2 \}} | 0.05349 ^{\{ 4 \}} | 0.10477 ^{\{ 8 \}} | ||
\hat{b} | 0.00404 ^{\{ 1 \}} | 0.00479 ^{\{ 2 \}} | 0.00774 ^{\{ 7 \}} | 0.00548 ^{\{ 3 \}} | 0.00827 ^{\{ 8 \}} | 0.00696 ^{\{ 6 \}} | 0.00551 ^{\{ 4 \}} | 0.00665 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.23357 ^{\{ 1 \}} | 0.27934 ^{\{ 2 \}} | 0.32544 ^{\{ 6 \}} | 0.3209 ^{\{ 5 \}} | 0.3349 ^{\{ 7 \}} | 0.31368 ^{\{ 4 \}} | 0.30422 ^{\{ 3 \}} | 0.40811 ^{\{ 8 \}} | |
\hat{a} | 0.21023 ^{\{ 1 \}} | 0.24825 ^{\{ 2 \}} | 0.28552 ^{\{ 6 \}} | 0.27005 ^{\{ 5 \}} | 0.29631 ^{\{ 7 \}} | 0.24888 ^{\{ 3 \}} | 0.25261 ^{\{ 4 \}} | 0.34723 ^{\{ 8 \}} | ||
\hat{b} | 0.09655 ^{\{ 1 \}} | 0.10464 ^{\{ 3 \}} | 0.12969 ^{\{ 7 \}} | 0.1027 ^{\{ 2 \}} | 0.13565 ^{\{ 8 \}} | 0.12772 ^{\{ 6 \}} | 0.11365 ^{\{ 4 \}} | 0.12204 ^{\{ 5 \}} | ||
D_{abs} | 0.02102 ^{\{ 1 \}} | 0.02184 ^{\{ 3 \}} | 0.02231 ^{\{ 5 \}} | 0.02208 ^{\{ 4 \}} | 0.02368 ^{\{ 8 \}} | 0.02251 ^{\{ 6 \}} | 0.02177 ^{\{ 2 \}} | 0.02282 ^{\{ 7 \}} | ||
D_{max} | 0.03532 ^{\{ 1 \}} | 0.03657 ^{\{ 2 \}} | 0.03853 ^{\{ 6 \}} | 0.0366 ^{\{ 3 \}} | 0.04015 ^{\{ 8 \}} | 0.03831 ^{\{ 5 \}} | 0.03668 ^{\{ 4 \}} | 0.03957 ^{\{ 7 \}} | ||
ASAE | 0.00991 ^{\{ 5 \}} | 0.0094 ^{\{ 3 \}} | 0.0108 ^{\{ 7 \}} | 0.00918 ^{\{ 2 \}} | 0.01075 ^{\{ 6 \}} | 0.00871 ^{\{ 1 \}} | 0.00976 ^{\{ 4 \}} | 0.01271 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 29 ^{\{ 2 \}} | 74 ^{\{ 6 \}} | 48 ^{\{ 4 \}} | 87 ^{\{ 8 \}} | 50 ^{\{ 5 \}} | 43 ^{\{ 3 \}} | 85 ^{\{ 7 \}} | ||
300 | BIAS | \hat{\tau} | 0.26655 ^{\{ 1 \}} | 0.33434 ^{\{ 3 \}} | 0.37325 ^{\{ 6 \}} | 0.34711 ^{\{ 4 \}} | 0.39467 ^{\{ 7 \}} | 0.36499 ^{\{ 5 \}} | 0.33138 ^{\{ 2 \}} | 0.48508 ^{\{ 8 \}} |
\hat{a} | 0.12193 ^{\{ 1 \}} | 0.14744 ^{\{ 4 \}} | 0.16883 ^{\{ 6 \}} | 0.15015 ^{\{ 5 \}} | 0.17776 ^{\{ 7 \}} | 0.14515 ^{\{ 2 \}} | 0.14696 ^{\{ 3 \}} | 0.21805 ^{\{ 8 \}} | ||
\hat{b} | 0.03505 ^{\{ 1 \}} | 0.03905 ^{\{ 4 \}} | 0.04169 ^{\{ 5 \}} | 0.03599 ^{\{ 2 \}} | 0.04485 ^{\{ 7 \}} | 0.04629 ^{\{ 8 \}} | 0.03769 ^{\{ 3 \}} | 0.04173 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.11494 ^{\{ 1 \}} | 0.16891 ^{\{ 3 \}} | 0.19839 ^{\{ 4 \}} | 0.22068 ^{\{ 7 \}} | 0.21592 ^{\{ 6 \}} | 0.20154 ^{\{ 5 \}} | 0.16587 ^{\{ 2 \}} | 0.37566 ^{\{ 8 \}} | |
\hat{a} | 0.0244 ^{\{ 1 \}} | 0.03273 ^{\{ 4 \}} | 0.0429 ^{\{ 6 \}} | 0.03661 ^{\{ 5 \}} | 0.04653 ^{\{ 7 \}} | 0.03141 ^{\{ 2 \}} | 0.03249 ^{\{ 3 \}} | 0.07079 ^{\{ 8 \}} | ||
\hat{b} | 0.00192 ^{\{ 1 \}} | 0.00236 ^{\{ 4 \}} | 0.00295 ^{\{ 6 \}} | 0.00211 ^{\{ 2 \}} | 0.00333 ^{\{ 7 \}} | 0.00349 ^{\{ 8 \}} | 0.00226 ^{\{ 3 \}} | 0.00285 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.1777 ^{\{ 1 \}} | 0.22289 ^{\{ 3 \}} | 0.24883 ^{\{ 6 \}} | 0.23141 ^{\{ 4 \}} | 0.26311 ^{\{ 7 \}} | 0.24333 ^{\{ 5 \}} | 0.22092 ^{\{ 2 \}} | 0.32339 ^{\{ 8 \}} | |
\hat{a} | 0.16257 ^{\{ 1 \}} | 0.19658 ^{\{ 4 \}} | 0.2251 ^{\{ 6 \}} | 0.2002 ^{\{ 5 \}} | 0.23701 ^{\{ 7 \}} | 0.19353 ^{\{ 2 \}} | 0.19595 ^{\{ 3 \}} | 0.29074 ^{\{ 8 \}} | ||
\hat{b} | 0.0701 ^{\{ 1 \}} | 0.07811 ^{\{ 4 \}} | 0.08338 ^{\{ 5 \}} | 0.07198 ^{\{ 2 \}} | 0.08971 ^{\{ 7 \}} | 0.09259 ^{\{ 8 \}} | 0.07539 ^{\{ 3 \}} | 0.08345 ^{\{ 6 \}} | ||
D_{abs} | 0.0149 ^{\{ 1 \}} | 0.01559 ^{\{ 4 \}} | 0.0158 ^{\{ 5 \}} | 0.01556 ^{\{ 3 \}} | 0.01608 ^{\{ 7 \}} | 0.01621 ^{\{ 8 \}} | 0.01505 ^{\{ 2 \}} | 0.01595 ^{\{ 6 \}} | ||
D_{max} | 0.02507 ^{\{ 1 \}} | 0.02657 ^{\{ 4 \}} | 0.02735 ^{\{ 5 \}} | 0.02614 ^{\{ 3 \}} | 0.02778 ^{\{ 7 \}} | 0.02768 ^{\{ 6 \}} | 0.02561 ^{\{ 2 \}} | 0.02806 ^{\{ 8 \}} | ||
ASAE | 0.00607 ^{\{ 5 \}} | 0.00598 ^{\{ 4 \}} | 0.0069 ^{\{ 7 \}} | 0.00571 ^{\{ 2 \}} | 0.00682 ^{\{ 6 \}} | 0.00559 ^{\{ 1 \}} | 0.00593 ^{\{ 3 \}} | 0.00804 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 45 ^{\{ 4 \}} | 67 ^{\{ 6 \}} | 44 ^{\{ 3 \}} | 82 ^{\{ 7 \}} | 60 ^{\{ 5 \}} | 31 ^{\{ 2 \}} | 87 ^{\{ 8 \}} | ||
600 | BIAS | \hat{\tau} | 0.19544 ^{\{ 1 \}} | 0.23541 ^{\{ 3 \}} | 0.30543 ^{\{ 6 \}} | 0.22954 ^{\{ 2 \}} | 0.30719 ^{\{ 7 \}} | 0.2498 ^{\{ 5 \}} | 0.24212 ^{\{ 4 \}} | 0.36224 ^{\{ 8 \}} |
\hat{a} | 0.08322 ^{\{ 1 \}} | 0.10415 ^{\{ 4 \}} | 0.13813 ^{\{ 6 \}} | 0.10194 ^{\{ 2 \}} | 0.13953 ^{\{ 7 \}} | 0.1021 ^{\{ 3 \}} | 0.10419 ^{\{ 5 \}} | 0.1712 ^{\{ 8 \}} | ||
\hat{b} | 0.02563 ^{\{ 2 \}} | 0.02682 ^{\{ 3 \}} | 0.03267 ^{\{ 8 \}} | 0.02544 ^{\{ 1 \}} | 0.03225 ^{\{ 7 \}} | 0.03151 ^{\{ 6 \}} | 0.0275 ^{\{ 4 \}} | 0.02908 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.06188 ^{\{ 1 \}} | 0.09047 ^{\{ 2 \}} | 0.14058 ^{\{ 7 \}} | 0.12175 ^{\{ 5 \}} | 0.13924 ^{\{ 6 \}} | 0.10305 ^{\{ 4 \}} | 0.09293 ^{\{ 3 \}} | 0.21849 ^{\{ 8 \}} | |
\hat{a} | 0.01115 ^{\{ 1 \}} | 0.01707 ^{\{ 3 \}} | 0.02836 ^{\{ 6 \}} | 0.01967 ^{\{ 5 \}} | 0.02862 ^{\{ 7 \}} | 0.01637 ^{\{ 2 \}} | 0.01746 ^{\{ 4 \}} | 0.04409 ^{\{ 8 \}} | ||
\hat{b} | 0.00105 ^{\{ 2 \}} | 0.00116 ^{\{ 3 \}} | 0.00174 ^{\{ 8 \}} | 0.00103 ^{\{ 1 \}} | 0.00162 ^{\{ 7 \}} | 0.00159 ^{\{ 6 \}} | 0.00118 ^{\{ 4 \}} | 0.00135 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.13029 ^{\{ 1 \}} | 0.15694 ^{\{ 3 \}} | 0.20362 ^{\{ 6 \}} | 0.15302 ^{\{ 2 \}} | 0.20479 ^{\{ 7 \}} | 0.16653 ^{\{ 5 \}} | 0.16141 ^{\{ 4 \}} | 0.24149 ^{\{ 8 \}} | |
\hat{a} | 0.11096 ^{\{ 1 \}} | 0.13886 ^{\{ 4 \}} | 0.18417 ^{\{ 6 \}} | 0.13592 ^{\{ 2 \}} | 0.18604 ^{\{ 7 \}} | 0.13613 ^{\{ 3 \}} | 0.13892 ^{\{ 5 \}} | 0.22827 ^{\{ 8 \}} | ||
\hat{b} | 0.05126 ^{\{ 2 \}} | 0.05365 ^{\{ 3 \}} | 0.06534 ^{\{ 8 \}} | 0.05088 ^{\{ 1 \}} | 0.06449 ^{\{ 7 \}} | 0.06302 ^{\{ 6 \}} | 0.055 ^{\{ 4 \}} | 0.05817 ^{\{ 5 \}} | ||
D_{abs} | 0.01057 ^{\{ 1 \}} | 0.01082 ^{\{ 3 \}} | 0.01131 ^{\{ 7 \}} | 0.0107 ^{\{ 2 \}} | 0.01154 ^{\{ 8 \}} | 0.01116 ^{\{ 5 \}} | 0.01097 ^{\{ 4 \}} | 0.01124 ^{\{ 6 \}} | ||
D_{max} | 0.01792 ^{\{ 1 \}} | 0.01849 ^{\{ 3 \}} | 0.01965 ^{\{ 6 \}} | 0.01801 ^{\{ 2 \}} | 0.02001 ^{\{ 8 \}} | 0.01931 ^{\{ 5 \}} | 0.01869 ^{\{ 4 \}} | 0.01979 ^{\{ 7 \}} | ||
ASAE | 0.00367 ^{\{ 3 \}} | 0.00378 ^{\{ 5 \}} | 0.00448 ^{\{ 7 \}} | 0.00364 ^{\{ 2 \}} | 0.00445 ^{\{ 6 \}} | 0.0035 ^{\{ 1 \}} | 0.00376 ^{\{ 4 \}} | 0.0053 ^{\{ 8 \}} | ||
\sum Ranks | 17 ^{\{ 1 \}} | 39 ^{\{ 3 \}} | 81 ^{\{ 6 \}} | 27 ^{\{ 2 \}} | 84 ^{\{ 7.5 \}} | 51 ^{\{ 5 \}} | 49 ^{\{ 4 \}} | 84 ^{\{ 7.5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.53211 ^{\{ 2 \}} | 0.62026 ^{\{ 4 \}} | 0.75084 ^{\{ 7 \}} | 0.47271 ^{\{ 1 \}} | 0.63274 ^{\{ 6 \}} | 0.62076 ^{\{ 5 \}} | 0.55091 ^{\{ 3 \}} | 0.88774 ^{\{ 8 \}} |
\hat{a} | 0.17954 ^{\{ 7 \}} | 0.14419 ^{\{ 3 \}} | 0.15786 ^{\{ 5 \}} | 0.13798 ^{\{ 1 \}} | 0.16003 ^{\{ 6 \}} | 0.14116 ^{\{ 2 \}} | 0.14743 ^{\{ 4 \}} | 0.20721 ^{\{ 8 \}} | ||
\hat{b} | 0.29362 ^{\{ 3 \}} | 0.2843 ^{\{ 2 \}} | 0.33553 ^{\{ 5 \}} | 0.27643 ^{\{ 1 \}} | 0.34292 ^{\{ 7 \}} | 0.34139 ^{\{ 6 \}} | 0.29688 ^{\{ 4 \}} | 0.35737 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.48119 ^{\{ 1 \}} | 3.73487 ^{\{ 7 \}} | 5.47953 ^{\{ 8 \}} | 0.75293 ^{\{ 2 \}} | 1.38498 ^{\{ 5 \}} | 1.30859 ^{\{ 4 \}} | 0.81897 ^{\{ 3 \}} | 1.74615 ^{\{ 6 \}} | |
\hat{a} | 0.05597 ^{\{ 7 \}} | 0.03354 ^{\{ 3 \}} | 0.04117 ^{\{ 5 \}} | 0.02854 ^{\{ 1 \}} | 0.04153 ^{\{ 6 \}} | 0.03226 ^{\{ 2 \}} | 0.03661 ^{\{ 4 \}} | 0.06468 ^{\{ 8 \}} | ||
\hat{b} | 0.15312 ^{\{ 3 \}} | 0.13705 ^{\{ 2 \}} | 0.20378 ^{\{ 7 \}} | 0.11466 ^{\{ 1 \}} | 0.19627 ^{\{ 6 \}} | 0.19503 ^{\{ 5 \}} | 0.16026 ^{\{ 4 \}} | 0.25206 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.26605 ^{\{ 2 \}} | 0.31013 ^{\{ 4 \}} | 0.37542 ^{\{ 7 \}} | 0.23636 ^{\{ 1 \}} | 0.31637 ^{\{ 6 \}} | 0.31038 ^{\{ 5 \}} | 0.27546 ^{\{ 3 \}} | 0.44387 ^{\{ 8 \}} | |
\hat{a} | 0.35909 ^{\{ 7 \}} | 0.28838 ^{\{ 3 \}} | 0.31573 ^{\{ 5 \}} | 0.27597 ^{\{ 1 \}} | 0.32006 ^{\{ 6 \}} | 0.28232 ^{\{ 2 \}} | 0.29486 ^{\{ 4 \}} | 0.41442 ^{\{ 8 \}} | ||
\hat{b} | 0.19574 ^{\{ 3 \}} | 0.18953 ^{\{ 2 \}} | 0.22369 ^{\{ 5 \}} | 0.18428 ^{\{ 1 \}} | 0.22862 ^{\{ 7 \}} | 0.2276 ^{\{ 6 \}} | 0.19792 ^{\{ 4 \}} | 0.23825 ^{\{ 8 \}} | ||
D_{abs} | 0.04307 ^{\{ 1 \}} | 0.0449 ^{\{ 4 \}} | 0.04669 ^{\{ 7 \}} | 0.04388 ^{\{ 2 \}} | 0.04491 ^{\{ 5 \}} | 0.04571 ^{\{ 6 \}} | 0.04461 ^{\{ 3 \}} | 0.04673 ^{\{ 8 \}} | ||
D_{max} | 0.07024 ^{\{ 1 \}} | 0.07378 ^{\{ 3 \}} | 0.07974 ^{\{ 7 \}} | 0.07148 ^{\{ 2 \}} | 0.07603 ^{\{ 5 \}} | 0.07639 ^{\{ 6 \}} | 0.07422 ^{\{ 4 \}} | 0.08325 ^{\{ 8 \}} | ||
ASAE | 0.03049 ^{\{ 7 \}} | 0.02701 ^{\{ 3 \}} | 0.02932 ^{\{ 6 \}} | 0.02714 ^{\{ 4 \}} | 0.02773 ^{\{ 5 \}} | 0.0261 ^{\{ 1 \}} | 0.02631 ^{\{ 2 \}} | 0.03283 ^{\{ 8 \}} | ||
\sum Ranks | 44 ^{\{ 4 \}} | 40 ^{\{ 2 \}} | 74 ^{\{ 7 \}} | 18 ^{\{ 1 \}} | 70 ^{\{ 6 \}} | 50 ^{\{ 5 \}} | 42 ^{\{ 3 \}} | 94 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.51021 ^{\{ 6 \}} | 0.46181 ^{\{ 3 \}} | 0.55823 ^{\{ 7 \}} | 0.32583 ^{\{ 1 \}} | 0.50722 ^{\{ 5 \}} | 0.4729 ^{\{ 4 \}} | 0.44219 ^{\{ 2 \}} | 0.72147 ^{\{ 8 \}} |
\hat{a} | 0.14444 ^{\{ 7 \}} | 0.11709 ^{\{ 3 \}} | 0.12932 ^{\{ 6 \}} | 0.10479 ^{\{ 1 \}} | 0.12807 ^{\{ 5 \}} | 0.10663 ^{\{ 2 \}} | 0.11767 ^{\{ 4 \}} | 0.16304 ^{\{ 8 \}} | ||
\hat{b} | 0.21298 ^{\{ 4 \}} | 0.19057 ^{\{ 1 \}} | 0.22769 ^{\{ 7 \}} | 0.19871 ^{\{ 2 \}} | 0.22471 ^{\{ 5 \}} | 0.22894 ^{\{ 8 \}} | 0.20491 ^{\{ 3 \}} | 0.22533 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.42994 ^{\{ 5 \}} | 0.35419 ^{\{ 2 \}} | 0.59732 ^{\{ 7 \}} | 0.22679 ^{\{ 1 \}} | 0.51238 ^{\{ 6 \}} | 0.42894 ^{\{ 4 \}} | 0.35475 ^{\{ 3 \}} | 0.92497 ^{\{ 8 \}} | |
\hat{a} | 0.03539 ^{\{ 7 \}} | 0.02113 ^{\{ 4 \}} | 0.02531 ^{\{ 5 \}} | 0.01663 ^{\{ 1 \}} | 0.02539 ^{\{ 6 \}} | 0.01784 ^{\{ 2 \}} | 0.02057 ^{\{ 3 \}} | 0.0383 ^{\{ 8 \}} | ||
\hat{b} | 0.07882 ^{\{ 5 \}} | 0.06102 ^{\{ 2 \}} | 0.08373 ^{\{ 6 \}} | 0.05998 ^{\{ 1 \}} | 0.07835 ^{\{ 4 \}} | 0.08602 ^{\{ 7 \}} | 0.07017 ^{\{ 3 \}} | 0.08803 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.25511 ^{\{ 6 \}} | 0.2309 ^{\{ 3 \}} | 0.27912 ^{\{ 7 \}} | 0.16292 ^{\{ 1 \}} | 0.25361 ^{\{ 5 \}} | 0.23645 ^{\{ 4 \}} | 0.2211 ^{\{ 2 \}} | 0.36073 ^{\{ 8 \}} | |
\hat{a} | 0.28889 ^{\{ 7 \}} | 0.23418 ^{\{ 3 \}} | 0.25864 ^{\{ 6 \}} | 0.20958 ^{\{ 1 \}} | 0.25613 ^{\{ 5 \}} | 0.21326 ^{\{ 2 \}} | 0.23534 ^{\{ 4 \}} | 0.32609 ^{\{ 8 \}} | ||
\hat{b} | 0.14198 ^{\{ 4 \}} | 0.12705 ^{\{ 1 \}} | 0.15179 ^{\{ 7 \}} | 0.13248 ^{\{ 2 \}} | 0.14981 ^{\{ 5 \}} | 0.15263 ^{\{ 8 \}} | 0.13661 ^{\{ 3 \}} | 0.15022 ^{\{ 6 \}} | ||
D_{abs} | 0.03036 ^{\{ 2 \}} | 0.03145 ^{\{ 4 \}} | 0.03273 ^{\{ 6 \}} | 0.02999 ^{\{ 1 \}} | 0.03228 ^{\{ 5 \}} | 0.03339 ^{\{ 8 \}} | 0.03132 ^{\{ 3 \}} | 0.03284 ^{\{ 7 \}} | ||
D_{max} | 0.05009 ^{\{ 2 \}} | 0.05184 ^{\{ 3 \}} | 0.05627 ^{\{ 7 \}} | 0.04922 ^{\{ 1 \}} | 0.05469 ^{\{ 5 \}} | 0.05545 ^{\{ 6 \}} | 0.05225 ^{\{ 4 \}} | 0.0576 ^{\{ 8 \}} | ||
ASAE | 0.01841 ^{\{ 6 \}} | 0.01732 ^{\{ 3 \}} | 0.0189 ^{\{ 7 \}} | 0.01759 ^{\{ 4 \}} | 0.01822 ^{\{ 5 \}} | 0.01671 ^{\{ 1 \}} | 0.01717 ^{\{ 2 \}} | 0.0212 ^{\{ 8 \}} | ||
\sum Ranks | 61 ^{\{ 5.5 \}} | 32 ^{\{ 2 \}} | 78 ^{\{ 7 \}} | 17 ^{\{ 1 \}} | 61 ^{\{ 5.5 \}} | 56 ^{\{ 4 \}} | 36 ^{\{ 3 \}} | 91 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.43313 ^{\{ 5 \}} | 0.38216 ^{\{ 3 \}} | 0.4568 ^{\{ 6 \}} | 0.2421 ^{\{ 1 \}} | 0.46034 ^{\{ 7 \}} | 0.38646 ^{\{ 4 \}} | 0.36914 ^{\{ 2 \}} | 0.55156 ^{\{ 8 \}} |
\hat{a} | 0.11342 ^{\{ 7 \}} | 0.09493 ^{\{ 4 \}} | 0.10673 ^{\{ 5 \}} | 0.07841 ^{\{ 1 \}} | 0.10869 ^{\{ 6 \}} | 0.09064 ^{\{ 2 \}} | 0.09329 ^{\{ 3 \}} | 0.13012 ^{\{ 8 \}} | ||
\hat{b} | 0.13544 ^{\{ 3 \}} | 0.13508 ^{\{ 2 \}} | 0.15218 ^{\{ 6 \}} | 0.12937 ^{\{ 1 \}} | 0.15998 ^{\{ 8 \}} | 0.14971 ^{\{ 5 \}} | 0.13655 ^{\{ 4 \}} | 0.15561 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.3042 ^{\{ 5 \}} | 0.23781 ^{\{ 3 \}} | 0.35945 ^{\{ 6 \}} | 0.11844 ^{\{ 1 \}} | 0.37455 ^{\{ 7 \}} | 0.26349 ^{\{ 4 \}} | 0.23662 ^{\{ 2 \}} | 0.47541 ^{\{ 8 \}} | |
\hat{a} | 0.02075 ^{\{ 7 \}} | 0.01375 ^{\{ 4 \}} | 0.01716 ^{\{ 5 \}} | 0.00947 ^{\{ 1 \}} | 0.01836 ^{\{ 6 \}} | 0.013 ^{\{ 2 \}} | 0.01327 ^{\{ 3 \}} | 0.02369 ^{\{ 8 \}} | ||
\hat{b} | 0.03131 ^{\{ 4 \}} | 0.02853 ^{\{ 2 \}} | 0.03592 ^{\{ 5 \}} | 0.02519 ^{\{ 1 \}} | 0.03888 ^{\{ 8 \}} | 0.03726 ^{\{ 7 \}} | 0.03049 ^{\{ 3 \}} | 0.03632 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.21657 ^{\{ 5 \}} | 0.19108 ^{\{ 3 \}} | 0.2284 ^{\{ 6 \}} | 0.12105 ^{\{ 1 \}} | 0.23017 ^{\{ 7 \}} | 0.19323 ^{\{ 4 \}} | 0.18457 ^{\{ 2 \}} | 0.27578 ^{\{ 8 \}} | |
\hat{a} | 0.22685 ^{\{ 7 \}} | 0.18986 ^{\{ 4 \}} | 0.21346 ^{\{ 5 \}} | 0.15681 ^{\{ 1 \}} | 0.21737 ^{\{ 6 \}} | 0.18128 ^{\{ 2 \}} | 0.18657 ^{\{ 3 \}} | 0.26023 ^{\{ 8 \}} | ||
\hat{b} | 0.0903 ^{\{ 3 \}} | 0.09005 ^{\{ 2 \}} | 0.10145 ^{\{ 6 \}} | 0.08625 ^{\{ 1 \}} | 0.10665 ^{\{ 8 \}} | 0.09981 ^{\{ 5 \}} | 0.09104 ^{\{ 4 \}} | 0.10374 ^{\{ 7 \}} | ||
D_{abs} | 0.02029 ^{\{ 1 \}} | 0.02158 ^{\{ 4 \}} | 0.02244 ^{\{ 8 \}} | 0.02061 ^{\{ 2 \}} | 0.02192 ^{\{ 6 \}} | 0.02201 ^{\{ 7 \}} | 0.0213 ^{\{ 3 \}} | 0.02178 ^{\{ 5 \}} | ||
D_{max} | 0.0336 ^{\{ 1 \}} | 0.0357 ^{\{ 4 \}} | 0.0381 ^{\{ 8 \}} | 0.03368 ^{\{ 2 \}} | 0.03725 ^{\{ 6 \}} | 0.03676 ^{\{ 5 \}} | 0.03557 ^{\{ 3 \}} | 0.03761 ^{\{ 7 \}} | ||
ASAE | 0.01084 ^{\{ 5 \}} | 0.01034 ^{\{ 2 \}} | 0.01173 ^{\{ 7 \}} | 0.01071 ^{\{ 4 \}} | 0.01128 ^{\{ 6 \}} | 0.00996 ^{\{ 1 \}} | 0.01055 ^{\{ 3 \}} | 0.01309 ^{\{ 8 \}} | ||
\sum Ranks | 53 ^{\{ 5 \}} | 37 ^{\{ 3 \}} | 73 ^{\{ 6 \}} | 17 ^{\{ 1 \}} | 81 ^{\{ 7 \}} | 48 ^{\{ 4 \}} | 35 ^{\{ 2 \}} | 88 ^{\{ 8 \}} | ||
300 | BIAS | \hat{\tau} | 0.38726 ^{\{ 6 \}} | 0.33359 ^{\{ 2 \}} | 0.38992 ^{\{ 7 \}} | 0.18992 ^{\{ 1 \}} | 0.37128 ^{\{ 5 \}} | 0.35983 ^{\{ 4 \}} | 0.34388 ^{\{ 3 \}} | 0.46204 ^{\{ 8 \}} |
\hat{a} | 0.09738 ^{\{ 7 \}} | 0.0794 ^{\{ 2 \}} | 0.09391 ^{\{ 6 \}} | 0.06178 ^{\{ 1 \}} | 0.08945 ^{\{ 5 \}} | 0.08286 ^{\{ 3 \}} | 0.08352 ^{\{ 4 \}} | 0.11042 ^{\{ 8 \}} | ||
\hat{b} | 0.09272 ^{\{ 1 \}} | 0.10093 ^{\{ 4 \}} | 0.11688 ^{\{ 7 \}} | 0.09282 ^{\{ 2 \}} | 0.11978 ^{\{ 8 \}} | 0.10638 ^{\{ 5 \}} | 0.10064 ^{\{ 3 \}} | 0.11367 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.23046 ^{\{ 6 \}} | 0.1782 ^{\{ 2 \}} | 0.24446 ^{\{ 7 \}} | 0.08426 ^{\{ 1 \}} | 0.2303 ^{\{ 5 \}} | 0.21335 ^{\{ 4 \}} | 0.19028 ^{\{ 3 \}} | 0.31359 ^{\{ 8 \}} | |
\hat{a} | 0.01471 ^{\{ 7 \}} | 0.00985 ^{\{ 2 \}} | 0.01326 ^{\{ 6 \}} | 0.0063 ^{\{ 1 \}} | 0.01233 ^{\{ 5 \}} | 0.01072 ^{\{ 4 \}} | 0.01051 ^{\{ 3 \}} | 0.01694 ^{\{ 8 \}} | ||
\hat{b} | 0.01347 ^{\{ 2 \}} | 0.0154 ^{\{ 3 \}} | 0.02142 ^{\{ 7 \}} | 0.0127 ^{\{ 1 \}} | 0.02166 ^{\{ 8 \}} | 0.01781 ^{\{ 5 \}} | 0.01588 ^{\{ 4 \}} | 0.02005 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.19363 ^{\{ 6 \}} | 0.16679 ^{\{ 2 \}} | 0.19496 ^{\{ 7 \}} | 0.09496 ^{\{ 1 \}} | 0.18564 ^{\{ 5 \}} | 0.17992 ^{\{ 4 \}} | 0.17194 ^{\{ 3 \}} | 0.23102 ^{\{ 8 \}} | |
\hat{a} | 0.19476 ^{\{ 7 \}} | 0.1588 ^{\{ 2 \}} | 0.18781 ^{\{ 6 \}} | 0.12356 ^{\{ 1 \}} | 0.17891 ^{\{ 5 \}} | 0.16573 ^{\{ 3 \}} | 0.16703 ^{\{ 4 \}} | 0.22084 ^{\{ 8 \}} | ||
\hat{b} | 0.06181 ^{\{ 1 \}} | 0.06728 ^{\{ 4 \}} | 0.07792 ^{\{ 7 \}} | 0.06188 ^{\{ 2 \}} | 0.07985 ^{\{ 8 \}} | 0.07092 ^{\{ 5 \}} | 0.0671 ^{\{ 3 \}} | 0.07578 ^{\{ 6 \}} | ||
D_{abs} | 0.01458 ^{\{ 2 \}} | 0.01466 ^{\{ 3 \}} | 0.01637 ^{\{ 8 \}} | 0.01442 ^{\{ 1 \}} | 0.01585 ^{\{ 5 \}} | 0.01586 ^{\{ 6 \}} | 0.01526 ^{\{ 4 \}} | 0.01617 ^{\{ 7 \}} | ||
D_{max} | 0.02429 ^{\{ 2 \}} | 0.02455 ^{\{ 3 \}} | 0.02772 ^{\{ 8 \}} | 0.0237 ^{\{ 1 \}} | 0.02703 ^{\{ 6 \}} | 0.02665 ^{\{ 5 \}} | 0.0255 ^{\{ 4 \}} | 0.02769 ^{\{ 7 \}} | ||
ASAE | 0.00677 ^{\{ 5 \}} | 0.0067 ^{\{ 3 \}} | 0.00736 ^{\{ 7 \}} | 0.00671 ^{\{ 4 \}} | 0.00725 ^{\{ 6 \}} | 0.00629 ^{\{ 1 \}} | 0.00664 ^{\{ 2 \}} | 0.00836 ^{\{ 8 \}} | ||
\sum Ranks | 52 ^{\{ 5 \}} | 32 ^{\{ 2 \}} | 83 ^{\{ 7 \}} | 17 ^{\{ 1 \}} | 71 ^{\{ 6 \}} | 49 ^{\{ 4 \}} | 40 ^{\{ 3 \}} | 88 ^{\{ 8 \}} | ||
600 | BIAS | \hat{\tau} | 0.33439 ^{\{ 6 \}} | 0.29901 ^{\{ 2 \}} | 0.33425 ^{\{ 5 \}} | 0.12434 ^{\{ 1 \}} | 0.34928 ^{\{ 7 \}} | 0.307 ^{\{ 3 \}} | 0.31014 ^{\{ 4 \}} | 0.38531 ^{\{ 8 \}} |
\hat{a} | 0.08166 ^{\{ 6 \}} | 0.0727 ^{\{ 3 \}} | 0.07959 ^{\{ 5 \}} | 0.04277 ^{\{ 1 \}} | 0.08482 ^{\{ 7 \}} | 0.07253 ^{\{ 2 \}} | 0.0737 ^{\{ 4 \}} | 0.09209 ^{\{ 8 \}} | ||
\hat{b} | 0.0686 ^{\{ 2 \}} | 0.07273 ^{\{ 4 \}} | 0.0851 ^{\{ 7 \}} | 0.06697 ^{\{ 1 \}} | 0.08853 ^{\{ 8 \}} | 0.07975 ^{\{ 5 \}} | 0.07184 ^{\{ 3 \}} | 0.08318 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.16634 ^{\{ 5 \}} | 0.13955 ^{\{ 2 \}} | 0.17655 ^{\{ 6 \}} | 0.05129 ^{\{ 1 \}} | 0.18951 ^{\{ 7 \}} | 0.15596 ^{\{ 4 \}} | 0.1493 ^{\{ 3 \}} | 0.20575 ^{\{ 8 \}} | |
\hat{a} | 0.01011 ^{\{ 6 \}} | 0.00794 ^{\{ 2 \}} | 0.00965 ^{\{ 5 \}} | 0.0035 ^{\{ 1 \}} | 0.01076 ^{\{ 7 \}} | 0.00839 ^{\{ 4 \}} | 0.00828 ^{\{ 3 \}} | 0.01148 ^{\{ 8 \}} | ||
\hat{b} | 0.00734 ^{\{ 2 \}} | 0.00804 ^{\{ 3 \}} | 0.01118 ^{\{ 7 \}} | 0.00685 ^{\{ 1 \}} | 0.01207 ^{\{ 8 \}} | 0.00953 ^{\{ 5 \}} | 0.00809 ^{\{ 4 \}} | 0.01058 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.1672 ^{\{ 6 \}} | 0.14951 ^{\{ 2 \}} | 0.16712 ^{\{ 5 \}} | 0.06217 ^{\{ 1 \}} | 0.17464 ^{\{ 7 \}} | 0.1535 ^{\{ 3 \}} | 0.15507 ^{\{ 4 \}} | 0.19266 ^{\{ 8 \}} | |
\hat{a} | 0.16331 ^{\{ 6 \}} | 0.1454 ^{\{ 3 \}} | 0.15918 ^{\{ 5 \}} | 0.08554 ^{\{ 1 \}} | 0.16963 ^{\{ 7 \}} | 0.14506 ^{\{ 2 \}} | 0.14741 ^{\{ 4 \}} | 0.18418 ^{\{ 8 \}} | ||
\hat{b} | 0.04573 ^{\{ 2 \}} | 0.04849 ^{\{ 4 \}} | 0.05674 ^{\{ 7 \}} | 0.04465 ^{\{ 1 \}} | 0.05902 ^{\{ 8 \}} | 0.05317 ^{\{ 5 \}} | 0.0479 ^{\{ 3 \}} | 0.05545 ^{\{ 6 \}} | ||
D_{abs} | 0.01052 ^{\{ 1 \}} | 0.01059 ^{\{ 3 \}} | 0.01098 ^{\{ 5 \}} | 0.01057 ^{\{ 2 \}} | 0.01117 ^{\{ 7 \}} | 0.0113 ^{\{ 8 \}} | 0.01068 ^{\{ 4 \}} | 0.01106 ^{\{ 6 \}} | ||
D_{max} | 0.01751 ^{\{ 2 \}} | 0.01784 ^{\{ 3 \}} | 0.01888 ^{\{ 5 \}} | 0.01736 ^{\{ 1 \}} | 0.01914 ^{\{ 7 \}} | 0.01915 ^{\{ 8 \}} | 0.01798 ^{\{ 4 \}} | 0.01898 ^{\{ 6 \}} | ||
ASAE | 0.00424 ^{\{ 4 \}} | 0.0042 ^{\{ 2 \}} | 0.00469 ^{\{ 7 \}} | 0.00438 ^{\{ 5 \}} | 0.00466 ^{\{ 6 \}} | 0.00396 ^{\{ 1 \}} | 0.00422 ^{\{ 3 \}} | 0.00525 ^{\{ 8 \}} | ||
\sum Ranks | 48 ^{\{ 4 \}} | 33 ^{\{ 2 \}} | 69 ^{\{ 6 \}} | 17 ^{\{ 1 \}} | 86 ^{\{ 7.5 \}} | 50 ^{\{ 5 \}} | 43 ^{\{ 3 \}} | 86 ^{\{ 7.5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.51619 ^{\{ 2 \}} | 0.63113 ^{\{ 6 \}} | 0.67423 ^{\{ 7 \}} | 0.51172 ^{\{ 1 \}} | 0.61334 ^{\{ 4 \}} | 0.62651 ^{\{ 5 \}} | 0.55707 ^{\{ 3 \}} | 0.88577 ^{\{ 8 \}} |
\hat{a} | 0.4211 ^{\{ 6 \}} | 0.39524 ^{\{ 5 \}} | 0.43673 ^{\{ 7 \}} | 0.34427 ^{\{ 1 \}} | 0.38438 ^{\{ 3 \}} | 0.36625 ^{\{ 2 \}} | 0.38901 ^{\{ 4 \}} | 0.57667 ^{\{ 8 \}} | ||
\hat{b} | 0.42122 ^{\{ 2 \}} | 0.42702 ^{\{ 3 \}} | 0.52173 ^{\{ 8 \}} | 0.40397 ^{\{ 1 \}} | 0.48285 ^{\{ 6 \}} | 0.45722 ^{\{ 5 \}} | 0.44181 ^{\{ 4 \}} | 0.4914 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.44269 ^{\{ 1 \}} | 1.40915 ^{\{ 6 \}} | 0.97253 ^{\{ 5 \}} | 0.79973 ^{\{ 4 \}} | 0.78856 ^{\{ 3 \}} | 4.65109 ^{\{ 8 \}} | 0.70986 ^{\{ 2 \}} | 1.63292 ^{\{ 7 \}} | |
\hat{a} | 0.28044 ^{\{ 6 \}} | 0.24296 ^{\{ 5 \}} | 0.31317 ^{\{ 7 \}} | 0.18465 ^{\{ 1 \}} | 0.23352 ^{\{ 4 \}} | 0.21626 ^{\{ 2 \}} | 0.23222 ^{\{ 3 \}} | 0.50968 ^{\{ 8 \}} | ||
\hat{b} | 0.32216 ^{\{ 2 \}} | 0.33661 ^{\{ 4 \}} | 0.5635 ^{\{ 8 \}} | 0.25378 ^{\{ 1 \}} | 0.4679 ^{\{ 6 \}} | 0.37052 ^{\{ 5 \}} | 0.3353 ^{\{ 3 \}} | 0.47121 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.2581 ^{\{ 2 \}} | 0.31556 ^{\{ 6 \}} | 0.33711 ^{\{ 7 \}} | 0.25586 ^{\{ 1 \}} | 0.30667 ^{\{ 4 \}} | 0.31326 ^{\{ 5 \}} | 0.27853 ^{\{ 3 \}} | 0.44288 ^{\{ 8 \}} | |
\hat{a} | 0.28073 ^{\{ 6 \}} | 0.26349 ^{\{ 5 \}} | 0.29115 ^{\{ 7 \}} | 0.22951 ^{\{ 1 \}} | 0.25625 ^{\{ 3 \}} | 0.24417 ^{\{ 2 \}} | 0.25934 ^{\{ 4 \}} | 0.38445 ^{\{ 8 \}} | ||
\hat{b} | 0.21061 ^{\{ 2 \}} | 0.21351 ^{\{ 3 \}} | 0.26087 ^{\{ 8 \}} | 0.20198 ^{\{ 1 \}} | 0.24143 ^{\{ 6 \}} | 0.22861 ^{\{ 5 \}} | 0.2209 ^{\{ 4 \}} | 0.2457 ^{\{ 7 \}} | ||
D_{abs} | 0.04173 ^{\{ 1 \}} | 0.04563 ^{\{ 4 \}} | 0.04698 ^{\{ 8 \}} | 0.04308 ^{\{ 2 \}} | 0.0467 ^{\{ 7 \}} | 0.04585 ^{\{ 5 \}} | 0.04476 ^{\{ 3 \}} | 0.04629 ^{\{ 6 \}} | ||
D_{max} | 0.06876 ^{\{ 1 \}} | 0.07601 ^{\{ 4 \}} | 0.08059 ^{\{ 7 \}} | 0.07069 ^{\{ 2 \}} | 0.07795 ^{\{ 6 \}} | 0.07656 ^{\{ 5 \}} | 0.07406 ^{\{ 3 \}} | 0.08173 ^{\{ 8 \}} | ||
ASAE | 0.03095 ^{\{ 7 \}} | 0.02759 ^{\{ 4 \}} | 0.02937 ^{\{ 6 \}} | 0.02711 ^{\{ 3 \}} | 0.02798 ^{\{ 5 \}} | 0.02651 ^{\{ 1 \}} | 0.02653 ^{\{ 2 \}} | 0.03252 ^{\{ 8 \}} | ||
\sum Ranks | 38 ^{\{ 2.5 \}} | 55 ^{\{ 5 \}} | 85 ^{\{ 7 \}} | 19 ^{\{ 1 \}} | 57 ^{\{ 6 \}} | 50 ^{\{ 4 \}} | 38 ^{\{ 2.5 \}} | 90 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.47926 ^{\{ 5 \}} | 0.46754 ^{\{ 4 \}} | 0.5632 ^{\{ 7 \}} | 0.3673 ^{\{ 1 \}} | 0.55214 ^{\{ 6 \}} | 0.46172 ^{\{ 2 \}} | 0.46383 ^{\{ 3 \}} | 0.67025 ^{\{ 8 \}} |
\hat{a} | 0.36435 ^{\{ 7 \}} | 0.30602 ^{\{ 3 \}} | 0.3521 ^{\{ 6 \}} | 0.27605 ^{\{ 1 \}} | 0.33303 ^{\{ 5 \}} | 0.29119 ^{\{ 2 \}} | 0.31509 ^{\{ 4 \}} | 0.43801 ^{\{ 8 \}} | ||
\hat{b} | 0.29223 ^{\{ 3 \}} | 0.29115 ^{\{ 2 \}} | 0.3284 ^{\{ 7 \}} | 0.28673 ^{\{ 1 \}} | 0.33862 ^{\{ 8 \}} | 0.31389 ^{\{ 5 \}} | 0.30284 ^{\{ 4 \}} | 0.31591 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.37454 ^{\{ 3 \}} | 0.36448 ^{\{ 2 \}} | 0.56211 ^{\{ 7 \}} | 0.2657 ^{\{ 1 \}} | 0.53431 ^{\{ 6 \}} | 0.39635 ^{\{ 5 \}} | 0.37914 ^{\{ 4 \}} | 0.72289 ^{\{ 8 \}} | |
\hat{a} | 0.20482 ^{\{ 7 \}} | 0.14296 ^{\{ 3 \}} | 0.18606 ^{\{ 6 \}} | 0.11389 ^{\{ 1 \}} | 0.17027 ^{\{ 5 \}} | 0.1266 ^{\{ 2 \}} | 0.15246 ^{\{ 4 \}} | 0.27299 ^{\{ 8 \}} | ||
\hat{b} | 0.14415 ^{\{ 3 \}} | 0.13708 ^{\{ 2 \}} | 0.17917 ^{\{ 7 \}} | 0.13026 ^{\{ 1 \}} | 0.19342 ^{\{ 8 \}} | 0.16635 ^{\{ 5 \}} | 0.15758 ^{\{ 4 \}} | 0.1689 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.23963 ^{\{ 5 \}} | 0.23377 ^{\{ 4 \}} | 0.2816 ^{\{ 7 \}} | 0.18365 ^{\{ 1 \}} | 0.27607 ^{\{ 6 \}} | 0.23086 ^{\{ 2 \}} | 0.23191 ^{\{ 3 \}} | 0.33512 ^{\{ 8 \}} | |
\hat{a} | 0.2429 ^{\{ 7 \}} | 0.20401 ^{\{ 3 \}} | 0.23473 ^{\{ 6 \}} | 0.18403 ^{\{ 1 \}} | 0.22202 ^{\{ 5 \}} | 0.19413 ^{\{ 2 \}} | 0.21006 ^{\{ 4 \}} | 0.29201 ^{\{ 8 \}} | ||
\hat{b} | 0.14612 ^{\{ 3 \}} | 0.14557 ^{\{ 2 \}} | 0.1642 ^{\{ 7 \}} | 0.14337 ^{\{ 1 \}} | 0.16931 ^{\{ 8 \}} | 0.15694 ^{\{ 5 \}} | 0.15142 ^{\{ 4 \}} | 0.15796 ^{\{ 6 \}} | ||
D_{abs} | 0.03043 ^{\{ 1 \}} | 0.03146 ^{\{ 3 \}} | 0.03257 ^{\{ 5 \}} | 0.03117 ^{\{ 2 \}} | 0.03291 ^{\{ 7 \}} | 0.03307 ^{\{ 8 \}} | 0.03149 ^{\{ 4 \}} | 0.03263 ^{\{ 6 \}} | ||
D_{max} | 0.04996 ^{\{ 1 \}} | 0.05229 ^{\{ 4 \}} | 0.0556 ^{\{ 7 \}} | 0.05107 ^{\{ 2 \}} | 0.05559 ^{\{ 6 \}} | 0.05467 ^{\{ 5 \}} | 0.05214 ^{\{ 3 \}} | 0.05719 ^{\{ 8 \}} | ||
ASAE | 0.01855 ^{\{ 6 \}} | 0.01739 ^{\{ 3 \}} | 0.01871 ^{\{ 7 \}} | 0.01758 ^{\{ 4 \}} | 0.01813 ^{\{ 5 \}} | 0.01678 ^{\{ 1 \}} | 0.01729 ^{\{ 2 \}} | 0.02109 ^{\{ 8 \}} | ||
\sum Ranks | 51 ^{\{ 5 \}} | 35 ^{\{ 2 \}} | 79 ^{\{ 7 \}} | 17 ^{\{ 1 \}} | 75 ^{\{ 6 \}} | 44 ^{\{ 4 \}} | 43 ^{\{ 3 \}} | 88 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.4392 ^{\{ 5 \}} | 0.39379 ^{\{ 3 \}} | 0.45566 ^{\{ 7 \}} | 0.27549 ^{\{ 1 \}} | 0.44834 ^{\{ 6 \}} | 0.38128 ^{\{ 2 \}} | 0.41046 ^{\{ 4 \}} | 0.54089 ^{\{ 8 \}} |
\hat{a} | 0.31014 ^{\{ 7 \}} | 0.26139 ^{\{ 3 \}} | 0.28645 ^{\{ 5 \}} | 0.21856 ^{\{ 1 \}} | 0.28762 ^{\{ 6 \}} | 0.24802 ^{\{ 2 \}} | 0.26741 ^{\{ 4 \}} | 0.3628 ^{\{ 8 \}} | ||
\hat{b} | 0.19985 ^{\{ 3 \}} | 0.19591 ^{\{ 1 \}} | 0.21751 ^{\{ 6 \}} | 0.19621 ^{\{ 2 \}} | 0.22876 ^{\{ 8 \}} | 0.21446 ^{\{ 5 \}} | 0.20679 ^{\{ 4 \}} | 0.2256 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.31057 ^{\{ 5 \}} | 0.2424 ^{\{ 2 \}} | 0.33171 ^{\{ 7 \}} | 0.13533 ^{\{ 1 \}} | 0.32597 ^{\{ 6 \}} | 0.25702 ^{\{ 3 \}} | 0.26429 ^{\{ 4 \}} | 0.43436 ^{\{ 8 \}} | |
\hat{a} | 0.15063 ^{\{ 7 \}} | 0.10087 ^{\{ 3 \}} | 0.12317 ^{\{ 6 \}} | 0.07577 ^{\{ 1 \}} | 0.12274 ^{\{ 5 \}} | 0.09392 ^{\{ 2 \}} | 0.10589 ^{\{ 4 \}} | 0.18107 ^{\{ 8 \}} | ||
\hat{b} | 0.06714 ^{\{ 4 \}} | 0.05805 ^{\{ 1 \}} | 0.07483 ^{\{ 6 \}} | 0.05816 ^{\{ 2 \}} | 0.08113 ^{\{ 7 \}} | 0.07187 ^{\{ 5 \}} | 0.06713 ^{\{ 3 \}} | 0.08227 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.2196 ^{\{ 5 \}} | 0.19689 ^{\{ 3 \}} | 0.22783 ^{\{ 7 \}} | 0.13775 ^{\{ 1 \}} | 0.22417 ^{\{ 6 \}} | 0.19064 ^{\{ 2 \}} | 0.20523 ^{\{ 4 \}} | 0.27044 ^{\{ 8 \}} | |
\hat{a} | 0.20676 ^{\{ 7 \}} | 0.17426 ^{\{ 3 \}} | 0.19097 ^{\{ 5 \}} | 0.14571 ^{\{ 1 \}} | 0.19175 ^{\{ 6 \}} | 0.16535 ^{\{ 2 \}} | 0.17827 ^{\{ 4 \}} | 0.24186 ^{\{ 8 \}} | ||
\hat{b} | 0.09993 ^{\{ 3 \}} | 0.09795 ^{\{ 1 \}} | 0.10875 ^{\{ 6 \}} | 0.09811 ^{\{ 2 \}} | 0.11438 ^{\{ 8 \}} | 0.10723 ^{\{ 5 \}} | 0.10339 ^{\{ 4 \}} | 0.1128 ^{\{ 7 \}} | ||
D_{abs} | 0.02083 ^{\{ 1 \}} | 0.02159 ^{\{ 4 \}} | 0.02178 ^{\{ 5 \}} | 0.02125 ^{\{ 2.5 \}} | 0.02218 ^{\{ 6 \}} | 0.02294 ^{\{ 8 \}} | 0.02125 ^{\{ 2.5 \}} | 0.02263 ^{\{ 7 \}} | ||
D_{max} | 0.03432 ^{\{ 1 \}} | 0.03586 ^{\{ 4 \}} | 0.03724 ^{\{ 5 \}} | 0.03487 ^{\{ 2 \}} | 0.03795 ^{\{ 6 \}} | 0.03803 ^{\{ 7 \}} | 0.03566 ^{\{ 3 \}} | 0.03867 ^{\{ 8 \}} | ||
ASAE | 0.0109 ^{\{ 5 \}} | 0.01075 ^{\{ 3.5 \}} | 0.01143 ^{\{ 7 \}} | 0.01075 ^{\{ 3.5 \}} | 0.0111 ^{\{ 6 \}} | 0.01011 ^{\{ 1 \}} | 0.01051 ^{\{ 2 \}} | 0.01296 ^{\{ 8 \}} | ||
\sum Ranks | 53 ^{\{ 5 \}} | 31.5 ^{\{ 2 \}} | 72 ^{\{ 6 \}} | 20 ^{\{ 1 \}} | 76 ^{\{ 7 \}} | 44 ^{\{ 4 \}} | 42.5 ^{\{ 3 \}} | 93 ^{\{ 8 \}} | ||
300 | BIAS | \hat{\tau} | 0.38358 ^{\{ 5 \}} | 0.35025 ^{\{ 3 \}} | 0.40996 ^{\{ 7 \}} | 0.20918 ^{\{ 1 \}} | 0.38933 ^{\{ 6 \}} | 0.35514 ^{\{ 4 \}} | 0.34544 ^{\{ 2 \}} | 0.47301 ^{\{ 8 \}} |
\hat{a} | 0.25949 ^{\{ 7 \}} | 0.22513 ^{\{ 3 \}} | 0.25895 ^{\{ 6 \}} | 0.15794 ^{\{ 1 \}} | 0.25286 ^{\{ 5 \}} | 0.2244 ^{\{ 2 \}} | 0.23092 ^{\{ 4 \}} | 0.31424 ^{\{ 8 \}} | ||
\hat{b} | 0.14384 ^{\{ 3 \}} | 0.14219 ^{\{ 2 \}} | 0.16653 ^{\{ 7 \}} | 0.13428 ^{\{ 1 \}} | 0.16744 ^{\{ 8 \}} | 0.15275 ^{\{ 5 \}} | 0.14455 ^{\{ 4 \}} | 0.16515 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.22395 ^{\{ 5 \}} | 0.18899 ^{\{ 3 \}} | 0.25726 ^{\{ 7 \}} | 0.08634 ^{\{ 1 \}} | 0.23811 ^{\{ 6 \}} | 0.21275 ^{\{ 4 \}} | 0.18524 ^{\{ 2 \}} | 0.31153 ^{\{ 8 \}} | |
\hat{a} | 0.10146 ^{\{ 7 \}} | 0.07569 ^{\{ 2 \}} | 0.0982 ^{\{ 6 \}} | 0.04298 ^{\{ 1 \}} | 0.09473 ^{\{ 5 \}} | 0.07846 ^{\{ 3 \}} | 0.07943 ^{\{ 4 \}} | 0.13087 ^{\{ 8 \}} | ||
\hat{b} | 0.03255 ^{\{ 4 \}} | 0.0313 ^{\{ 2 \}} | 0.04249 ^{\{ 7 \}} | 0.02688 ^{\{ 1 \}} | 0.04388 ^{\{ 8 \}} | 0.03491 ^{\{ 5 \}} | 0.03196 ^{\{ 3 \}} | 0.04248 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.19179 ^{\{ 5 \}} | 0.17513 ^{\{ 3 \}} | 0.20498 ^{\{ 7 \}} | 0.10459 ^{\{ 1 \}} | 0.19466 ^{\{ 6 \}} | 0.17757 ^{\{ 4 \}} | 0.17272 ^{\{ 2 \}} | 0.2365 ^{\{ 8 \}} | |
\hat{a} | 0.17299 ^{\{ 7 \}} | 0.15009 ^{\{ 3 \}} | 0.17264 ^{\{ 6 \}} | 0.10529 ^{\{ 1 \}} | 0.16858 ^{\{ 5 \}} | 0.1496 ^{\{ 2 \}} | 0.15394 ^{\{ 4 \}} | 0.20949 ^{\{ 8 \}} | ||
\hat{b} | 0.07192 ^{\{ 3 \}} | 0.07109 ^{\{ 2 \}} | 0.08327 ^{\{ 7 \}} | 0.06714 ^{\{ 1 \}} | 0.08372 ^{\{ 8 \}} | 0.07638 ^{\{ 5 \}} | 0.07227 ^{\{ 4 \}} | 0.08258 ^{\{ 6 \}} | ||
D_{abs} | 0.01502 ^{\{ 2 \}} | 0.01519 ^{\{ 4 \}} | 0.01582 ^{\{ 6 \}} | 0.01471 ^{\{ 1 \}} | 0.01536 ^{\{ 5 \}} | 0.01593 ^{\{ 7 \}} | 0.01513 ^{\{ 3 \}} | 0.01595 ^{\{ 8 \}} | ||
D_{max} | 0.02487 ^{\{ 2 \}} | 0.02543 ^{\{ 4 \}} | 0.02719 ^{\{ 7 \}} | 0.02418 ^{\{ 1 \}} | 0.02652 ^{\{ 5 \}} | 0.02678 ^{\{ 6 \}} | 0.02539 ^{\{ 3 \}} | 0.02738 ^{\{ 8 \}} | ||
ASAE | 0.00687 ^{\{ 5 \}} | 0.00666 ^{\{ 2 \}} | 0.00739 ^{\{ 7 \}} | 0.00686 ^{\{ 4 \}} | 0.00722 ^{\{ 6 \}} | 0.00639 ^{\{ 1 \}} | 0.0067 ^{\{ 3 \}} | 0.00837 ^{\{ 8 \}} | ||
\sum Ranks | 55 ^{\{ 5 \}} | 33 ^{\{ 2 \}} | 80 ^{\{ 7 \}} | 15 ^{\{ 1 \}} | 73 ^{\{ 6 \}} | 48 ^{\{ 4 \}} | 38 ^{\{ 3 \}} | 90 ^{\{ 8 \}} | ||
600 | BIAS | \hat{\tau} | 0.34337 ^{\{ 5 \}} | 0.29599 ^{\{ 2 \}} | 0.35608 ^{\{ 7 \}} | 0.12837 ^{\{ 1 \}} | 0.34858 ^{\{ 6 \}} | 0.30958 ^{\{ 4 \}} | 0.30911 ^{\{ 3 \}} | 0.4042 ^{\{ 8 \}} |
\hat{a} | 0.22922 ^{\{ 7 \}} | 0.19345 ^{\{ 3 \}} | 0.22519 ^{\{ 5 \}} | 0.09817 ^{\{ 1 \}} | 0.22778 ^{\{ 6 \}} | 0.19235 ^{\{ 2 \}} | 0.20261 ^{\{ 4 \}} | 0.27243 ^{\{ 8 \}} | ||
\hat{b} | 0.10161 ^{\{ 2 \}} | 0.10663 ^{\{ 3 \}} | 0.12649 ^{\{ 8 \}} | 0.09413 ^{\{ 1 \}} | 0.12277 ^{\{ 6 \}} | 0.11287 ^{\{ 5 \}} | 0.10742 ^{\{ 4 \}} | 0.12442 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.17598 ^{\{ 6 \}} | 0.13529 ^{\{ 2 \}} | 0.18281 ^{\{ 7 \}} | 0.04448 ^{\{ 1 \}} | 0.17429 ^{\{ 5 \}} | 0.15427 ^{\{ 4 \}} | 0.14265 ^{\{ 3 \}} | 0.22018 ^{\{ 8 \}} | |
\hat{a} | 0.07869 ^{\{ 7 \}} | 0.05647 ^{\{ 2 \}} | 0.07356 ^{\{ 6 \}} | 0.02176 ^{\{ 1 \}} | 0.07329 ^{\{ 5 \}} | 0.05829 ^{\{ 3 \}} | 0.06038 ^{\{ 4 \}} | 0.09527 ^{\{ 8 \}} | ||
\hat{b} | 0.01627 ^{\{ 2 \}} | 0.01766 ^{\{ 3 \}} | 0.02538 ^{\{ 8 \}} | 0.01352 ^{\{ 1 \}} | 0.02319 ^{\{ 6 \}} | 0.01936 ^{\{ 5 \}} | 0.01824 ^{\{ 4 \}} | 0.02403 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.17169 ^{\{ 5 \}} | 0.14799 ^{\{ 2 \}} | 0.17804 ^{\{ 7 \}} | 0.06418 ^{\{ 1 \}} | 0.17429 ^{\{ 6 \}} | 0.15479 ^{\{ 4 \}} | 0.15455 ^{\{ 3 \}} | 0.2021 ^{\{ 8 \}} | |
\hat{a} | 0.15282 ^{\{ 7 \}} | 0.12897 ^{\{ 3 \}} | 0.15012 ^{\{ 5 \}} | 0.06545 ^{\{ 1 \}} | 0.15185 ^{\{ 6 \}} | 0.12823 ^{\{ 2 \}} | 0.13507 ^{\{ 4 \}} | 0.18162 ^{\{ 8 \}} | ||
\hat{b} | 0.0508 ^{\{ 2 \}} | 0.05331 ^{\{ 3 \}} | 0.06325 ^{\{ 8 \}} | 0.04706 ^{\{ 1 \}} | 0.06139 ^{\{ 6 \}} | 0.05644 ^{\{ 5 \}} | 0.05371 ^{\{ 4 \}} | 0.06221 ^{\{ 7 \}} | ||
D_{abs} | 0.01056 ^{\{ 2 \}} | 0.0106 ^{\{ 3 \}} | 0.01125 ^{\{ 7 \}} | 0.0103 ^{\{ 1 \}} | 0.01164 ^{\{ 8 \}} | 0.01124 ^{\{ 6 \}} | 0.0107 ^{\{ 4 \}} | 0.01089 ^{\{ 5 \}} | ||
D_{max} | 0.01782 ^{\{ 2 \}} | 0.01801 ^{\{ 3 \}} | 0.01931 ^{\{ 7 \}} | 0.017 ^{\{ 1 \}} | 0.01973 ^{\{ 8 \}} | 0.01893 ^{\{ 6 \}} | 0.01812 ^{\{ 4 \}} | 0.01874 ^{\{ 5 \}} | ||
ASAE | 0.00429 ^{\{ 2 \}} | 0.0043 ^{\{ 3 \}} | 0.00478 ^{\{ 7 \}} | 0.0045 ^{\{ 5 \}} | 0.00457 ^{\{ 6 \}} | 0.00406 ^{\{ 1 \}} | 0.00431 ^{\{ 4 \}} | 0.00534 ^{\{ 8 \}} | ||
\sum Ranks | 49 ^{\{ 5 \}} | 32 ^{\{ 2 \}} | 82 ^{\{ 7 \}} | 16 ^{\{ 1 \}} | 74 ^{\{ 6 \}} | 47 ^{\{ 4 \}} | 45 ^{\{ 3 \}} | 87 ^{\{ 8 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.41263 ^{\{ 1 \}} | 0.63117 ^{\{ 3 \}} | 0.61646 ^{\{ 2 \}} | 0.68971 ^{\{ 6 \}} | 0.66123 ^{\{ 4 \}} | 0.69605 ^{\{ 7 \}} | 0.6614 ^{\{ 5 \}} | 0.73592 ^{\{ 8 \}} |
\hat{a} | 0.3458 ^{\{ 1 \}} | 0.40339 ^{\{ 3 \}} | 0.40077 ^{\{ 2 \}} | 0.43258 ^{\{ 6 \}} | 0.43443 ^{\{ 7 \}} | 0.46564 ^{\{ 8 \}} | 0.41928 ^{\{ 5 \}} | 0.40721 ^{\{ 4 \}} | ||
\hat{b} | 0.90474 ^{\{ 2 \}} | 0.95946 ^{\{ 6 \}} | 0.95309 ^{\{ 4 \}} | 0.95489 ^{\{ 5 \}} | 0.92977 ^{\{ 3 \}} | 0.88 ^{\{ 1 \}} | 0.96175 ^{\{ 7 \}} | 1.06824 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.23196 ^{\{ 1 \}} | 0.53768 ^{\{ 3 \}} | 0.47197 ^{\{ 2 \}} | 0.65139 ^{\{ 7 \}} | 0.55116 ^{\{ 4 \}} | 0.64812 ^{\{ 6 \}} | 0.57172 ^{\{ 5 \}} | 0.87411 ^{\{ 8 \}} | |
\hat{a} | 0.19495 ^{\{ 1 \}} | 0.25654 ^{\{ 3 \}} | 0.25032 ^{\{ 2 \}} | 0.28251 ^{\{ 5 \}} | 0.28292 ^{\{ 6 \}} | 0.33262 ^{\{ 8 \}} | 0.27497 ^{\{ 4 \}} | 0.28509 ^{\{ 7 \}} | ||
\hat{b} | 1.40385 ^{\{ 7 \}} | 1.37779 ^{\{ 5 \}} | 1.33026 ^{\{ 3 \}} | 1.37841 ^{\{ 6 \}} | 1.24057 ^{\{ 1 \}} | 1.28937 ^{\{ 2 \}} | 1.33079 ^{\{ 4 \}} | 1.7756 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.55017 ^{\{ 1 \}} | 0.84156 ^{\{ 3 \}} | 0.82195 ^{\{ 2 \}} | 0.91961 ^{\{ 6 \}} | 0.88164 ^{\{ 4 \}} | 0.92807 ^{\{ 7 \}} | 0.88187 ^{\{ 5 \}} | 0.98123 ^{\{ 8 \}} | |
\hat{a} | 0.1729 ^{\{ 1 \}} | 0.20169 ^{\{ 3 \}} | 0.20039 ^{\{ 2 \}} | 0.21629 ^{\{ 6 \}} | 0.21721 ^{\{ 7 \}} | 0.23282 ^{\{ 8 \}} | 0.20964 ^{\{ 5 \}} | 0.20361 ^{\{ 4 \}} | ||
\hat{b} | 0.30158 ^{\{ 2 \}} | 0.31982 ^{\{ 6 \}} | 0.3177 ^{\{ 4 \}} | 0.3183 ^{\{ 5 \}} | 0.30992 ^{\{ 3 \}} | 0.29333 ^{\{ 1 \}} | 0.32058 ^{\{ 7 \}} | 0.35608 ^{\{ 8 \}} | ||
D_{abs} | 0.04253 ^{\{ 1 \}} | 0.04336 ^{\{ 2 \}} | 0.04718 ^{\{ 8 \}} | 0.04338 ^{\{ 3 \}} | 0.04551 ^{\{ 5 \}} | 0.04671 ^{\{ 7 \}} | 0.04479 ^{\{ 4 \}} | 0.04664 ^{\{ 6 \}} | ||
D_{max} | 0.07112 ^{\{ 2 \}} | 0.07194 ^{\{ 3 \}} | 0.0792 ^{\{ 8 \}} | 0.07007 ^{\{ 1 \}} | 0.07453 ^{\{ 5 \}} | 0.07777 ^{\{ 6 \}} | 0.07355 ^{\{ 4 \}} | 0.07787 ^{\{ 7 \}} | ||
ASAE | 0.02959 ^{\{ 7 \}} | 0.02756 ^{\{ 3 \}} | 0.02928 ^{\{ 6 \}} | 0.02713 ^{\{ 2 \}} | 0.02829 ^{\{ 5 \}} | 0.02772 ^{\{ 4 \}} | 0.02691 ^{\{ 1 \}} | 0.03129 ^{\{ 8 \}} | ||
\sum Ranks | 27 ^{\{ 1 \}} | 43 ^{\{ 2 \}} | 45 ^{\{ 3 \}} | 58 ^{\{ 6 \}} | 54 ^{\{ 4 \}} | 65 ^{\{ 7 \}} | 56 ^{\{ 5 \}} | 84 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.37728 ^{\{ 1 \}} | 0.57428 ^{\{ 3 \}} | 0.57379 ^{\{ 2 \}} | 0.61526 ^{\{ 7 \}} | 0.60356 ^{\{ 5 \}} | 0.60726 ^{\{ 6 \}} | 0.58819 ^{\{ 4 \}} | 0.61897 ^{\{ 8 \}} |
\hat{a} | 0.25016 ^{\{ 1 \}} | 0.31949 ^{\{ 2 \}} | 0.33757 ^{\{ 4 \}} | 0.35113 ^{\{ 7 \}} | 0.34537 ^{\{ 6 \}} | 0.35421 ^{\{ 8 \}} | 0.33813 ^{\{ 5 \}} | 0.3285 ^{\{ 3 \}} | ||
\hat{b} | 0.68242 ^{\{ 1 \}} | 0.79998 ^{\{ 5 \}} | 0.77034 ^{\{ 3 \}} | 0.82325 ^{\{ 6 \}} | 0.83417 ^{\{ 8 \}} | 0.69139 ^{\{ 2 \}} | 0.78972 ^{\{ 4 \}} | 0.82557 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.20498 ^{\{ 1 \}} | 0.47839 ^{\{ 4 \}} | 0.45179 ^{\{ 2 \}} | 0.57434 ^{\{ 7 \}} | 0.47675 ^{\{ 3 \}} | 0.53826 ^{\{ 6 \}} | 0.48684 ^{\{ 5 \}} | 0.5989 ^{\{ 8 \}} | |
\hat{a} | 0.09985 ^{\{ 1 \}} | 0.15258 ^{\{ 2 \}} | 0.17907 ^{\{ 4 \}} | 0.20305 ^{\{ 8 \}} | 0.18005 ^{\{ 5 \}} | 0.18882 ^{\{ 7 \}} | 0.17375 ^{\{ 3 \}} | 0.18104 ^{\{ 6 \}} | ||
\hat{b} | 0.77461 ^{\{ 2 \}} | 1.01864 ^{\{ 6 \}} | 0.8902 ^{\{ 3 \}} | 1.13061 ^{\{ 8 \}} | 1.01306 ^{\{ 5 \}} | 0.74376 ^{\{ 1 \}} | 0.95657 ^{\{ 4 \}} | 1.08045 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.50303 ^{\{ 1 \}} | 0.76571 ^{\{ 3 \}} | 0.76505 ^{\{ 2 \}} | 0.82035 ^{\{ 7 \}} | 0.80474 ^{\{ 5 \}} | 0.80968 ^{\{ 6 \}} | 0.78426 ^{\{ 4 \}} | 0.8253 ^{\{ 8 \}} | |
\hat{a} | 0.12508 ^{\{ 1 \}} | 0.15974 ^{\{ 2 \}} | 0.16879 ^{\{ 4 \}} | 0.17557 ^{\{ 7 \}} | 0.17268 ^{\{ 6 \}} | 0.1771 ^{\{ 8 \}} | 0.16906 ^{\{ 5 \}} | 0.16425 ^{\{ 3 \}} | ||
\hat{b} | 0.22747 ^{\{ 1 \}} | 0.26666 ^{\{ 5 \}} | 0.25678 ^{\{ 3 \}} | 0.27442 ^{\{ 6 \}} | 0.27806 ^{\{ 8 \}} | 0.23046 ^{\{ 2 \}} | 0.26324 ^{\{ 4 \}} | 0.27519 ^{\{ 7 \}} | ||
D_{abs} | 0.03062 ^{\{ 2 \}} | 0.03064 ^{\{ 3 \}} | 0.03404 ^{\{ 8 \}} | 0.03001 ^{\{ 1 \}} | 0.03304 ^{\{ 7 \}} | 0.03289 ^{\{ 6 \}} | 0.03251 ^{\{ 4 \}} | 0.03252 ^{\{ 5 \}} | ||
D_{max} | 0.05131 ^{\{ 2 \}} | 0.05151 ^{\{ 3 \}} | 0.05754 ^{\{ 8 \}} | 0.04967 ^{\{ 1 \}} | 0.05555 ^{\{ 7 \}} | 0.05553 ^{\{ 6 \}} | 0.05366 ^{\{ 4 \}} | 0.0546 ^{\{ 5 \}} | ||
ASAE | 0.01854 ^{\{ 7 \}} | 0.01731 ^{\{ 4 \}} | 0.01828 ^{\{ 6 \}} | 0.01722 ^{\{ 2 \}} | 0.01814 ^{\{ 5 \}} | 0.01725 ^{\{ 3 \}} | 0.01692 ^{\{ 1 \}} | 0.01936 ^{\{ 8 \}} | ||
\sum Ranks | 21 ^{\{ 1 \}} | 42 ^{\{ 2 \}} | 49 ^{\{ 4 \}} | 67 ^{\{ 6 \}} | 70 ^{\{ 7 \}} | 61 ^{\{ 5 \}} | 47 ^{\{ 3 \}} | 75 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.31212 ^{\{ 1 \}} | 0.45159 ^{\{ 2 \}} | 0.49391 ^{\{ 4 \}} | 0.50158 ^{\{ 6 \}} | 0.49767 ^{\{ 5 \}} | 0.51173 ^{\{ 8 \}} | 0.47926 ^{\{ 3 \}} | 0.50467 ^{\{ 7 \}} |
\hat{a} | 0.18389 ^{\{ 1 \}} | 0.24619 ^{\{ 2 \}} | 0.26366 ^{\{ 5 \}} | 0.26623 ^{\{ 6 \}} | 0.27263 ^{\{ 8 \}} | 0.26155 ^{\{ 3 \}} | 0.26205 ^{\{ 4 \}} | 0.26637 ^{\{ 7 \}} | ||
\hat{b} | 0.51055 ^{\{ 1 \}} | 0.58914 ^{\{ 2 \}} | 0.64746 ^{\{ 7 \}} | 0.59531 ^{\{ 4 \}} | 0.65501 ^{\{ 8 \}} | 0.62579 ^{\{ 5 \}} | 0.59382 ^{\{ 3 \}} | 0.63847 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.14708 ^{\{ 1 \}} | 0.33233 ^{\{ 2 \}} | 0.35351 ^{\{ 3 \}} | 0.44757 ^{\{ 8 \}} | 0.36746 ^{\{ 5 \}} | 0.41305 ^{\{ 7 \}} | 0.36255 ^{\{ 4 \}} | 0.4025 ^{\{ 6 \}} | |
\hat{a} | 0.05157 ^{\{ 1 \}} | 0.09975 ^{\{ 2 \}} | 0.10789 ^{\{ 3 \}} | 0.12791 ^{\{ 8 \}} | 0.11535 ^{\{ 6 \}} | 0.1123 ^{\{ 5 \}} | 0.11096 ^{\{ 4 \}} | 0.1174 ^{\{ 7 \}} | ||
\hat{b} | 0.47277 ^{\{ 1 \}} | 0.61572 ^{\{ 4 \}} | 0.6529 ^{\{ 5 \}} | 0.7086 ^{\{ 8 \}} | 0.67921 ^{\{ 6 \}} | 0.59584 ^{\{ 2 \}} | 0.60046 ^{\{ 3 \}} | 0.70453 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.41616 ^{\{ 1 \}} | 0.60212 ^{\{ 2 \}} | 0.65854 ^{\{ 4 \}} | 0.66877 ^{\{ 6 \}} | 0.66356 ^{\{ 5 \}} | 0.68231 ^{\{ 8 \}} | 0.63901 ^{\{ 3 \}} | 0.67289 ^{\{ 7 \}} | |
\hat{a} | 0.09195 ^{\{ 1 \}} | 0.1231 ^{\{ 2 \}} | 0.13183 ^{\{ 5 \}} | 0.13311 ^{\{ 6 \}} | 0.13632 ^{\{ 8 \}} | 0.13078 ^{\{ 3 \}} | 0.13102 ^{\{ 4 \}} | 0.13318 ^{\{ 7 \}} | ||
\hat{b} | 0.17018 ^{\{ 1 \}} | 0.19638 ^{\{ 2 \}} | 0.21582 ^{\{ 7 \}} | 0.19844 ^{\{ 4 \}} | 0.21834 ^{\{ 8 \}} | 0.2086 ^{\{ 5 \}} | 0.19794 ^{\{ 3 \}} | 0.21282 ^{\{ 6 \}} | ||
D_{abs} | 0.02081 ^{\{ 1 \}} | 0.02156 ^{\{ 3 \}} | 0.02279 ^{\{ 7.5 \}} | 0.02171 ^{\{ 4 \}} | 0.02269 ^{\{ 6 \}} | 0.02221 ^{\{ 5 \}} | 0.02123 ^{\{ 2 \}} | 0.02279 ^{\{ 7.5 \}} | ||
D_{max} | 0.03496 ^{\{ 1 \}} | 0.0362 ^{\{ 4 \}} | 0.0389 ^{\{ 8 \}} | 0.03607 ^{\{ 3 \}} | 0.03834 ^{\{ 5 \}} | 0.03836 ^{\{ 6 \}} | 0.03583 ^{\{ 2 \}} | 0.03862 ^{\{ 7 \}} | ||
ASAE | 0.01105 ^{\{ 5 \}} | 0.0105 ^{\{ 3 \}} | 0.0111 ^{\{ 7 \}} | 0.01079 ^{\{ 4 \}} | 0.01108 ^{\{ 6 \}} | 0.01049 ^{\{ 2 \}} | 0.01039 ^{\{ 1 \}} | 0.01196 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 30 ^{\{ 2 \}} | 65.5 ^{\{ 5 \}} | 67 ^{\{ 6 \}} | 76 ^{\{ 7 \}} | 59 ^{\{ 4 \}} | 36 ^{\{ 3 \}} | 82.5 ^{\{ 8 \}} | ||
300 | BIAS | \hat{\tau} | 0.26159 ^{\{ 1 \}} | 0.33734 ^{\{ 2 \}} | 0.40449 ^{\{ 6 \}} | 0.3744 ^{\{ 4 \}} | 0.41347 ^{\{ 7 \}} | 0.42097 ^{\{ 8 \}} | 0.34325 ^{\{ 3 \}} | 0.37827 ^{\{ 5 \}} |
\hat{a} | 0.14993 ^{\{ 1 \}} | 0.18532 ^{\{ 3 \}} | 0.20625 ^{\{ 7 \}} | 0.19513 ^{\{ 4 \}} | 0.20695 ^{\{ 8 \}} | 0.19719 ^{\{ 5 \}} | 0.18169 ^{\{ 2 \}} | 0.20501 ^{\{ 6 \}} | ||
\hat{b} | 0.37223 ^{\{ 1 \}} | 0.41779 ^{\{ 2 \}} | 0.508 ^{\{ 7 \}} | 0.44601 ^{\{ 4 \}} | 0.50594 ^{\{ 6 \}} | 0.52145 ^{\{ 8 \}} | 0.42076 ^{\{ 3 \}} | 0.45303 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.10953 ^{\{ 1 \}} | 0.20094 ^{\{ 2 \}} | 0.26331 ^{\{ 5 \}} | 0.29301 ^{\{ 7 \}} | 0.28568 ^{\{ 6 \}} | 0.30513 ^{\{ 8 \}} | 0.20537 ^{\{ 3 \}} | 0.24655 ^{\{ 4 \}} | |
\hat{a} | 0.03556 ^{\{ 1 \}} | 0.05977 ^{\{ 3 \}} | 0.06975 ^{\{ 4 \}} | 0.07768 ^{\{ 8 \}} | 0.07525 ^{\{ 7 \}} | 0.07119 ^{\{ 5 \}} | 0.05699 ^{\{ 2 \}} | 0.07212 ^{\{ 6 \}} | ||
\hat{b} | 0.29126 ^{\{ 1 \}} | 0.31942 ^{\{ 2 \}} | 0.43464 ^{\{ 6 \}} | 0.48268 ^{\{ 8 \}} | 0.44893 ^{\{ 7 \}} | 0.43375 ^{\{ 5 \}} | 0.32104 ^{\{ 3 \}} | 0.39031 ^{\{ 4 \}} | ||
MRE | \hat{\tau} | 0.34879 ^{\{ 1 \}} | 0.44978 ^{\{ 2 \}} | 0.53932 ^{\{ 6 \}} | 0.49921 ^{\{ 4 \}} | 0.5513 ^{\{ 7 \}} | 0.56129 ^{\{ 8 \}} | 0.45767 ^{\{ 3 \}} | 0.50436 ^{\{ 5 \}} | |
\hat{a} | 0.07496 ^{\{ 1 \}} | 0.09266 ^{\{ 3 \}} | 0.10313 ^{\{ 7 \}} | 0.09757 ^{\{ 4 \}} | 0.10347 ^{\{ 8 \}} | 0.09859 ^{\{ 5 \}} | 0.09085 ^{\{ 2 \}} | 0.1025 ^{\{ 6 \}} | ||
\hat{b} | 0.12408 ^{\{ 1 \}} | 0.13926 ^{\{ 2 \}} | 0.16933 ^{\{ 7 \}} | 0.14867 ^{\{ 4 \}} | 0.16865 ^{\{ 6 \}} | 0.17382 ^{\{ 8 \}} | 0.14025 ^{\{ 3 \}} | 0.15101 ^{\{ 5 \}} | ||
D_{abs} | 0.01478 ^{\{ 1 \}} | 0.01563 ^{\{ 4 \}} | 0.01625 ^{\{ 8 \}} | 0.01541 ^{\{ 3 \}} | 0.01591 ^{\{ 6 \}} | 0.01623 ^{\{ 7 \}} | 0.01493 ^{\{ 2 \}} | 0.01584 ^{\{ 5 \}} | ||
D_{max} | 0.02519 ^{\{ 1 \}} | 0.02694 ^{\{ 4 \}} | 0.02821 ^{\{ 8 \}} | 0.02592 ^{\{ 3 \}} | 0.02751 ^{\{ 6 \}} | 0.02814 ^{\{ 7 \}} | 0.02552 ^{\{ 2 \}} | 0.0274 ^{\{ 5 \}} | ||
ASAE | 0.00695 ^{\{ 4 \}} | 0.00682 ^{\{ 3 \}} | 0.00721 ^{\{ 7 \}} | 0.00697 ^{\{ 5 \}} | 0.00704 ^{\{ 6 \}} | 0.00671 ^{\{ 1 \}} | 0.0068 ^{\{ 2 \}} | 0.00775 ^{\{ 8 \}} | ||
\sum Ranks | 15 ^{\{ 1 \}} | 32 ^{\{ 3 \}} | 78 ^{\{ 7 \}} | 58 ^{\{ 4 \}} | 80 ^{\{ 8 \}} | 75 ^{\{ 6 \}} | 30 ^{\{ 2 \}} | 64 ^{\{ 5 \}} | ||
600 | BIAS | \hat{\tau} | 0.19336 ^{\{ 1 \}} | 0.23349 ^{\{ 2 \}} | 0.28978 ^{\{ 6 \}} | 0.23372 ^{\{ 3 \}} | 0.30777 ^{\{ 7 \}} | 0.30949 ^{\{ 8 \}} | 0.23507 ^{\{ 4 \}} | 0.2662 ^{\{ 5 \}} |
\hat{a} | 0.10937 ^{\{ 1 \}} | 0.12304 ^{\{ 2 \}} | 0.14902 ^{\{ 6 \}} | 0.12842 ^{\{ 4 \}} | 0.15724 ^{\{ 8 \}} | 0.13825 ^{\{ 5 \}} | 0.12621 ^{\{ 3 \}} | 0.15464 ^{\{ 7 \}} | ||
\hat{b} | 0.26801 ^{\{ 1 \}} | 0.30194 ^{\{ 4 \}} | 0.37263 ^{\{ 6 \}} | 0.27088 ^{\{ 2 \}} | 0.38556 ^{\{ 7 \}} | 0.42662 ^{\{ 8 \}} | 0.29441 ^{\{ 3 \}} | 0.30703 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.06126 ^{\{ 1 \}} | 0.10127 ^{\{ 2 \}} | 0.15044 ^{\{ 6 \}} | 0.13095 ^{\{ 4 \}} | 0.16716 ^{\{ 8 \}} | 0.16478 ^{\{ 7 \}} | 0.10547 ^{\{ 3 \}} | 0.13164 ^{\{ 5 \}} | |
\hat{a} | 0.0189 ^{\{ 1 \}} | 0.02821 ^{\{ 2 \}} | 0.04017 ^{\{ 6 \}} | 0.03537 ^{\{ 4 \}} | 0.04408 ^{\{ 8 \}} | 0.03582 ^{\{ 5 \}} | 0.02981 ^{\{ 3 \}} | 0.04188 ^{\{ 7 \}} | ||
\hat{b} | 0.12688 ^{\{ 1 \}} | 0.15549 ^{\{ 2 \}} | 0.25123 ^{\{ 6 \}} | 0.18801 ^{\{ 4 \}} | 0.28486 ^{\{ 7 \}} | 0.29794 ^{\{ 8 \}} | 0.15848 ^{\{ 3 \}} | 0.18934 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.25781 ^{\{ 1 \}} | 0.31131 ^{\{ 2 \}} | 0.38638 ^{\{ 6 \}} | 0.31162 ^{\{ 3 \}} | 0.41036 ^{\{ 7 \}} | 0.41265 ^{\{ 8 \}} | 0.31343 ^{\{ 4 \}} | 0.35494 ^{\{ 5 \}} | |
\hat{a} | 0.05468 ^{\{ 1 \}} | 0.06152 ^{\{ 2 \}} | 0.07451 ^{\{ 6 \}} | 0.06421 ^{\{ 4 \}} | 0.07862 ^{\{ 8 \}} | 0.06912 ^{\{ 5 \}} | 0.06311 ^{\{ 3 \}} | 0.07732 ^{\{ 7 \}} | ||
\hat{b} | 0.08934 ^{\{ 1 \}} | 0.10065 ^{\{ 4 \}} | 0.12421 ^{\{ 6 \}} | 0.09029 ^{\{ 2 \}} | 0.12852 ^{\{ 7 \}} | 0.14221 ^{\{ 8 \}} | 0.09814 ^{\{ 3 \}} | 0.10234 ^{\{ 5 \}} | ||
D_{abs} | 0.01062 ^{\{ 2 \}} | 0.01055 ^{\{ 1 \}} | 0.01157 ^{\{ 7 \}} | 0.01098 ^{\{ 3 \}} | 0.01158 ^{\{ 8 \}} | 0.01113 ^{\{ 5 \}} | 0.01112 ^{\{ 4 \}} | 0.0113 ^{\{ 6 \}} | ||
D_{max} | 0.0181 ^{\{ 1 \}} | 0.01823 ^{\{ 2 \}} | 0.02019 ^{\{ 8 \}} | 0.01873 ^{\{ 3 \}} | 0.0201 ^{\{ 7 \}} | 0.01976 ^{\{ 6 \}} | 0.01902 ^{\{ 4 \}} | 0.01972 ^{\{ 5 \}} | ||
ASAE | 0.00457 ^{\{ 5 \}} | 0.00443 ^{\{ 3 \}} | 0.00471 ^{\{ 6 \}} | 0.00456 ^{\{ 4 \}} | 0.00473 ^{\{ 7 \}} | 0.0044 ^{\{ 2 \}} | 0.00435 ^{\{ 1 \}} | 0.00516 ^{\{ 8 \}} | ||
\sum Ranks | 17 ^{\{ 1 \}} | 28 ^{\{ 2 \}} | 75 ^{\{ 6.5 \}} | 40 ^{\{ 4 \}} | 89 ^{\{ 8 \}} | 75 ^{\{ 6.5 \}} | 38 ^{\{ 3 \}} | 70 ^{\{ 5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.28261 ^{\{ 2 \}} | 0.4647 ^{\{ 5 \}} | 0.48379 ^{\{ 7 \}} | 0.41025 ^{\{ 3 \}} | 0.42315 ^{\{ 4 \}} | 0.51017 ^{\{ 8 \}} | 0.47272 ^{\{ 6 \}} | 0.26393 ^{\{ 1 \}} |
\hat{a} | 0.70395 ^{\{ 1 \}} | 0.78929 ^{\{ 3 \}} | 0.91784 ^{\{ 8 \}} | 0.77174 ^{\{ 2 \}} | 0.90659 ^{\{ 7 \}} | 0.82398 ^{\{ 4 \}} | 0.83444 ^{\{ 5 \}} | 0.84481 ^{\{ 6 \}} | ||
\hat{b} | 0.11892 ^{\{ 2 \}} | 0.13452 ^{\{ 6 \}} | 0.13845 ^{\{ 7 \}} | 0.12898 ^{\{ 4 \}} | 0.11407 ^{\{ 1 \}} | 0.14639 ^{\{ 8 \}} | 0.13051 ^{\{ 5 \}} | 0.12794 ^{\{ 3 \}} | ||
MSE | \hat{\tau} | 0.14259 ^{\{ 1 \}} | 0.54086 ^{\{ 5 \}} | 0.58623 ^{\{ 6 \}} | 0.45928 ^{\{ 3 \}} | 0.52049 ^{\{ 4 \}} | 0.67661 ^{\{ 8 \}} | 0.60141 ^{\{ 7 \}} | 0.18215 ^{\{ 2 \}} | |
\hat{a} | 0.92929 ^{\{ 2 \}} | 0.99608 ^{\{ 3 \}} | 1.35102 ^{\{ 8 \}} | 0.89166 ^{\{ 1 \}} | 1.27505 ^{\{ 7 \}} | 1.08694 ^{\{ 4 \}} | 1.10922 ^{\{ 5 \}} | 1.17679 ^{\{ 6 \}} | ||
\hat{b} | 0.02632 ^{\{ 3 \}} | 0.03369 ^{\{ 6 \}} | 0.03609 ^{\{ 7 \}} | 0.02757 ^{\{ 4 \}} | 0.02515 ^{\{ 2 \}} | 0.03881 ^{\{ 8 \}} | 0.03305 ^{\{ 5 \}} | 0.02449 ^{\{ 1 \}} | ||
MRE | \hat{\tau} | 1.13045 ^{\{ 2 \}} | 1.85879 ^{\{ 5 \}} | 1.93515 ^{\{ 7 \}} | 1.64101 ^{\{ 3 \}} | 1.6926 ^{\{ 4 \}} | 2.04067 ^{\{ 8 \}} | 1.8909 ^{\{ 6 \}} | 1.05573 ^{\{ 1 \}} | |
\hat{a} | 0.23465 ^{\{ 1 \}} | 0.2631 ^{\{ 3 \}} | 0.30595 ^{\{ 8 \}} | 0.25725 ^{\{ 2 \}} | 0.3022 ^{\{ 7 \}} | 0.27466 ^{\{ 4 \}} | 0.27815 ^{\{ 5 \}} | 0.2816 ^{\{ 6 \}} | ||
\hat{b} | 0.47569 ^{\{ 2 \}} | 0.53808 ^{\{ 6 \}} | 0.5538 ^{\{ 7 \}} | 0.5159 ^{\{ 4 \}} | 0.45626 ^{\{ 1 \}} | 0.58556 ^{\{ 8 \}} | 0.52205 ^{\{ 5 \}} | 0.51177 ^{\{ 3 \}} | ||
D_{abs} | 0.04268 ^{\{ 1 \}} | 0.04508 ^{\{ 3 \}} | 0.04693 ^{\{ 8 \}} | 0.04333 ^{\{ 2 \}} | 0.04525 ^{\{ 4 \}} | 0.04586 ^{\{ 6 \}} | 0.0455 ^{\{ 5 \}} | 0.04675 ^{\{ 7 \}} | ||
D_{max} | 0.0706 ^{\{ 1 \}} | 0.07457 ^{\{ 3 \}} | 0.07976 ^{\{ 8 \}} | 0.0712 ^{\{ 2 \}} | 0.07566 ^{\{ 5 \}} | 0.07738 ^{\{ 7 \}} | 0.07522 ^{\{ 4 \}} | 0.07734 ^{\{ 6 \}} | ||
ASAE | 0.02998 ^{\{ 6 \}} | 0.02782 ^{\{ 4 \}} | 0.02947 ^{\{ 5 \}} | 0.02765 ^{\{ 3 \}} | 0.03091 ^{\{ 7 \}} | 0.02581 ^{\{ 1 \}} | 0.02751 ^{\{ 2 \}} | 0.03566 ^{\{ 8 \}} | ||
\sum Ranks | 24 ^{\{ 1 \}} | 52 ^{\{ 4 \}} | 86 ^{\{ 8 \}} | 33 ^{\{ 2 \}} | 53 ^{\{ 5 \}} | 74 ^{\{ 7 \}} | 60 ^{\{ 6 \}} | 50 ^{\{ 3 \}} | ||
70 | BIAS | \hat{\tau} | 0.26535 ^{\{ 2 \}} | 0.35171 ^{\{ 5 \}} | 0.40366 ^{\{ 7 \}} | 0.29134 ^{\{ 3 \}} | 0.35289 ^{\{ 6 \}} | 0.42263 ^{\{ 8 \}} | 0.34207 ^{\{ 4 \}} | 0.24784 ^{\{ 1 \}} |
\hat{a} | 0.47336 ^{\{ 1 \}} | 0.55386 ^{\{ 3 \}} | 0.64736 ^{\{ 7 \}} | 0.55627 ^{\{ 4 \}} | 0.64889 ^{\{ 8 \}} | 0.61187 ^{\{ 6 \}} | 0.54143 ^{\{ 2 \}} | 0.59785 ^{\{ 5 \}} | ||
\hat{b} | 0.09971 ^{\{ 1 \}} | 0.11155 ^{\{ 5 \}} | 0.11542 ^{\{ 6 \}} | 0.10741 ^{\{ 3 \}} | 0.10532 ^{\{ 2 \}} | 0.12794 ^{\{ 8 \}} | 0.10844 ^{\{ 4 \}} | 0.11607 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.12711 ^{\{ 1 \}} | 0.28471 ^{\{ 4 \}} | 0.4177 ^{\{ 7 \}} | 0.22138 ^{\{ 3 \}} | 0.33996 ^{\{ 6 \}} | 0.48266 ^{\{ 8 \}} | 0.30172 ^{\{ 5 \}} | 0.13702 ^{\{ 2 \}} | |
\hat{a} | 0.36529 ^{\{ 1 \}} | 0.48714 ^{\{ 4 \}} | 0.68965 ^{\{ 8 \}} | 0.48295 ^{\{ 2 \}} | 0.66234 ^{\{ 7 \}} | 0.6146 ^{\{ 6 \}} | 0.48359 ^{\{ 3 \}} | 0.58995 ^{\{ 5 \}} | ||
\hat{b} | 0.01575 ^{\{ 1 \}} | 0.02146 ^{\{ 5 \}} | 0.02598 ^{\{ 7 \}} | 0.01737 ^{\{ 2 \}} | 0.02098 ^{\{ 4 \}} | 0.03058 ^{\{ 8 \}} | 0.02191 ^{\{ 6 \}} | 0.01909 ^{\{ 3 \}} | ||
MRE | \hat{\tau} | 1.06141 ^{\{ 2 \}} | 1.40685 ^{\{ 5 \}} | 1.61465 ^{\{ 7 \}} | 1.16535 ^{\{ 3 \}} | 1.41156 ^{\{ 6 \}} | 1.6905 ^{\{ 8 \}} | 1.3683 ^{\{ 4 \}} | 0.99135 ^{\{ 1 \}} | |
\hat{a} | 0.15779 ^{\{ 1 \}} | 0.18462 ^{\{ 3 \}} | 0.21579 ^{\{ 7 \}} | 0.18542 ^{\{ 4 \}} | 0.2163 ^{\{ 8 \}} | 0.20396 ^{\{ 6 \}} | 0.18048 ^{\{ 2 \}} | 0.19928 ^{\{ 5 \}} | ||
\hat{b} | 0.39883 ^{\{ 1 \}} | 0.44619 ^{\{ 5 \}} | 0.46169 ^{\{ 6 \}} | 0.42965 ^{\{ 3 \}} | 0.42127 ^{\{ 2 \}} | 0.51178 ^{\{ 8 \}} | 0.43376 ^{\{ 4 \}} | 0.46429 ^{\{ 7 \}} | ||
D_{abs} | 0.02997 ^{\{ 1 \}} | 0.03175 ^{\{ 4 \}} | 0.03324 ^{\{ 8 \}} | 0.03081 ^{\{ 2 \}} | 0.03247 ^{\{ 5 \}} | 0.0327 ^{\{ 7 \}} | 0.03127 ^{\{ 3 \}} | 0.03251 ^{\{ 6 \}} | ||
D_{max} | 0.0499 ^{\{ 1 \}} | 0.05326 ^{\{ 4 \}} | 0.05658 ^{\{ 8 \}} | 0.05081 ^{\{ 2 \}} | 0.05486 ^{\{ 6 \}} | 0.05572 ^{\{ 7 \}} | 0.05218 ^{\{ 3 \}} | 0.05438 ^{\{ 5 \}} | ||
ASAE | 0.01808 ^{\{ 5 \}} | 0.0179 ^{\{ 4 \}} | 0.01884 ^{\{ 6 \}} | 0.01751 ^{\{ 3 \}} | 0.0192 ^{\{ 7 \}} | 0.01618 ^{\{ 1 \}} | 0.01733 ^{\{ 2 \}} | 0.02197 ^{\{ 8 \}} | ||
\sum Ranks | 18 ^{\{ 1 \}} | 51 ^{\{ 4 \}} | 84 ^{\{ 8 \}} | 34 ^{\{ 2 \}} | 67 ^{\{ 6 \}} | 81 ^{\{ 7 \}} | 42 ^{\{ 3 \}} | 55 ^{\{ 5 \}} | ||
150 | BIAS | \hat{\tau} | 0.20572 ^{\{ 2 \}} | 0.23878 ^{\{ 4 \}} | 0.31697 ^{\{ 8 \}} | 0.216 ^{\{ 3 \}} | 0.29435 ^{\{ 7 \}} | 0.28901 ^{\{ 6 \}} | 0.25867 ^{\{ 5 \}} | 0.20305 ^{\{ 1 \}} |
\hat{a} | 0.30956 ^{\{ 1 \}} | 0.34668 ^{\{ 2 \}} | 0.42934 ^{\{ 7 \}} | 0.34894 ^{\{ 3 \}} | 0.4327 ^{\{ 8 \}} | 0.39302 ^{\{ 5 \}} | 0.36418 ^{\{ 4 \}} | 0.41109 ^{\{ 6 \}} | ||
\hat{b} | 0.07839 ^{\{ 1 \}} | 0.08716 ^{\{ 2 \}} | 0.09845 ^{\{ 8 \}} | 0.08897 ^{\{ 3 \}} | 0.09366 ^{\{ 5 \}} | 0.09844 ^{\{ 7 \}} | 0.09049 ^{\{ 4 \}} | 0.09505 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.0763 ^{\{ 2 \}} | 0.11584 ^{\{ 4 \}} | 0.24604 ^{\{ 8 \}} | 0.08934 ^{\{ 3 \}} | 0.21433 ^{\{ 6 \}} | 0.22492 ^{\{ 7 \}} | 0.14363 ^{\{ 5 \}} | 0.07388 ^{\{ 1 \}} | |
\hat{a} | 0.15388 ^{\{ 1 \}} | 0.18414 ^{\{ 2 \}} | 0.29541 ^{\{ 8 \}} | 0.19105 ^{\{ 3 \}} | 0.29359 ^{\{ 7 \}} | 0.25171 ^{\{ 5 \}} | 0.20937 ^{\{ 4 \}} | 0.26876 ^{\{ 6 \}} | ||
\hat{b} | 0.00994 ^{\{ 1 \}} | 0.01226 ^{\{ 3 \}} | 0.01875 ^{\{ 7 \}} | 0.01132 ^{\{ 2 \}} | 0.01714 ^{\{ 6 \}} | 0.01897 ^{\{ 8 \}} | 0.014 ^{\{ 5 \}} | 0.01332 ^{\{ 4 \}} | ||
MRE | \hat{\tau} | 0.82287 ^{\{ 2 \}} | 0.95511 ^{\{ 4 \}} | 1.26786 ^{\{ 8 \}} | 0.86398 ^{\{ 3 \}} | 1.17741 ^{\{ 7 \}} | 1.15604 ^{\{ 6 \}} | 1.03466 ^{\{ 5 \}} | 0.81219 ^{\{ 1 \}} | |
\hat{a} | 0.10319 ^{\{ 1 \}} | 0.11556 ^{\{ 2 \}} | 0.14311 ^{\{ 7 \}} | 0.11631 ^{\{ 3 \}} | 0.14423 ^{\{ 8 \}} | 0.13101 ^{\{ 5 \}} | 0.12139 ^{\{ 4 \}} | 0.13703 ^{\{ 6 \}} | ||
\hat{b} | 0.31354 ^{\{ 1 \}} | 0.34864 ^{\{ 2 \}} | 0.39378 ^{\{ 8 \}} | 0.35589 ^{\{ 3 \}} | 0.37463 ^{\{ 5 \}} | 0.39376 ^{\{ 7 \}} | 0.36195 ^{\{ 4 \}} | 0.38019 ^{\{ 6 \}} | ||
D_{abs} | 0.02072 ^{\{ 1 \}} | 0.02107 ^{\{ 2 \}} | 0.0225 ^{\{ 7 \}} | 0.02189 ^{\{ 4 \}} | 0.02263 ^{\{ 8 \}} | 0.02228 ^{\{ 6 \}} | 0.02197 ^{\{ 5 \}} | 0.02181 ^{\{ 3 \}} | ||
D_{max} | 0.03401 ^{\{ 1 \}} | 0.03512 ^{\{ 2 \}} | 0.03847 ^{\{ 8 \}} | 0.03585 ^{\{ 3 \}} | 0.03844 ^{\{ 7 \}} | 0.038 ^{\{ 6 \}} | 0.0367 ^{\{ 4 \}} | 0.03682 ^{\{ 5 \}} | ||
ASAE | 0.01108 ^{\{ 5 \}} | 0.0106 ^{\{ 3 \}} | 0.01135 ^{\{ 6 \}} | 0.01106 ^{\{ 4 \}} | 0.01179 ^{\{ 7 \}} | 0.00992 ^{\{ 1 \}} | 0.01047 ^{\{ 2 \}} | 0.01254 ^{\{ 8 \}} | ||
\sum Ranks | 19 ^{\{ 1 \}} | 32 ^{\{ 2 \}} | 90 ^{\{ 8 \}} | 37 ^{\{ 3 \}} | 81 ^{\{ 7 \}} | 69 ^{\{ 6 \}} | 51 ^{\{ 4 \}} | 53 ^{\{ 5 \}} | ||
300 | BIAS | \hat{\tau} | 0.16066 ^{\{ 1 \}} | 0.18134 ^{\{ 3 \}} | 0.23938 ^{\{ 8 \}} | 0.17022 ^{\{ 2 \}} | 0.22051 ^{\{ 6 \}} | 0.23877 ^{\{ 7 \}} | 0.1881 ^{\{ 4 \}} | 0.18849 ^{\{ 5 \}} |
\hat{a} | 0.22654 ^{\{ 2 \}} | 0.24264 ^{\{ 3 \}} | 0.2944 ^{\{ 7 \}} | 0.22178 ^{\{ 1 \}} | 0.28817 ^{\{ 6 \}} | 0.26568 ^{\{ 5 \}} | 0.25777 ^{\{ 4 \}} | 0.30304 ^{\{ 8 \}} | ||
\hat{b} | 0.06214 ^{\{ 1 \}} | 0.07012 ^{\{ 2 \}} | 0.08156 ^{\{ 6 \}} | 0.07737 ^{\{ 4 \}} | 0.07758 ^{\{ 5 \}} | 0.08871 ^{\{ 8 \}} | 0.07058 ^{\{ 3 \}} | 0.08471 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.04415 ^{\{ 2 \}} | 0.05978 ^{\{ 4 \}} | 0.11788 ^{\{ 7 \}} | 0.04234 ^{\{ 1 \}} | 0.10883 ^{\{ 6 \}} | 0.13383 ^{\{ 8 \}} | 0.06789 ^{\{ 5 \}} | 0.05456 ^{\{ 3 \}} | |
\hat{a} | 0.08313 ^{\{ 2 \}} | 0.09201 ^{\{ 3 \}} | 0.14205 ^{\{ 8 \}} | 0.07858 ^{\{ 1 \}} | 0.13512 ^{\{ 6 \}} | 0.11565 ^{\{ 5 \}} | 0.10225 ^{\{ 4 \}} | 0.13876 ^{\{ 7 \}} | ||
\hat{b} | 0.00617 ^{\{ 1 \}} | 0.00773 ^{\{ 2 \}} | 0.01181 ^{\{ 7 \}} | 0.00837 ^{\{ 4 \}} | 0.01107 ^{\{ 6 \}} | 0.015 ^{\{ 8 \}} | 0.00814 ^{\{ 3 \}} | 0.01064 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.64263 ^{\{ 1 \}} | 0.72534 ^{\{ 3 \}} | 0.95752 ^{\{ 8 \}} | 0.68088 ^{\{ 2 \}} | 0.88205 ^{\{ 6 \}} | 0.95509 ^{\{ 7 \}} | 0.75242 ^{\{ 4 \}} | 0.75394 ^{\{ 5 \}} | |
\hat{a} | 0.07551 ^{\{ 2 \}} | 0.08088 ^{\{ 3 \}} | 0.09813 ^{\{ 7 \}} | 0.07393 ^{\{ 1 \}} | 0.09606 ^{\{ 6 \}} | 0.08856 ^{\{ 5 \}} | 0.08592 ^{\{ 4 \}} | 0.10101 ^{\{ 8 \}} | ||
\hat{b} | 0.24856 ^{\{ 1 \}} | 0.28049 ^{\{ 2 \}} | 0.32624 ^{\{ 6 \}} | 0.30949 ^{\{ 4 \}} | 0.31033 ^{\{ 5 \}} | 0.35482 ^{\{ 8 \}} | 0.2823 ^{\{ 3 \}} | 0.33885 ^{\{ 7 \}} | ||
D_{abs} | 0.01473 ^{\{ 2 \}} | 0.01494 ^{\{ 3 \}} | 0.01581 ^{\{ 6 \}} | 0.01432 ^{\{ 1 \}} | 0.01598 ^{\{ 7 \}} | 0.01578 ^{\{ 5 \}} | 0.01551 ^{\{ 4 \}} | 0.01624 ^{\{ 8 \}} | ||
D_{max} | 0.02441 ^{\{ 2 \}} | 0.02498 ^{\{ 3 \}} | 0.02726 ^{\{ 8 \}} | 0.02345 ^{\{ 1 \}} | 0.027 ^{\{ 5 \}} | 0.02708 ^{\{ 6 \}} | 0.02606 ^{\{ 4 \}} | 0.02724 ^{\{ 7 \}} | ||
ASAE | 0.00706 ^{\{ 5 \}} | 0.00686 ^{\{ 3 \}} | 0.00722 ^{\{ 6 \}} | 0.00694 ^{\{ 4 \}} | 0.00749 ^{\{ 7 \}} | 0.00632 ^{\{ 1 \}} | 0.00684 ^{\{ 2 \}} | 0.0084 ^{\{ 8 \}} | ||
\sum Ranks | 22 ^{\{ 1 \}} | 34 ^{\{ 3 \}} | 84 ^{\{ 8 \}} | 26 ^{\{ 2 \}} | 71 ^{\{ 5 \}} | 73 ^{\{ 6 \}} | 44 ^{\{ 4 \}} | 78 ^{\{ 7 \}} | ||
600 | BIAS | \hat{\tau} | 0.13045 ^{\{ 1 \}} | 0.14467 ^{\{ 4 \}} | 0.1922 ^{\{ 7 \}} | 0.13076 ^{\{ 2 \}} | 0.18277 ^{\{ 6 \}} | 0.19589 ^{\{ 8 \}} | 0.15452 ^{\{ 5 \}} | 0.14197 ^{\{ 3 \}} |
\hat{a} | 0.1464 ^{\{ 1 \}} | 0.17091 ^{\{ 3 \}} | 0.19656 ^{\{ 6 \}} | 0.15933 ^{\{ 2 \}} | 0.20011 ^{\{ 7 \}} | 0.18356 ^{\{ 5 \}} | 0.17299 ^{\{ 4 \}} | 0.21255 ^{\{ 8 \}} | ||
\hat{b} | 0.05408 ^{\{ 1 \}} | 0.05771 ^{\{ 2 \}} | 0.0699 ^{\{ 7 \}} | 0.06108 ^{\{ 4 \}} | 0.06848 ^{\{ 6 \}} | 0.07427 ^{\{ 8 \}} | 0.06095 ^{\{ 3 \}} | 0.06422 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.02716 ^{\{ 2 \}} | 0.03419 ^{\{ 4 \}} | 0.06868 ^{\{ 7 \}} | 0.02593 ^{\{ 1 \}} | 0.0615 ^{\{ 6 \}} | 0.08038 ^{\{ 8 \}} | 0.03947 ^{\{ 5 \}} | 0.03024 ^{\{ 3 \}} | |
\hat{a} | 0.03481 ^{\{ 1 \}} | 0.04524 ^{\{ 3 \}} | 0.06127 ^{\{ 6 \}} | 0.04288 ^{\{ 2 \}} | 0.06229 ^{\{ 7 \}} | 0.05226 ^{\{ 5 \}} | 0.04678 ^{\{ 4 \}} | 0.06879 ^{\{ 8 \}} | ||
\hat{b} | 0.00463 ^{\{ 1 \}} | 0.00511 ^{\{ 2 \}} | 0.00825 ^{\{ 7 \}} | 0.00581 ^{\{ 4 \}} | 0.00774 ^{\{ 6 \}} | 0.01049 ^{\{ 8 \}} | 0.0057 ^{\{ 3 \}} | 0.00661 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.52182 ^{\{ 1 \}} | 0.57868 ^{\{ 4 \}} | 0.76881 ^{\{ 7 \}} | 0.52302 ^{\{ 2 \}} | 0.73109 ^{\{ 6 \}} | 0.78357 ^{\{ 8 \}} | 0.61806 ^{\{ 5 \}} | 0.56786 ^{\{ 3 \}} | |
\hat{a} | 0.0488 ^{\{ 1 \}} | 0.05697 ^{\{ 3 \}} | 0.06552 ^{\{ 6 \}} | 0.05311 ^{\{ 2 \}} | 0.0667 ^{\{ 7 \}} | 0.06119 ^{\{ 5 \}} | 0.05766 ^{\{ 4 \}} | 0.07085 ^{\{ 8 \}} | ||
\hat{b} | 0.21631 ^{\{ 1 \}} | 0.23082 ^{\{ 2 \}} | 0.27958 ^{\{ 7 \}} | 0.24431 ^{\{ 4 \}} | 0.27392 ^{\{ 6 \}} | 0.29709 ^{\{ 8 \}} | 0.24381 ^{\{ 3 \}} | 0.25689 ^{\{ 5 \}} | ||
D_{abs} | 0.00998 ^{\{ 1 \}} | 0.01059 ^{\{ 3 \}} | 0.01162 ^{\{ 8 \}} | 0.01045 ^{\{ 2 \}} | 0.01138 ^{\{ 7 \}} | 0.01125 ^{\{ 6 \}} | 0.01098 ^{\{ 4 \}} | 0.01118 ^{\{ 5 \}} | ||
D_{max} | 0.01645 ^{\{ 1 \}} | 0.01762 ^{\{ 3 \}} | 0.01993 ^{\{ 8 \}} | 0.01726 ^{\{ 2 \}} | 0.01949 ^{\{ 7 \}} | 0.01935 ^{\{ 6 \}} | 0.01833 ^{\{ 4 \}} | 0.01893 ^{\{ 5 \}} | ||
ASAE | 0.00442 ^{\{ 3 \}} | 0.00443 ^{\{ 4 \}} | 0.00475 ^{\{ 7 \}} | 0.00444 ^{\{ 5 \}} | 0.00472 ^{\{ 6 \}} | 0.00408 ^{\{ 1 \}} | 0.00436 ^{\{ 2 \}} | 0.00545 ^{\{ 8 \}} | ||
\sum Ranks | 15 ^{\{ 1 \}} | 37 ^{\{ 3 \}} | 83 ^{\{ 8 \}} | 32 ^{\{ 2 \}} | 77 ^{\{ 7 \}} | 76 ^{\{ 6 \}} | 46 ^{\{ 4 \}} | 66 ^{\{ 5 \}} |
Parameter | n | MLE | ADE | CVME | MPSE | OLSE | RTADE | WLSE | LTADE |
\tau=0.5 , a=0.25 , b=0.75 | 35 | 4 | 2 | 7 | 1 | 6 | 5 | 3 | 8 |
70 | 5.5 | 2 | 7 | 1 | 5.5 | 4 | 3 | 8 | |
150 | 5 | 3 | 6 | 1 | 7 | 4 | 2 | 8 | |
300 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
600 | 4 | 2 | 6 | 1 | 7.5 | 5 | 3 | 7.5 | |
\tau=1.5 , a=0.75 , b=0.5 | 35 | 2.5 | 5 | 7 | 1 | 6 | 4 | 2.5 | 8 |
70 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
150 | 5 | 2 | 6 | 1 | 7 | 4 | 3 | 8 | |
300 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
600 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
\tau=2 , a=0.5 , b=1.5 | 35 | 1 | 3.5 | 5 | 3.5 | 6 | 7 | 2 | 8 |
70 | 1 | 2 | 5 | 4 | 7 | 8 | 3 | 6 | |
150 | 1 | 2 | 7 | 4.5 | 6 | 8 | 3 | 4.5 | |
300 | 1 | 4 | 5 | 3 | 8 | 7 | 2 | 6 | |
600 | 1 | 4 | 8 | 2.5 | 6 | 7 | 2.5 | 5 | |
\tau=2 , a=1.5 , b=2 | 35 | 2 | 3 | 6 | 4 | 7 | 1 | 5 | 8 |
70 | 1 | 2 | 7 | 5 | 6 | 4 | 3 | 8 | |
150 | 1 | 2 | 6 | 4 | 8 | 5 | 3 | 7 | |
300 | 1 | 4 | 6 | 3 | 7 | 5 | 2 | 8 | |
600 | 1 | 3 | 6 | 2 | 7.5 | 5 | 4 | 7.5 | |
\tau=0.75 , a=2 , b=3 | 35 | 1 | 2 | 3 | 6 | 4 | 7 | 5 | 8 |
70 | 1 | 2 | 4 | 6 | 7 | 5 | 3 | 8 | |
150 | 1 | 2 | 5 | 6 | 7 | 4 | 3 | 8 | |
300 | 1 | 3 | 7 | 4 | 8 | 6 | 2 | 5 | |
600 | 1 | 2 | 6.5 | 4 | 8 | 6.5 | 3 | 5 | |
\tau=0.25 , a=3 , b=0.25 | 35 | 1 | 4 | 8 | 2 | 5 | 7 | 6 | 3 |
70 | 1 | 4 | 8 | 2 | 6 | 7 | 3 | 5 | |
150 | 1 | 2 | 8 | 3 | 7 | 6 | 4 | 5 | |
300 | 1 | 3 | 8 | 2 | 5 | 6 | 4 | 7 | |
600 | 1 | 3 | 8 | 2 | 7 | 6 | 4 | 5 | |
\sum Ranks | 67.0 | 80.5 | 193.5 | 82.5 | 195.5 | 159.5 | 95.0 | 206.5 | |
Overall Rank | 1 | 2 | 6 | 3 | 7 | 5 | 4 | 8 |
MLE | MPS | |||||||||
n | Lower | Upper | LACI | CP | Lower | Upper | LACI | CP | ||
a=0.25 | 35 | a | 0.1424 | 0.3840 | 0.2416 | 95.2% | 0.1240 | 0.3716 | 0.2475 | 97.4% |
b | 0.3074 | 1.3956 | 1.0881 | 96.2% | 0.1761 | 1.3511 | 1.1751 | 98.6% | ||
\tau | -0.1474 | 1.3940 | 1.5415 | 94.6% | -0.2409 | 1.3937 | 1.6346 | 95.6% | ||
70 | a | 0.1680 | 0.3336 | 0.1655 | 95.8% | 0.1571 | 0.3300 | 0.1730 | 96.0% | |
b | 0.3442 | 1.2438 | 0.8996 | 94.6% | 0.2876 | 1.1783 | 0.8907 | 96.8% | ||
\tau | -0.0981 | 1.3002 | 1.3983 | 94.2% | -0.0982 | 1.1923 | 1.2906 | 96.8% | ||
b=0.75 | 150 | a | 0.1940 | 0.3084 | 0.1144 | 94.2% | 0.1890 | 0.3050 | 0.1160 | 96.4% |
b | 0.4466 | 1.0598 | 0.6132 | 93.2% | 0.4220 | 1.0220 | 0.6001 | 96.4% | ||
\tau | 0.0900 | 0.9525 | 0.8625 | 94.0% | 0.1039 | 0.8881 | 0.7841 | 95.0% | ||
\tau=0.5 | 300 | a | 0.2082 | 0.2896 | 0.0814 | 95.2% | 0.2092 | 0.2852 | 0.0761 | 96.4% |
b | 0.4659 | 1.0316 | 0.5657 | 94.8% | 0.5239 | 0.9391 | 0.4153 | 96.2% | ||
\tau | 0.0907 | 0.9503 | 0.8596 | 93.6% | 0.2218 | 0.7761 | 0.5543 | 95.8% | ||
600 | a | 0.2172 | 0.2825 | 0.0654 | 94.2% | 0.2162 | 0.2805 | 0.0643 | 95.4% | |
b | 0.5764 | 0.9262 | 0.3498 | 93.6% | 0.5853 | 0.8925 | 0.3073 | 95.2% | ||
\tau | 0.2346 | 0.7904 | 0.5559 | 94.6% | 0.2858 | 0.7160 | 0.4302 | 96.0% | ||
a=0.75 | 35 | a | 0.3749 | 1.7629 | 1.3880 | 96.8% | 0.2215 | 1.6978 | 1.4762 | 98.2% |
b | 0.1733 | 0.7843 | 0.6110 | 91.0% | 0.1273 | 0.7737 | 0.6464 | 92.8% | ||
\tau | 0.0167 | 2.3436 | 2.3269 | 99.8% | -0.1434 | 2.5520 | 2.6954 | 100.0% | ||
70 | a | 0.5547 | 1.4283 | 0.8736 | 95.2% | 0.4283 | 1.4450 | 1.0167 | 97.8% | |
b | 0.1933 | 0.7132 | 0.5198 | 92.0% | 0.1226 | 0.7452 | 0.6226 | 93.8% | ||
\tau | 0.1180 | 2.1860 | 2.0680 | 94.2% | -0.1264 | 2.4289 | 2.5553 | 100.0% | ||
b=0.5 | 150 | a | 0.6664 | 1.3496 | 0.6831 | 94.8% | 0.5957 | 1.3420 | 0.7462 | 97.8% |
b | 0.2169 | 0.6506 | 0.4337 | 93.0% | 0.2726 | 0.6031 | 0.3306 | 93.2% | ||
\tau | 0.1519 | 1.9431 | 1.7911 | 94.4% | 0.3050 | 1.8915 | 1.5865 | 93.0% | ||
\tau=1.5 | 300 | a | 0.7354 | 1.2244 | 0.4890 | 95.2% | 0.6828 | 1.2239 | 0.5411 | 96.6% |
b | 0.3296 | 0.5786 | 0.2489 | 95.4% | 0.3910 | 0.5441 | 0.1531 | 89.8% | ||
\tau | 0.5329 | 1.7045 | 1.1716 | 95.6% | 0.7327 | 1.6352 | 0.9025 | 90.8% | ||
600 | a | 0.8075 | 1.1805 | 0.3730 | 95.2% | 0.7656 | 1.1558 | 0.3902 | 98.6% | |
b | 0.3372 | 0.5607 | 0.2236 | 97.4% | 0.4507 | 0.4944 | 0.0438 | 49.6% | ||
\tau | 0.5921 | 1.5764 | 0.9843 | 96.6% | 0.9952 | 1.3684 | 0.3732 | 65.0% | ||
a=0.5 | 35 | a | 0.0841 | 3.0983 | 3.0142 | 99.4% | 0.5964 | 2.4213 | 1.8249 | 97.0% |
b | 0.7792 | 3.3199 | 2.5407 | 96.4% | 0.9277 | 2.9819 | 2.0541 | 96.2% | ||
\tau | -4.1397 | 11.2084 | 15.3481 | 96.8% | 0.5888 | 5.0887 | 4.5000 | 96.8% | ||
70 | a | 0.3513 | 2.9435 | 2.5922 | 98.6% | 0.7959 | 2.3551 | 1.5592 | 97.6% | |
b | 1.1282 | 2.8535 | 1.7253 | 95.8% | 1.2526 | 2.6453 | 1.3927 | 95.4% | ||
\tau | -2.3903 | 7.7478 | 10.1381 | 94.6% | 0.7896 | 3.9179 | 3.1283 | 96.6% | ||
b=1.5 | 150 | a | 0.4155 | 3.0630 | 2.6474 | 95.6% | 0.8704 | 2.4470 | 1.5766 | 98.4% |
b | 1.2344 | 2.6437 | 1.4093 | 95.8% | 1.4967 | 2.3945 | 0.8979 | 95.0% | ||
\tau | -1.8044 | 6.2974 | 8.1017 | 93.8% | 0.7386 | 3.4610 | 2.7224 | 99.2% | ||
\tau=2 | 300 | a | 0.7300 | 2.9444 | 2.2144 | 89.4% | 0.9837 | 2.4903 | 1.5066 | 96.4% |
b | 1.4469 | 2.5415 | 1.0947 | 93.2% | 1.6720 | 2.3314 | 0.6594 | 95.2% | ||
\tau | -0.7896 | 4.4351 | 5.2247 | 92.8% | 0.8241 | 2.8969 | 2.0728 | 96.8% | ||
600 | a | 0.8443 | 3.0427 | 2.1984 | 88.0% | 1.1938 | 2.4879 | 1.2942 | 91.4% | |
b | 1.4851 | 2.4993 | 1.0142 | 91.4% | 1.8123 | 2.2369 | 0.4246 | 89.2% | ||
\tau | -0.9598 | 4.2972 | 5.2570 | 91.6% | 0.8832 | 2.5574 | 1.6742 | 90.4% |
MLE | MPS | |||||||||
n | Lower | Upper | LACI | CP | Lower | Upper | LACI | CP | ||
a=1.5 | 35 | a | 0.0841 | 3.0983 | 3.0142 | 99.4% | 0.5964 | 2.4213 | 1.8249 | 97.0% |
b | 0.7792 | 3.3199 | 2.5407 | 96.4% | 0.9277 | 2.9819 | 2.0541 | 96.2% | ||
\tau | -4.1397 | 11.2084 | 15.3481 | 96.8% | 0.5888 | 5.0887 | 4.5000 | 96.8% | ||
70 | a | 0.3513 | 2.9435 | 2.5922 | 98.6% | 0.7959 | 2.3551 | 1.5592 | 97.6% | |
b | 1.1282 | 2.8535 | 1.7253 | 95.8% | 1.2526 | 2.6453 | 1.3927 | 95.4% | ||
\tau | -2.3903 | 7.7478 | 10.1381 | 94.6% | 0.7896 | 3.9179 | 3.1283 | 96.6% | ||
b=2 | 150 | a | 0.4155 | 3.0630 | 2.6474 | 95.6% | 0.8704 | 2.4470 | 1.5766 | 98.4% |
b | 1.2344 | 2.6437 | 1.4093 | 95.8% | 1.4967 | 2.3945 | 0.8979 | 95.0% | ||
\tau | -1.8044 | 6.2974 | 8.1017 | 93.8% | 0.7386 | 3.4610 | 2.7224 | 99.2% | ||
\tau=2 | 300 | a | 0.7300 | 2.9444 | 2.2144 | 89.4% | 0.9837 | 2.4903 | 1.5066 | 96.4% |
b | 1.4469 | 2.5415 | 1.0947 | 93.2% | 1.6720 | 2.3314 | 0.6594 | 95.2% | ||
\tau | -0.7896 | 4.4351 | 5.2247 | 92.8% | 0.8241 | 2.8969 | 2.0728 | 96.8% | ||
600 | a | 0.8443 | 3.0427 | 2.1984 | 88.0% | 1.1938 | 2.4879 | 1.2942 | 91.4% | |
b | 1.4851 | 2.4993 | 1.0142 | 91.4% | 1.8123 | 2.2369 | 0.4246 | 89.2% | ||
\tau | -0.9598 | 4.2972 | 5.2570 | 91.6% | 0.8832 | 2.5574 | 1.6742 | 90.4% | ||
a=2 | 35 | a | 1.4516 | 3.0180 | 1.5664 | 95.2% | 1.2272 | 3.0073 | 1.7800 | 98.6% |
b | 1.2482 | 5.2132 | 3.9651 | 95.8% | 0.8513 | 4.9181 | 4.0668 | 99.2% | ||
\tau | -0.2282 | 1.6153 | 1.8435 | 95.6% | -0.4111 | 1.7960 | 2.2071 | 94.0% | ||
70 | a | 1.6144 | 2.7305 | 1.1160 | 95.0% | 1.4843 | 2.7390 | 1.2547 | 97.6% | |
b | 1.4910 | 4.6090 | 3.1180 | 96.2% | 1.1561 | 4.5050 | 3.3489 | 99.0% | ||
\tau | -0.0943 | 1.4316 | 1.5259 | 95.2% | -0.2493 | 1.5585 | 1.8078 | 94.8% | ||
b=3 | 150 | a | 1.7896 | 2.5391 | 0.7496 | 95.4% | 1.7365 | 2.5418 | 0.8053 | 96.2% |
b | 1.7926 | 4.1551 | 2.3625 | 96.2% | 1.6447 | 4.0422 | 2.3974 | 96.8% | ||
\tau | 0.0645 | 1.1806 | 1.1161 | 96.6% | 0.0097 | 1.1917 | 1.1821 | 97.0% | ||
\tau=0.75 | 300 | a | 1.9039 | 2.4287 | 0.5249 | 95.8% | 1.8799 | 2.4292 | 0.5493 | 97.4% |
b | 2.1524 | 3.7909 | 1.6385 | 94.2% | 1.9889 | 3.7889 | 1.8000 | 97.2% | ||
\tau | 0.1813 | 1.0293 | 0.8480 | 95.4% | 0.1349 | 1.0399 | 0.9050 | 97.0% | ||
600 | a | 1.9724 | 2.3730 | 0.4006 | 95.6% | 1.9612 | 2.3715 | 0.4103 | 96.0% | |
b | 2.3438 | 3.5541 | 1.2102 | 94.2% | 2.3352 | 3.4916 | 1.1564 | 95.4% | ||
\tau | 0.2739 | 0.9082 | 0.6344 | 95.0% | 0.2774 | 0.8905 | 0.6131 | 96.2% | ||
a=3 | 35 | a | 1.9729 | 4.6161 | 2.6432 | 95.8% | 1.8782 | 4.3354 | 2.4572 | 97.0% |
b | -0.0293 | 0.7353 | 0.7646 | 97.0% | -0.0398 | 0.6755 | 0.7154 | 98.0% | ||
\tau | -0.4116 | 1.4397 | 1.8512 | 94.0% | -0.4786 | 1.4140 | 1.8926 | 95.4% | ||
70 | a | 2.4063 | 3.9743 | 1.5680 | 94.2% | 2.2750 | 3.9640 | 1.6890 | 94.2% | |
b | -0.0284 | 0.5486 | 0.5770 | 94.8% | -0.0534 | 0.5696 | 0.6230 | 97.4% | ||
\tau | -0.3834 | 1.0028 | 1.3862 | 93.4% | -0.4462 | 1.0793 | 1.5255 | 93.6% | ||
b=0.25 | 150 | a | 2.6660 | 3.7299 | 1.0639 | 93.4% | 2.6852 | 3.6862 | 1.0010 | 94.4% |
b | 0.0336 | 0.4138 | 0.3803 | 94.2% | -0.0209 | 0.5050 | 0.5260 | 91.6% | ||
\tau | -0.2258 | 0.6358 | 0.8616 | 93.8% | -0.3280 | 0.8359 | 1.1640 | 88.4% | ||
\tau=0.25 | 300 | a | 2.8201 | 3.5448 | 0.7248 | 94.0% | 2.9279 | 3.5496 | 0.6216 | 93.8% |
b | 0.0642 | 0.3265 | 0.2624 | 92.6% | 0.2438 | 0.3026 | 0.0587 | 98.2% | ||
\tau | -0.1524 | 0.4342 | 0.5866 | 92.8% | 0.3140 | 0.3670 | 0.0530 | 97.3% | ||
600 | a | 2.9387 | 3.4003 | 0.4616 | 94.8% | 2.9697 | 3.1695 | 0.1998 | 98.1% | |
b | 0.1070 | 0.2593 | 0.1523 | 95.4% | 0.3550 | 0.1831 | -0.1719 | 96.9% | ||
\tau | -0.0465 | 0.2697 | 0.3162 | 95.4% | 0.4718 | 0.1116 | -0.3601 | 97.5% |
\alpha | \beta | \tau | \theta | \lambda | ||
EGAPE | Estimates | 1.8897 | 29.0863 | 1.7697 | ||
SE | 0.5609 | 21.0642 | 0.8618 | |||
EL | Estimates | 77.2175 | 12.0930 | 3.6927 | ||
SE | 116.8405 | 17.6372 | 7.7470 | |||
KW | Estimates | 30.4293 | 0.3994 | 1.7768 | 1.4045 | |
SE | 35.9424 | 0.4654 | 0.8620 | 0.6895 | ||
EW | Estimates | 2.757653 | 13.05099 | 11.26919 | ||
SE | 0.425237 | 16.18943 | 25.32466 | |||
MOAPEW | Estimates | 0.0048 | 0.4068 | 0.1943 | 0.4860 | 0.0038 |
SE | 0.0070 | 0.1936 | 0.0756 | 0.2005 | 0.0011 | |
KMGE | Estimates | 32.4295 | 2.0003 | |||
SE | 20.6526 | 0.4056 | ||||
EHLINH | Estimates | 6.7046 | 28.4439 | 0.0674 | ||
SE | 2.0967 | 65.6860 | 0.1601 | |||
ExEx | Estimates | 133.3134 | 0.0028 | |||
SE | 78.3222 | 0.0015 | ||||
OWITL | Estimates | 2.9015 | 79.0976 | 0.3261 | ||
SE | 0.4311 | 115.5561 | 0.1408 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.1163 | 0.9495 | 37.8850 | 40.8722 | 39.3850 | 38.4682 | 0.0427 | 0.2510 |
EL | 0.1211 | 0.9308 | 37.5124 | 40.4996 | 39.0124 | 38.0955 | 0.0391 | 0.2260 |
KW | 0.1392 | 0.8329 | 39.9867 | 43.9696 | 42.6534 | 40.7642 | 0.0498 | 0.2913 |
MOAPEW | 0.1853 | 0.4984 | 47.2771 | 50.2643 | 48.7771 | 47.8603 | 0.1866 | 1.0986 |
EW | 0.1853 | 0.4984 | 47.2771 | 50.2643 | 48.7771 | 47.8603 | 0.1866 | 1.0986 |
KMGE | 0.1206 | 0.9330 | 35.9024 | 37.8938 | 36.6082 | 36.2911 | 0.0438 | 0.2576 |
EHLINH | 0.1294 | 0.8912 | 37.9113 | 40.8985 | 39.4113 | 38.4944 | 0.0457 | 0.2641 |
ExEx | 0.4041 | 0.0029 | 59.5574 | 61.5489 | 60.2633 | 59.9461 | 0.1761 | 1.0400 |
OWITL | 0.1783 | 0.5481 | 44.5537 | 47.5409 | 46.0537 | 45.1369 | 0.1441 | 0.8519 |
\alpha | \beta | \tau | \theta | \lambda | ||
EGAPE | Estimates | 0.0886 | 1.4401 | 0.6050 | ||
SE | 0.0157 | 0.5555 | 0.6115 | |||
TLMW | Estimates | 0.0106 | 0.0101 | 1.2689 | 1.2680 | |
SE | 0.0740 | 0.0276 | 0.2493 | 1.0647 | ||
TIIEHLPL | Estimates | 1.7143 | 0.1844 | 28.8074 | 166.7427 | |
SE | 2.9734 | 0.2303 | 71.7154 | 27.4533 | ||
EL | Estimates | 1.8125 | 11.2464 | 123.1732 | ||
SE | 0.3163 | 8.1168 | 102.2685 | |||
KW | Estimates | 1.2083 | 2.3127 | 0.0326 | 1.1786 | |
SE | 0.9050 | 6.4453 | 0.0641 | 0.6493 | ||
GMW | Estimates | 0.0370 | 1.2290 | 0.0015 | 1.1750 | |
SE | 0.0939 | 0.9993 | 0.0140 | 0.7523 | ||
MOAPEW | Estimates | 0.3553 | 0.2575 | 0.1384 | 0.0058 | 0.0087 |
SE | 0.5066 | 0.0104 | 0.1008 | 0.0018 | 0.0078 | |
EW | Estimates | 0.2312 | 0.0085 | 0.2914 | ||
SE | 0.0152 | 0.0058 | 0.1531 | |||
KMGE | Estimates | 1.8212 | 0.0675 | |||
SE | 0.2588 | 0.0091 | ||||
EHLINH | Estimates | 19.5686 | 0.2837 | 1589.2263 | ||
SE | 15.3431 | 0.0490 | 237.2804 | |||
ExEx | Estimates | 3.4494 | 0.0117 | |||
SE | 1.9636 | 0.0079 | ||||
OWITL | Estimates | 1.1721 | 0.0508 | 1.1382 | ||
SE | 0.4598 | 0.0350 | 0.5937 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.0728 | 0.7453 | 662.0716 | 669.4693 | 662.3608 | 665.0504 | 0.0869 | 0.5958 |
TLMW | 0.0740 | 0.7280 | 663.9288 | 673.7924 | 664.4166 | 667.9005 | 0.0901 | 0.6041 |
TIIEHLPL | 0.0816 | 0.6084 | 665.4572 | 675.3208 | 665.9450 | 669.4290 | 0.0814 | 0.6494 |
EL | 0.0845 | 0.5635 | 663.7241 | 671.1218 | 664.0132 | 666.7029 | 0.0761 | 0.6190 |
KW | 0.0752 | 0.7090 | 663.9278 | 673.7914 | 664.4156 | 667.8996 | 0.0920 | 0.6121 |
GMW | 0.0768 | 0.6834 | 663.8639 | 673.7276 | 664.3517 | 667.8357 | 0.0943 | 0.6201 |
MOAPEW | 0.0762 | 0.6929 | 665.7249 | 678.0545 | 666.4657 | 670.6897 | 0.0879 | 0.5993 |
EW | 0.1110 | 0.2336 | 667.4458 | 674.8435 | 667.7349 | 670.4246 | 0.2186 | 1.2041 |
KMGE | 0.0861 | 0.5389 | 662.3907 | 669.8323 | 662.5335 | 665.3766 | 0.0763 | 0.6177 |
EHLINH | 0.0864 | 0.5345 | 664.3826 | 671.7803 | 664.6718 | 667.3615 | 0.0853 | 0.7083 |
ExEx | 0.0919 | 0.4547 | 662.8435 | 669.7753 | 662.9863 | 665.8294 | 0.1603 | 0.9021 |
OWITL | 0.0771 | 0.6787 | 662.6932 | 669.5910 | 662.9824 | 665.6721 | 0.0996 | 0.6511 |
\alpha | \beta | \tau | \theta | ||
EGAPE | Estimates | 1.2948 | 0.9091 | 0.0079 | |
SE | 0.1631 | 0.6367 | 0.0242 | ||
TLMW | Estimates | 0.2497 | 0.2004 | 1.2916 | 2.7723 |
SE | 0.9087 | 0.7554 | 0.7622 | 1.5924 | |
TIIEHLPL | Estimates | 0.0927 | 1.3381 | 2.4967 | 138.0944 |
SE | 0.2557 | 0.8698 | 1.5475 | 532.9272 | |
EL | Estimates | 3.8657 | 36.6762 | 30.4730 | |
SE | 0.8248 | 61.0255 | 53.2398 | ||
KW | Estimates | 3.9049 | 3.8098 | 0.6329 | 0.7832 |
SE | 9.9178 | 25.2951 | 0.8289 | 1.7951 | |
GMW | Estimates | 1.4999 | 7.0403 | 0.1177 | 0.5813 |
SE | 0.7081 | 2.0431 | 0.0250 | 0.1381 | |
EW | Estimates | 1.8162 | 36.6594 | 5.3695 | |
SE | 0.1607 | 70.2187 | 9.0321 | ||
EGAPEx | Estimates | 2.2303 | 3.0157 | 3.0038 | 0.4497 |
SE | 4.3322 | 1.7338 | 3.8605 | 0.5913 | |
KMGE | Estimates | 3.7890 | 0.9720 | ||
SE | 0.7019 | 0.1221 | |||
EHLINH | Estimates | 34.1057 | 0.3627 | 94.1204 | |
SE | 38.2904 | 0.0934 | 165.6271 | ||
ExEx | Estimates | 70.0000 | 0.0051 | ||
SE | 81.8420 | 0.0059 | |||
OWITL | Estimates | 1.8011 | 19.0880 | 0.3149 | |
SE | 0.1713 | 23.2625 | 0.1740 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.0826 | 0.7094 | 192.5995 | 199.4295 | 192.9524 | 195.3185 | 0.0881 | 0.5118 |
TLMW | 0.0885 | 0.6253 | 196.1265 | 205.2332 | 196.7235 | 199.7519 | 0.0915 | 0.5657 |
TIIEHLPL | 0.0874 | 0.6408 | 196.0386 | 205.1453 | 196.6356 | 199.6640 | 0.0747 | 0.4823 |
EL | 0.0944 | 0.5429 | 194.7195 | 201.5495 | 195.0725 | 197.4386 | 0.0770 | 0.5188 |
KW | 0.0896 | 0.6103 | 196.1880 | 205.2947 | 196.7850 | 199.8134 | 0.0933 | 0.5735 |
GMW | 0.0905 | 0.5967 | 197.2302 | 206.3369 | 197.8272 | 200.8556 | 0.1064 | 0.6601 |
EW | 0.1056 | 0.3984 | 197.6848 | 204.5148 | 198.0377 | 200.4038 | 0.1662 | 0.9792 |
EGAPEx | 0.0874 | 0.6411 | 196.1340 | 205.2406 | 196.7310 | 199.7594 | 0.0917 | 0.5652 |
KMGE | 0.0906 | 0.5961 | 193.4319 | 200.9853 | 193.6058 | 196.2446 | 0.0970 | 0.5771 |
EHLINH | 0.1011 | 0.4537 | 195.7417 | 202.5717 | 196.0946 | 198.4607 | 0.0976 | 0.6161 |
ExEx | 0.2118 | 0.0031 | 210.6588 | 215.2121 | 210.8327 | 212.4715 | 0.2429 | 1.4240 |
OWITL | 0.0929 | 0.5634 | 194.6419 | 201.4719 | 194.9949 | 197.3610 | 0.0921 | 0.5773 |
Data | T_1 | T_2 | T_3 | n_1 | n_2 | n_3 | \alpha_1 | \alpha_2 | \alpha_3 | \beta | \tau | Llog | AI | BI |
I | 1.6 | 1.9 | 3 | 6 | 7 | 5 | 2.5353 | 4.2746 | 3.3228 | 1.8354 | 0.0020 | -7.2028 | 24.4055 | 29.3842 |
3.5 | 6 | 2.4710 | 3.8668 | 2.3909 | 2.0295 | 0.0031 | -10.4644 | 30.9287 | 35.9074 | |||||
2.2 | 3 | 9 | 3 | 2.5416 | 3.5990 | 5.0954 | 1.9838 | 0.0026 | -7.1745 | 24.3490 | 29.3277 | |||
3.5 | 4 | 2.5352 | 3.0753 | 2.9460 | 1.9840 | 0.0008 | -10.8706 | 31.7412 | 36.7198 | |||||
1.8 | 1.9 | 3 | 11 | 2 | 5 | 2.8502 | 4.7026 | 3.3463 | 1.4596 | 0.0034 | -7.6071 | 25.2142 | 30.1929 | |
3.5 | 6 | 2.7474 | 4.0312 | 2.4071 | 1.7368 | 0.0024 | -10.7940 | 31.5879 | 36.5666 | |||||
2.2 | 3 | 4 | 3 | 2.9864 | 3.0214 | 5.1299 | 1.3835 | 0.0007 | -7.4430 | 24.8859 | 29.8646 | |||
3.5 | 4 | 2.8427 | 2.4470 | 2.9661 | 1.9249 | 0.0025 | -10.9378 | 31.8756 | 36.8543 | |||||
II | 8 | 14 | 22 | 22 | 21 | 24 | 0.0842 | 0.1251 | 0.3435 | 1.4147 | 0.8461 | -207.0863 | 424.1727 | 436.5022 |
38 | 36 | 0.0463 | 0.0689 | 0.1152 | 1.3591 | 1.4858 | -278.0608 | 566.1216 | 578.4511 | |||||
18 | 30 | 35 | 14 | 0.1071 | 0.1562 | 0.2666 | 1.2760 | 0.3879 | -231.5655 | 473.1311 | 485.4606 | |||
38 | 22 | 0.0929 | 0.1258 | 0.1248 | 1.2874 | 0.4486 | -278.8941 | 567.7881 | 580.1177 | |||||
10 | 14 | 30 | 28 | 15 | 28 | 0.0546 | 0.0970 | 0.2060 | 1.4255 | 1.5355 | -229.6798 | 469.3596 | 481.6891 | |
38 | 36 | 0.0473 | 0.0790 | 0.1146 | 1.3702 | 1.5078 | -277.6793 | 565.3585 | 577.6881 | |||||
18 | 30 | 29 | 14 | 0.0908 | 0.1687 | 0.2639 | 1.3715 | 0.6488 | -230.6346 | 471.2691 | 483.5987 | |||
38 | 22 | 0.0642 | 0.1176 | 0.1199 | 1.4065 | 1.0223 | -278.2243 | 566.4487 | 578.7782 | |||||
III | 1.1 | 1.6 | 2.4 | 21 | 17 | 18 | 1.9285 | 1.9888 | 3.3652 | 2.1804 | 0.0428 | -42.3850 | 94.7701 | 106.1534 |
3 | 26 | 1.8135 | 1.6050 | 2.1656 | 2.1324 | 0.0408 | -61.6277 | 133.2554 | 144.6387 | |||||
1.9 | 2.4 | 25 | 10 | 1.9262 | 2.1187 | 4.8965 | 2.1808 | 0.0427 | -41.3863 | 92.7727 | 104.1560 | |||
3 | 18 | 1.8140 | 1.6102 | 2.5898 | 2.1043 | 0.0396 | -60.9120 | 131.8240 | 143.2073 | |||||
1.3 | 1.6 | 2.4 | 30 | 8 | 18 | 2.0586 | 1.6644 | 3.3873 | 2.4176 | 0.0402 | -42.2304 | 94.4608 | 105.8442 | |
3 | 26 | 1.8815 | 1.2926 | 2.1763 | 2.2743 | 0.0399 | -61.2000 | 132.4000 | 143.7833 | |||||
1.9 | 2.4 | 16 | 10 | 2.0571 | 1.9902 | 4.9177 | 2.4155 | 0.0401 | -41.4372 | 92.8744 | 104.2577 | |||
3 | 18 | 1.8835 | 1.4376 | 2.6025 | 2.2621 | 0.0392 | -60.5813 | 131.1625 | 142.5459 |
Data | T_1 | T_2 | T_3 | n_1 | n_2 | n_3 | \alpha_1 | \alpha_2 | \alpha_3 | \beta | \tau | Llog | AI | BI |
I | 1.6 | 1.9 | 3 | 6 | 7 | 2 | 2.7800 | 6.6237 | 5.1808 | 1.5332 | 0.0019 | -1.3345 | 12.6689 | 17.6476 |
3.5 | 3 | 2.6606 | 5.5631 | 2.0821 | 1.5061 | 0.0026 | -5.5431 | 21.0862 | 26.0648 | |||||
2.2 | 3.1 | 9 | 2 | 2.5638 | 4.3445 | 2.5229 | 1.7539 | 0.0021 | -6.6903 | 23.3806 | 28.3592 | |||
3.5 | 2 | 2.5638 | 4.3445 | 2.5229 | 1.7539 | 0.0001 | -6.6903 | 23.3806 | 28.3592 | |||||
1.8 | 1.9 | 3 | 11 | 1 | 2 | 3.3879 | 5.5803 | 2.5550 | 1.4507 | 0.0012 | -4.0139 | 18.0277 | 23.0064 | |
3.5 | 3 | 3.5248 | 3.7242 | 1.6542 | 2.0645 | 0.0018 | -7.1073 | 24.2145 | 29.1932 | |||||
2.2 | 3 | 3 | 1 | 3.2535 | 4.6798 | 10.2574 | 1.5629 | 0.0019 | -3.0837 | 16.1675 | 21.1461 | |||
3.5 | 1 | 3.2535 | 4.6798 | 10.2574 | 1.5629 | 0.0029 | -3.0837 | 16.1675 | 21.1461 | |||||
II | 8 | 14 | 22 | 22 | 18 | 16 | 0.1221 | 0.1552 | 0.3637 | 1.3846 | 0.5564 | -171.7641 | 353.5283 | 365.8578 |
38 | 25 | 0.0621 | 0.0835 | 0.1128 | 1.4401 | 1.4256 | -226.8644 | 463.7287 | 476.0583 | |||||
18 | 22 | 29 | 5 | 0.1362 | 0.2049 | 0.5140 | 1.3076 | 0.3588 | -171.8571 | 353.7143 | 366.0438 | |||
38 | 15 | 0.1127 | 0.1369 | 0.1093 | 1.2970 | 0.4134 | -230.3447 | 470.6895 | 483.0190 | |||||
10 | 14 | 22 | 28 | 12 | 16 | 0.0711 | 0.1187 | 0.3461 | 1.5427 | 1.6947 | -169.7180 | 349.4361 | 361.7656 | |
38 | 24 | 0.0584 | 0.0858 | 0.1120 | 1.4557 | 1.6740 | -220.9976 | 451.9953 | 464.3248 | |||||
18 | 22 | 24 | 5 | 0.1297 | 0.2358 | 0.5680 | 1.3375 | 0.4332 | -173.7040 | 357.4080 | 369.7376 | |||
38 | 13 | 0.1069 | 0.1581 | 0.1051 | 1.3487 | 0.5302 | -224.0241 | 458.0481 | 470.3777 | |||||
III | 1.1 | 1.6 | 2.4 | 21 | 13 | 9 | 2.2016 | 2.4738 | 4.1560 | 2.3470 | 0.0482 | -27.9595 | 65.9191 | 77.3024 |
3 | 13 | 2.1023 | 2.0038 | 2.3040 | 2.2828 | 0.0463 | -39.9871 | 89.9742 | 101.3575 | |||||
1.9 | 2.4 | 21 | 5 | 2.0900 | 2.4406 | 5.7452 | 2.3197 | 0.0480 | -32.3110 | 74.6221 | 86.0054 | |||
3 | 9 | 2.0104 | 1.9690 | 2.9062 | 2.2560 | 0.0457 | -43.2342 | 96.4684 | 107.8517 | |||||
1.3 | 1.6 | 2.4 | 30 | 6 | 10 | 2.3723 | 1.9721 | 3.2473 | 2.7184 | 0.0406 | -32.2770 | 74.5541 | 85.9374 | |
3 | 14 | 2.2271 | 1.5491 | 2.2233 | 2.5817 | 0.0408 | -42.5040 | 95.0080 | 106.3914 | |||||
1.9 | 2.4 | 12 | 8 | 2.2277 | 1.8942 | 4.5920 | 2.5778 | 0.0406 | -36.5661 | 83.1323 | 94.5156 | |||
3 | 10 | 2.1666 | 1.6701 | 3.5295 | 2.5178 | 0.0404 | -41.6866 | 93.3732 | 104.7565 |
Parameters | Measures | |||||||||
a | b | \tau | \mu^\prime_1 | \mu^\prime_2 | \mu^\prime_3 | \mu^\prime_4 | \sigma^2 | CV | skewness | kurtosis |
0.5 | 0.75 | 0.25 | 2.68979 | 12.4088 | 79.9101 | 662.52 | 5.17387 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 1.74385 | 6.75901 | 40.1156 | 319.514 | 3.71799 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 2.0773 | 7.90377 | 45.4087 | 353.528 | 3.5886 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 1.68603 | 5.38955 | 27.4263 | 198.4 | 2.54684 | 0.94653 | 5.75592 | 12.5055 | ||
0.75 | 0.75 | 0.25 | 1.79319 | 5.51503 | 23.6771 | 130.868 | 2.2995 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 1.16257 | 3.004 | 11.8861 | 63.1139 | 1.65244 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 1.38487 | 3.51279 | 13.4544 | 69.8326 | 1.59493 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 1.12402 | 2.39536 | 8.12631 | 39.1901 | 1.13193 | 0.94653 | 5.75592 | 12.5055 | ||
1.5 | 0.75 | 0.25 | 0.896596 | 1.37876 | 2.95963 | 8.17926 | 0.574874 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 0.581283 | 0.751001 | 1.48576 | 3.94462 | 0.41311 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 0.692433 | 0.878196 | 1.68181 | 4.36454 | 0.398733 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 0.562011 | 0.598839 | 1.01579 | 2.44938 | 0.282982 | 0.94653 | 5.75592 | 12.5055 | ||
2.5 | 0.75 | 0.25 | 0.537958 | 0.496353 | 0.63928 | 1.06003 | 0.206955 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 0.34877 | 0.27036 | 0.320925 | 0.511223 | 0.14872 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 0.41546 | 0.316151 | 0.36327 | 0.565644 | 0.143544 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 0.337207 | 0.215582 | 0.21941 | 0.31744 | 0.101874 | 0.94653 | 5.75592 | 12.5055 |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.32671 ^{\{ 1 \}} | 0.58371 ^{\{ 5 \}} | 0.56143 ^{\{ 2 \}} | 0.57133 ^{\{ 3 \}} | 0.60648 ^{\{ 6 \}} | 0.63277 ^{\{ 8 \}} | 0.5738 ^{\{ 4 \}} | 0.61215 ^{\{ 7 \}} |
\hat{a} | 0.04966 ^{\{ 1 \}} | 0.06013 ^{\{ 4 \}} | 0.0625 ^{\{ 6 \}} | 0.05958 ^{\{ 3 \}} | 0.06715 ^{\{ 8 \}} | 0.06343 ^{\{ 7 \}} | 0.05815 ^{\{ 2 \}} | 0.06028 ^{\{ 5 \}} | ||
\hat{b} | 0.24844 ^{\{ 1 \}} | 0.28129 ^{\{ 4 \}} | 0.28515 ^{\{ 5 \}} | 0.29203 ^{\{ 6 \}} | 0.27907 ^{\{ 2 \}} | 0.29342 ^{\{ 7 \}} | 0.28051 ^{\{ 3 \}} | 0.31435 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.16299 ^{\{ 1 \}} | 0.59664 ^{\{ 5 \}} | 0.52583 ^{\{ 2 \}} | 0.58252 ^{\{ 4 \}} | 0.61607 ^{\{ 6 \}} | 0.721 ^{\{ 7 \}} | 0.55021 ^{\{ 3 \}} | 0.93333 ^{\{ 8 \}} | |
\hat{a} | 0.00411 ^{\{ 1 \}} | 0.00549 ^{\{ 4 \}} | 0.00611 ^{\{ 6 \}} | 0.0054 ^{\{ 3 \}} | 0.00663 ^{\{ 7.5 \}} | 0.00663 ^{\{ 7.5 \}} | 0.00519 ^{\{ 2 \}} | 0.00574 ^{\{ 5 \}} | ||
\hat{b} | 0.10323 ^{\{ 1 \}} | 0.11811 ^{\{ 4 \}} | 0.12803 ^{\{ 6 \}} | 0.11815 ^{\{ 5 \}} | 0.1178 ^{\{ 3 \}} | 0.14159 ^{\{ 8 \}} | 0.11156 ^{\{ 2 \}} | 0.14151 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.65343 ^{\{ 1 \}} | 1.16742 ^{\{ 5 \}} | 1.12285 ^{\{ 2 \}} | 1.14267 ^{\{ 3 \}} | 1.21295 ^{\{ 6 \}} | 1.26554 ^{\{ 8 \}} | 1.1476 ^{\{ 4 \}} | 1.22429 ^{\{ 7 \}} | |
\hat{a} | 0.19865 ^{\{ 1 \}} | 0.24052 ^{\{ 4 \}} | 0.25 ^{\{ 6 \}} | 0.23833 ^{\{ 3 \}} | 0.2686 ^{\{ 8 \}} | 0.2537 ^{\{ 7 \}} | 0.23258 ^{\{ 2 \}} | 0.2411 ^{\{ 5 \}} | ||
\hat{b} | 0.33126 ^{\{ 1 \}} | 0.37506 ^{\{ 4 \}} | 0.3802 ^{\{ 5 \}} | 0.38937 ^{\{ 6 \}} | 0.37209 ^{\{ 2 \}} | 0.39123 ^{\{ 7 \}} | 0.37402 ^{\{ 3 \}} | 0.41913 ^{\{ 8 \}} | ||
D_{abs} | 0.04372 ^{\{ 2 \}} | 0.04281 ^{\{ 1 \}} | 0.04653 ^{\{ 7 \}} | 0.04411 ^{\{ 3 \}} | 0.04606 ^{\{ 5 \}} | 0.04624 ^{\{ 6 \}} | 0.0448 ^{\{ 4 \}} | 0.04683 ^{\{ 8 \}} | ||
D_{max} | 0.07294 ^{\{ 3 \}} | 0.07168 ^{\{ 2 \}} | 0.07905 ^{\{ 8 \}} | 0.07157 ^{\{ 1 \}} | 0.0766 ^{\{ 5 \}} | 0.07807 ^{\{ 6 \}} | 0.07418 ^{\{ 4 \}} | 0.07819 ^{\{ 7 \}} | ||
ASAE | 0.02941 ^{\{ 7 \}} | 0.02686 ^{\{ 2 \}} | 0.02879 ^{\{ 5 \}} | 0.02748 ^{\{ 4 \}} | 0.02895 ^{\{ 6 \}} | 0.02682 ^{\{ 1 \}} | 0.02728 ^{\{ 3 \}} | 0.03173 ^{\{ 8 \}} | ||
\sum Ranks | 21 ^{\{ 1 \}} | 44 ^{\{ 3.5 \}} | 60 ^{\{ 5 \}} | 44 ^{\{ 3.5 \}} | 64.5 ^{\{ 6 \}} | 79.5 ^{\{ 7 \}} | 36 ^{\{ 2 \}} | 83 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.31314 ^{\{ 1 \}} | 0.47069 ^{\{ 3 \}} | 0.48998 ^{\{ 5 \}} | 0.49062 ^{\{ 6 \}} | 0.50913 ^{\{ 7 \}} | 0.54111 ^{\{ 8 \}} | 0.47654 ^{\{ 4 \}} | 0.46785 ^{\{ 2 \}} |
\hat{a} | 0.03421 ^{\{ 1 \}} | 0.04143 ^{\{ 2 \}} | 0.04746 ^{\{ 6 \}} | 0.04299 ^{\{ 3 \}} | 0.04804 ^{\{ 7 \}} | 0.04809 ^{\{ 8 \}} | 0.04356 ^{\{ 4 \}} | 0.04532 ^{\{ 5 \}} | ||
\hat{b} | 0.21631 ^{\{ 1 \}} | 0.2507 ^{\{ 5 \}} | 0.23911 ^{\{ 2 \}} | 0.27064 ^{\{ 7 \}} | 0.24898 ^{\{ 3 \}} | 0.24985 ^{\{ 4 \}} | 0.25229 ^{\{ 6 \}} | 0.2829 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.1496 ^{\{ 1 \}} | 0.41058 ^{\{ 4 \}} | 0.43118 ^{\{ 5 \}} | 0.45507 ^{\{ 7 \}} | 0.44542 ^{\{ 6 \}} | 0.55159 ^{\{ 8 \}} | 0.40366 ^{\{ 3 \}} | 0.39192 ^{\{ 2 \}} | |
\hat{a} | 0.00191 ^{\{ 1 \}} | 0.00286 ^{\{ 2 \}} | 0.0034 ^{\{ 6 \}} | 0.00317 ^{\{ 4 \}} | 0.00368 ^{\{ 8 \}} | 0.00366 ^{\{ 7 \}} | 0.00308 ^{\{ 3 \}} | 0.00328 ^{\{ 5 \}} | ||
\hat{b} | 0.07529 ^{\{ 1 \}} | 0.08986 ^{\{ 4 \}} | 0.0849 ^{\{ 2 \}} | 0.10267 ^{\{ 7 \}} | 0.08698 ^{\{ 3 \}} | 0.09562 ^{\{ 6 \}} | 0.09 ^{\{ 5 \}} | 0.11517 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.62627 ^{\{ 1 \}} | 0.94139 ^{\{ 3 \}} | 0.97995 ^{\{ 5 \}} | 0.98124 ^{\{ 6 \}} | 1.01826 ^{\{ 7 \}} | 1.08221 ^{\{ 8 \}} | 0.95309 ^{\{ 4 \}} | 0.93571 ^{\{ 2 \}} | |
\hat{a} | 0.13684 ^{\{ 1 \}} | 0.16572 ^{\{ 2 \}} | 0.18984 ^{\{ 6 \}} | 0.17197 ^{\{ 3 \}} | 0.19217 ^{\{ 7 \}} | 0.19238 ^{\{ 8 \}} | 0.17425 ^{\{ 4 \}} | 0.18128 ^{\{ 5 \}} | ||
\hat{b} | 0.28842 ^{\{ 1 \}} | 0.33426 ^{\{ 5 \}} | 0.31881 ^{\{ 2 \}} | 0.36085 ^{\{ 7 \}} | 0.33197 ^{\{ 3 \}} | 0.33314 ^{\{ 4 \}} | 0.33638 ^{\{ 6 \}} | 0.3772 ^{\{ 8 \}} | ||
D_{abs} | 0.03037 ^{\{ 1 \}} | 0.03108 ^{\{ 3 \}} | 0.03275 ^{\{ 8 \}} | 0.03089 ^{\{ 2 \}} | 0.03226 ^{\{ 5 \}} | 0.03245 ^{\{ 6 \}} | 0.03186 ^{\{ 4 \}} | 0.03262 ^{\{ 7 \}} | ||
D_{max} | 0.05103 ^{\{ 2 \}} | 0.05227 ^{\{ 3 \}} | 0.05581 ^{\{ 8 \}} | 0.05055 ^{\{ 1 \}} | 0.05432 ^{\{ 5 \}} | 0.05561 ^{\{ 7 \}} | 0.0531 ^{\{ 4 \}} | 0.05469 ^{\{ 6 \}} | ||
ASAE | 0.01852 ^{\{ 7 \}} | 0.01764 ^{\{ 3 \}} | 0.01828 ^{\{ 5 \}} | 0.01771 ^{\{ 4 \}} | 0.0183 ^{\{ 6 \}} | 0.01677 ^{\{ 1 \}} | 0.01726 ^{\{ 2 \}} | 0.02027 ^{\{ 8 \}} | ||
\sum Ranks | 19 ^{\{ 1 \}} | 39 ^{\{ 2 \}} | 60 ^{\{ 5 \}} | 57 ^{\{ 4 \}} | 67 ^{\{ 7 \}} | 75 ^{\{ 8 \}} | 49 ^{\{ 3 \}} | 66 ^{\{ 6 \}} | ||
150 | BIAS | \hat{\tau} | 0.27897 ^{\{ 1 \}} | 0.33896 ^{\{ 2 \}} | 0.4218 ^{\{ 7 \}} | 0.37504 ^{\{ 5 \}} | 0.40603 ^{\{ 6 \}} | 0.43235 ^{\{ 8 \}} | 0.36118 ^{\{ 4 \}} | 0.33952 ^{\{ 3 \}} |
\hat{a} | 0.02475 ^{\{ 1 \}} | 0.02809 ^{\{ 2 \}} | 0.03377 ^{\{ 8 \}} | 0.02817 ^{\{ 3 \}} | 0.03358 ^{\{ 7 \}} | 0.03171 ^{\{ 6 \}} | 0.0292 ^{\{ 4 \}} | 0.03094 ^{\{ 5 \}} | ||
\hat{b} | 0.17834 ^{\{ 1 \}} | 0.19969 ^{\{ 2 \}} | 0.22885 ^{\{ 6 \}} | 0.23606 ^{\{ 8 \}} | 0.21943 ^{\{ 4 \}} | 0.23111 ^{\{ 7 \}} | 0.20646 ^{\{ 3 \}} | 0.22692 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.12003 ^{\{ 1 \}} | 0.21771 ^{\{ 3 \}} | 0.32049 ^{\{ 7 \}} | 0.26977 ^{\{ 5 \}} | 0.2889 ^{\{ 6 \}} | 0.35196 ^{\{ 8 \}} | 0.2381 ^{\{ 4 \}} | 0.18081 ^{\{ 2 \}} | |
\hat{a} | 0.00097 ^{\{ 1 \}} | 0.00137 ^{\{ 2 \}} | 0.00186 ^{\{ 7 \}} | 0.00155 ^{\{ 5 \}} | 0.00189 ^{\{ 8 \}} | 0.00175 ^{\{ 6 \}} | 0.00149 ^{\{ 3 \}} | 0.00151 ^{\{ 4 \}} | ||
\hat{b} | 0.05034 ^{\{ 1 \}} | 0.05811 ^{\{ 2 \}} | 0.07333 ^{\{ 5 \}} | 0.08301 ^{\{ 8 \}} | 0.06651 ^{\{ 4 \}} | 0.07845 ^{\{ 7 \}} | 0.06122 ^{\{ 3 \}} | 0.07669 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.55795 ^{\{ 1 \}} | 0.67793 ^{\{ 2 \}} | 0.84359 ^{\{ 7 \}} | 0.75008 ^{\{ 5 \}} | 0.81206 ^{\{ 6 \}} | 0.86469 ^{\{ 8 \}} | 0.72235 ^{\{ 4 \}} | 0.67904 ^{\{ 3 \}} | |
\hat{a} | 0.09901 ^{\{ 1 \}} | 0.11236 ^{\{ 2 \}} | 0.1351 ^{\{ 8 \}} | 0.11269 ^{\{ 3 \}} | 0.13434 ^{\{ 7 \}} | 0.12685 ^{\{ 6 \}} | 0.11682 ^{\{ 4 \}} | 0.12378 ^{\{ 5 \}} | ||
\hat{b} | 0.23779 ^{\{ 1 \}} | 0.26626 ^{\{ 2 \}} | 0.30514 ^{\{ 6 \}} | 0.31475 ^{\{ 8 \}} | 0.29257 ^{\{ 4 \}} | 0.30814 ^{\{ 7 \}} | 0.27529 ^{\{ 3 \}} | 0.30257 ^{\{ 5 \}} | ||
D_{abs} | 0.02145 ^{\{ 2 \}} | 0.02295 ^{\{ 7 \}} | 0.0217 ^{\{ 3 \}} | 0.02129 ^{\{ 1 \}} | 0.02288 ^{\{ 6 \}} | 0.023 ^{\{ 8 \}} | 0.02213 ^{\{ 4 \}} | 0.0225 ^{\{ 5 \}} | ||
D_{max} | 0.03601 ^{\{ 2 \}} | 0.03845 ^{\{ 6 \}} | 0.03771 ^{\{ 4 \}} | 0.03525 ^{\{ 1 \}} | 0.03891 ^{\{ 7 \}} | 0.03973 ^{\{ 8 \}} | 0.03688 ^{\{ 3 \}} | 0.03798 ^{\{ 5 \}} | ||
ASAE | 0.011 ^{\{ 5 \}} | 0.01062 ^{\{ 3 \}} | 0.01139 ^{\{ 6 \}} | 0.01092 ^{\{ 4 \}} | 0.01146 ^{\{ 7 \}} | 0.01039 ^{\{ 1 \}} | 0.01045 ^{\{ 2 \}} | 0.01269 ^{\{ 8 \}} | ||
\sum Ranks | 18 ^{\{ 1 \}} | 35 ^{\{ 2 \}} | 74 ^{\{ 7 \}} | 56 ^{\{ 4.5 \}} | 72 ^{\{ 6 \}} | 80 ^{\{ 8 \}} | 41 ^{\{ 3 \}} | 56 ^{\{ 4.5 \}} | ||
300 | BIAS | \hat{\tau} | 0.20018 ^{\{ 1 \}} | 0.243 ^{\{ 4 \}} | 0.29528 ^{\{ 6 \}} | 0.23781 ^{\{ 3 \}} | 0.31369 ^{\{ 7 \}} | 0.33876 ^{\{ 8 \}} | 0.23778 ^{\{ 2 \}} | 0.25695 ^{\{ 5 \}} |
\hat{a} | 0.01707 ^{\{ 1 \}} | 0.01972 ^{\{ 4 \}} | 0.02215 ^{\{ 6 \}} | 0.01893 ^{\{ 3 \}} | 0.02216 ^{\{ 7 \}} | 0.02177 ^{\{ 5 \}} | 0.01829 ^{\{ 2 \}} | 0.02228 ^{\{ 8 \}} | ||
\hat{b} | 0.13506 ^{\{ 1 \}} | 0.15636 ^{\{ 3 \}} | 0.18002 ^{\{ 6 \}} | 0.17262 ^{\{ 5 \}} | 0.19427 ^{\{ 7 \}} | 0.20028 ^{\{ 8 \}} | 0.15561 ^{\{ 2 \}} | 0.16985 ^{\{ 4 \}} | ||
MSE | \hat{\tau} | 0.0643 ^{\{ 1 \}} | 0.1019 ^{\{ 4 \}} | 0.14664 ^{\{ 6 \}} | 0.08922 ^{\{ 2 \}} | 0.16416 ^{\{ 7 \}} | 0.21518 ^{\{ 8 \}} | 0.08995 ^{\{ 3 \}} | 0.10932 ^{\{ 5 \}} | |
\hat{a} | 0.00047 ^{\{ 1 \}} | 0.00066 ^{\{ 4 \}} | 0.00082 ^{\{ 6 \}} | 0.00056 ^{\{ 2.5 \}} | 0.00088 ^{\{ 8 \}} | 0.00087 ^{\{ 7 \}} | 0.00056 ^{\{ 2.5 \}} | 0.00081 ^{\{ 5 \}} | ||
\hat{b} | 0.03228 ^{\{ 1 \}} | 0.03756 ^{\{ 3 \}} | 0.0464 ^{\{ 4 \}} | 0.05353 ^{\{ 7 \}} | 0.05263 ^{\{ 6 \}} | 0.05765 ^{\{ 8 \}} | 0.03636 ^{\{ 2 \}} | 0.04878 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.40037 ^{\{ 1 \}} | 0.486 ^{\{ 4 \}} | 0.59055 ^{\{ 6 \}} | 0.47561 ^{\{ 3 \}} | 0.62739 ^{\{ 7 \}} | 0.67751 ^{\{ 8 \}} | 0.47557 ^{\{ 2 \}} | 0.5139 ^{\{ 5 \}} | |
\hat{a} | 0.06829 ^{\{ 1 \}} | 0.07887 ^{\{ 4 \}} | 0.08859 ^{\{ 6 \}} | 0.0757 ^{\{ 3 \}} | 0.08866 ^{\{ 7 \}} | 0.0871 ^{\{ 5 \}} | 0.07315 ^{\{ 2 \}} | 0.08912 ^{\{ 8 \}} | ||
\hat{b} | 0.18008 ^{\{ 1 \}} | 0.20848 ^{\{ 3 \}} | 0.24002 ^{\{ 6 \}} | 0.23017 ^{\{ 5 \}} | 0.25903 ^{\{ 7 \}} | 0.26704 ^{\{ 8 \}} | 0.20748 ^{\{ 2 \}} | 0.22646 ^{\{ 4 \}} | ||
D_{abs} | 0.01493 ^{\{ 1 \}} | 0.01579 ^{\{ 5 \}} | 0.0158 ^{\{ 6 \}} | 0.0154 ^{\{ 3 \}} | 0.01595 ^{\{ 7 \}} | 0.01566 ^{\{ 4 \}} | 0.01501 ^{\{ 2 \}} | 0.01623 ^{\{ 8 \}} | ||
D_{max} | 0.02495 ^{\{ 1 \}} | 0.02657 ^{\{ 4 \}} | 0.0273 ^{\{ 6 \}} | 0.02576 ^{\{ 3 \}} | 0.02745 ^{\{ 7 \}} | 0.02722 ^{\{ 5 \}} | 0.02546 ^{\{ 2 \}} | 0.02772 ^{\{ 8 \}} | ||
ASAE | 0.00711 ^{\{ 5 \}} | 0.00685 ^{\{ 2 \}} | 0.00726 ^{\{ 6 \}} | 0.007 ^{\{ 4 \}} | 0.00737 ^{\{ 7 \}} | 0.0066 ^{\{ 1 \}} | 0.00688 ^{\{ 3 \}} | 0.008 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 44 ^{\{ 4 \}} | 70 ^{\{ 5 \}} | 43.5 ^{\{ 3 \}} | 84 ^{\{ 8 \}} | 75 ^{\{ 7 \}} | 26.5 ^{\{ 2 \}} | 73 ^{\{ 6 \}} | ||
600 | BIAS | \hat{\tau} | 0.14883 ^{\{ 1 \}} | 0.18347 ^{\{ 4 \}} | 0.22873 ^{\{ 7 \}} | 0.16341 ^{\{ 2 \}} | 0.2235 ^{\{ 6 \}} | 0.23795 ^{\{ 8 \}} | 0.17744 ^{\{ 3 \}} | 0.18749 ^{\{ 5 \}} |
\hat{a} | 0.01222 ^{\{ 1 \}} | 0.01372 ^{\{ 4 \}} | 0.01577 ^{\{ 7 \}} | 0.01259 ^{\{ 2 \}} | 0.01528 ^{\{ 6 \}} | 0.01437 ^{\{ 5 \}} | 0.01333 ^{\{ 3 \}} | 0.01579 ^{\{ 8 \}} | ||
\hat{b} | 0.09866 ^{\{ 1 \}} | 0.12057 ^{\{ 3 \}} | 0.14941 ^{\{ 7 \}} | 0.12377 ^{\{ 5 \}} | 0.14754 ^{\{ 6 \}} | 0.15886 ^{\{ 8 \}} | 0.11439 ^{\{ 2 \}} | 0.12134 ^{\{ 4 \}} | ||
MSE | \hat{\tau} | 0.03594 ^{\{ 1 \}} | 0.05294 ^{\{ 4 \}} | 0.07897 ^{\{ 7 \}} | 0.04896 ^{\{ 2 \}} | 0.07454 ^{\{ 6 \}} | 0.08434 ^{\{ 8 \}} | 0.04983 ^{\{ 3 \}} | 0.05618 ^{\{ 5 \}} | |
\hat{a} | 0.00024 ^{\{ 1 \}} | 3e-04 ^{\{ 4 \}} | 0.00039 ^{\{ 7 \}} | 0.00025 ^{\{ 2 \}} | 0.00038 ^{\{ 6 \}} | 0.00033 ^{\{ 5 \}} | 0.00028 ^{\{ 3 \}} | 4e-04 ^{\{ 8 \}} | ||
\hat{b} | 0.01685 ^{\{ 1 \}} | 0.02314 ^{\{ 3 \}} | 0.03354 ^{\{ 7 \}} | 0.03316 ^{\{ 6 \}} | 0.03195 ^{\{ 5 \}} | 0.03586 ^{\{ 8 \}} | 0.02149 ^{\{ 2 \}} | 0.02667 ^{\{ 4 \}} | ||
MRE | \hat{\tau} | 0.29767 ^{\{ 1 \}} | 0.36695 ^{\{ 4 \}} | 0.45746 ^{\{ 7 \}} | 0.32682 ^{\{ 2 \}} | 0.447 ^{\{ 6 \}} | 0.47591 ^{\{ 8 \}} | 0.35489 ^{\{ 3 \}} | 0.37498 ^{\{ 5 \}} | |
\hat{a} | 0.04889 ^{\{ 1 \}} | 0.05487 ^{\{ 4 \}} | 0.06308 ^{\{ 7 \}} | 0.05037 ^{\{ 2 \}} | 0.0611 ^{\{ 6 \}} | 0.05747 ^{\{ 5 \}} | 0.05332 ^{\{ 3 \}} | 0.06316 ^{\{ 8 \}} | ||
\hat{b} | 0.13154 ^{\{ 1 \}} | 0.16077 ^{\{ 3 \}} | 0.19922 ^{\{ 7 \}} | 0.16503 ^{\{ 5 \}} | 0.19672 ^{\{ 6 \}} | 0.21182 ^{\{ 8 \}} | 0.15252 ^{\{ 2 \}} | 0.16179 ^{\{ 4 \}} | ||
D_{abs} | 0.0111 ^{\{ 4.5 \}} | 0.01086 ^{\{ 2 \}} | 0.01153 ^{\{ 8 \}} | 0.01074 ^{\{ 1 \}} | 0.01151 ^{\{ 7 \}} | 0.0111 ^{\{ 4.5 \}} | 0.011 ^{\{ 3 \}} | 0.01132 ^{\{ 6 \}} | ||
D_{max} | 0.01861 ^{\{ 3 \}} | 0.01858 ^{\{ 2 \}} | 0.02 ^{\{ 8 \}} | 0.01805 ^{\{ 1 \}} | 0.01977 ^{\{ 7 \}} | 0.01944 ^{\{ 5 \}} | 0.01862 ^{\{ 4 \}} | 0.01945 ^{\{ 6 \}} | ||
ASAE | 0.00463 ^{\{ 5 \}} | 0.00449 ^{\{ 2 \}} | 0.00477 ^{\{ 7 \}} | 0.00458 ^{\{ 4 \}} | 0.00468 ^{\{ 6 \}} | 0.00423 ^{\{ 1 \}} | 0.00453 ^{\{ 3 \}} | 0.0053 ^{\{ 8 \}} | ||
\sum Ranks | 21.5 ^{\{ 1 \}} | 42 ^{\{ 4 \}} | 85 ^{\{ 8 \}} | 34 ^{\{ 2.5 \}} | 72 ^{\{ 6 \}} | 72.5 ^{\{ 7 \}} | 34 ^{\{ 2.5 \}} | 71 ^{\{ 5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.52028 ^{\{ 1 \}} | 0.68928 ^{\{ 3 \}} | 0.70994 ^{\{ 5 \}} | 0.69622 ^{\{ 4 \}} | 0.75178 ^{\{ 7 \}} | 0.67815 ^{\{ 2 \}} | 0.72398 ^{\{ 6 \}} | 1.13877 ^{\{ 8 \}} |
\hat{a} | 0.31117 ^{\{ 5 \}} | 0.30596 ^{\{ 4 \}} | 0.34262 ^{\{ 7 \}} | 0.29874 ^{\{ 2 \}} | 0.32249 ^{\{ 6 \}} | 0.29648 ^{\{ 1 \}} | 0.30057 ^{\{ 3 \}} | 0.40126 ^{\{ 8 \}} | ||
\hat{b} | 0.10184 ^{\{ 1 \}} | 0.12191 ^{\{ 2 \}} | 0.12619 ^{\{ 4 \}} | 0.12737 ^{\{ 5 \}} | 0.14134 ^{\{ 8 \}} | 0.12264 ^{\{ 3 \}} | 0.13027 ^{\{ 7 \}} | 0.12801 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.39328 ^{\{ 1 \}} | 0.62488 ^{\{ 3 \}} | 0.63359 ^{\{ 4 \}} | 0.64832 ^{\{ 5 \}} | 0.70817 ^{\{ 7 \}} | 0.59038 ^{\{ 2 \}} | 0.6678 ^{\{ 6 \}} | 5.81642 ^{\{ 8 \}} | |
\hat{a} | 0.19077 ^{\{ 6 \}} | 0.16766 ^{\{ 4 \}} | 0.21757 ^{\{ 7 \}} | 0.13867 ^{\{ 1 \}} | 0.1814 ^{\{ 5 \}} | 0.15924 ^{\{ 3 \}} | 0.14761 ^{\{ 2 \}} | 0.28201 ^{\{ 8 \}} | ||
\hat{b} | 0.01765 ^{\{ 1 \}} | 0.02526 ^{\{ 3 \}} | 0.02541 ^{\{ 4 \}} | 0.02837 ^{\{ 7 \}} | 0.03057 ^{\{ 8 \}} | 0.02415 ^{\{ 2 \}} | 0.02725 ^{\{ 5 \}} | 0.02764 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.34685 ^{\{ 1 \}} | 0.45952 ^{\{ 3 \}} | 0.47329 ^{\{ 5 \}} | 0.46415 ^{\{ 4 \}} | 0.50118 ^{\{ 7 \}} | 0.4521 ^{\{ 2 \}} | 0.48266 ^{\{ 6 \}} | 0.75918 ^{\{ 8 \}} | |
\hat{a} | 0.41489 ^{\{ 5 \}} | 0.40795 ^{\{ 4 \}} | 0.45682 ^{\{ 7 \}} | 0.39832 ^{\{ 2 \}} | 0.42998 ^{\{ 6 \}} | 0.39531 ^{\{ 1 \}} | 0.40076 ^{\{ 3 \}} | 0.53502 ^{\{ 8 \}} | ||
\hat{b} | 0.20368 ^{\{ 1 \}} | 0.24381 ^{\{ 2 \}} | 0.25237 ^{\{ 4 \}} | 0.25474 ^{\{ 5 \}} | 0.28267 ^{\{ 8 \}} | 0.24528 ^{\{ 3 \}} | 0.26055 ^{\{ 7 \}} | 0.25601 ^{\{ 6 \}} | ||
D_{abs} | 0.04223 ^{\{ 1 \}} | 0.04403 ^{\{ 2 \}} | 0.04672 ^{\{ 8 \}} | 0.04455 ^{\{ 3 \}} | 0.04648 ^{\{ 7 \}} | 0.04513 ^{\{ 4 \}} | 0.04515 ^{\{ 5 \}} | 0.04614 ^{\{ 6 \}} | ||
D_{max} | 0.07079 ^{\{ 1 \}} | 0.07367 ^{\{ 3 \}} | 0.07922 ^{\{ 8 \}} | 0.07196 ^{\{ 2 \}} | 0.07766 ^{\{ 6 \}} | 0.07539 ^{\{ 5 \}} | 0.07491 ^{\{ 4 \}} | 0.07795 ^{\{ 7 \}} | ||
ASAE | 0.02942 ^{\{ 7 \}} | 0.02673 ^{\{ 4 \}} | 0.02904 ^{\{ 5 \}} | 0.02425 ^{\{ 1 \}} | 0.02924 ^{\{ 6 \}} | 0.02505 ^{\{ 2 \}} | 0.02572 ^{\{ 3 \}} | 0.03359 ^{\{ 8 \}} | ||
\sum Ranks | 31 ^{\{ 2 \}} | 37 ^{\{ 3 \}} | 68 ^{\{ 6 \}} | 41 ^{\{ 4 \}} | 81 ^{\{ 7 \}} | 30 ^{\{ 1 \}} | 57 ^{\{ 5 \}} | 87 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.44843 ^{\{ 1 \}} | 0.55647 ^{\{ 2 \}} | 0.60703 ^{\{ 6 \}} | 0.59899 ^{\{ 5 \}} | 0.61789 ^{\{ 7 \}} | 0.59399 ^{\{ 4 \}} | 0.5885 ^{\{ 3 \}} | 0.81136 ^{\{ 8 \}} |
\hat{a} | 0.21823 ^{\{ 1 \}} | 0.23547 ^{\{ 2 \}} | 0.28101 ^{\{ 7 \}} | 0.24595 ^{\{ 4 \}} | 0.27126 ^{\{ 6 \}} | 0.24022 ^{\{ 3 \}} | 0.25611 ^{\{ 5 \}} | 0.34138 ^{\{ 8 \}} | ||
\hat{b} | 0.07119 ^{\{ 1 \}} | 0.07899 ^{\{ 2 \}} | 0.09493 ^{\{ 7 \}} | 0.09127 ^{\{ 4 \}} | 0.09464 ^{\{ 6 \}} | 0.09441 ^{\{ 5 \}} | 0.08918 ^{\{ 3 \}} | 0.09618 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.29594 ^{\{ 1 \}} | 0.41655 ^{\{ 2 \}} | 0.47968 ^{\{ 5 \}} | 0.50918 ^{\{ 7 \}} | 0.49378 ^{\{ 6 \}} | 0.47083 ^{\{ 4 \}} | 0.46093 ^{\{ 3 \}} | 1.11606 ^{\{ 8 \}} | |
\hat{a} | 0.08284 ^{\{ 1 \}} | 0.08655 ^{\{ 2 \}} | 0.13227 ^{\{ 7 \}} | 0.08818 ^{\{ 3 \}} | 0.12046 ^{\{ 6 \}} | 0.09121 ^{\{ 4 \}} | 0.10373 ^{\{ 5 \}} | 0.1922 ^{\{ 8 \}} | ||
\hat{b} | 0.00891 ^{\{ 1 \}} | 0.01107 ^{\{ 2 \}} | 0.01553 ^{\{ 5.5 \}} | 0.01731 ^{\{ 8 \}} | 0.01553 ^{\{ 5.5 \}} | 0.01424 ^{\{ 4 \}} | 0.01391 ^{\{ 3 \}} | 0.01668 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.29895 ^{\{ 1 \}} | 0.37098 ^{\{ 2 \}} | 0.40469 ^{\{ 6 \}} | 0.39933 ^{\{ 5 \}} | 0.41193 ^{\{ 7 \}} | 0.39599 ^{\{ 4 \}} | 0.39233 ^{\{ 3 \}} | 0.5409 ^{\{ 8 \}} | |
\hat{a} | 0.29097 ^{\{ 1 \}} | 0.31396 ^{\{ 2 \}} | 0.37468 ^{\{ 7 \}} | 0.32794 ^{\{ 4 \}} | 0.36168 ^{\{ 6 \}} | 0.32029 ^{\{ 3 \}} | 0.34148 ^{\{ 5 \}} | 0.45517 ^{\{ 8 \}} | ||
\hat{b} | 0.14238 ^{\{ 1 \}} | 0.15797 ^{\{ 2 \}} | 0.18985 ^{\{ 7 \}} | 0.18254 ^{\{ 4 \}} | 0.18928 ^{\{ 6 \}} | 0.18881 ^{\{ 5 \}} | 0.17837 ^{\{ 3 \}} | 0.19237 ^{\{ 8 \}} | ||
D_{abs} | 0.03152 ^{\{ 2.5 \}} | 0.03098 ^{\{ 1 \}} | 0.03327 ^{\{ 6 \}} | 0.03152 ^{\{ 2.5 \}} | 0.03365 ^{\{ 7 \}} | 0.03254 ^{\{ 5 \}} | 0.0324 ^{\{ 4 \}} | 0.03395 ^{\{ 8 \}} | ||
D_{max} | 0.05225 ^{\{ 3 \}} | 0.05176 ^{\{ 1 \}} | 0.0565 ^{\{ 6 \}} | 0.05216 ^{\{ 2 \}} | 0.05677 ^{\{ 7 \}} | 0.05497 ^{\{ 5 \}} | 0.05425 ^{\{ 4 \}} | 0.05832 ^{\{ 8 \}} | ||
ASAE | 0.01684 ^{\{ 5 \}} | 0.0164 ^{\{ 4 \}} | 0.01827 ^{\{ 7 \}} | 0.01516 ^{\{ 2 \}} | 0.01819 ^{\{ 6 \}} | 0.01497 ^{\{ 1 \}} | 0.01597 ^{\{ 3 \}} | 0.02063 ^{\{ 8 \}} | ||
\sum Ranks | 19.5 ^{\{ 1 \}} | 24 ^{\{ 2 \}} | 76.5 ^{\{ 7 \}} | 50.5 ^{\{ 5 \}} | 75.5 ^{\{ 6 \}} | 47 ^{\{ 4 \}} | 44 ^{\{ 3 \}} | 95 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.35036 ^{\{ 1 \}} | 0.41902 ^{\{ 2 \}} | 0.48817 ^{\{ 6 \}} | 0.48135 ^{\{ 5 \}} | 0.50235 ^{\{ 7 \}} | 0.47052 ^{\{ 4 \}} | 0.45634 ^{\{ 3 \}} | 0.61217 ^{\{ 8 \}} |
\hat{a} | 0.15767 ^{\{ 1 \}} | 0.18619 ^{\{ 2 \}} | 0.21414 ^{\{ 6 \}} | 0.20254 ^{\{ 5 \}} | 0.22223 ^{\{ 7 \}} | 0.18666 ^{\{ 3 \}} | 0.18946 ^{\{ 4 \}} | 0.26043 ^{\{ 8 \}} | ||
\hat{b} | 0.04827 ^{\{ 1 \}} | 0.05232 ^{\{ 3 \}} | 0.06485 ^{\{ 7 \}} | 0.05135 ^{\{ 2 \}} | 0.06782 ^{\{ 8 \}} | 0.06386 ^{\{ 6 \}} | 0.05683 ^{\{ 4 \}} | 0.06102 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.18777 ^{\{ 1 \}} | 0.25158 ^{\{ 2 \}} | 0.32527 ^{\{ 5 \}} | 0.352 ^{\{ 7 \}} | 0.34253 ^{\{ 6 \}} | 0.31557 ^{\{ 4 \}} | 0.28732 ^{\{ 3 \}} | 0.5778 ^{\{ 8 \}} | |
\hat{a} | 0.04089 ^{\{ 1 \}} | 0.05247 ^{\{ 3 \}} | 0.07072 ^{\{ 6 \}} | 0.06092 ^{\{ 5 \}} | 0.07443 ^{\{ 7 \}} | 0.05186 ^{\{ 2 \}} | 0.05349 ^{\{ 4 \}} | 0.10477 ^{\{ 8 \}} | ||
\hat{b} | 0.00404 ^{\{ 1 \}} | 0.00479 ^{\{ 2 \}} | 0.00774 ^{\{ 7 \}} | 0.00548 ^{\{ 3 \}} | 0.00827 ^{\{ 8 \}} | 0.00696 ^{\{ 6 \}} | 0.00551 ^{\{ 4 \}} | 0.00665 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.23357 ^{\{ 1 \}} | 0.27934 ^{\{ 2 \}} | 0.32544 ^{\{ 6 \}} | 0.3209 ^{\{ 5 \}} | 0.3349 ^{\{ 7 \}} | 0.31368 ^{\{ 4 \}} | 0.30422 ^{\{ 3 \}} | 0.40811 ^{\{ 8 \}} | |
\hat{a} | 0.21023 ^{\{ 1 \}} | 0.24825 ^{\{ 2 \}} | 0.28552 ^{\{ 6 \}} | 0.27005 ^{\{ 5 \}} | 0.29631 ^{\{ 7 \}} | 0.24888 ^{\{ 3 \}} | 0.25261 ^{\{ 4 \}} | 0.34723 ^{\{ 8 \}} | ||
\hat{b} | 0.09655 ^{\{ 1 \}} | 0.10464 ^{\{ 3 \}} | 0.12969 ^{\{ 7 \}} | 0.1027 ^{\{ 2 \}} | 0.13565 ^{\{ 8 \}} | 0.12772 ^{\{ 6 \}} | 0.11365 ^{\{ 4 \}} | 0.12204 ^{\{ 5 \}} | ||
D_{abs} | 0.02102 ^{\{ 1 \}} | 0.02184 ^{\{ 3 \}} | 0.02231 ^{\{ 5 \}} | 0.02208 ^{\{ 4 \}} | 0.02368 ^{\{ 8 \}} | 0.02251 ^{\{ 6 \}} | 0.02177 ^{\{ 2 \}} | 0.02282 ^{\{ 7 \}} | ||
D_{max} | 0.03532 ^{\{ 1 \}} | 0.03657 ^{\{ 2 \}} | 0.03853 ^{\{ 6 \}} | 0.0366 ^{\{ 3 \}} | 0.04015 ^{\{ 8 \}} | 0.03831 ^{\{ 5 \}} | 0.03668 ^{\{ 4 \}} | 0.03957 ^{\{ 7 \}} | ||
ASAE | 0.00991 ^{\{ 5 \}} | 0.0094 ^{\{ 3 \}} | 0.0108 ^{\{ 7 \}} | 0.00918 ^{\{ 2 \}} | 0.01075 ^{\{ 6 \}} | 0.00871 ^{\{ 1 \}} | 0.00976 ^{\{ 4 \}} | 0.01271 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 29 ^{\{ 2 \}} | 74 ^{\{ 6 \}} | 48 ^{\{ 4 \}} | 87 ^{\{ 8 \}} | 50 ^{\{ 5 \}} | 43 ^{\{ 3 \}} | 85 ^{\{ 7 \}} | ||
300 | BIAS | \hat{\tau} | 0.26655 ^{\{ 1 \}} | 0.33434 ^{\{ 3 \}} | 0.37325 ^{\{ 6 \}} | 0.34711 ^{\{ 4 \}} | 0.39467 ^{\{ 7 \}} | 0.36499 ^{\{ 5 \}} | 0.33138 ^{\{ 2 \}} | 0.48508 ^{\{ 8 \}} |
\hat{a} | 0.12193 ^{\{ 1 \}} | 0.14744 ^{\{ 4 \}} | 0.16883 ^{\{ 6 \}} | 0.15015 ^{\{ 5 \}} | 0.17776 ^{\{ 7 \}} | 0.14515 ^{\{ 2 \}} | 0.14696 ^{\{ 3 \}} | 0.21805 ^{\{ 8 \}} | ||
\hat{b} | 0.03505 ^{\{ 1 \}} | 0.03905 ^{\{ 4 \}} | 0.04169 ^{\{ 5 \}} | 0.03599 ^{\{ 2 \}} | 0.04485 ^{\{ 7 \}} | 0.04629 ^{\{ 8 \}} | 0.03769 ^{\{ 3 \}} | 0.04173 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.11494 ^{\{ 1 \}} | 0.16891 ^{\{ 3 \}} | 0.19839 ^{\{ 4 \}} | 0.22068 ^{\{ 7 \}} | 0.21592 ^{\{ 6 \}} | 0.20154 ^{\{ 5 \}} | 0.16587 ^{\{ 2 \}} | 0.37566 ^{\{ 8 \}} | |
\hat{a} | 0.0244 ^{\{ 1 \}} | 0.03273 ^{\{ 4 \}} | 0.0429 ^{\{ 6 \}} | 0.03661 ^{\{ 5 \}} | 0.04653 ^{\{ 7 \}} | 0.03141 ^{\{ 2 \}} | 0.03249 ^{\{ 3 \}} | 0.07079 ^{\{ 8 \}} | ||
\hat{b} | 0.00192 ^{\{ 1 \}} | 0.00236 ^{\{ 4 \}} | 0.00295 ^{\{ 6 \}} | 0.00211 ^{\{ 2 \}} | 0.00333 ^{\{ 7 \}} | 0.00349 ^{\{ 8 \}} | 0.00226 ^{\{ 3 \}} | 0.00285 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.1777 ^{\{ 1 \}} | 0.22289 ^{\{ 3 \}} | 0.24883 ^{\{ 6 \}} | 0.23141 ^{\{ 4 \}} | 0.26311 ^{\{ 7 \}} | 0.24333 ^{\{ 5 \}} | 0.22092 ^{\{ 2 \}} | 0.32339 ^{\{ 8 \}} | |
\hat{a} | 0.16257 ^{\{ 1 \}} | 0.19658 ^{\{ 4 \}} | 0.2251 ^{\{ 6 \}} | 0.2002 ^{\{ 5 \}} | 0.23701 ^{\{ 7 \}} | 0.19353 ^{\{ 2 \}} | 0.19595 ^{\{ 3 \}} | 0.29074 ^{\{ 8 \}} | ||
\hat{b} | 0.0701 ^{\{ 1 \}} | 0.07811 ^{\{ 4 \}} | 0.08338 ^{\{ 5 \}} | 0.07198 ^{\{ 2 \}} | 0.08971 ^{\{ 7 \}} | 0.09259 ^{\{ 8 \}} | 0.07539 ^{\{ 3 \}} | 0.08345 ^{\{ 6 \}} | ||
D_{abs} | 0.0149 ^{\{ 1 \}} | 0.01559 ^{\{ 4 \}} | 0.0158 ^{\{ 5 \}} | 0.01556 ^{\{ 3 \}} | 0.01608 ^{\{ 7 \}} | 0.01621 ^{\{ 8 \}} | 0.01505 ^{\{ 2 \}} | 0.01595 ^{\{ 6 \}} | ||
D_{max} | 0.02507 ^{\{ 1 \}} | 0.02657 ^{\{ 4 \}} | 0.02735 ^{\{ 5 \}} | 0.02614 ^{\{ 3 \}} | 0.02778 ^{\{ 7 \}} | 0.02768 ^{\{ 6 \}} | 0.02561 ^{\{ 2 \}} | 0.02806 ^{\{ 8 \}} | ||
ASAE | 0.00607 ^{\{ 5 \}} | 0.00598 ^{\{ 4 \}} | 0.0069 ^{\{ 7 \}} | 0.00571 ^{\{ 2 \}} | 0.00682 ^{\{ 6 \}} | 0.00559 ^{\{ 1 \}} | 0.00593 ^{\{ 3 \}} | 0.00804 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 45 ^{\{ 4 \}} | 67 ^{\{ 6 \}} | 44 ^{\{ 3 \}} | 82 ^{\{ 7 \}} | 60 ^{\{ 5 \}} | 31 ^{\{ 2 \}} | 87 ^{\{ 8 \}} | ||
600 | BIAS | \hat{\tau} | 0.19544 ^{\{ 1 \}} | 0.23541 ^{\{ 3 \}} | 0.30543 ^{\{ 6 \}} | 0.22954 ^{\{ 2 \}} | 0.30719 ^{\{ 7 \}} | 0.2498 ^{\{ 5 \}} | 0.24212 ^{\{ 4 \}} | 0.36224 ^{\{ 8 \}} |
\hat{a} | 0.08322 ^{\{ 1 \}} | 0.10415 ^{\{ 4 \}} | 0.13813 ^{\{ 6 \}} | 0.10194 ^{\{ 2 \}} | 0.13953 ^{\{ 7 \}} | 0.1021 ^{\{ 3 \}} | 0.10419 ^{\{ 5 \}} | 0.1712 ^{\{ 8 \}} | ||
\hat{b} | 0.02563 ^{\{ 2 \}} | 0.02682 ^{\{ 3 \}} | 0.03267 ^{\{ 8 \}} | 0.02544 ^{\{ 1 \}} | 0.03225 ^{\{ 7 \}} | 0.03151 ^{\{ 6 \}} | 0.0275 ^{\{ 4 \}} | 0.02908 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.06188 ^{\{ 1 \}} | 0.09047 ^{\{ 2 \}} | 0.14058 ^{\{ 7 \}} | 0.12175 ^{\{ 5 \}} | 0.13924 ^{\{ 6 \}} | 0.10305 ^{\{ 4 \}} | 0.09293 ^{\{ 3 \}} | 0.21849 ^{\{ 8 \}} | |
\hat{a} | 0.01115 ^{\{ 1 \}} | 0.01707 ^{\{ 3 \}} | 0.02836 ^{\{ 6 \}} | 0.01967 ^{\{ 5 \}} | 0.02862 ^{\{ 7 \}} | 0.01637 ^{\{ 2 \}} | 0.01746 ^{\{ 4 \}} | 0.04409 ^{\{ 8 \}} | ||
\hat{b} | 0.00105 ^{\{ 2 \}} | 0.00116 ^{\{ 3 \}} | 0.00174 ^{\{ 8 \}} | 0.00103 ^{\{ 1 \}} | 0.00162 ^{\{ 7 \}} | 0.00159 ^{\{ 6 \}} | 0.00118 ^{\{ 4 \}} | 0.00135 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.13029 ^{\{ 1 \}} | 0.15694 ^{\{ 3 \}} | 0.20362 ^{\{ 6 \}} | 0.15302 ^{\{ 2 \}} | 0.20479 ^{\{ 7 \}} | 0.16653 ^{\{ 5 \}} | 0.16141 ^{\{ 4 \}} | 0.24149 ^{\{ 8 \}} | |
\hat{a} | 0.11096 ^{\{ 1 \}} | 0.13886 ^{\{ 4 \}} | 0.18417 ^{\{ 6 \}} | 0.13592 ^{\{ 2 \}} | 0.18604 ^{\{ 7 \}} | 0.13613 ^{\{ 3 \}} | 0.13892 ^{\{ 5 \}} | 0.22827 ^{\{ 8 \}} | ||
\hat{b} | 0.05126 ^{\{ 2 \}} | 0.05365 ^{\{ 3 \}} | 0.06534 ^{\{ 8 \}} | 0.05088 ^{\{ 1 \}} | 0.06449 ^{\{ 7 \}} | 0.06302 ^{\{ 6 \}} | 0.055 ^{\{ 4 \}} | 0.05817 ^{\{ 5 \}} | ||
D_{abs} | 0.01057 ^{\{ 1 \}} | 0.01082 ^{\{ 3 \}} | 0.01131 ^{\{ 7 \}} | 0.0107 ^{\{ 2 \}} | 0.01154 ^{\{ 8 \}} | 0.01116 ^{\{ 5 \}} | 0.01097 ^{\{ 4 \}} | 0.01124 ^{\{ 6 \}} | ||
D_{max} | 0.01792 ^{\{ 1 \}} | 0.01849 ^{\{ 3 \}} | 0.01965 ^{\{ 6 \}} | 0.01801 ^{\{ 2 \}} | 0.02001 ^{\{ 8 \}} | 0.01931 ^{\{ 5 \}} | 0.01869 ^{\{ 4 \}} | 0.01979 ^{\{ 7 \}} | ||
ASAE | 0.00367 ^{\{ 3 \}} | 0.00378 ^{\{ 5 \}} | 0.00448 ^{\{ 7 \}} | 0.00364 ^{\{ 2 \}} | 0.00445 ^{\{ 6 \}} | 0.0035 ^{\{ 1 \}} | 0.00376 ^{\{ 4 \}} | 0.0053 ^{\{ 8 \}} | ||
\sum Ranks | 17 ^{\{ 1 \}} | 39 ^{\{ 3 \}} | 81 ^{\{ 6 \}} | 27 ^{\{ 2 \}} | 84 ^{\{ 7.5 \}} | 51 ^{\{ 5 \}} | 49 ^{\{ 4 \}} | 84 ^{\{ 7.5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.53211 ^{\{ 2 \}} | 0.62026 ^{\{ 4 \}} | 0.75084 ^{\{ 7 \}} | 0.47271 ^{\{ 1 \}} | 0.63274 ^{\{ 6 \}} | 0.62076 ^{\{ 5 \}} | 0.55091 ^{\{ 3 \}} | 0.88774 ^{\{ 8 \}} |
\hat{a} | 0.17954 ^{\{ 7 \}} | 0.14419 ^{\{ 3 \}} | 0.15786 ^{\{ 5 \}} | 0.13798 ^{\{ 1 \}} | 0.16003 ^{\{ 6 \}} | 0.14116 ^{\{ 2 \}} | 0.14743 ^{\{ 4 \}} | 0.20721 ^{\{ 8 \}} | ||
\hat{b} | 0.29362 ^{\{ 3 \}} | 0.2843 ^{\{ 2 \}} | 0.33553 ^{\{ 5 \}} | 0.27643 ^{\{ 1 \}} | 0.34292 ^{\{ 7 \}} | 0.34139 ^{\{ 6 \}} | 0.29688 ^{\{ 4 \}} | 0.35737 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.48119 ^{\{ 1 \}} | 3.73487 ^{\{ 7 \}} | 5.47953 ^{\{ 8 \}} | 0.75293 ^{\{ 2 \}} | 1.38498 ^{\{ 5 \}} | 1.30859 ^{\{ 4 \}} | 0.81897 ^{\{ 3 \}} | 1.74615 ^{\{ 6 \}} | |
\hat{a} | 0.05597 ^{\{ 7 \}} | 0.03354 ^{\{ 3 \}} | 0.04117 ^{\{ 5 \}} | 0.02854 ^{\{ 1 \}} | 0.04153 ^{\{ 6 \}} | 0.03226 ^{\{ 2 \}} | 0.03661 ^{\{ 4 \}} | 0.06468 ^{\{ 8 \}} | ||
\hat{b} | 0.15312 ^{\{ 3 \}} | 0.13705 ^{\{ 2 \}} | 0.20378 ^{\{ 7 \}} | 0.11466 ^{\{ 1 \}} | 0.19627 ^{\{ 6 \}} | 0.19503 ^{\{ 5 \}} | 0.16026 ^{\{ 4 \}} | 0.25206 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.26605 ^{\{ 2 \}} | 0.31013 ^{\{ 4 \}} | 0.37542 ^{\{ 7 \}} | 0.23636 ^{\{ 1 \}} | 0.31637 ^{\{ 6 \}} | 0.31038 ^{\{ 5 \}} | 0.27546 ^{\{ 3 \}} | 0.44387 ^{\{ 8 \}} | |
\hat{a} | 0.35909 ^{\{ 7 \}} | 0.28838 ^{\{ 3 \}} | 0.31573 ^{\{ 5 \}} | 0.27597 ^{\{ 1 \}} | 0.32006 ^{\{ 6 \}} | 0.28232 ^{\{ 2 \}} | 0.29486 ^{\{ 4 \}} | 0.41442 ^{\{ 8 \}} | ||
\hat{b} | 0.19574 ^{\{ 3 \}} | 0.18953 ^{\{ 2 \}} | 0.22369 ^{\{ 5 \}} | 0.18428 ^{\{ 1 \}} | 0.22862 ^{\{ 7 \}} | 0.2276 ^{\{ 6 \}} | 0.19792 ^{\{ 4 \}} | 0.23825 ^{\{ 8 \}} | ||
D_{abs} | 0.04307 ^{\{ 1 \}} | 0.0449 ^{\{ 4 \}} | 0.04669 ^{\{ 7 \}} | 0.04388 ^{\{ 2 \}} | 0.04491 ^{\{ 5 \}} | 0.04571 ^{\{ 6 \}} | 0.04461 ^{\{ 3 \}} | 0.04673 ^{\{ 8 \}} | ||
D_{max} | 0.07024 ^{\{ 1 \}} | 0.07378 ^{\{ 3 \}} | 0.07974 ^{\{ 7 \}} | 0.07148 ^{\{ 2 \}} | 0.07603 ^{\{ 5 \}} | 0.07639 ^{\{ 6 \}} | 0.07422 ^{\{ 4 \}} | 0.08325 ^{\{ 8 \}} | ||
ASAE | 0.03049 ^{\{ 7 \}} | 0.02701 ^{\{ 3 \}} | 0.02932 ^{\{ 6 \}} | 0.02714 ^{\{ 4 \}} | 0.02773 ^{\{ 5 \}} | 0.0261 ^{\{ 1 \}} | 0.02631 ^{\{ 2 \}} | 0.03283 ^{\{ 8 \}} | ||
\sum Ranks | 44 ^{\{ 4 \}} | 40 ^{\{ 2 \}} | 74 ^{\{ 7 \}} | 18 ^{\{ 1 \}} | 70 ^{\{ 6 \}} | 50 ^{\{ 5 \}} | 42 ^{\{ 3 \}} | 94 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.51021 ^{\{ 6 \}} | 0.46181 ^{\{ 3 \}} | 0.55823 ^{\{ 7 \}} | 0.32583 ^{\{ 1 \}} | 0.50722 ^{\{ 5 \}} | 0.4729 ^{\{ 4 \}} | 0.44219 ^{\{ 2 \}} | 0.72147 ^{\{ 8 \}} |
\hat{a} | 0.14444 ^{\{ 7 \}} | 0.11709 ^{\{ 3 \}} | 0.12932 ^{\{ 6 \}} | 0.10479 ^{\{ 1 \}} | 0.12807 ^{\{ 5 \}} | 0.10663 ^{\{ 2 \}} | 0.11767 ^{\{ 4 \}} | 0.16304 ^{\{ 8 \}} | ||
\hat{b} | 0.21298 ^{\{ 4 \}} | 0.19057 ^{\{ 1 \}} | 0.22769 ^{\{ 7 \}} | 0.19871 ^{\{ 2 \}} | 0.22471 ^{\{ 5 \}} | 0.22894 ^{\{ 8 \}} | 0.20491 ^{\{ 3 \}} | 0.22533 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.42994 ^{\{ 5 \}} | 0.35419 ^{\{ 2 \}} | 0.59732 ^{\{ 7 \}} | 0.22679 ^{\{ 1 \}} | 0.51238 ^{\{ 6 \}} | 0.42894 ^{\{ 4 \}} | 0.35475 ^{\{ 3 \}} | 0.92497 ^{\{ 8 \}} | |
\hat{a} | 0.03539 ^{\{ 7 \}} | 0.02113 ^{\{ 4 \}} | 0.02531 ^{\{ 5 \}} | 0.01663 ^{\{ 1 \}} | 0.02539 ^{\{ 6 \}} | 0.01784 ^{\{ 2 \}} | 0.02057 ^{\{ 3 \}} | 0.0383 ^{\{ 8 \}} | ||
\hat{b} | 0.07882 ^{\{ 5 \}} | 0.06102 ^{\{ 2 \}} | 0.08373 ^{\{ 6 \}} | 0.05998 ^{\{ 1 \}} | 0.07835 ^{\{ 4 \}} | 0.08602 ^{\{ 7 \}} | 0.07017 ^{\{ 3 \}} | 0.08803 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.25511 ^{\{ 6 \}} | 0.2309 ^{\{ 3 \}} | 0.27912 ^{\{ 7 \}} | 0.16292 ^{\{ 1 \}} | 0.25361 ^{\{ 5 \}} | 0.23645 ^{\{ 4 \}} | 0.2211 ^{\{ 2 \}} | 0.36073 ^{\{ 8 \}} | |
\hat{a} | 0.28889 ^{\{ 7 \}} | 0.23418 ^{\{ 3 \}} | 0.25864 ^{\{ 6 \}} | 0.20958 ^{\{ 1 \}} | 0.25613 ^{\{ 5 \}} | 0.21326 ^{\{ 2 \}} | 0.23534 ^{\{ 4 \}} | 0.32609 ^{\{ 8 \}} | ||
\hat{b} | 0.14198 ^{\{ 4 \}} | 0.12705 ^{\{ 1 \}} | 0.15179 ^{\{ 7 \}} | 0.13248 ^{\{ 2 \}} | 0.14981 ^{\{ 5 \}} | 0.15263 ^{\{ 8 \}} | 0.13661 ^{\{ 3 \}} | 0.15022 ^{\{ 6 \}} | ||
D_{abs} | 0.03036 ^{\{ 2 \}} | 0.03145 ^{\{ 4 \}} | 0.03273 ^{\{ 6 \}} | 0.02999 ^{\{ 1 \}} | 0.03228 ^{\{ 5 \}} | 0.03339 ^{\{ 8 \}} | 0.03132 ^{\{ 3 \}} | 0.03284 ^{\{ 7 \}} | ||
D_{max} | 0.05009 ^{\{ 2 \}} | 0.05184 ^{\{ 3 \}} | 0.05627 ^{\{ 7 \}} | 0.04922 ^{\{ 1 \}} | 0.05469 ^{\{ 5 \}} | 0.05545 ^{\{ 6 \}} | 0.05225 ^{\{ 4 \}} | 0.0576 ^{\{ 8 \}} | ||
ASAE | 0.01841 ^{\{ 6 \}} | 0.01732 ^{\{ 3 \}} | 0.0189 ^{\{ 7 \}} | 0.01759 ^{\{ 4 \}} | 0.01822 ^{\{ 5 \}} | 0.01671 ^{\{ 1 \}} | 0.01717 ^{\{ 2 \}} | 0.0212 ^{\{ 8 \}} | ||
\sum Ranks | 61 ^{\{ 5.5 \}} | 32 ^{\{ 2 \}} | 78 ^{\{ 7 \}} | 17 ^{\{ 1 \}} | 61 ^{\{ 5.5 \}} | 56 ^{\{ 4 \}} | 36 ^{\{ 3 \}} | 91 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.43313 ^{\{ 5 \}} | 0.38216 ^{\{ 3 \}} | 0.4568 ^{\{ 6 \}} | 0.2421 ^{\{ 1 \}} | 0.46034 ^{\{ 7 \}} | 0.38646 ^{\{ 4 \}} | 0.36914 ^{\{ 2 \}} | 0.55156 ^{\{ 8 \}} |
\hat{a} | 0.11342 ^{\{ 7 \}} | 0.09493 ^{\{ 4 \}} | 0.10673 ^{\{ 5 \}} | 0.07841 ^{\{ 1 \}} | 0.10869 ^{\{ 6 \}} | 0.09064 ^{\{ 2 \}} | 0.09329 ^{\{ 3 \}} | 0.13012 ^{\{ 8 \}} | ||
\hat{b} | 0.13544 ^{\{ 3 \}} | 0.13508 ^{\{ 2 \}} | 0.15218 ^{\{ 6 \}} | 0.12937 ^{\{ 1 \}} | 0.15998 ^{\{ 8 \}} | 0.14971 ^{\{ 5 \}} | 0.13655 ^{\{ 4 \}} | 0.15561 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.3042 ^{\{ 5 \}} | 0.23781 ^{\{ 3 \}} | 0.35945 ^{\{ 6 \}} | 0.11844 ^{\{ 1 \}} | 0.37455 ^{\{ 7 \}} | 0.26349 ^{\{ 4 \}} | 0.23662 ^{\{ 2 \}} | 0.47541 ^{\{ 8 \}} | |
\hat{a} | 0.02075 ^{\{ 7 \}} | 0.01375 ^{\{ 4 \}} | 0.01716 ^{\{ 5 \}} | 0.00947 ^{\{ 1 \}} | 0.01836 ^{\{ 6 \}} | 0.013 ^{\{ 2 \}} | 0.01327 ^{\{ 3 \}} | 0.02369 ^{\{ 8 \}} | ||
\hat{b} | 0.03131 ^{\{ 4 \}} | 0.02853 ^{\{ 2 \}} | 0.03592 ^{\{ 5 \}} | 0.02519 ^{\{ 1 \}} | 0.03888 ^{\{ 8 \}} | 0.03726 ^{\{ 7 \}} | 0.03049 ^{\{ 3 \}} | 0.03632 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.21657 ^{\{ 5 \}} | 0.19108 ^{\{ 3 \}} | 0.2284 ^{\{ 6 \}} | 0.12105 ^{\{ 1 \}} | 0.23017 ^{\{ 7 \}} | 0.19323 ^{\{ 4 \}} | 0.18457 ^{\{ 2 \}} | 0.27578 ^{\{ 8 \}} | |
\hat{a} | 0.22685 ^{\{ 7 \}} | 0.18986 ^{\{ 4 \}} | 0.21346 ^{\{ 5 \}} | 0.15681 ^{\{ 1 \}} | 0.21737 ^{\{ 6 \}} | 0.18128 ^{\{ 2 \}} | 0.18657 ^{\{ 3 \}} | 0.26023 ^{\{ 8 \}} | ||
\hat{b} | 0.0903 ^{\{ 3 \}} | 0.09005 ^{\{ 2 \}} | 0.10145 ^{\{ 6 \}} | 0.08625 ^{\{ 1 \}} | 0.10665 ^{\{ 8 \}} | 0.09981 ^{\{ 5 \}} | 0.09104 ^{\{ 4 \}} | 0.10374 ^{\{ 7 \}} | ||
D_{abs} | 0.02029 ^{\{ 1 \}} | 0.02158 ^{\{ 4 \}} | 0.02244 ^{\{ 8 \}} | 0.02061 ^{\{ 2 \}} | 0.02192 ^{\{ 6 \}} | 0.02201 ^{\{ 7 \}} | 0.0213 ^{\{ 3 \}} | 0.02178 ^{\{ 5 \}} | ||
D_{max} | 0.0336 ^{\{ 1 \}} | 0.0357 ^{\{ 4 \}} | 0.0381 ^{\{ 8 \}} | 0.03368 ^{\{ 2 \}} | 0.03725 ^{\{ 6 \}} | 0.03676 ^{\{ 5 \}} | 0.03557 ^{\{ 3 \}} | 0.03761 ^{\{ 7 \}} | ||
ASAE | 0.01084 ^{\{ 5 \}} | 0.01034 ^{\{ 2 \}} | 0.01173 ^{\{ 7 \}} | 0.01071 ^{\{ 4 \}} | 0.01128 ^{\{ 6 \}} | 0.00996 ^{\{ 1 \}} | 0.01055 ^{\{ 3 \}} | 0.01309 ^{\{ 8 \}} | ||
\sum Ranks | 53 ^{\{ 5 \}} | 37 ^{\{ 3 \}} | 73 ^{\{ 6 \}} | 17 ^{\{ 1 \}} | 81 ^{\{ 7 \}} | 48 ^{\{ 4 \}} | 35 ^{\{ 2 \}} | 88 ^{\{ 8 \}} | ||
300 | BIAS | \hat{\tau} | 0.38726 ^{\{ 6 \}} | 0.33359 ^{\{ 2 \}} | 0.38992 ^{\{ 7 \}} | 0.18992 ^{\{ 1 \}} | 0.37128 ^{\{ 5 \}} | 0.35983 ^{\{ 4 \}} | 0.34388 ^{\{ 3 \}} | 0.46204 ^{\{ 8 \}} |
\hat{a} | 0.09738 ^{\{ 7 \}} | 0.0794 ^{\{ 2 \}} | 0.09391 ^{\{ 6 \}} | 0.06178 ^{\{ 1 \}} | 0.08945 ^{\{ 5 \}} | 0.08286 ^{\{ 3 \}} | 0.08352 ^{\{ 4 \}} | 0.11042 ^{\{ 8 \}} | ||
\hat{b} | 0.09272 ^{\{ 1 \}} | 0.10093 ^{\{ 4 \}} | 0.11688 ^{\{ 7 \}} | 0.09282 ^{\{ 2 \}} | 0.11978 ^{\{ 8 \}} | 0.10638 ^{\{ 5 \}} | 0.10064 ^{\{ 3 \}} | 0.11367 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.23046 ^{\{ 6 \}} | 0.1782 ^{\{ 2 \}} | 0.24446 ^{\{ 7 \}} | 0.08426 ^{\{ 1 \}} | 0.2303 ^{\{ 5 \}} | 0.21335 ^{\{ 4 \}} | 0.19028 ^{\{ 3 \}} | 0.31359 ^{\{ 8 \}} | |
\hat{a} | 0.01471 ^{\{ 7 \}} | 0.00985 ^{\{ 2 \}} | 0.01326 ^{\{ 6 \}} | 0.0063 ^{\{ 1 \}} | 0.01233 ^{\{ 5 \}} | 0.01072 ^{\{ 4 \}} | 0.01051 ^{\{ 3 \}} | 0.01694 ^{\{ 8 \}} | ||
\hat{b} | 0.01347 ^{\{ 2 \}} | 0.0154 ^{\{ 3 \}} | 0.02142 ^{\{ 7 \}} | 0.0127 ^{\{ 1 \}} | 0.02166 ^{\{ 8 \}} | 0.01781 ^{\{ 5 \}} | 0.01588 ^{\{ 4 \}} | 0.02005 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.19363 ^{\{ 6 \}} | 0.16679 ^{\{ 2 \}} | 0.19496 ^{\{ 7 \}} | 0.09496 ^{\{ 1 \}} | 0.18564 ^{\{ 5 \}} | 0.17992 ^{\{ 4 \}} | 0.17194 ^{\{ 3 \}} | 0.23102 ^{\{ 8 \}} | |
\hat{a} | 0.19476 ^{\{ 7 \}} | 0.1588 ^{\{ 2 \}} | 0.18781 ^{\{ 6 \}} | 0.12356 ^{\{ 1 \}} | 0.17891 ^{\{ 5 \}} | 0.16573 ^{\{ 3 \}} | 0.16703 ^{\{ 4 \}} | 0.22084 ^{\{ 8 \}} | ||
\hat{b} | 0.06181 ^{\{ 1 \}} | 0.06728 ^{\{ 4 \}} | 0.07792 ^{\{ 7 \}} | 0.06188 ^{\{ 2 \}} | 0.07985 ^{\{ 8 \}} | 0.07092 ^{\{ 5 \}} | 0.0671 ^{\{ 3 \}} | 0.07578 ^{\{ 6 \}} | ||
D_{abs} | 0.01458 ^{\{ 2 \}} | 0.01466 ^{\{ 3 \}} | 0.01637 ^{\{ 8 \}} | 0.01442 ^{\{ 1 \}} | 0.01585 ^{\{ 5 \}} | 0.01586 ^{\{ 6 \}} | 0.01526 ^{\{ 4 \}} | 0.01617 ^{\{ 7 \}} | ||
D_{max} | 0.02429 ^{\{ 2 \}} | 0.02455 ^{\{ 3 \}} | 0.02772 ^{\{ 8 \}} | 0.0237 ^{\{ 1 \}} | 0.02703 ^{\{ 6 \}} | 0.02665 ^{\{ 5 \}} | 0.0255 ^{\{ 4 \}} | 0.02769 ^{\{ 7 \}} | ||
ASAE | 0.00677 ^{\{ 5 \}} | 0.0067 ^{\{ 3 \}} | 0.00736 ^{\{ 7 \}} | 0.00671 ^{\{ 4 \}} | 0.00725 ^{\{ 6 \}} | 0.00629 ^{\{ 1 \}} | 0.00664 ^{\{ 2 \}} | 0.00836 ^{\{ 8 \}} | ||
\sum Ranks | 52 ^{\{ 5 \}} | 32 ^{\{ 2 \}} | 83 ^{\{ 7 \}} | 17 ^{\{ 1 \}} | 71 ^{\{ 6 \}} | 49 ^{\{ 4 \}} | 40 ^{\{ 3 \}} | 88 ^{\{ 8 \}} | ||
600 | BIAS | \hat{\tau} | 0.33439 ^{\{ 6 \}} | 0.29901 ^{\{ 2 \}} | 0.33425 ^{\{ 5 \}} | 0.12434 ^{\{ 1 \}} | 0.34928 ^{\{ 7 \}} | 0.307 ^{\{ 3 \}} | 0.31014 ^{\{ 4 \}} | 0.38531 ^{\{ 8 \}} |
\hat{a} | 0.08166 ^{\{ 6 \}} | 0.0727 ^{\{ 3 \}} | 0.07959 ^{\{ 5 \}} | 0.04277 ^{\{ 1 \}} | 0.08482 ^{\{ 7 \}} | 0.07253 ^{\{ 2 \}} | 0.0737 ^{\{ 4 \}} | 0.09209 ^{\{ 8 \}} | ||
\hat{b} | 0.0686 ^{\{ 2 \}} | 0.07273 ^{\{ 4 \}} | 0.0851 ^{\{ 7 \}} | 0.06697 ^{\{ 1 \}} | 0.08853 ^{\{ 8 \}} | 0.07975 ^{\{ 5 \}} | 0.07184 ^{\{ 3 \}} | 0.08318 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.16634 ^{\{ 5 \}} | 0.13955 ^{\{ 2 \}} | 0.17655 ^{\{ 6 \}} | 0.05129 ^{\{ 1 \}} | 0.18951 ^{\{ 7 \}} | 0.15596 ^{\{ 4 \}} | 0.1493 ^{\{ 3 \}} | 0.20575 ^{\{ 8 \}} | |
\hat{a} | 0.01011 ^{\{ 6 \}} | 0.00794 ^{\{ 2 \}} | 0.00965 ^{\{ 5 \}} | 0.0035 ^{\{ 1 \}} | 0.01076 ^{\{ 7 \}} | 0.00839 ^{\{ 4 \}} | 0.00828 ^{\{ 3 \}} | 0.01148 ^{\{ 8 \}} | ||
\hat{b} | 0.00734 ^{\{ 2 \}} | 0.00804 ^{\{ 3 \}} | 0.01118 ^{\{ 7 \}} | 0.00685 ^{\{ 1 \}} | 0.01207 ^{\{ 8 \}} | 0.00953 ^{\{ 5 \}} | 0.00809 ^{\{ 4 \}} | 0.01058 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.1672 ^{\{ 6 \}} | 0.14951 ^{\{ 2 \}} | 0.16712 ^{\{ 5 \}} | 0.06217 ^{\{ 1 \}} | 0.17464 ^{\{ 7 \}} | 0.1535 ^{\{ 3 \}} | 0.15507 ^{\{ 4 \}} | 0.19266 ^{\{ 8 \}} | |
\hat{a} | 0.16331 ^{\{ 6 \}} | 0.1454 ^{\{ 3 \}} | 0.15918 ^{\{ 5 \}} | 0.08554 ^{\{ 1 \}} | 0.16963 ^{\{ 7 \}} | 0.14506 ^{\{ 2 \}} | 0.14741 ^{\{ 4 \}} | 0.18418 ^{\{ 8 \}} | ||
\hat{b} | 0.04573 ^{\{ 2 \}} | 0.04849 ^{\{ 4 \}} | 0.05674 ^{\{ 7 \}} | 0.04465 ^{\{ 1 \}} | 0.05902 ^{\{ 8 \}} | 0.05317 ^{\{ 5 \}} | 0.0479 ^{\{ 3 \}} | 0.05545 ^{\{ 6 \}} | ||
D_{abs} | 0.01052 ^{\{ 1 \}} | 0.01059 ^{\{ 3 \}} | 0.01098 ^{\{ 5 \}} | 0.01057 ^{\{ 2 \}} | 0.01117 ^{\{ 7 \}} | 0.0113 ^{\{ 8 \}} | 0.01068 ^{\{ 4 \}} | 0.01106 ^{\{ 6 \}} | ||
D_{max} | 0.01751 ^{\{ 2 \}} | 0.01784 ^{\{ 3 \}} | 0.01888 ^{\{ 5 \}} | 0.01736 ^{\{ 1 \}} | 0.01914 ^{\{ 7 \}} | 0.01915 ^{\{ 8 \}} | 0.01798 ^{\{ 4 \}} | 0.01898 ^{\{ 6 \}} | ||
ASAE | 0.00424 ^{\{ 4 \}} | 0.0042 ^{\{ 2 \}} | 0.00469 ^{\{ 7 \}} | 0.00438 ^{\{ 5 \}} | 0.00466 ^{\{ 6 \}} | 0.00396 ^{\{ 1 \}} | 0.00422 ^{\{ 3 \}} | 0.00525 ^{\{ 8 \}} | ||
\sum Ranks | 48 ^{\{ 4 \}} | 33 ^{\{ 2 \}} | 69 ^{\{ 6 \}} | 17 ^{\{ 1 \}} | 86 ^{\{ 7.5 \}} | 50 ^{\{ 5 \}} | 43 ^{\{ 3 \}} | 86 ^{\{ 7.5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.51619 ^{\{ 2 \}} | 0.63113 ^{\{ 6 \}} | 0.67423 ^{\{ 7 \}} | 0.51172 ^{\{ 1 \}} | 0.61334 ^{\{ 4 \}} | 0.62651 ^{\{ 5 \}} | 0.55707 ^{\{ 3 \}} | 0.88577 ^{\{ 8 \}} |
\hat{a} | 0.4211 ^{\{ 6 \}} | 0.39524 ^{\{ 5 \}} | 0.43673 ^{\{ 7 \}} | 0.34427 ^{\{ 1 \}} | 0.38438 ^{\{ 3 \}} | 0.36625 ^{\{ 2 \}} | 0.38901 ^{\{ 4 \}} | 0.57667 ^{\{ 8 \}} | ||
\hat{b} | 0.42122 ^{\{ 2 \}} | 0.42702 ^{\{ 3 \}} | 0.52173 ^{\{ 8 \}} | 0.40397 ^{\{ 1 \}} | 0.48285 ^{\{ 6 \}} | 0.45722 ^{\{ 5 \}} | 0.44181 ^{\{ 4 \}} | 0.4914 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.44269 ^{\{ 1 \}} | 1.40915 ^{\{ 6 \}} | 0.97253 ^{\{ 5 \}} | 0.79973 ^{\{ 4 \}} | 0.78856 ^{\{ 3 \}} | 4.65109 ^{\{ 8 \}} | 0.70986 ^{\{ 2 \}} | 1.63292 ^{\{ 7 \}} | |
\hat{a} | 0.28044 ^{\{ 6 \}} | 0.24296 ^{\{ 5 \}} | 0.31317 ^{\{ 7 \}} | 0.18465 ^{\{ 1 \}} | 0.23352 ^{\{ 4 \}} | 0.21626 ^{\{ 2 \}} | 0.23222 ^{\{ 3 \}} | 0.50968 ^{\{ 8 \}} | ||
\hat{b} | 0.32216 ^{\{ 2 \}} | 0.33661 ^{\{ 4 \}} | 0.5635 ^{\{ 8 \}} | 0.25378 ^{\{ 1 \}} | 0.4679 ^{\{ 6 \}} | 0.37052 ^{\{ 5 \}} | 0.3353 ^{\{ 3 \}} | 0.47121 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.2581 ^{\{ 2 \}} | 0.31556 ^{\{ 6 \}} | 0.33711 ^{\{ 7 \}} | 0.25586 ^{\{ 1 \}} | 0.30667 ^{\{ 4 \}} | 0.31326 ^{\{ 5 \}} | 0.27853 ^{\{ 3 \}} | 0.44288 ^{\{ 8 \}} | |
\hat{a} | 0.28073 ^{\{ 6 \}} | 0.26349 ^{\{ 5 \}} | 0.29115 ^{\{ 7 \}} | 0.22951 ^{\{ 1 \}} | 0.25625 ^{\{ 3 \}} | 0.24417 ^{\{ 2 \}} | 0.25934 ^{\{ 4 \}} | 0.38445 ^{\{ 8 \}} | ||
\hat{b} | 0.21061 ^{\{ 2 \}} | 0.21351 ^{\{ 3 \}} | 0.26087 ^{\{ 8 \}} | 0.20198 ^{\{ 1 \}} | 0.24143 ^{\{ 6 \}} | 0.22861 ^{\{ 5 \}} | 0.2209 ^{\{ 4 \}} | 0.2457 ^{\{ 7 \}} | ||
D_{abs} | 0.04173 ^{\{ 1 \}} | 0.04563 ^{\{ 4 \}} | 0.04698 ^{\{ 8 \}} | 0.04308 ^{\{ 2 \}} | 0.0467 ^{\{ 7 \}} | 0.04585 ^{\{ 5 \}} | 0.04476 ^{\{ 3 \}} | 0.04629 ^{\{ 6 \}} | ||
D_{max} | 0.06876 ^{\{ 1 \}} | 0.07601 ^{\{ 4 \}} | 0.08059 ^{\{ 7 \}} | 0.07069 ^{\{ 2 \}} | 0.07795 ^{\{ 6 \}} | 0.07656 ^{\{ 5 \}} | 0.07406 ^{\{ 3 \}} | 0.08173 ^{\{ 8 \}} | ||
ASAE | 0.03095 ^{\{ 7 \}} | 0.02759 ^{\{ 4 \}} | 0.02937 ^{\{ 6 \}} | 0.02711 ^{\{ 3 \}} | 0.02798 ^{\{ 5 \}} | 0.02651 ^{\{ 1 \}} | 0.02653 ^{\{ 2 \}} | 0.03252 ^{\{ 8 \}} | ||
\sum Ranks | 38 ^{\{ 2.5 \}} | 55 ^{\{ 5 \}} | 85 ^{\{ 7 \}} | 19 ^{\{ 1 \}} | 57 ^{\{ 6 \}} | 50 ^{\{ 4 \}} | 38 ^{\{ 2.5 \}} | 90 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.47926 ^{\{ 5 \}} | 0.46754 ^{\{ 4 \}} | 0.5632 ^{\{ 7 \}} | 0.3673 ^{\{ 1 \}} | 0.55214 ^{\{ 6 \}} | 0.46172 ^{\{ 2 \}} | 0.46383 ^{\{ 3 \}} | 0.67025 ^{\{ 8 \}} |
\hat{a} | 0.36435 ^{\{ 7 \}} | 0.30602 ^{\{ 3 \}} | 0.3521 ^{\{ 6 \}} | 0.27605 ^{\{ 1 \}} | 0.33303 ^{\{ 5 \}} | 0.29119 ^{\{ 2 \}} | 0.31509 ^{\{ 4 \}} | 0.43801 ^{\{ 8 \}} | ||
\hat{b} | 0.29223 ^{\{ 3 \}} | 0.29115 ^{\{ 2 \}} | 0.3284 ^{\{ 7 \}} | 0.28673 ^{\{ 1 \}} | 0.33862 ^{\{ 8 \}} | 0.31389 ^{\{ 5 \}} | 0.30284 ^{\{ 4 \}} | 0.31591 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.37454 ^{\{ 3 \}} | 0.36448 ^{\{ 2 \}} | 0.56211 ^{\{ 7 \}} | 0.2657 ^{\{ 1 \}} | 0.53431 ^{\{ 6 \}} | 0.39635 ^{\{ 5 \}} | 0.37914 ^{\{ 4 \}} | 0.72289 ^{\{ 8 \}} | |
\hat{a} | 0.20482 ^{\{ 7 \}} | 0.14296 ^{\{ 3 \}} | 0.18606 ^{\{ 6 \}} | 0.11389 ^{\{ 1 \}} | 0.17027 ^{\{ 5 \}} | 0.1266 ^{\{ 2 \}} | 0.15246 ^{\{ 4 \}} | 0.27299 ^{\{ 8 \}} | ||
\hat{b} | 0.14415 ^{\{ 3 \}} | 0.13708 ^{\{ 2 \}} | 0.17917 ^{\{ 7 \}} | 0.13026 ^{\{ 1 \}} | 0.19342 ^{\{ 8 \}} | 0.16635 ^{\{ 5 \}} | 0.15758 ^{\{ 4 \}} | 0.1689 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.23963 ^{\{ 5 \}} | 0.23377 ^{\{ 4 \}} | 0.2816 ^{\{ 7 \}} | 0.18365 ^{\{ 1 \}} | 0.27607 ^{\{ 6 \}} | 0.23086 ^{\{ 2 \}} | 0.23191 ^{\{ 3 \}} | 0.33512 ^{\{ 8 \}} | |
\hat{a} | 0.2429 ^{\{ 7 \}} | 0.20401 ^{\{ 3 \}} | 0.23473 ^{\{ 6 \}} | 0.18403 ^{\{ 1 \}} | 0.22202 ^{\{ 5 \}} | 0.19413 ^{\{ 2 \}} | 0.21006 ^{\{ 4 \}} | 0.29201 ^{\{ 8 \}} | ||
\hat{b} | 0.14612 ^{\{ 3 \}} | 0.14557 ^{\{ 2 \}} | 0.1642 ^{\{ 7 \}} | 0.14337 ^{\{ 1 \}} | 0.16931 ^{\{ 8 \}} | 0.15694 ^{\{ 5 \}} | 0.15142 ^{\{ 4 \}} | 0.15796 ^{\{ 6 \}} | ||
D_{abs} | 0.03043 ^{\{ 1 \}} | 0.03146 ^{\{ 3 \}} | 0.03257 ^{\{ 5 \}} | 0.03117 ^{\{ 2 \}} | 0.03291 ^{\{ 7 \}} | 0.03307 ^{\{ 8 \}} | 0.03149 ^{\{ 4 \}} | 0.03263 ^{\{ 6 \}} | ||
D_{max} | 0.04996 ^{\{ 1 \}} | 0.05229 ^{\{ 4 \}} | 0.0556 ^{\{ 7 \}} | 0.05107 ^{\{ 2 \}} | 0.05559 ^{\{ 6 \}} | 0.05467 ^{\{ 5 \}} | 0.05214 ^{\{ 3 \}} | 0.05719 ^{\{ 8 \}} | ||
ASAE | 0.01855 ^{\{ 6 \}} | 0.01739 ^{\{ 3 \}} | 0.01871 ^{\{ 7 \}} | 0.01758 ^{\{ 4 \}} | 0.01813 ^{\{ 5 \}} | 0.01678 ^{\{ 1 \}} | 0.01729 ^{\{ 2 \}} | 0.02109 ^{\{ 8 \}} | ||
\sum Ranks | 51 ^{\{ 5 \}} | 35 ^{\{ 2 \}} | 79 ^{\{ 7 \}} | 17 ^{\{ 1 \}} | 75 ^{\{ 6 \}} | 44 ^{\{ 4 \}} | 43 ^{\{ 3 \}} | 88 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.4392 ^{\{ 5 \}} | 0.39379 ^{\{ 3 \}} | 0.45566 ^{\{ 7 \}} | 0.27549 ^{\{ 1 \}} | 0.44834 ^{\{ 6 \}} | 0.38128 ^{\{ 2 \}} | 0.41046 ^{\{ 4 \}} | 0.54089 ^{\{ 8 \}} |
\hat{a} | 0.31014 ^{\{ 7 \}} | 0.26139 ^{\{ 3 \}} | 0.28645 ^{\{ 5 \}} | 0.21856 ^{\{ 1 \}} | 0.28762 ^{\{ 6 \}} | 0.24802 ^{\{ 2 \}} | 0.26741 ^{\{ 4 \}} | 0.3628 ^{\{ 8 \}} | ||
\hat{b} | 0.19985 ^{\{ 3 \}} | 0.19591 ^{\{ 1 \}} | 0.21751 ^{\{ 6 \}} | 0.19621 ^{\{ 2 \}} | 0.22876 ^{\{ 8 \}} | 0.21446 ^{\{ 5 \}} | 0.20679 ^{\{ 4 \}} | 0.2256 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.31057 ^{\{ 5 \}} | 0.2424 ^{\{ 2 \}} | 0.33171 ^{\{ 7 \}} | 0.13533 ^{\{ 1 \}} | 0.32597 ^{\{ 6 \}} | 0.25702 ^{\{ 3 \}} | 0.26429 ^{\{ 4 \}} | 0.43436 ^{\{ 8 \}} | |
\hat{a} | 0.15063 ^{\{ 7 \}} | 0.10087 ^{\{ 3 \}} | 0.12317 ^{\{ 6 \}} | 0.07577 ^{\{ 1 \}} | 0.12274 ^{\{ 5 \}} | 0.09392 ^{\{ 2 \}} | 0.10589 ^{\{ 4 \}} | 0.18107 ^{\{ 8 \}} | ||
\hat{b} | 0.06714 ^{\{ 4 \}} | 0.05805 ^{\{ 1 \}} | 0.07483 ^{\{ 6 \}} | 0.05816 ^{\{ 2 \}} | 0.08113 ^{\{ 7 \}} | 0.07187 ^{\{ 5 \}} | 0.06713 ^{\{ 3 \}} | 0.08227 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.2196 ^{\{ 5 \}} | 0.19689 ^{\{ 3 \}} | 0.22783 ^{\{ 7 \}} | 0.13775 ^{\{ 1 \}} | 0.22417 ^{\{ 6 \}} | 0.19064 ^{\{ 2 \}} | 0.20523 ^{\{ 4 \}} | 0.27044 ^{\{ 8 \}} | |
\hat{a} | 0.20676 ^{\{ 7 \}} | 0.17426 ^{\{ 3 \}} | 0.19097 ^{\{ 5 \}} | 0.14571 ^{\{ 1 \}} | 0.19175 ^{\{ 6 \}} | 0.16535 ^{\{ 2 \}} | 0.17827 ^{\{ 4 \}} | 0.24186 ^{\{ 8 \}} | ||
\hat{b} | 0.09993 ^{\{ 3 \}} | 0.09795 ^{\{ 1 \}} | 0.10875 ^{\{ 6 \}} | 0.09811 ^{\{ 2 \}} | 0.11438 ^{\{ 8 \}} | 0.10723 ^{\{ 5 \}} | 0.10339 ^{\{ 4 \}} | 0.1128 ^{\{ 7 \}} | ||
D_{abs} | 0.02083 ^{\{ 1 \}} | 0.02159 ^{\{ 4 \}} | 0.02178 ^{\{ 5 \}} | 0.02125 ^{\{ 2.5 \}} | 0.02218 ^{\{ 6 \}} | 0.02294 ^{\{ 8 \}} | 0.02125 ^{\{ 2.5 \}} | 0.02263 ^{\{ 7 \}} | ||
D_{max} | 0.03432 ^{\{ 1 \}} | 0.03586 ^{\{ 4 \}} | 0.03724 ^{\{ 5 \}} | 0.03487 ^{\{ 2 \}} | 0.03795 ^{\{ 6 \}} | 0.03803 ^{\{ 7 \}} | 0.03566 ^{\{ 3 \}} | 0.03867 ^{\{ 8 \}} | ||
ASAE | 0.0109 ^{\{ 5 \}} | 0.01075 ^{\{ 3.5 \}} | 0.01143 ^{\{ 7 \}} | 0.01075 ^{\{ 3.5 \}} | 0.0111 ^{\{ 6 \}} | 0.01011 ^{\{ 1 \}} | 0.01051 ^{\{ 2 \}} | 0.01296 ^{\{ 8 \}} | ||
\sum Ranks | 53 ^{\{ 5 \}} | 31.5 ^{\{ 2 \}} | 72 ^{\{ 6 \}} | 20 ^{\{ 1 \}} | 76 ^{\{ 7 \}} | 44 ^{\{ 4 \}} | 42.5 ^{\{ 3 \}} | 93 ^{\{ 8 \}} | ||
300 | BIAS | \hat{\tau} | 0.38358 ^{\{ 5 \}} | 0.35025 ^{\{ 3 \}} | 0.40996 ^{\{ 7 \}} | 0.20918 ^{\{ 1 \}} | 0.38933 ^{\{ 6 \}} | 0.35514 ^{\{ 4 \}} | 0.34544 ^{\{ 2 \}} | 0.47301 ^{\{ 8 \}} |
\hat{a} | 0.25949 ^{\{ 7 \}} | 0.22513 ^{\{ 3 \}} | 0.25895 ^{\{ 6 \}} | 0.15794 ^{\{ 1 \}} | 0.25286 ^{\{ 5 \}} | 0.2244 ^{\{ 2 \}} | 0.23092 ^{\{ 4 \}} | 0.31424 ^{\{ 8 \}} | ||
\hat{b} | 0.14384 ^{\{ 3 \}} | 0.14219 ^{\{ 2 \}} | 0.16653 ^{\{ 7 \}} | 0.13428 ^{\{ 1 \}} | 0.16744 ^{\{ 8 \}} | 0.15275 ^{\{ 5 \}} | 0.14455 ^{\{ 4 \}} | 0.16515 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.22395 ^{\{ 5 \}} | 0.18899 ^{\{ 3 \}} | 0.25726 ^{\{ 7 \}} | 0.08634 ^{\{ 1 \}} | 0.23811 ^{\{ 6 \}} | 0.21275 ^{\{ 4 \}} | 0.18524 ^{\{ 2 \}} | 0.31153 ^{\{ 8 \}} | |
\hat{a} | 0.10146 ^{\{ 7 \}} | 0.07569 ^{\{ 2 \}} | 0.0982 ^{\{ 6 \}} | 0.04298 ^{\{ 1 \}} | 0.09473 ^{\{ 5 \}} | 0.07846 ^{\{ 3 \}} | 0.07943 ^{\{ 4 \}} | 0.13087 ^{\{ 8 \}} | ||
\hat{b} | 0.03255 ^{\{ 4 \}} | 0.0313 ^{\{ 2 \}} | 0.04249 ^{\{ 7 \}} | 0.02688 ^{\{ 1 \}} | 0.04388 ^{\{ 8 \}} | 0.03491 ^{\{ 5 \}} | 0.03196 ^{\{ 3 \}} | 0.04248 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.19179 ^{\{ 5 \}} | 0.17513 ^{\{ 3 \}} | 0.20498 ^{\{ 7 \}} | 0.10459 ^{\{ 1 \}} | 0.19466 ^{\{ 6 \}} | 0.17757 ^{\{ 4 \}} | 0.17272 ^{\{ 2 \}} | 0.2365 ^{\{ 8 \}} | |
\hat{a} | 0.17299 ^{\{ 7 \}} | 0.15009 ^{\{ 3 \}} | 0.17264 ^{\{ 6 \}} | 0.10529 ^{\{ 1 \}} | 0.16858 ^{\{ 5 \}} | 0.1496 ^{\{ 2 \}} | 0.15394 ^{\{ 4 \}} | 0.20949 ^{\{ 8 \}} | ||
\hat{b} | 0.07192 ^{\{ 3 \}} | 0.07109 ^{\{ 2 \}} | 0.08327 ^{\{ 7 \}} | 0.06714 ^{\{ 1 \}} | 0.08372 ^{\{ 8 \}} | 0.07638 ^{\{ 5 \}} | 0.07227 ^{\{ 4 \}} | 0.08258 ^{\{ 6 \}} | ||
D_{abs} | 0.01502 ^{\{ 2 \}} | 0.01519 ^{\{ 4 \}} | 0.01582 ^{\{ 6 \}} | 0.01471 ^{\{ 1 \}} | 0.01536 ^{\{ 5 \}} | 0.01593 ^{\{ 7 \}} | 0.01513 ^{\{ 3 \}} | 0.01595 ^{\{ 8 \}} | ||
D_{max} | 0.02487 ^{\{ 2 \}} | 0.02543 ^{\{ 4 \}} | 0.02719 ^{\{ 7 \}} | 0.02418 ^{\{ 1 \}} | 0.02652 ^{\{ 5 \}} | 0.02678 ^{\{ 6 \}} | 0.02539 ^{\{ 3 \}} | 0.02738 ^{\{ 8 \}} | ||
ASAE | 0.00687 ^{\{ 5 \}} | 0.00666 ^{\{ 2 \}} | 0.00739 ^{\{ 7 \}} | 0.00686 ^{\{ 4 \}} | 0.00722 ^{\{ 6 \}} | 0.00639 ^{\{ 1 \}} | 0.0067 ^{\{ 3 \}} | 0.00837 ^{\{ 8 \}} | ||
\sum Ranks | 55 ^{\{ 5 \}} | 33 ^{\{ 2 \}} | 80 ^{\{ 7 \}} | 15 ^{\{ 1 \}} | 73 ^{\{ 6 \}} | 48 ^{\{ 4 \}} | 38 ^{\{ 3 \}} | 90 ^{\{ 8 \}} | ||
600 | BIAS | \hat{\tau} | 0.34337 ^{\{ 5 \}} | 0.29599 ^{\{ 2 \}} | 0.35608 ^{\{ 7 \}} | 0.12837 ^{\{ 1 \}} | 0.34858 ^{\{ 6 \}} | 0.30958 ^{\{ 4 \}} | 0.30911 ^{\{ 3 \}} | 0.4042 ^{\{ 8 \}} |
\hat{a} | 0.22922 ^{\{ 7 \}} | 0.19345 ^{\{ 3 \}} | 0.22519 ^{\{ 5 \}} | 0.09817 ^{\{ 1 \}} | 0.22778 ^{\{ 6 \}} | 0.19235 ^{\{ 2 \}} | 0.20261 ^{\{ 4 \}} | 0.27243 ^{\{ 8 \}} | ||
\hat{b} | 0.10161 ^{\{ 2 \}} | 0.10663 ^{\{ 3 \}} | 0.12649 ^{\{ 8 \}} | 0.09413 ^{\{ 1 \}} | 0.12277 ^{\{ 6 \}} | 0.11287 ^{\{ 5 \}} | 0.10742 ^{\{ 4 \}} | 0.12442 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.17598 ^{\{ 6 \}} | 0.13529 ^{\{ 2 \}} | 0.18281 ^{\{ 7 \}} | 0.04448 ^{\{ 1 \}} | 0.17429 ^{\{ 5 \}} | 0.15427 ^{\{ 4 \}} | 0.14265 ^{\{ 3 \}} | 0.22018 ^{\{ 8 \}} | |
\hat{a} | 0.07869 ^{\{ 7 \}} | 0.05647 ^{\{ 2 \}} | 0.07356 ^{\{ 6 \}} | 0.02176 ^{\{ 1 \}} | 0.07329 ^{\{ 5 \}} | 0.05829 ^{\{ 3 \}} | 0.06038 ^{\{ 4 \}} | 0.09527 ^{\{ 8 \}} | ||
\hat{b} | 0.01627 ^{\{ 2 \}} | 0.01766 ^{\{ 3 \}} | 0.02538 ^{\{ 8 \}} | 0.01352 ^{\{ 1 \}} | 0.02319 ^{\{ 6 \}} | 0.01936 ^{\{ 5 \}} | 0.01824 ^{\{ 4 \}} | 0.02403 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.17169 ^{\{ 5 \}} | 0.14799 ^{\{ 2 \}} | 0.17804 ^{\{ 7 \}} | 0.06418 ^{\{ 1 \}} | 0.17429 ^{\{ 6 \}} | 0.15479 ^{\{ 4 \}} | 0.15455 ^{\{ 3 \}} | 0.2021 ^{\{ 8 \}} | |
\hat{a} | 0.15282 ^{\{ 7 \}} | 0.12897 ^{\{ 3 \}} | 0.15012 ^{\{ 5 \}} | 0.06545 ^{\{ 1 \}} | 0.15185 ^{\{ 6 \}} | 0.12823 ^{\{ 2 \}} | 0.13507 ^{\{ 4 \}} | 0.18162 ^{\{ 8 \}} | ||
\hat{b} | 0.0508 ^{\{ 2 \}} | 0.05331 ^{\{ 3 \}} | 0.06325 ^{\{ 8 \}} | 0.04706 ^{\{ 1 \}} | 0.06139 ^{\{ 6 \}} | 0.05644 ^{\{ 5 \}} | 0.05371 ^{\{ 4 \}} | 0.06221 ^{\{ 7 \}} | ||
D_{abs} | 0.01056 ^{\{ 2 \}} | 0.0106 ^{\{ 3 \}} | 0.01125 ^{\{ 7 \}} | 0.0103 ^{\{ 1 \}} | 0.01164 ^{\{ 8 \}} | 0.01124 ^{\{ 6 \}} | 0.0107 ^{\{ 4 \}} | 0.01089 ^{\{ 5 \}} | ||
D_{max} | 0.01782 ^{\{ 2 \}} | 0.01801 ^{\{ 3 \}} | 0.01931 ^{\{ 7 \}} | 0.017 ^{\{ 1 \}} | 0.01973 ^{\{ 8 \}} | 0.01893 ^{\{ 6 \}} | 0.01812 ^{\{ 4 \}} | 0.01874 ^{\{ 5 \}} | ||
ASAE | 0.00429 ^{\{ 2 \}} | 0.0043 ^{\{ 3 \}} | 0.00478 ^{\{ 7 \}} | 0.0045 ^{\{ 5 \}} | 0.00457 ^{\{ 6 \}} | 0.00406 ^{\{ 1 \}} | 0.00431 ^{\{ 4 \}} | 0.00534 ^{\{ 8 \}} | ||
\sum Ranks | 49 ^{\{ 5 \}} | 32 ^{\{ 2 \}} | 82 ^{\{ 7 \}} | 16 ^{\{ 1 \}} | 74 ^{\{ 6 \}} | 47 ^{\{ 4 \}} | 45 ^{\{ 3 \}} | 87 ^{\{ 8 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.41263 ^{\{ 1 \}} | 0.63117 ^{\{ 3 \}} | 0.61646 ^{\{ 2 \}} | 0.68971 ^{\{ 6 \}} | 0.66123 ^{\{ 4 \}} | 0.69605 ^{\{ 7 \}} | 0.6614 ^{\{ 5 \}} | 0.73592 ^{\{ 8 \}} |
\hat{a} | 0.3458 ^{\{ 1 \}} | 0.40339 ^{\{ 3 \}} | 0.40077 ^{\{ 2 \}} | 0.43258 ^{\{ 6 \}} | 0.43443 ^{\{ 7 \}} | 0.46564 ^{\{ 8 \}} | 0.41928 ^{\{ 5 \}} | 0.40721 ^{\{ 4 \}} | ||
\hat{b} | 0.90474 ^{\{ 2 \}} | 0.95946 ^{\{ 6 \}} | 0.95309 ^{\{ 4 \}} | 0.95489 ^{\{ 5 \}} | 0.92977 ^{\{ 3 \}} | 0.88 ^{\{ 1 \}} | 0.96175 ^{\{ 7 \}} | 1.06824 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.23196 ^{\{ 1 \}} | 0.53768 ^{\{ 3 \}} | 0.47197 ^{\{ 2 \}} | 0.65139 ^{\{ 7 \}} | 0.55116 ^{\{ 4 \}} | 0.64812 ^{\{ 6 \}} | 0.57172 ^{\{ 5 \}} | 0.87411 ^{\{ 8 \}} | |
\hat{a} | 0.19495 ^{\{ 1 \}} | 0.25654 ^{\{ 3 \}} | 0.25032 ^{\{ 2 \}} | 0.28251 ^{\{ 5 \}} | 0.28292 ^{\{ 6 \}} | 0.33262 ^{\{ 8 \}} | 0.27497 ^{\{ 4 \}} | 0.28509 ^{\{ 7 \}} | ||
\hat{b} | 1.40385 ^{\{ 7 \}} | 1.37779 ^{\{ 5 \}} | 1.33026 ^{\{ 3 \}} | 1.37841 ^{\{ 6 \}} | 1.24057 ^{\{ 1 \}} | 1.28937 ^{\{ 2 \}} | 1.33079 ^{\{ 4 \}} | 1.7756 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.55017 ^{\{ 1 \}} | 0.84156 ^{\{ 3 \}} | 0.82195 ^{\{ 2 \}} | 0.91961 ^{\{ 6 \}} | 0.88164 ^{\{ 4 \}} | 0.92807 ^{\{ 7 \}} | 0.88187 ^{\{ 5 \}} | 0.98123 ^{\{ 8 \}} | |
\hat{a} | 0.1729 ^{\{ 1 \}} | 0.20169 ^{\{ 3 \}} | 0.20039 ^{\{ 2 \}} | 0.21629 ^{\{ 6 \}} | 0.21721 ^{\{ 7 \}} | 0.23282 ^{\{ 8 \}} | 0.20964 ^{\{ 5 \}} | 0.20361 ^{\{ 4 \}} | ||
\hat{b} | 0.30158 ^{\{ 2 \}} | 0.31982 ^{\{ 6 \}} | 0.3177 ^{\{ 4 \}} | 0.3183 ^{\{ 5 \}} | 0.30992 ^{\{ 3 \}} | 0.29333 ^{\{ 1 \}} | 0.32058 ^{\{ 7 \}} | 0.35608 ^{\{ 8 \}} | ||
D_{abs} | 0.04253 ^{\{ 1 \}} | 0.04336 ^{\{ 2 \}} | 0.04718 ^{\{ 8 \}} | 0.04338 ^{\{ 3 \}} | 0.04551 ^{\{ 5 \}} | 0.04671 ^{\{ 7 \}} | 0.04479 ^{\{ 4 \}} | 0.04664 ^{\{ 6 \}} | ||
D_{max} | 0.07112 ^{\{ 2 \}} | 0.07194 ^{\{ 3 \}} | 0.0792 ^{\{ 8 \}} | 0.07007 ^{\{ 1 \}} | 0.07453 ^{\{ 5 \}} | 0.07777 ^{\{ 6 \}} | 0.07355 ^{\{ 4 \}} | 0.07787 ^{\{ 7 \}} | ||
ASAE | 0.02959 ^{\{ 7 \}} | 0.02756 ^{\{ 3 \}} | 0.02928 ^{\{ 6 \}} | 0.02713 ^{\{ 2 \}} | 0.02829 ^{\{ 5 \}} | 0.02772 ^{\{ 4 \}} | 0.02691 ^{\{ 1 \}} | 0.03129 ^{\{ 8 \}} | ||
\sum Ranks | 27 ^{\{ 1 \}} | 43 ^{\{ 2 \}} | 45 ^{\{ 3 \}} | 58 ^{\{ 6 \}} | 54 ^{\{ 4 \}} | 65 ^{\{ 7 \}} | 56 ^{\{ 5 \}} | 84 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.37728 ^{\{ 1 \}} | 0.57428 ^{\{ 3 \}} | 0.57379 ^{\{ 2 \}} | 0.61526 ^{\{ 7 \}} | 0.60356 ^{\{ 5 \}} | 0.60726 ^{\{ 6 \}} | 0.58819 ^{\{ 4 \}} | 0.61897 ^{\{ 8 \}} |
\hat{a} | 0.25016 ^{\{ 1 \}} | 0.31949 ^{\{ 2 \}} | 0.33757 ^{\{ 4 \}} | 0.35113 ^{\{ 7 \}} | 0.34537 ^{\{ 6 \}} | 0.35421 ^{\{ 8 \}} | 0.33813 ^{\{ 5 \}} | 0.3285 ^{\{ 3 \}} | ||
\hat{b} | 0.68242 ^{\{ 1 \}} | 0.79998 ^{\{ 5 \}} | 0.77034 ^{\{ 3 \}} | 0.82325 ^{\{ 6 \}} | 0.83417 ^{\{ 8 \}} | 0.69139 ^{\{ 2 \}} | 0.78972 ^{\{ 4 \}} | 0.82557 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.20498 ^{\{ 1 \}} | 0.47839 ^{\{ 4 \}} | 0.45179 ^{\{ 2 \}} | 0.57434 ^{\{ 7 \}} | 0.47675 ^{\{ 3 \}} | 0.53826 ^{\{ 6 \}} | 0.48684 ^{\{ 5 \}} | 0.5989 ^{\{ 8 \}} | |
\hat{a} | 0.09985 ^{\{ 1 \}} | 0.15258 ^{\{ 2 \}} | 0.17907 ^{\{ 4 \}} | 0.20305 ^{\{ 8 \}} | 0.18005 ^{\{ 5 \}} | 0.18882 ^{\{ 7 \}} | 0.17375 ^{\{ 3 \}} | 0.18104 ^{\{ 6 \}} | ||
\hat{b} | 0.77461 ^{\{ 2 \}} | 1.01864 ^{\{ 6 \}} | 0.8902 ^{\{ 3 \}} | 1.13061 ^{\{ 8 \}} | 1.01306 ^{\{ 5 \}} | 0.74376 ^{\{ 1 \}} | 0.95657 ^{\{ 4 \}} | 1.08045 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.50303 ^{\{ 1 \}} | 0.76571 ^{\{ 3 \}} | 0.76505 ^{\{ 2 \}} | 0.82035 ^{\{ 7 \}} | 0.80474 ^{\{ 5 \}} | 0.80968 ^{\{ 6 \}} | 0.78426 ^{\{ 4 \}} | 0.8253 ^{\{ 8 \}} | |
\hat{a} | 0.12508 ^{\{ 1 \}} | 0.15974 ^{\{ 2 \}} | 0.16879 ^{\{ 4 \}} | 0.17557 ^{\{ 7 \}} | 0.17268 ^{\{ 6 \}} | 0.1771 ^{\{ 8 \}} | 0.16906 ^{\{ 5 \}} | 0.16425 ^{\{ 3 \}} | ||
\hat{b} | 0.22747 ^{\{ 1 \}} | 0.26666 ^{\{ 5 \}} | 0.25678 ^{\{ 3 \}} | 0.27442 ^{\{ 6 \}} | 0.27806 ^{\{ 8 \}} | 0.23046 ^{\{ 2 \}} | 0.26324 ^{\{ 4 \}} | 0.27519 ^{\{ 7 \}} | ||
D_{abs} | 0.03062 ^{\{ 2 \}} | 0.03064 ^{\{ 3 \}} | 0.03404 ^{\{ 8 \}} | 0.03001 ^{\{ 1 \}} | 0.03304 ^{\{ 7 \}} | 0.03289 ^{\{ 6 \}} | 0.03251 ^{\{ 4 \}} | 0.03252 ^{\{ 5 \}} | ||
D_{max} | 0.05131 ^{\{ 2 \}} | 0.05151 ^{\{ 3 \}} | 0.05754 ^{\{ 8 \}} | 0.04967 ^{\{ 1 \}} | 0.05555 ^{\{ 7 \}} | 0.05553 ^{\{ 6 \}} | 0.05366 ^{\{ 4 \}} | 0.0546 ^{\{ 5 \}} | ||
ASAE | 0.01854 ^{\{ 7 \}} | 0.01731 ^{\{ 4 \}} | 0.01828 ^{\{ 6 \}} | 0.01722 ^{\{ 2 \}} | 0.01814 ^{\{ 5 \}} | 0.01725 ^{\{ 3 \}} | 0.01692 ^{\{ 1 \}} | 0.01936 ^{\{ 8 \}} | ||
\sum Ranks | 21 ^{\{ 1 \}} | 42 ^{\{ 2 \}} | 49 ^{\{ 4 \}} | 67 ^{\{ 6 \}} | 70 ^{\{ 7 \}} | 61 ^{\{ 5 \}} | 47 ^{\{ 3 \}} | 75 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.31212 ^{\{ 1 \}} | 0.45159 ^{\{ 2 \}} | 0.49391 ^{\{ 4 \}} | 0.50158 ^{\{ 6 \}} | 0.49767 ^{\{ 5 \}} | 0.51173 ^{\{ 8 \}} | 0.47926 ^{\{ 3 \}} | 0.50467 ^{\{ 7 \}} |
\hat{a} | 0.18389 ^{\{ 1 \}} | 0.24619 ^{\{ 2 \}} | 0.26366 ^{\{ 5 \}} | 0.26623 ^{\{ 6 \}} | 0.27263 ^{\{ 8 \}} | 0.26155 ^{\{ 3 \}} | 0.26205 ^{\{ 4 \}} | 0.26637 ^{\{ 7 \}} | ||
\hat{b} | 0.51055 ^{\{ 1 \}} | 0.58914 ^{\{ 2 \}} | 0.64746 ^{\{ 7 \}} | 0.59531 ^{\{ 4 \}} | 0.65501 ^{\{ 8 \}} | 0.62579 ^{\{ 5 \}} | 0.59382 ^{\{ 3 \}} | 0.63847 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.14708 ^{\{ 1 \}} | 0.33233 ^{\{ 2 \}} | 0.35351 ^{\{ 3 \}} | 0.44757 ^{\{ 8 \}} | 0.36746 ^{\{ 5 \}} | 0.41305 ^{\{ 7 \}} | 0.36255 ^{\{ 4 \}} | 0.4025 ^{\{ 6 \}} | |
\hat{a} | 0.05157 ^{\{ 1 \}} | 0.09975 ^{\{ 2 \}} | 0.10789 ^{\{ 3 \}} | 0.12791 ^{\{ 8 \}} | 0.11535 ^{\{ 6 \}} | 0.1123 ^{\{ 5 \}} | 0.11096 ^{\{ 4 \}} | 0.1174 ^{\{ 7 \}} | ||
\hat{b} | 0.47277 ^{\{ 1 \}} | 0.61572 ^{\{ 4 \}} | 0.6529 ^{\{ 5 \}} | 0.7086 ^{\{ 8 \}} | 0.67921 ^{\{ 6 \}} | 0.59584 ^{\{ 2 \}} | 0.60046 ^{\{ 3 \}} | 0.70453 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.41616 ^{\{ 1 \}} | 0.60212 ^{\{ 2 \}} | 0.65854 ^{\{ 4 \}} | 0.66877 ^{\{ 6 \}} | 0.66356 ^{\{ 5 \}} | 0.68231 ^{\{ 8 \}} | 0.63901 ^{\{ 3 \}} | 0.67289 ^{\{ 7 \}} | |
\hat{a} | 0.09195 ^{\{ 1 \}} | 0.1231 ^{\{ 2 \}} | 0.13183 ^{\{ 5 \}} | 0.13311 ^{\{ 6 \}} | 0.13632 ^{\{ 8 \}} | 0.13078 ^{\{ 3 \}} | 0.13102 ^{\{ 4 \}} | 0.13318 ^{\{ 7 \}} | ||
\hat{b} | 0.17018 ^{\{ 1 \}} | 0.19638 ^{\{ 2 \}} | 0.21582 ^{\{ 7 \}} | 0.19844 ^{\{ 4 \}} | 0.21834 ^{\{ 8 \}} | 0.2086 ^{\{ 5 \}} | 0.19794 ^{\{ 3 \}} | 0.21282 ^{\{ 6 \}} | ||
D_{abs} | 0.02081 ^{\{ 1 \}} | 0.02156 ^{\{ 3 \}} | 0.02279 ^{\{ 7.5 \}} | 0.02171 ^{\{ 4 \}} | 0.02269 ^{\{ 6 \}} | 0.02221 ^{\{ 5 \}} | 0.02123 ^{\{ 2 \}} | 0.02279 ^{\{ 7.5 \}} | ||
D_{max} | 0.03496 ^{\{ 1 \}} | 0.0362 ^{\{ 4 \}} | 0.0389 ^{\{ 8 \}} | 0.03607 ^{\{ 3 \}} | 0.03834 ^{\{ 5 \}} | 0.03836 ^{\{ 6 \}} | 0.03583 ^{\{ 2 \}} | 0.03862 ^{\{ 7 \}} | ||
ASAE | 0.01105 ^{\{ 5 \}} | 0.0105 ^{\{ 3 \}} | 0.0111 ^{\{ 7 \}} | 0.01079 ^{\{ 4 \}} | 0.01108 ^{\{ 6 \}} | 0.01049 ^{\{ 2 \}} | 0.01039 ^{\{ 1 \}} | 0.01196 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 30 ^{\{ 2 \}} | 65.5 ^{\{ 5 \}} | 67 ^{\{ 6 \}} | 76 ^{\{ 7 \}} | 59 ^{\{ 4 \}} | 36 ^{\{ 3 \}} | 82.5 ^{\{ 8 \}} | ||
300 | BIAS | \hat{\tau} | 0.26159 ^{\{ 1 \}} | 0.33734 ^{\{ 2 \}} | 0.40449 ^{\{ 6 \}} | 0.3744 ^{\{ 4 \}} | 0.41347 ^{\{ 7 \}} | 0.42097 ^{\{ 8 \}} | 0.34325 ^{\{ 3 \}} | 0.37827 ^{\{ 5 \}} |
\hat{a} | 0.14993 ^{\{ 1 \}} | 0.18532 ^{\{ 3 \}} | 0.20625 ^{\{ 7 \}} | 0.19513 ^{\{ 4 \}} | 0.20695 ^{\{ 8 \}} | 0.19719 ^{\{ 5 \}} | 0.18169 ^{\{ 2 \}} | 0.20501 ^{\{ 6 \}} | ||
\hat{b} | 0.37223 ^{\{ 1 \}} | 0.41779 ^{\{ 2 \}} | 0.508 ^{\{ 7 \}} | 0.44601 ^{\{ 4 \}} | 0.50594 ^{\{ 6 \}} | 0.52145 ^{\{ 8 \}} | 0.42076 ^{\{ 3 \}} | 0.45303 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.10953 ^{\{ 1 \}} | 0.20094 ^{\{ 2 \}} | 0.26331 ^{\{ 5 \}} | 0.29301 ^{\{ 7 \}} | 0.28568 ^{\{ 6 \}} | 0.30513 ^{\{ 8 \}} | 0.20537 ^{\{ 3 \}} | 0.24655 ^{\{ 4 \}} | |
\hat{a} | 0.03556 ^{\{ 1 \}} | 0.05977 ^{\{ 3 \}} | 0.06975 ^{\{ 4 \}} | 0.07768 ^{\{ 8 \}} | 0.07525 ^{\{ 7 \}} | 0.07119 ^{\{ 5 \}} | 0.05699 ^{\{ 2 \}} | 0.07212 ^{\{ 6 \}} | ||
\hat{b} | 0.29126 ^{\{ 1 \}} | 0.31942 ^{\{ 2 \}} | 0.43464 ^{\{ 6 \}} | 0.48268 ^{\{ 8 \}} | 0.44893 ^{\{ 7 \}} | 0.43375 ^{\{ 5 \}} | 0.32104 ^{\{ 3 \}} | 0.39031 ^{\{ 4 \}} | ||
MRE | \hat{\tau} | 0.34879 ^{\{ 1 \}} | 0.44978 ^{\{ 2 \}} | 0.53932 ^{\{ 6 \}} | 0.49921 ^{\{ 4 \}} | 0.5513 ^{\{ 7 \}} | 0.56129 ^{\{ 8 \}} | 0.45767 ^{\{ 3 \}} | 0.50436 ^{\{ 5 \}} | |
\hat{a} | 0.07496 ^{\{ 1 \}} | 0.09266 ^{\{ 3 \}} | 0.10313 ^{\{ 7 \}} | 0.09757 ^{\{ 4 \}} | 0.10347 ^{\{ 8 \}} | 0.09859 ^{\{ 5 \}} | 0.09085 ^{\{ 2 \}} | 0.1025 ^{\{ 6 \}} | ||
\hat{b} | 0.12408 ^{\{ 1 \}} | 0.13926 ^{\{ 2 \}} | 0.16933 ^{\{ 7 \}} | 0.14867 ^{\{ 4 \}} | 0.16865 ^{\{ 6 \}} | 0.17382 ^{\{ 8 \}} | 0.14025 ^{\{ 3 \}} | 0.15101 ^{\{ 5 \}} | ||
D_{abs} | 0.01478 ^{\{ 1 \}} | 0.01563 ^{\{ 4 \}} | 0.01625 ^{\{ 8 \}} | 0.01541 ^{\{ 3 \}} | 0.01591 ^{\{ 6 \}} | 0.01623 ^{\{ 7 \}} | 0.01493 ^{\{ 2 \}} | 0.01584 ^{\{ 5 \}} | ||
D_{max} | 0.02519 ^{\{ 1 \}} | 0.02694 ^{\{ 4 \}} | 0.02821 ^{\{ 8 \}} | 0.02592 ^{\{ 3 \}} | 0.02751 ^{\{ 6 \}} | 0.02814 ^{\{ 7 \}} | 0.02552 ^{\{ 2 \}} | 0.0274 ^{\{ 5 \}} | ||
ASAE | 0.00695 ^{\{ 4 \}} | 0.00682 ^{\{ 3 \}} | 0.00721 ^{\{ 7 \}} | 0.00697 ^{\{ 5 \}} | 0.00704 ^{\{ 6 \}} | 0.00671 ^{\{ 1 \}} | 0.0068 ^{\{ 2 \}} | 0.00775 ^{\{ 8 \}} | ||
\sum Ranks | 15 ^{\{ 1 \}} | 32 ^{\{ 3 \}} | 78 ^{\{ 7 \}} | 58 ^{\{ 4 \}} | 80 ^{\{ 8 \}} | 75 ^{\{ 6 \}} | 30 ^{\{ 2 \}} | 64 ^{\{ 5 \}} | ||
600 | BIAS | \hat{\tau} | 0.19336 ^{\{ 1 \}} | 0.23349 ^{\{ 2 \}} | 0.28978 ^{\{ 6 \}} | 0.23372 ^{\{ 3 \}} | 0.30777 ^{\{ 7 \}} | 0.30949 ^{\{ 8 \}} | 0.23507 ^{\{ 4 \}} | 0.2662 ^{\{ 5 \}} |
\hat{a} | 0.10937 ^{\{ 1 \}} | 0.12304 ^{\{ 2 \}} | 0.14902 ^{\{ 6 \}} | 0.12842 ^{\{ 4 \}} | 0.15724 ^{\{ 8 \}} | 0.13825 ^{\{ 5 \}} | 0.12621 ^{\{ 3 \}} | 0.15464 ^{\{ 7 \}} | ||
\hat{b} | 0.26801 ^{\{ 1 \}} | 0.30194 ^{\{ 4 \}} | 0.37263 ^{\{ 6 \}} | 0.27088 ^{\{ 2 \}} | 0.38556 ^{\{ 7 \}} | 0.42662 ^{\{ 8 \}} | 0.29441 ^{\{ 3 \}} | 0.30703 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.06126 ^{\{ 1 \}} | 0.10127 ^{\{ 2 \}} | 0.15044 ^{\{ 6 \}} | 0.13095 ^{\{ 4 \}} | 0.16716 ^{\{ 8 \}} | 0.16478 ^{\{ 7 \}} | 0.10547 ^{\{ 3 \}} | 0.13164 ^{\{ 5 \}} | |
\hat{a} | 0.0189 ^{\{ 1 \}} | 0.02821 ^{\{ 2 \}} | 0.04017 ^{\{ 6 \}} | 0.03537 ^{\{ 4 \}} | 0.04408 ^{\{ 8 \}} | 0.03582 ^{\{ 5 \}} | 0.02981 ^{\{ 3 \}} | 0.04188 ^{\{ 7 \}} | ||
\hat{b} | 0.12688 ^{\{ 1 \}} | 0.15549 ^{\{ 2 \}} | 0.25123 ^{\{ 6 \}} | 0.18801 ^{\{ 4 \}} | 0.28486 ^{\{ 7 \}} | 0.29794 ^{\{ 8 \}} | 0.15848 ^{\{ 3 \}} | 0.18934 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.25781 ^{\{ 1 \}} | 0.31131 ^{\{ 2 \}} | 0.38638 ^{\{ 6 \}} | 0.31162 ^{\{ 3 \}} | 0.41036 ^{\{ 7 \}} | 0.41265 ^{\{ 8 \}} | 0.31343 ^{\{ 4 \}} | 0.35494 ^{\{ 5 \}} | |
\hat{a} | 0.05468 ^{\{ 1 \}} | 0.06152 ^{\{ 2 \}} | 0.07451 ^{\{ 6 \}} | 0.06421 ^{\{ 4 \}} | 0.07862 ^{\{ 8 \}} | 0.06912 ^{\{ 5 \}} | 0.06311 ^{\{ 3 \}} | 0.07732 ^{\{ 7 \}} | ||
\hat{b} | 0.08934 ^{\{ 1 \}} | 0.10065 ^{\{ 4 \}} | 0.12421 ^{\{ 6 \}} | 0.09029 ^{\{ 2 \}} | 0.12852 ^{\{ 7 \}} | 0.14221 ^{\{ 8 \}} | 0.09814 ^{\{ 3 \}} | 0.10234 ^{\{ 5 \}} | ||
D_{abs} | 0.01062 ^{\{ 2 \}} | 0.01055 ^{\{ 1 \}} | 0.01157 ^{\{ 7 \}} | 0.01098 ^{\{ 3 \}} | 0.01158 ^{\{ 8 \}} | 0.01113 ^{\{ 5 \}} | 0.01112 ^{\{ 4 \}} | 0.0113 ^{\{ 6 \}} | ||
D_{max} | 0.0181 ^{\{ 1 \}} | 0.01823 ^{\{ 2 \}} | 0.02019 ^{\{ 8 \}} | 0.01873 ^{\{ 3 \}} | 0.0201 ^{\{ 7 \}} | 0.01976 ^{\{ 6 \}} | 0.01902 ^{\{ 4 \}} | 0.01972 ^{\{ 5 \}} | ||
ASAE | 0.00457 ^{\{ 5 \}} | 0.00443 ^{\{ 3 \}} | 0.00471 ^{\{ 6 \}} | 0.00456 ^{\{ 4 \}} | 0.00473 ^{\{ 7 \}} | 0.0044 ^{\{ 2 \}} | 0.00435 ^{\{ 1 \}} | 0.00516 ^{\{ 8 \}} | ||
\sum Ranks | 17 ^{\{ 1 \}} | 28 ^{\{ 2 \}} | 75 ^{\{ 6.5 \}} | 40 ^{\{ 4 \}} | 89 ^{\{ 8 \}} | 75 ^{\{ 6.5 \}} | 38 ^{\{ 3 \}} | 70 ^{\{ 5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.28261 ^{\{ 2 \}} | 0.4647 ^{\{ 5 \}} | 0.48379 ^{\{ 7 \}} | 0.41025 ^{\{ 3 \}} | 0.42315 ^{\{ 4 \}} | 0.51017 ^{\{ 8 \}} | 0.47272 ^{\{ 6 \}} | 0.26393 ^{\{ 1 \}} |
\hat{a} | 0.70395 ^{\{ 1 \}} | 0.78929 ^{\{ 3 \}} | 0.91784 ^{\{ 8 \}} | 0.77174 ^{\{ 2 \}} | 0.90659 ^{\{ 7 \}} | 0.82398 ^{\{ 4 \}} | 0.83444 ^{\{ 5 \}} | 0.84481 ^{\{ 6 \}} | ||
\hat{b} | 0.11892 ^{\{ 2 \}} | 0.13452 ^{\{ 6 \}} | 0.13845 ^{\{ 7 \}} | 0.12898 ^{\{ 4 \}} | 0.11407 ^{\{ 1 \}} | 0.14639 ^{\{ 8 \}} | 0.13051 ^{\{ 5 \}} | 0.12794 ^{\{ 3 \}} | ||
MSE | \hat{\tau} | 0.14259 ^{\{ 1 \}} | 0.54086 ^{\{ 5 \}} | 0.58623 ^{\{ 6 \}} | 0.45928 ^{\{ 3 \}} | 0.52049 ^{\{ 4 \}} | 0.67661 ^{\{ 8 \}} | 0.60141 ^{\{ 7 \}} | 0.18215 ^{\{ 2 \}} | |
\hat{a} | 0.92929 ^{\{ 2 \}} | 0.99608 ^{\{ 3 \}} | 1.35102 ^{\{ 8 \}} | 0.89166 ^{\{ 1 \}} | 1.27505 ^{\{ 7 \}} | 1.08694 ^{\{ 4 \}} | 1.10922 ^{\{ 5 \}} | 1.17679 ^{\{ 6 \}} | ||
\hat{b} | 0.02632 ^{\{ 3 \}} | 0.03369 ^{\{ 6 \}} | 0.03609 ^{\{ 7 \}} | 0.02757 ^{\{ 4 \}} | 0.02515 ^{\{ 2 \}} | 0.03881 ^{\{ 8 \}} | 0.03305 ^{\{ 5 \}} | 0.02449 ^{\{ 1 \}} | ||
MRE | \hat{\tau} | 1.13045 ^{\{ 2 \}} | 1.85879 ^{\{ 5 \}} | 1.93515 ^{\{ 7 \}} | 1.64101 ^{\{ 3 \}} | 1.6926 ^{\{ 4 \}} | 2.04067 ^{\{ 8 \}} | 1.8909 ^{\{ 6 \}} | 1.05573 ^{\{ 1 \}} | |
\hat{a} | 0.23465 ^{\{ 1 \}} | 0.2631 ^{\{ 3 \}} | 0.30595 ^{\{ 8 \}} | 0.25725 ^{\{ 2 \}} | 0.3022 ^{\{ 7 \}} | 0.27466 ^{\{ 4 \}} | 0.27815 ^{\{ 5 \}} | 0.2816 ^{\{ 6 \}} | ||
\hat{b} | 0.47569 ^{\{ 2 \}} | 0.53808 ^{\{ 6 \}} | 0.5538 ^{\{ 7 \}} | 0.5159 ^{\{ 4 \}} | 0.45626 ^{\{ 1 \}} | 0.58556 ^{\{ 8 \}} | 0.52205 ^{\{ 5 \}} | 0.51177 ^{\{ 3 \}} | ||
D_{abs} | 0.04268 ^{\{ 1 \}} | 0.04508 ^{\{ 3 \}} | 0.04693 ^{\{ 8 \}} | 0.04333 ^{\{ 2 \}} | 0.04525 ^{\{ 4 \}} | 0.04586 ^{\{ 6 \}} | 0.0455 ^{\{ 5 \}} | 0.04675 ^{\{ 7 \}} | ||
D_{max} | 0.0706 ^{\{ 1 \}} | 0.07457 ^{\{ 3 \}} | 0.07976 ^{\{ 8 \}} | 0.0712 ^{\{ 2 \}} | 0.07566 ^{\{ 5 \}} | 0.07738 ^{\{ 7 \}} | 0.07522 ^{\{ 4 \}} | 0.07734 ^{\{ 6 \}} | ||
ASAE | 0.02998 ^{\{ 6 \}} | 0.02782 ^{\{ 4 \}} | 0.02947 ^{\{ 5 \}} | 0.02765 ^{\{ 3 \}} | 0.03091 ^{\{ 7 \}} | 0.02581 ^{\{ 1 \}} | 0.02751 ^{\{ 2 \}} | 0.03566 ^{\{ 8 \}} | ||
\sum Ranks | 24 ^{\{ 1 \}} | 52 ^{\{ 4 \}} | 86 ^{\{ 8 \}} | 33 ^{\{ 2 \}} | 53 ^{\{ 5 \}} | 74 ^{\{ 7 \}} | 60 ^{\{ 6 \}} | 50 ^{\{ 3 \}} | ||
70 | BIAS | \hat{\tau} | 0.26535 ^{\{ 2 \}} | 0.35171 ^{\{ 5 \}} | 0.40366 ^{\{ 7 \}} | 0.29134 ^{\{ 3 \}} | 0.35289 ^{\{ 6 \}} | 0.42263 ^{\{ 8 \}} | 0.34207 ^{\{ 4 \}} | 0.24784 ^{\{ 1 \}} |
\hat{a} | 0.47336 ^{\{ 1 \}} | 0.55386 ^{\{ 3 \}} | 0.64736 ^{\{ 7 \}} | 0.55627 ^{\{ 4 \}} | 0.64889 ^{\{ 8 \}} | 0.61187 ^{\{ 6 \}} | 0.54143 ^{\{ 2 \}} | 0.59785 ^{\{ 5 \}} | ||
\hat{b} | 0.09971 ^{\{ 1 \}} | 0.11155 ^{\{ 5 \}} | 0.11542 ^{\{ 6 \}} | 0.10741 ^{\{ 3 \}} | 0.10532 ^{\{ 2 \}} | 0.12794 ^{\{ 8 \}} | 0.10844 ^{\{ 4 \}} | 0.11607 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.12711 ^{\{ 1 \}} | 0.28471 ^{\{ 4 \}} | 0.4177 ^{\{ 7 \}} | 0.22138 ^{\{ 3 \}} | 0.33996 ^{\{ 6 \}} | 0.48266 ^{\{ 8 \}} | 0.30172 ^{\{ 5 \}} | 0.13702 ^{\{ 2 \}} | |
\hat{a} | 0.36529 ^{\{ 1 \}} | 0.48714 ^{\{ 4 \}} | 0.68965 ^{\{ 8 \}} | 0.48295 ^{\{ 2 \}} | 0.66234 ^{\{ 7 \}} | 0.6146 ^{\{ 6 \}} | 0.48359 ^{\{ 3 \}} | 0.58995 ^{\{ 5 \}} | ||
\hat{b} | 0.01575 ^{\{ 1 \}} | 0.02146 ^{\{ 5 \}} | 0.02598 ^{\{ 7 \}} | 0.01737 ^{\{ 2 \}} | 0.02098 ^{\{ 4 \}} | 0.03058 ^{\{ 8 \}} | 0.02191 ^{\{ 6 \}} | 0.01909 ^{\{ 3 \}} | ||
MRE | \hat{\tau} | 1.06141 ^{\{ 2 \}} | 1.40685 ^{\{ 5 \}} | 1.61465 ^{\{ 7 \}} | 1.16535 ^{\{ 3 \}} | 1.41156 ^{\{ 6 \}} | 1.6905 ^{\{ 8 \}} | 1.3683 ^{\{ 4 \}} | 0.99135 ^{\{ 1 \}} | |
\hat{a} | 0.15779 ^{\{ 1 \}} | 0.18462 ^{\{ 3 \}} | 0.21579 ^{\{ 7 \}} | 0.18542 ^{\{ 4 \}} | 0.2163 ^{\{ 8 \}} | 0.20396 ^{\{ 6 \}} | 0.18048 ^{\{ 2 \}} | 0.19928 ^{\{ 5 \}} | ||
\hat{b} | 0.39883 ^{\{ 1 \}} | 0.44619 ^{\{ 5 \}} | 0.46169 ^{\{ 6 \}} | 0.42965 ^{\{ 3 \}} | 0.42127 ^{\{ 2 \}} | 0.51178 ^{\{ 8 \}} | 0.43376 ^{\{ 4 \}} | 0.46429 ^{\{ 7 \}} | ||
D_{abs} | 0.02997 ^{\{ 1 \}} | 0.03175 ^{\{ 4 \}} | 0.03324 ^{\{ 8 \}} | 0.03081 ^{\{ 2 \}} | 0.03247 ^{\{ 5 \}} | 0.0327 ^{\{ 7 \}} | 0.03127 ^{\{ 3 \}} | 0.03251 ^{\{ 6 \}} | ||
D_{max} | 0.0499 ^{\{ 1 \}} | 0.05326 ^{\{ 4 \}} | 0.05658 ^{\{ 8 \}} | 0.05081 ^{\{ 2 \}} | 0.05486 ^{\{ 6 \}} | 0.05572 ^{\{ 7 \}} | 0.05218 ^{\{ 3 \}} | 0.05438 ^{\{ 5 \}} | ||
ASAE | 0.01808 ^{\{ 5 \}} | 0.0179 ^{\{ 4 \}} | 0.01884 ^{\{ 6 \}} | 0.01751 ^{\{ 3 \}} | 0.0192 ^{\{ 7 \}} | 0.01618 ^{\{ 1 \}} | 0.01733 ^{\{ 2 \}} | 0.02197 ^{\{ 8 \}} | ||
\sum Ranks | 18 ^{\{ 1 \}} | 51 ^{\{ 4 \}} | 84 ^{\{ 8 \}} | 34 ^{\{ 2 \}} | 67 ^{\{ 6 \}} | 81 ^{\{ 7 \}} | 42 ^{\{ 3 \}} | 55 ^{\{ 5 \}} | ||
150 | BIAS | \hat{\tau} | 0.20572 ^{\{ 2 \}} | 0.23878 ^{\{ 4 \}} | 0.31697 ^{\{ 8 \}} | 0.216 ^{\{ 3 \}} | 0.29435 ^{\{ 7 \}} | 0.28901 ^{\{ 6 \}} | 0.25867 ^{\{ 5 \}} | 0.20305 ^{\{ 1 \}} |
\hat{a} | 0.30956 ^{\{ 1 \}} | 0.34668 ^{\{ 2 \}} | 0.42934 ^{\{ 7 \}} | 0.34894 ^{\{ 3 \}} | 0.4327 ^{\{ 8 \}} | 0.39302 ^{\{ 5 \}} | 0.36418 ^{\{ 4 \}} | 0.41109 ^{\{ 6 \}} | ||
\hat{b} | 0.07839 ^{\{ 1 \}} | 0.08716 ^{\{ 2 \}} | 0.09845 ^{\{ 8 \}} | 0.08897 ^{\{ 3 \}} | 0.09366 ^{\{ 5 \}} | 0.09844 ^{\{ 7 \}} | 0.09049 ^{\{ 4 \}} | 0.09505 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.0763 ^{\{ 2 \}} | 0.11584 ^{\{ 4 \}} | 0.24604 ^{\{ 8 \}} | 0.08934 ^{\{ 3 \}} | 0.21433 ^{\{ 6 \}} | 0.22492 ^{\{ 7 \}} | 0.14363 ^{\{ 5 \}} | 0.07388 ^{\{ 1 \}} | |
\hat{a} | 0.15388 ^{\{ 1 \}} | 0.18414 ^{\{ 2 \}} | 0.29541 ^{\{ 8 \}} | 0.19105 ^{\{ 3 \}} | 0.29359 ^{\{ 7 \}} | 0.25171 ^{\{ 5 \}} | 0.20937 ^{\{ 4 \}} | 0.26876 ^{\{ 6 \}} | ||
\hat{b} | 0.00994 ^{\{ 1 \}} | 0.01226 ^{\{ 3 \}} | 0.01875 ^{\{ 7 \}} | 0.01132 ^{\{ 2 \}} | 0.01714 ^{\{ 6 \}} | 0.01897 ^{\{ 8 \}} | 0.014 ^{\{ 5 \}} | 0.01332 ^{\{ 4 \}} | ||
MRE | \hat{\tau} | 0.82287 ^{\{ 2 \}} | 0.95511 ^{\{ 4 \}} | 1.26786 ^{\{ 8 \}} | 0.86398 ^{\{ 3 \}} | 1.17741 ^{\{ 7 \}} | 1.15604 ^{\{ 6 \}} | 1.03466 ^{\{ 5 \}} | 0.81219 ^{\{ 1 \}} | |
\hat{a} | 0.10319 ^{\{ 1 \}} | 0.11556 ^{\{ 2 \}} | 0.14311 ^{\{ 7 \}} | 0.11631 ^{\{ 3 \}} | 0.14423 ^{\{ 8 \}} | 0.13101 ^{\{ 5 \}} | 0.12139 ^{\{ 4 \}} | 0.13703 ^{\{ 6 \}} | ||
\hat{b} | 0.31354 ^{\{ 1 \}} | 0.34864 ^{\{ 2 \}} | 0.39378 ^{\{ 8 \}} | 0.35589 ^{\{ 3 \}} | 0.37463 ^{\{ 5 \}} | 0.39376 ^{\{ 7 \}} | 0.36195 ^{\{ 4 \}} | 0.38019 ^{\{ 6 \}} | ||
D_{abs} | 0.02072 ^{\{ 1 \}} | 0.02107 ^{\{ 2 \}} | 0.0225 ^{\{ 7 \}} | 0.02189 ^{\{ 4 \}} | 0.02263 ^{\{ 8 \}} | 0.02228 ^{\{ 6 \}} | 0.02197 ^{\{ 5 \}} | 0.02181 ^{\{ 3 \}} | ||
D_{max} | 0.03401 ^{\{ 1 \}} | 0.03512 ^{\{ 2 \}} | 0.03847 ^{\{ 8 \}} | 0.03585 ^{\{ 3 \}} | 0.03844 ^{\{ 7 \}} | 0.038 ^{\{ 6 \}} | 0.0367 ^{\{ 4 \}} | 0.03682 ^{\{ 5 \}} | ||
ASAE | 0.01108 ^{\{ 5 \}} | 0.0106 ^{\{ 3 \}} | 0.01135 ^{\{ 6 \}} | 0.01106 ^{\{ 4 \}} | 0.01179 ^{\{ 7 \}} | 0.00992 ^{\{ 1 \}} | 0.01047 ^{\{ 2 \}} | 0.01254 ^{\{ 8 \}} | ||
\sum Ranks | 19 ^{\{ 1 \}} | 32 ^{\{ 2 \}} | 90 ^{\{ 8 \}} | 37 ^{\{ 3 \}} | 81 ^{\{ 7 \}} | 69 ^{\{ 6 \}} | 51 ^{\{ 4 \}} | 53 ^{\{ 5 \}} | ||
300 | BIAS | \hat{\tau} | 0.16066 ^{\{ 1 \}} | 0.18134 ^{\{ 3 \}} | 0.23938 ^{\{ 8 \}} | 0.17022 ^{\{ 2 \}} | 0.22051 ^{\{ 6 \}} | 0.23877 ^{\{ 7 \}} | 0.1881 ^{\{ 4 \}} | 0.18849 ^{\{ 5 \}} |
\hat{a} | 0.22654 ^{\{ 2 \}} | 0.24264 ^{\{ 3 \}} | 0.2944 ^{\{ 7 \}} | 0.22178 ^{\{ 1 \}} | 0.28817 ^{\{ 6 \}} | 0.26568 ^{\{ 5 \}} | 0.25777 ^{\{ 4 \}} | 0.30304 ^{\{ 8 \}} | ||
\hat{b} | 0.06214 ^{\{ 1 \}} | 0.07012 ^{\{ 2 \}} | 0.08156 ^{\{ 6 \}} | 0.07737 ^{\{ 4 \}} | 0.07758 ^{\{ 5 \}} | 0.08871 ^{\{ 8 \}} | 0.07058 ^{\{ 3 \}} | 0.08471 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.04415 ^{\{ 2 \}} | 0.05978 ^{\{ 4 \}} | 0.11788 ^{\{ 7 \}} | 0.04234 ^{\{ 1 \}} | 0.10883 ^{\{ 6 \}} | 0.13383 ^{\{ 8 \}} | 0.06789 ^{\{ 5 \}} | 0.05456 ^{\{ 3 \}} | |
\hat{a} | 0.08313 ^{\{ 2 \}} | 0.09201 ^{\{ 3 \}} | 0.14205 ^{\{ 8 \}} | 0.07858 ^{\{ 1 \}} | 0.13512 ^{\{ 6 \}} | 0.11565 ^{\{ 5 \}} | 0.10225 ^{\{ 4 \}} | 0.13876 ^{\{ 7 \}} | ||
\hat{b} | 0.00617 ^{\{ 1 \}} | 0.00773 ^{\{ 2 \}} | 0.01181 ^{\{ 7 \}} | 0.00837 ^{\{ 4 \}} | 0.01107 ^{\{ 6 \}} | 0.015 ^{\{ 8 \}} | 0.00814 ^{\{ 3 \}} | 0.01064 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.64263 ^{\{ 1 \}} | 0.72534 ^{\{ 3 \}} | 0.95752 ^{\{ 8 \}} | 0.68088 ^{\{ 2 \}} | 0.88205 ^{\{ 6 \}} | 0.95509 ^{\{ 7 \}} | 0.75242 ^{\{ 4 \}} | 0.75394 ^{\{ 5 \}} | |
\hat{a} | 0.07551 ^{\{ 2 \}} | 0.08088 ^{\{ 3 \}} | 0.09813 ^{\{ 7 \}} | 0.07393 ^{\{ 1 \}} | 0.09606 ^{\{ 6 \}} | 0.08856 ^{\{ 5 \}} | 0.08592 ^{\{ 4 \}} | 0.10101 ^{\{ 8 \}} | ||
\hat{b} | 0.24856 ^{\{ 1 \}} | 0.28049 ^{\{ 2 \}} | 0.32624 ^{\{ 6 \}} | 0.30949 ^{\{ 4 \}} | 0.31033 ^{\{ 5 \}} | 0.35482 ^{\{ 8 \}} | 0.2823 ^{\{ 3 \}} | 0.33885 ^{\{ 7 \}} | ||
D_{abs} | 0.01473 ^{\{ 2 \}} | 0.01494 ^{\{ 3 \}} | 0.01581 ^{\{ 6 \}} | 0.01432 ^{\{ 1 \}} | 0.01598 ^{\{ 7 \}} | 0.01578 ^{\{ 5 \}} | 0.01551 ^{\{ 4 \}} | 0.01624 ^{\{ 8 \}} | ||
D_{max} | 0.02441 ^{\{ 2 \}} | 0.02498 ^{\{ 3 \}} | 0.02726 ^{\{ 8 \}} | 0.02345 ^{\{ 1 \}} | 0.027 ^{\{ 5 \}} | 0.02708 ^{\{ 6 \}} | 0.02606 ^{\{ 4 \}} | 0.02724 ^{\{ 7 \}} | ||
ASAE | 0.00706 ^{\{ 5 \}} | 0.00686 ^{\{ 3 \}} | 0.00722 ^{\{ 6 \}} | 0.00694 ^{\{ 4 \}} | 0.00749 ^{\{ 7 \}} | 0.00632 ^{\{ 1 \}} | 0.00684 ^{\{ 2 \}} | 0.0084 ^{\{ 8 \}} | ||
\sum Ranks | 22 ^{\{ 1 \}} | 34 ^{\{ 3 \}} | 84 ^{\{ 8 \}} | 26 ^{\{ 2 \}} | 71 ^{\{ 5 \}} | 73 ^{\{ 6 \}} | 44 ^{\{ 4 \}} | 78 ^{\{ 7 \}} | ||
600 | BIAS | \hat{\tau} | 0.13045 ^{\{ 1 \}} | 0.14467 ^{\{ 4 \}} | 0.1922 ^{\{ 7 \}} | 0.13076 ^{\{ 2 \}} | 0.18277 ^{\{ 6 \}} | 0.19589 ^{\{ 8 \}} | 0.15452 ^{\{ 5 \}} | 0.14197 ^{\{ 3 \}} |
\hat{a} | 0.1464 ^{\{ 1 \}} | 0.17091 ^{\{ 3 \}} | 0.19656 ^{\{ 6 \}} | 0.15933 ^{\{ 2 \}} | 0.20011 ^{\{ 7 \}} | 0.18356 ^{\{ 5 \}} | 0.17299 ^{\{ 4 \}} | 0.21255 ^{\{ 8 \}} | ||
\hat{b} | 0.05408 ^{\{ 1 \}} | 0.05771 ^{\{ 2 \}} | 0.0699 ^{\{ 7 \}} | 0.06108 ^{\{ 4 \}} | 0.06848 ^{\{ 6 \}} | 0.07427 ^{\{ 8 \}} | 0.06095 ^{\{ 3 \}} | 0.06422 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.02716 ^{\{ 2 \}} | 0.03419 ^{\{ 4 \}} | 0.06868 ^{\{ 7 \}} | 0.02593 ^{\{ 1 \}} | 0.0615 ^{\{ 6 \}} | 0.08038 ^{\{ 8 \}} | 0.03947 ^{\{ 5 \}} | 0.03024 ^{\{ 3 \}} | |
\hat{a} | 0.03481 ^{\{ 1 \}} | 0.04524 ^{\{ 3 \}} | 0.06127 ^{\{ 6 \}} | 0.04288 ^{\{ 2 \}} | 0.06229 ^{\{ 7 \}} | 0.05226 ^{\{ 5 \}} | 0.04678 ^{\{ 4 \}} | 0.06879 ^{\{ 8 \}} | ||
\hat{b} | 0.00463 ^{\{ 1 \}} | 0.00511 ^{\{ 2 \}} | 0.00825 ^{\{ 7 \}} | 0.00581 ^{\{ 4 \}} | 0.00774 ^{\{ 6 \}} | 0.01049 ^{\{ 8 \}} | 0.0057 ^{\{ 3 \}} | 0.00661 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.52182 ^{\{ 1 \}} | 0.57868 ^{\{ 4 \}} | 0.76881 ^{\{ 7 \}} | 0.52302 ^{\{ 2 \}} | 0.73109 ^{\{ 6 \}} | 0.78357 ^{\{ 8 \}} | 0.61806 ^{\{ 5 \}} | 0.56786 ^{\{ 3 \}} | |
\hat{a} | 0.0488 ^{\{ 1 \}} | 0.05697 ^{\{ 3 \}} | 0.06552 ^{\{ 6 \}} | 0.05311 ^{\{ 2 \}} | 0.0667 ^{\{ 7 \}} | 0.06119 ^{\{ 5 \}} | 0.05766 ^{\{ 4 \}} | 0.07085 ^{\{ 8 \}} | ||
\hat{b} | 0.21631 ^{\{ 1 \}} | 0.23082 ^{\{ 2 \}} | 0.27958 ^{\{ 7 \}} | 0.24431 ^{\{ 4 \}} | 0.27392 ^{\{ 6 \}} | 0.29709 ^{\{ 8 \}} | 0.24381 ^{\{ 3 \}} | 0.25689 ^{\{ 5 \}} | ||
D_{abs} | 0.00998 ^{\{ 1 \}} | 0.01059 ^{\{ 3 \}} | 0.01162 ^{\{ 8 \}} | 0.01045 ^{\{ 2 \}} | 0.01138 ^{\{ 7 \}} | 0.01125 ^{\{ 6 \}} | 0.01098 ^{\{ 4 \}} | 0.01118 ^{\{ 5 \}} | ||
D_{max} | 0.01645 ^{\{ 1 \}} | 0.01762 ^{\{ 3 \}} | 0.01993 ^{\{ 8 \}} | 0.01726 ^{\{ 2 \}} | 0.01949 ^{\{ 7 \}} | 0.01935 ^{\{ 6 \}} | 0.01833 ^{\{ 4 \}} | 0.01893 ^{\{ 5 \}} | ||
ASAE | 0.00442 ^{\{ 3 \}} | 0.00443 ^{\{ 4 \}} | 0.00475 ^{\{ 7 \}} | 0.00444 ^{\{ 5 \}} | 0.00472 ^{\{ 6 \}} | 0.00408 ^{\{ 1 \}} | 0.00436 ^{\{ 2 \}} | 0.00545 ^{\{ 8 \}} | ||
\sum Ranks | 15 ^{\{ 1 \}} | 37 ^{\{ 3 \}} | 83 ^{\{ 8 \}} | 32 ^{\{ 2 \}} | 77 ^{\{ 7 \}} | 76 ^{\{ 6 \}} | 46 ^{\{ 4 \}} | 66 ^{\{ 5 \}} |
Parameter | n | MLE | ADE | CVME | MPSE | OLSE | RTADE | WLSE | LTADE |
\tau=0.5 , a=0.25 , b=0.75 | 35 | 4 | 2 | 7 | 1 | 6 | 5 | 3 | 8 |
70 | 5.5 | 2 | 7 | 1 | 5.5 | 4 | 3 | 8 | |
150 | 5 | 3 | 6 | 1 | 7 | 4 | 2 | 8 | |
300 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
600 | 4 | 2 | 6 | 1 | 7.5 | 5 | 3 | 7.5 | |
\tau=1.5 , a=0.75 , b=0.5 | 35 | 2.5 | 5 | 7 | 1 | 6 | 4 | 2.5 | 8 |
70 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
150 | 5 | 2 | 6 | 1 | 7 | 4 | 3 | 8 | |
300 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
600 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
\tau=2 , a=0.5 , b=1.5 | 35 | 1 | 3.5 | 5 | 3.5 | 6 | 7 | 2 | 8 |
70 | 1 | 2 | 5 | 4 | 7 | 8 | 3 | 6 | |
150 | 1 | 2 | 7 | 4.5 | 6 | 8 | 3 | 4.5 | |
300 | 1 | 4 | 5 | 3 | 8 | 7 | 2 | 6 | |
600 | 1 | 4 | 8 | 2.5 | 6 | 7 | 2.5 | 5 | |
\tau=2 , a=1.5 , b=2 | 35 | 2 | 3 | 6 | 4 | 7 | 1 | 5 | 8 |
70 | 1 | 2 | 7 | 5 | 6 | 4 | 3 | 8 | |
150 | 1 | 2 | 6 | 4 | 8 | 5 | 3 | 7 | |
300 | 1 | 4 | 6 | 3 | 7 | 5 | 2 | 8 | |
600 | 1 | 3 | 6 | 2 | 7.5 | 5 | 4 | 7.5 | |
\tau=0.75 , a=2 , b=3 | 35 | 1 | 2 | 3 | 6 | 4 | 7 | 5 | 8 |
70 | 1 | 2 | 4 | 6 | 7 | 5 | 3 | 8 | |
150 | 1 | 2 | 5 | 6 | 7 | 4 | 3 | 8 | |
300 | 1 | 3 | 7 | 4 | 8 | 6 | 2 | 5 | |
600 | 1 | 2 | 6.5 | 4 | 8 | 6.5 | 3 | 5 | |
\tau=0.25 , a=3 , b=0.25 | 35 | 1 | 4 | 8 | 2 | 5 | 7 | 6 | 3 |
70 | 1 | 4 | 8 | 2 | 6 | 7 | 3 | 5 | |
150 | 1 | 2 | 8 | 3 | 7 | 6 | 4 | 5 | |
300 | 1 | 3 | 8 | 2 | 5 | 6 | 4 | 7 | |
600 | 1 | 3 | 8 | 2 | 7 | 6 | 4 | 5 | |
\sum Ranks | 67.0 | 80.5 | 193.5 | 82.5 | 195.5 | 159.5 | 95.0 | 206.5 | |
Overall Rank | 1 | 2 | 6 | 3 | 7 | 5 | 4 | 8 |
MLE | MPS | |||||||||
n | Lower | Upper | LACI | CP | Lower | Upper | LACI | CP | ||
a=0.25 | 35 | a | 0.1424 | 0.3840 | 0.2416 | 95.2% | 0.1240 | 0.3716 | 0.2475 | 97.4% |
b | 0.3074 | 1.3956 | 1.0881 | 96.2% | 0.1761 | 1.3511 | 1.1751 | 98.6% | ||
\tau | -0.1474 | 1.3940 | 1.5415 | 94.6% | -0.2409 | 1.3937 | 1.6346 | 95.6% | ||
70 | a | 0.1680 | 0.3336 | 0.1655 | 95.8% | 0.1571 | 0.3300 | 0.1730 | 96.0% | |
b | 0.3442 | 1.2438 | 0.8996 | 94.6% | 0.2876 | 1.1783 | 0.8907 | 96.8% | ||
\tau | -0.0981 | 1.3002 | 1.3983 | 94.2% | -0.0982 | 1.1923 | 1.2906 | 96.8% | ||
b=0.75 | 150 | a | 0.1940 | 0.3084 | 0.1144 | 94.2% | 0.1890 | 0.3050 | 0.1160 | 96.4% |
b | 0.4466 | 1.0598 | 0.6132 | 93.2% | 0.4220 | 1.0220 | 0.6001 | 96.4% | ||
\tau | 0.0900 | 0.9525 | 0.8625 | 94.0% | 0.1039 | 0.8881 | 0.7841 | 95.0% | ||
\tau=0.5 | 300 | a | 0.2082 | 0.2896 | 0.0814 | 95.2% | 0.2092 | 0.2852 | 0.0761 | 96.4% |
b | 0.4659 | 1.0316 | 0.5657 | 94.8% | 0.5239 | 0.9391 | 0.4153 | 96.2% | ||
\tau | 0.0907 | 0.9503 | 0.8596 | 93.6% | 0.2218 | 0.7761 | 0.5543 | 95.8% | ||
600 | a | 0.2172 | 0.2825 | 0.0654 | 94.2% | 0.2162 | 0.2805 | 0.0643 | 95.4% | |
b | 0.5764 | 0.9262 | 0.3498 | 93.6% | 0.5853 | 0.8925 | 0.3073 | 95.2% | ||
\tau | 0.2346 | 0.7904 | 0.5559 | 94.6% | 0.2858 | 0.7160 | 0.4302 | 96.0% | ||
a=0.75 | 35 | a | 0.3749 | 1.7629 | 1.3880 | 96.8% | 0.2215 | 1.6978 | 1.4762 | 98.2% |
b | 0.1733 | 0.7843 | 0.6110 | 91.0% | 0.1273 | 0.7737 | 0.6464 | 92.8% | ||
\tau | 0.0167 | 2.3436 | 2.3269 | 99.8% | -0.1434 | 2.5520 | 2.6954 | 100.0% | ||
70 | a | 0.5547 | 1.4283 | 0.8736 | 95.2% | 0.4283 | 1.4450 | 1.0167 | 97.8% | |
b | 0.1933 | 0.7132 | 0.5198 | 92.0% | 0.1226 | 0.7452 | 0.6226 | 93.8% | ||
\tau | 0.1180 | 2.1860 | 2.0680 | 94.2% | -0.1264 | 2.4289 | 2.5553 | 100.0% | ||
b=0.5 | 150 | a | 0.6664 | 1.3496 | 0.6831 | 94.8% | 0.5957 | 1.3420 | 0.7462 | 97.8% |
b | 0.2169 | 0.6506 | 0.4337 | 93.0% | 0.2726 | 0.6031 | 0.3306 | 93.2% | ||
\tau | 0.1519 | 1.9431 | 1.7911 | 94.4% | 0.3050 | 1.8915 | 1.5865 | 93.0% | ||
\tau=1.5 | 300 | a | 0.7354 | 1.2244 | 0.4890 | 95.2% | 0.6828 | 1.2239 | 0.5411 | 96.6% |
b | 0.3296 | 0.5786 | 0.2489 | 95.4% | 0.3910 | 0.5441 | 0.1531 | 89.8% | ||
\tau | 0.5329 | 1.7045 | 1.1716 | 95.6% | 0.7327 | 1.6352 | 0.9025 | 90.8% | ||
600 | a | 0.8075 | 1.1805 | 0.3730 | 95.2% | 0.7656 | 1.1558 | 0.3902 | 98.6% | |
b | 0.3372 | 0.5607 | 0.2236 | 97.4% | 0.4507 | 0.4944 | 0.0438 | 49.6% | ||
\tau | 0.5921 | 1.5764 | 0.9843 | 96.6% | 0.9952 | 1.3684 | 0.3732 | 65.0% | ||
a=0.5 | 35 | a | 0.0841 | 3.0983 | 3.0142 | 99.4% | 0.5964 | 2.4213 | 1.8249 | 97.0% |
b | 0.7792 | 3.3199 | 2.5407 | 96.4% | 0.9277 | 2.9819 | 2.0541 | 96.2% | ||
\tau | -4.1397 | 11.2084 | 15.3481 | 96.8% | 0.5888 | 5.0887 | 4.5000 | 96.8% | ||
70 | a | 0.3513 | 2.9435 | 2.5922 | 98.6% | 0.7959 | 2.3551 | 1.5592 | 97.6% | |
b | 1.1282 | 2.8535 | 1.7253 | 95.8% | 1.2526 | 2.6453 | 1.3927 | 95.4% | ||
\tau | -2.3903 | 7.7478 | 10.1381 | 94.6% | 0.7896 | 3.9179 | 3.1283 | 96.6% | ||
b=1.5 | 150 | a | 0.4155 | 3.0630 | 2.6474 | 95.6% | 0.8704 | 2.4470 | 1.5766 | 98.4% |
b | 1.2344 | 2.6437 | 1.4093 | 95.8% | 1.4967 | 2.3945 | 0.8979 | 95.0% | ||
\tau | -1.8044 | 6.2974 | 8.1017 | 93.8% | 0.7386 | 3.4610 | 2.7224 | 99.2% | ||
\tau=2 | 300 | a | 0.7300 | 2.9444 | 2.2144 | 89.4% | 0.9837 | 2.4903 | 1.5066 | 96.4% |
b | 1.4469 | 2.5415 | 1.0947 | 93.2% | 1.6720 | 2.3314 | 0.6594 | 95.2% | ||
\tau | -0.7896 | 4.4351 | 5.2247 | 92.8% | 0.8241 | 2.8969 | 2.0728 | 96.8% | ||
600 | a | 0.8443 | 3.0427 | 2.1984 | 88.0% | 1.1938 | 2.4879 | 1.2942 | 91.4% | |
b | 1.4851 | 2.4993 | 1.0142 | 91.4% | 1.8123 | 2.2369 | 0.4246 | 89.2% | ||
\tau | -0.9598 | 4.2972 | 5.2570 | 91.6% | 0.8832 | 2.5574 | 1.6742 | 90.4% |
MLE | MPS | |||||||||
n | Lower | Upper | LACI | CP | Lower | Upper | LACI | CP | ||
a=1.5 | 35 | a | 0.0841 | 3.0983 | 3.0142 | 99.4% | 0.5964 | 2.4213 | 1.8249 | 97.0% |
b | 0.7792 | 3.3199 | 2.5407 | 96.4% | 0.9277 | 2.9819 | 2.0541 | 96.2% | ||
\tau | -4.1397 | 11.2084 | 15.3481 | 96.8% | 0.5888 | 5.0887 | 4.5000 | 96.8% | ||
70 | a | 0.3513 | 2.9435 | 2.5922 | 98.6% | 0.7959 | 2.3551 | 1.5592 | 97.6% | |
b | 1.1282 | 2.8535 | 1.7253 | 95.8% | 1.2526 | 2.6453 | 1.3927 | 95.4% | ||
\tau | -2.3903 | 7.7478 | 10.1381 | 94.6% | 0.7896 | 3.9179 | 3.1283 | 96.6% | ||
b=2 | 150 | a | 0.4155 | 3.0630 | 2.6474 | 95.6% | 0.8704 | 2.4470 | 1.5766 | 98.4% |
b | 1.2344 | 2.6437 | 1.4093 | 95.8% | 1.4967 | 2.3945 | 0.8979 | 95.0% | ||
\tau | -1.8044 | 6.2974 | 8.1017 | 93.8% | 0.7386 | 3.4610 | 2.7224 | 99.2% | ||
\tau=2 | 300 | a | 0.7300 | 2.9444 | 2.2144 | 89.4% | 0.9837 | 2.4903 | 1.5066 | 96.4% |
b | 1.4469 | 2.5415 | 1.0947 | 93.2% | 1.6720 | 2.3314 | 0.6594 | 95.2% | ||
\tau | -0.7896 | 4.4351 | 5.2247 | 92.8% | 0.8241 | 2.8969 | 2.0728 | 96.8% | ||
600 | a | 0.8443 | 3.0427 | 2.1984 | 88.0% | 1.1938 | 2.4879 | 1.2942 | 91.4% | |
b | 1.4851 | 2.4993 | 1.0142 | 91.4% | 1.8123 | 2.2369 | 0.4246 | 89.2% | ||
\tau | -0.9598 | 4.2972 | 5.2570 | 91.6% | 0.8832 | 2.5574 | 1.6742 | 90.4% | ||
a=2 | 35 | a | 1.4516 | 3.0180 | 1.5664 | 95.2% | 1.2272 | 3.0073 | 1.7800 | 98.6% |
b | 1.2482 | 5.2132 | 3.9651 | 95.8% | 0.8513 | 4.9181 | 4.0668 | 99.2% | ||
\tau | -0.2282 | 1.6153 | 1.8435 | 95.6% | -0.4111 | 1.7960 | 2.2071 | 94.0% | ||
70 | a | 1.6144 | 2.7305 | 1.1160 | 95.0% | 1.4843 | 2.7390 | 1.2547 | 97.6% | |
b | 1.4910 | 4.6090 | 3.1180 | 96.2% | 1.1561 | 4.5050 | 3.3489 | 99.0% | ||
\tau | -0.0943 | 1.4316 | 1.5259 | 95.2% | -0.2493 | 1.5585 | 1.8078 | 94.8% | ||
b=3 | 150 | a | 1.7896 | 2.5391 | 0.7496 | 95.4% | 1.7365 | 2.5418 | 0.8053 | 96.2% |
b | 1.7926 | 4.1551 | 2.3625 | 96.2% | 1.6447 | 4.0422 | 2.3974 | 96.8% | ||
\tau | 0.0645 | 1.1806 | 1.1161 | 96.6% | 0.0097 | 1.1917 | 1.1821 | 97.0% | ||
\tau=0.75 | 300 | a | 1.9039 | 2.4287 | 0.5249 | 95.8% | 1.8799 | 2.4292 | 0.5493 | 97.4% |
b | 2.1524 | 3.7909 | 1.6385 | 94.2% | 1.9889 | 3.7889 | 1.8000 | 97.2% | ||
\tau | 0.1813 | 1.0293 | 0.8480 | 95.4% | 0.1349 | 1.0399 | 0.9050 | 97.0% | ||
600 | a | 1.9724 | 2.3730 | 0.4006 | 95.6% | 1.9612 | 2.3715 | 0.4103 | 96.0% | |
b | 2.3438 | 3.5541 | 1.2102 | 94.2% | 2.3352 | 3.4916 | 1.1564 | 95.4% | ||
\tau | 0.2739 | 0.9082 | 0.6344 | 95.0% | 0.2774 | 0.8905 | 0.6131 | 96.2% | ||
a=3 | 35 | a | 1.9729 | 4.6161 | 2.6432 | 95.8% | 1.8782 | 4.3354 | 2.4572 | 97.0% |
b | -0.0293 | 0.7353 | 0.7646 | 97.0% | -0.0398 | 0.6755 | 0.7154 | 98.0% | ||
\tau | -0.4116 | 1.4397 | 1.8512 | 94.0% | -0.4786 | 1.4140 | 1.8926 | 95.4% | ||
70 | a | 2.4063 | 3.9743 | 1.5680 | 94.2% | 2.2750 | 3.9640 | 1.6890 | 94.2% | |
b | -0.0284 | 0.5486 | 0.5770 | 94.8% | -0.0534 | 0.5696 | 0.6230 | 97.4% | ||
\tau | -0.3834 | 1.0028 | 1.3862 | 93.4% | -0.4462 | 1.0793 | 1.5255 | 93.6% | ||
b=0.25 | 150 | a | 2.6660 | 3.7299 | 1.0639 | 93.4% | 2.6852 | 3.6862 | 1.0010 | 94.4% |
b | 0.0336 | 0.4138 | 0.3803 | 94.2% | -0.0209 | 0.5050 | 0.5260 | 91.6% | ||
\tau | -0.2258 | 0.6358 | 0.8616 | 93.8% | -0.3280 | 0.8359 | 1.1640 | 88.4% | ||
\tau=0.25 | 300 | a | 2.8201 | 3.5448 | 0.7248 | 94.0% | 2.9279 | 3.5496 | 0.6216 | 93.8% |
b | 0.0642 | 0.3265 | 0.2624 | 92.6% | 0.2438 | 0.3026 | 0.0587 | 98.2% | ||
\tau | -0.1524 | 0.4342 | 0.5866 | 92.8% | 0.3140 | 0.3670 | 0.0530 | 97.3% | ||
600 | a | 2.9387 | 3.4003 | 0.4616 | 94.8% | 2.9697 | 3.1695 | 0.1998 | 98.1% | |
b | 0.1070 | 0.2593 | 0.1523 | 95.4% | 0.3550 | 0.1831 | -0.1719 | 96.9% | ||
\tau | -0.0465 | 0.2697 | 0.3162 | 95.4% | 0.4718 | 0.1116 | -0.3601 | 97.5% |
\alpha | \beta | \tau | \theta | \lambda | ||
EGAPE | Estimates | 1.8897 | 29.0863 | 1.7697 | ||
SE | 0.5609 | 21.0642 | 0.8618 | |||
EL | Estimates | 77.2175 | 12.0930 | 3.6927 | ||
SE | 116.8405 | 17.6372 | 7.7470 | |||
KW | Estimates | 30.4293 | 0.3994 | 1.7768 | 1.4045 | |
SE | 35.9424 | 0.4654 | 0.8620 | 0.6895 | ||
EW | Estimates | 2.757653 | 13.05099 | 11.26919 | ||
SE | 0.425237 | 16.18943 | 25.32466 | |||
MOAPEW | Estimates | 0.0048 | 0.4068 | 0.1943 | 0.4860 | 0.0038 |
SE | 0.0070 | 0.1936 | 0.0756 | 0.2005 | 0.0011 | |
KMGE | Estimates | 32.4295 | 2.0003 | |||
SE | 20.6526 | 0.4056 | ||||
EHLINH | Estimates | 6.7046 | 28.4439 | 0.0674 | ||
SE | 2.0967 | 65.6860 | 0.1601 | |||
ExEx | Estimates | 133.3134 | 0.0028 | |||
SE | 78.3222 | 0.0015 | ||||
OWITL | Estimates | 2.9015 | 79.0976 | 0.3261 | ||
SE | 0.4311 | 115.5561 | 0.1408 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.1163 | 0.9495 | 37.8850 | 40.8722 | 39.3850 | 38.4682 | 0.0427 | 0.2510 |
EL | 0.1211 | 0.9308 | 37.5124 | 40.4996 | 39.0124 | 38.0955 | 0.0391 | 0.2260 |
KW | 0.1392 | 0.8329 | 39.9867 | 43.9696 | 42.6534 | 40.7642 | 0.0498 | 0.2913 |
MOAPEW | 0.1853 | 0.4984 | 47.2771 | 50.2643 | 48.7771 | 47.8603 | 0.1866 | 1.0986 |
EW | 0.1853 | 0.4984 | 47.2771 | 50.2643 | 48.7771 | 47.8603 | 0.1866 | 1.0986 |
KMGE | 0.1206 | 0.9330 | 35.9024 | 37.8938 | 36.6082 | 36.2911 | 0.0438 | 0.2576 |
EHLINH | 0.1294 | 0.8912 | 37.9113 | 40.8985 | 39.4113 | 38.4944 | 0.0457 | 0.2641 |
ExEx | 0.4041 | 0.0029 | 59.5574 | 61.5489 | 60.2633 | 59.9461 | 0.1761 | 1.0400 |
OWITL | 0.1783 | 0.5481 | 44.5537 | 47.5409 | 46.0537 | 45.1369 | 0.1441 | 0.8519 |
\alpha | \beta | \tau | \theta | \lambda | ||
EGAPE | Estimates | 0.0886 | 1.4401 | 0.6050 | ||
SE | 0.0157 | 0.5555 | 0.6115 | |||
TLMW | Estimates | 0.0106 | 0.0101 | 1.2689 | 1.2680 | |
SE | 0.0740 | 0.0276 | 0.2493 | 1.0647 | ||
TIIEHLPL | Estimates | 1.7143 | 0.1844 | 28.8074 | 166.7427 | |
SE | 2.9734 | 0.2303 | 71.7154 | 27.4533 | ||
EL | Estimates | 1.8125 | 11.2464 | 123.1732 | ||
SE | 0.3163 | 8.1168 | 102.2685 | |||
KW | Estimates | 1.2083 | 2.3127 | 0.0326 | 1.1786 | |
SE | 0.9050 | 6.4453 | 0.0641 | 0.6493 | ||
GMW | Estimates | 0.0370 | 1.2290 | 0.0015 | 1.1750 | |
SE | 0.0939 | 0.9993 | 0.0140 | 0.7523 | ||
MOAPEW | Estimates | 0.3553 | 0.2575 | 0.1384 | 0.0058 | 0.0087 |
SE | 0.5066 | 0.0104 | 0.1008 | 0.0018 | 0.0078 | |
EW | Estimates | 0.2312 | 0.0085 | 0.2914 | ||
SE | 0.0152 | 0.0058 | 0.1531 | |||
KMGE | Estimates | 1.8212 | 0.0675 | |||
SE | 0.2588 | 0.0091 | ||||
EHLINH | Estimates | 19.5686 | 0.2837 | 1589.2263 | ||
SE | 15.3431 | 0.0490 | 237.2804 | |||
ExEx | Estimates | 3.4494 | 0.0117 | |||
SE | 1.9636 | 0.0079 | ||||
OWITL | Estimates | 1.1721 | 0.0508 | 1.1382 | ||
SE | 0.4598 | 0.0350 | 0.5937 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.0728 | 0.7453 | 662.0716 | 669.4693 | 662.3608 | 665.0504 | 0.0869 | 0.5958 |
TLMW | 0.0740 | 0.7280 | 663.9288 | 673.7924 | 664.4166 | 667.9005 | 0.0901 | 0.6041 |
TIIEHLPL | 0.0816 | 0.6084 | 665.4572 | 675.3208 | 665.9450 | 669.4290 | 0.0814 | 0.6494 |
EL | 0.0845 | 0.5635 | 663.7241 | 671.1218 | 664.0132 | 666.7029 | 0.0761 | 0.6190 |
KW | 0.0752 | 0.7090 | 663.9278 | 673.7914 | 664.4156 | 667.8996 | 0.0920 | 0.6121 |
GMW | 0.0768 | 0.6834 | 663.8639 | 673.7276 | 664.3517 | 667.8357 | 0.0943 | 0.6201 |
MOAPEW | 0.0762 | 0.6929 | 665.7249 | 678.0545 | 666.4657 | 670.6897 | 0.0879 | 0.5993 |
EW | 0.1110 | 0.2336 | 667.4458 | 674.8435 | 667.7349 | 670.4246 | 0.2186 | 1.2041 |
KMGE | 0.0861 | 0.5389 | 662.3907 | 669.8323 | 662.5335 | 665.3766 | 0.0763 | 0.6177 |
EHLINH | 0.0864 | 0.5345 | 664.3826 | 671.7803 | 664.6718 | 667.3615 | 0.0853 | 0.7083 |
ExEx | 0.0919 | 0.4547 | 662.8435 | 669.7753 | 662.9863 | 665.8294 | 0.1603 | 0.9021 |
OWITL | 0.0771 | 0.6787 | 662.6932 | 669.5910 | 662.9824 | 665.6721 | 0.0996 | 0.6511 |
\alpha | \beta | \tau | \theta | ||
EGAPE | Estimates | 1.2948 | 0.9091 | 0.0079 | |
SE | 0.1631 | 0.6367 | 0.0242 | ||
TLMW | Estimates | 0.2497 | 0.2004 | 1.2916 | 2.7723 |
SE | 0.9087 | 0.7554 | 0.7622 | 1.5924 | |
TIIEHLPL | Estimates | 0.0927 | 1.3381 | 2.4967 | 138.0944 |
SE | 0.2557 | 0.8698 | 1.5475 | 532.9272 | |
EL | Estimates | 3.8657 | 36.6762 | 30.4730 | |
SE | 0.8248 | 61.0255 | 53.2398 | ||
KW | Estimates | 3.9049 | 3.8098 | 0.6329 | 0.7832 |
SE | 9.9178 | 25.2951 | 0.8289 | 1.7951 | |
GMW | Estimates | 1.4999 | 7.0403 | 0.1177 | 0.5813 |
SE | 0.7081 | 2.0431 | 0.0250 | 0.1381 | |
EW | Estimates | 1.8162 | 36.6594 | 5.3695 | |
SE | 0.1607 | 70.2187 | 9.0321 | ||
EGAPEx | Estimates | 2.2303 | 3.0157 | 3.0038 | 0.4497 |
SE | 4.3322 | 1.7338 | 3.8605 | 0.5913 | |
KMGE | Estimates | 3.7890 | 0.9720 | ||
SE | 0.7019 | 0.1221 | |||
EHLINH | Estimates | 34.1057 | 0.3627 | 94.1204 | |
SE | 38.2904 | 0.0934 | 165.6271 | ||
ExEx | Estimates | 70.0000 | 0.0051 | ||
SE | 81.8420 | 0.0059 | |||
OWITL | Estimates | 1.8011 | 19.0880 | 0.3149 | |
SE | 0.1713 | 23.2625 | 0.1740 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.0826 | 0.7094 | 192.5995 | 199.4295 | 192.9524 | 195.3185 | 0.0881 | 0.5118 |
TLMW | 0.0885 | 0.6253 | 196.1265 | 205.2332 | 196.7235 | 199.7519 | 0.0915 | 0.5657 |
TIIEHLPL | 0.0874 | 0.6408 | 196.0386 | 205.1453 | 196.6356 | 199.6640 | 0.0747 | 0.4823 |
EL | 0.0944 | 0.5429 | 194.7195 | 201.5495 | 195.0725 | 197.4386 | 0.0770 | 0.5188 |
KW | 0.0896 | 0.6103 | 196.1880 | 205.2947 | 196.7850 | 199.8134 | 0.0933 | 0.5735 |
GMW | 0.0905 | 0.5967 | 197.2302 | 206.3369 | 197.8272 | 200.8556 | 0.1064 | 0.6601 |
EW | 0.1056 | 0.3984 | 197.6848 | 204.5148 | 198.0377 | 200.4038 | 0.1662 | 0.9792 |
EGAPEx | 0.0874 | 0.6411 | 196.1340 | 205.2406 | 196.7310 | 199.7594 | 0.0917 | 0.5652 |
KMGE | 0.0906 | 0.5961 | 193.4319 | 200.9853 | 193.6058 | 196.2446 | 0.0970 | 0.5771 |
EHLINH | 0.1011 | 0.4537 | 195.7417 | 202.5717 | 196.0946 | 198.4607 | 0.0976 | 0.6161 |
ExEx | 0.2118 | 0.0031 | 210.6588 | 215.2121 | 210.8327 | 212.4715 | 0.2429 | 1.4240 |
OWITL | 0.0929 | 0.5634 | 194.6419 | 201.4719 | 194.9949 | 197.3610 | 0.0921 | 0.5773 |
Data | T_1 | T_2 | T_3 | n_1 | n_2 | n_3 | \alpha_1 | \alpha_2 | \alpha_3 | \beta | \tau | Llog | AI | BI |
I | 1.6 | 1.9 | 3 | 6 | 7 | 5 | 2.5353 | 4.2746 | 3.3228 | 1.8354 | 0.0020 | -7.2028 | 24.4055 | 29.3842 |
3.5 | 6 | 2.4710 | 3.8668 | 2.3909 | 2.0295 | 0.0031 | -10.4644 | 30.9287 | 35.9074 | |||||
2.2 | 3 | 9 | 3 | 2.5416 | 3.5990 | 5.0954 | 1.9838 | 0.0026 | -7.1745 | 24.3490 | 29.3277 | |||
3.5 | 4 | 2.5352 | 3.0753 | 2.9460 | 1.9840 | 0.0008 | -10.8706 | 31.7412 | 36.7198 | |||||
1.8 | 1.9 | 3 | 11 | 2 | 5 | 2.8502 | 4.7026 | 3.3463 | 1.4596 | 0.0034 | -7.6071 | 25.2142 | 30.1929 | |
3.5 | 6 | 2.7474 | 4.0312 | 2.4071 | 1.7368 | 0.0024 | -10.7940 | 31.5879 | 36.5666 | |||||
2.2 | 3 | 4 | 3 | 2.9864 | 3.0214 | 5.1299 | 1.3835 | 0.0007 | -7.4430 | 24.8859 | 29.8646 | |||
3.5 | 4 | 2.8427 | 2.4470 | 2.9661 | 1.9249 | 0.0025 | -10.9378 | 31.8756 | 36.8543 | |||||
II | 8 | 14 | 22 | 22 | 21 | 24 | 0.0842 | 0.1251 | 0.3435 | 1.4147 | 0.8461 | -207.0863 | 424.1727 | 436.5022 |
38 | 36 | 0.0463 | 0.0689 | 0.1152 | 1.3591 | 1.4858 | -278.0608 | 566.1216 | 578.4511 | |||||
18 | 30 | 35 | 14 | 0.1071 | 0.1562 | 0.2666 | 1.2760 | 0.3879 | -231.5655 | 473.1311 | 485.4606 | |||
38 | 22 | 0.0929 | 0.1258 | 0.1248 | 1.2874 | 0.4486 | -278.8941 | 567.7881 | 580.1177 | |||||
10 | 14 | 30 | 28 | 15 | 28 | 0.0546 | 0.0970 | 0.2060 | 1.4255 | 1.5355 | -229.6798 | 469.3596 | 481.6891 | |
38 | 36 | 0.0473 | 0.0790 | 0.1146 | 1.3702 | 1.5078 | -277.6793 | 565.3585 | 577.6881 | |||||
18 | 30 | 29 | 14 | 0.0908 | 0.1687 | 0.2639 | 1.3715 | 0.6488 | -230.6346 | 471.2691 | 483.5987 | |||
38 | 22 | 0.0642 | 0.1176 | 0.1199 | 1.4065 | 1.0223 | -278.2243 | 566.4487 | 578.7782 | |||||
III | 1.1 | 1.6 | 2.4 | 21 | 17 | 18 | 1.9285 | 1.9888 | 3.3652 | 2.1804 | 0.0428 | -42.3850 | 94.7701 | 106.1534 |
3 | 26 | 1.8135 | 1.6050 | 2.1656 | 2.1324 | 0.0408 | -61.6277 | 133.2554 | 144.6387 | |||||
1.9 | 2.4 | 25 | 10 | 1.9262 | 2.1187 | 4.8965 | 2.1808 | 0.0427 | -41.3863 | 92.7727 | 104.1560 | |||
3 | 18 | 1.8140 | 1.6102 | 2.5898 | 2.1043 | 0.0396 | -60.9120 | 131.8240 | 143.2073 | |||||
1.3 | 1.6 | 2.4 | 30 | 8 | 18 | 2.0586 | 1.6644 | 3.3873 | 2.4176 | 0.0402 | -42.2304 | 94.4608 | 105.8442 | |
3 | 26 | 1.8815 | 1.2926 | 2.1763 | 2.2743 | 0.0399 | -61.2000 | 132.4000 | 143.7833 | |||||
1.9 | 2.4 | 16 | 10 | 2.0571 | 1.9902 | 4.9177 | 2.4155 | 0.0401 | -41.4372 | 92.8744 | 104.2577 | |||
3 | 18 | 1.8835 | 1.4376 | 2.6025 | 2.2621 | 0.0392 | -60.5813 | 131.1625 | 142.5459 |
Data | T_1 | T_2 | T_3 | n_1 | n_2 | n_3 | \alpha_1 | \alpha_2 | \alpha_3 | \beta | \tau | Llog | AI | BI |
I | 1.6 | 1.9 | 3 | 6 | 7 | 2 | 2.7800 | 6.6237 | 5.1808 | 1.5332 | 0.0019 | -1.3345 | 12.6689 | 17.6476 |
3.5 | 3 | 2.6606 | 5.5631 | 2.0821 | 1.5061 | 0.0026 | -5.5431 | 21.0862 | 26.0648 | |||||
2.2 | 3.1 | 9 | 2 | 2.5638 | 4.3445 | 2.5229 | 1.7539 | 0.0021 | -6.6903 | 23.3806 | 28.3592 | |||
3.5 | 2 | 2.5638 | 4.3445 | 2.5229 | 1.7539 | 0.0001 | -6.6903 | 23.3806 | 28.3592 | |||||
1.8 | 1.9 | 3 | 11 | 1 | 2 | 3.3879 | 5.5803 | 2.5550 | 1.4507 | 0.0012 | -4.0139 | 18.0277 | 23.0064 | |
3.5 | 3 | 3.5248 | 3.7242 | 1.6542 | 2.0645 | 0.0018 | -7.1073 | 24.2145 | 29.1932 | |||||
2.2 | 3 | 3 | 1 | 3.2535 | 4.6798 | 10.2574 | 1.5629 | 0.0019 | -3.0837 | 16.1675 | 21.1461 | |||
3.5 | 1 | 3.2535 | 4.6798 | 10.2574 | 1.5629 | 0.0029 | -3.0837 | 16.1675 | 21.1461 | |||||
II | 8 | 14 | 22 | 22 | 18 | 16 | 0.1221 | 0.1552 | 0.3637 | 1.3846 | 0.5564 | -171.7641 | 353.5283 | 365.8578 |
38 | 25 | 0.0621 | 0.0835 | 0.1128 | 1.4401 | 1.4256 | -226.8644 | 463.7287 | 476.0583 | |||||
18 | 22 | 29 | 5 | 0.1362 | 0.2049 | 0.5140 | 1.3076 | 0.3588 | -171.8571 | 353.7143 | 366.0438 | |||
38 | 15 | 0.1127 | 0.1369 | 0.1093 | 1.2970 | 0.4134 | -230.3447 | 470.6895 | 483.0190 | |||||
10 | 14 | 22 | 28 | 12 | 16 | 0.0711 | 0.1187 | 0.3461 | 1.5427 | 1.6947 | -169.7180 | 349.4361 | 361.7656 | |
38 | 24 | 0.0584 | 0.0858 | 0.1120 | 1.4557 | 1.6740 | -220.9976 | 451.9953 | 464.3248 | |||||
18 | 22 | 24 | 5 | 0.1297 | 0.2358 | 0.5680 | 1.3375 | 0.4332 | -173.7040 | 357.4080 | 369.7376 | |||
38 | 13 | 0.1069 | 0.1581 | 0.1051 | 1.3487 | 0.5302 | -224.0241 | 458.0481 | 470.3777 | |||||
III | 1.1 | 1.6 | 2.4 | 21 | 13 | 9 | 2.2016 | 2.4738 | 4.1560 | 2.3470 | 0.0482 | -27.9595 | 65.9191 | 77.3024 |
3 | 13 | 2.1023 | 2.0038 | 2.3040 | 2.2828 | 0.0463 | -39.9871 | 89.9742 | 101.3575 | |||||
1.9 | 2.4 | 21 | 5 | 2.0900 | 2.4406 | 5.7452 | 2.3197 | 0.0480 | -32.3110 | 74.6221 | 86.0054 | |||
3 | 9 | 2.0104 | 1.9690 | 2.9062 | 2.2560 | 0.0457 | -43.2342 | 96.4684 | 107.8517 | |||||
1.3 | 1.6 | 2.4 | 30 | 6 | 10 | 2.3723 | 1.9721 | 3.2473 | 2.7184 | 0.0406 | -32.2770 | 74.5541 | 85.9374 | |
3 | 14 | 2.2271 | 1.5491 | 2.2233 | 2.5817 | 0.0408 | -42.5040 | 95.0080 | 106.3914 | |||||
1.9 | 2.4 | 12 | 8 | 2.2277 | 1.8942 | 4.5920 | 2.5778 | 0.0406 | -36.5661 | 83.1323 | 94.5156 | |||
3 | 10 | 2.1666 | 1.6701 | 3.5295 | 2.5178 | 0.0404 | -41.6866 | 93.3732 | 104.7565 |