Processing math: 90%
Research article Special Issues

A new approximate method to the time fractional damped Burger equation

  • Received: 08 February 2023 Revised: 18 March 2023 Accepted: 20 March 2023 Published: 04 April 2023
  • MSC : 35L05, 35Qxx

  • In this article, we study a Caputo fractional model, namely, the time fractional damped Burger equation. As the main mathematical tool of this article, we apply a new approximate method which is called the approximate-analytical method (AAM) to deal with the time fractional damped Burger equation. Then, a new approximate solution of this considered equation was obtained. It may be used to characterize nonlinear phenomena of the shallow water wave phenomena. Thereby, it provides a new window for us to find the time fractional damped Burger equation new evolutionary mechanism.

    Citation: Jian-Gen Liu, Jian Zhang. A new approximate method to the time fractional damped Burger equation[J]. AIMS Mathematics, 2023, 8(6): 13317-13324. doi: 10.3934/math.2023674

    Related Papers:

    [1] Gauhar Rahman, Kottakkaran Sooppy Nisar, Feng Qi . Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Mathematics, 2018, 3(4): 575-583. doi: 10.3934/Math.2018.4.575
    [2] Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112
    [3] Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some q-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192
    [4] Marwa M. Tharwat, Marwa M. Ahmed, Ammara Nosheen, Khuram Ali Khan, Iram Shahzadi, Dumitru Baleanu, Ahmed A. El-Deeb . Dynamic inequalities of Grüss, Ostrowski and Trapezoid type via diamond-α integrals and Montgomery identity. AIMS Mathematics, 2024, 9(5): 12778-12799. doi: 10.3934/math.2024624
    [5] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
    [6] Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Fahd Jarad, Y. S. Hamed, Khadijah M. Abualnaja . Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function. AIMS Mathematics, 2021, 6(8): 8001-8029. doi: 10.3934/math.2021465
    [7] J. Vanterler da C. Sousa, E. Capelas de Oliveira . The Minkowski’s inequality by means of a generalized fractional integral. AIMS Mathematics, 2018, 3(1): 131-147. doi: 10.3934/Math.2018.1.131
    [8] Sajid Iqbal, Muhammad Samraiz, Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad . Some new Grüss inequalities associated with generalized fractional derivative. AIMS Mathematics, 2023, 8(1): 213-227. doi: 10.3934/math.2023010
    [9] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
    [10] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
  • In this article, we study a Caputo fractional model, namely, the time fractional damped Burger equation. As the main mathematical tool of this article, we apply a new approximate method which is called the approximate-analytical method (AAM) to deal with the time fractional damped Burger equation. Then, a new approximate solution of this considered equation was obtained. It may be used to characterize nonlinear phenomena of the shallow water wave phenomena. Thereby, it provides a new window for us to find the time fractional damped Burger equation new evolutionary mechanism.



    Hermite and Hadamard's inequality [1,2] is one of the most well-known inequalities in convex function theory, with a geometrical interpretation and numerous applications. The H·H inequality is defined as follows for the convex function Ψ:KR on an interval K=[u,ν]:

    Ψ(u+ν2)1νuνuΨ(x)dxΨ(u)+Ψ(ν)2, (1)

    for all u,νK.

    If f is concave, the inequalities in (1) hold in the reversed direction. We should point out that Hermite-Hadamard inequality is a refinement of the concept of convexity, and it follows naturally from Jensen's inequality. In recent years, the Hermite-Hadamard inequality for convex functions has gotten a lot of attention, and a lot of improvements and generalizations have been examined; see [3,4,5,6,7,8,9,10,11,12] and the references therein.

    Interval analysis, on the other hand, is a subset of set-valued analysis, which is the study of sets in the context of mathematical analysis and topology. It was created as a way to deal with interval uncertainty, which can be found in many mathematical or computer models of deterministic real-world phenomena. Archimedes' method, which is used to calculate the circumference of a circle, is a historical example of an interval enclosure. Moore, who is credited with being the first user of intervals in computer mathematics, published the first book on interval analysis in 1966, see [13]. Following the publication of his book, a number of scientists began to research the theory and applications of interval arithmetic. Interval analysis is now a useful technique in a variety of fields that are interested in ambiguous data because of its applications. Computer graphics, experimental and computational physics, error analysis, robotics, and many other fields have applications.

    In recent years, several major inequalities (Hermite-Hadamard, Ostrowski, etc.) for interval-valued functions have been studied. Chalco-Cano et al. used the Hukuhara derivative for interval-valued functions to construct Ostrowski type inequalities for interval-valued functions in [14,15]. For interval-valued functions, Román-Flores et al. established Minkowski and Beckenbach's inequalities in [18]. For the rest, see [16,17,18,19,20]. Inequalities, on the other hand, were investigated for the more generic set-valued maps. Sadowska, for example, presented the Hermite-Hadamard inequality in [21]. Other investigations can be found at [22,23].

    Recently, Khan et al. [24] introduced the new class of convex fuzzy mappings is known as (h1,h2)-convex F-I-V-Fs by means of FOR such that:

    Let h1,h2:[0,1]K=[u,υ]R+ such that h1,h20. Then F-I-V-F ˜Ψ:K=[u,υ]FC(R) is said to be (h1,h2)-convex on [u,υ] if

    ˜Ψ(ξw+(1ξ)y)h1(ξ)h2(1ξ)˜Ψ(w)˜+h1(1ξ)h2(ξ)˜Ψ(y), (2)

    for all w,y[u,υ],ξ[0,1].

    And they also presented the following new version of H·H type inequality for (h1,h2)-convex F-I-V-F involving fuzzy-interval Riemann integrals:

    Let ˜Ψ:[u,υ]F0 be a (h1,h2)-convex F-I-V-F with h1,h2:[0,1]R+ and h1(12)h2(12)0. Then, from θ-levels, we get the collection of I-V-Fs Ψθ:[u,υ]RK+C are given by Ψθ(ω)=[Ψ(ω,θ),Ψ(ω,θ)] for all ω[u,υ] and for all θ[0,1]. If ˜Ψ is fuzzy-interval Riemann integrable (in short, FR-integrable), then

    12h1(12)h2(12)˜Ψ(u+υ2)1υu(FR)υu˜Ψ(ω)dω[˜Ψ(u)˜+˜Ψ(υ)]10h1(ξ)h2(1ξ)dξ. (3)

    If h1(ξ)=ξ and h2(ξ)1, then from (3), we get following the result for convex F-I-V-F:

    ˜Ψ(u+υ2)1υu(FR)υu˜Ψ(ω)dω˜Ψ(u)˜+˜Ψ(υ)2

    A one step forward, Khan et al. introduced new classes of convex and generalized convex F-I-V-F, and derived new fractional H·H type and H·H type inequalities for convex F-I-V-F [25], h-convex F-I-V-F [26], (h1,h2)-preinvex F-I-V-F [27], log-s-convex F-I-V-Fs in the second sense [28], LR-log-h-convex I-V-Fs [29], harmonically convex F-I-V-Fs [30], coordinated convex F-I-V-Fs [31] and the references therein. We refer to the readers for further analysis of literature on the applications and properties of fuzzy-interval, and inequalities and generalized convex fuzzy mappings, see [32,33,34,35,36,37,38,39,40,41,42,43,44,45] and the references therein.

    The goal of this study is to complete the fuzzy Riemann integrals for interval-valued functions and use these integrals to get the Hermite-Hadamard inequality. These integrals are also used to derive Hermite-Hadamard type inequalities for harmonically convex F-I-V-Fs.

    In this section, we recall some basic preliminary notions, definitions and results. With the help of these results, some new basic definitions and results are also discussed.

    We begin by recalling the basic notations and definitions. We define interval as,

    [ω,ω]={wR:ωwωandω,ωR},whereωω.

    We write len [ω,ω]=ωω, If len [ω,ω]=0 then, [ω,ω] is called degenerate. In this article, all intervals will be non-degenerate intervals. The collection of all closed and bounded intervals of R is denoted and defined as KC={[ω,ω]:ω,ωRandωω}. If ω0 then, [ω,ω] is called positive interval. The set of all positive interval is denoted by KC+ and defined as KC+={[ω,ω]:[ω,ω]KCandω0}.

    We'll now look at some of the properties of intervals using arithmetic operations. Let [ϱ,ϱ],[s,s]KC and ρR, then we have

    [ϱ,ϱ]+[s,s]=[ϱ+s,ϱ+s],
    [ϱ,ϱ]×[s,s]=[min{ϱs,ϱs,ϱs,ϱs},max{ϱs,ϱs,ϱs,ϱs}]
    ρ.[ϱ,ϱ]={[ρϱ,ρϱ]ifρ>0{0}ifρ=0[ρϱ,ρϱ]ifρ<0.

    For [ϱ,ϱ],[s,s]KC, the inclusion "" is defined by [ϱ,ϱ][s,s], if and only if sϱ, ϱs.

    Remark 2.1. The relation "I" defined on KC by

    [ϱ,ϱ]I[s,s]if and only ifϱs,ϱs, (4)

    for all [ϱ,ϱ],[s,s]KC, it is an order relation, see [41]. For given [ϱ,ϱ],[s,s]KC, we say that [ϱ,ϱ]I[s,s] if and only if ϱs,ϱs or ϱs,ϱ<s.

    Moore [13] initially proposed the concept of Riemann integral for I-V-F, which is defined as follows:

    Theorem 2.2. [13] If Ψ:[u,ν]RKC is an I-V-F on such that Ψ(w)=[Ψ(w),Ψ(w)]. Then Ψ is Riemann integrable over [u,ν] if and only if, Ψ and Ψ both are Riemann integrable over [u,ν] such that

    (IR)νuΨ(w)dw=[(R)νuΨ(w)dw,(R)νuΨ(w)dw]. (5)

    Let R be the set of real numbers. A mapping ˜ζ:R[0,1] called the membership function distinguishes a fuzzy subset set A of R. This representation is found to be acceptable in this study. F(R) also stand for the collection of all fuzzy subsets of R.

    A real fuzzy interval ˜ζ is a fuzzy set in R with the following properties:

    (1) ˜ζ is normal i.e. there exists wR such that ˜ζ(w)=1;

    (2) ˜ζ is upper semi continuous i.e., for given wR, for every wR there exist ϵ>0 there exist δ>0 such that ˜ζ(w)˜ζ(y)<ϵ for all yR with |wy|<δ;

    (3) ˜ζ is fuzzy convex i.e., ˜ζ((1ξ)w+ξy)min(˜ζ(w),˜ζ(y)),w,yR and ξ[0,1];

    (4) ˜ζ is compactly supported i.e., cl{wR|˜ζ(w)>0} is compact.

    The collection of all real fuzzy intervals is denoted by F0.

    Let ˜ζF0 be real fuzzy interval, if and only if, θ-levels [˜ζ]θ is a nonempty compact convex set of R. This is represented by

    [˜ζ]θ={wR|˜ζ(w)θ},

    from these definitions, we have

    [˜ζ]θ=[ζ(θ),ζ(θ)],

    where

    ζ(θ)=inf{wR|˜ζ(w)θ},
    ζ(θ)=sup{wR|˜ζ(w)θ}.

    Thus a real fuzzy interval ˜ζ can be identified by a parametrized triples

    {(ζ(θ),ζ(θ),θ):θ[0,1]}.

    These two end point functions ζ(θ) and ζ(θ) are used to characterize a real fuzzy interval as a result.

    Proposition 2.3. [18] Let ˜ζ,˜ΘF0. Then fuzzy order relation "" given on F0 by

    ˜ζ˜Θifandonlyif,[˜ζ]θI[˜Θ]θforallθ(0,1],

    it is partial order relation.

    We'll now look at some of the properties of fuzzy intervals using arithmetic operations. Let ˜ζ,˜ΘF0 and ρR, then we have

    [˜ζ˜+˜Θ]θ=[˜ζ]θ+[˜Θ]θ, (6)
    [˜ζ˜×˜Θ]θ=[˜ζ]θ×[˜Θ]θ, (7)
    [ρ.˜ζ]θ=ρ.[˜ζ]θ. (8)

    For ψF0 such that ˜ζ=˜Θ˜+˜ψ, we have the existence of the Hukuhara difference of ˜ζ and ˜Θ, which we call the H-difference of ˜ζ and ˜Θ, and denoted by ˜ζ˜˜Θ. If H-difference exists, then

    (ψ)(θ)=(ζ˜Θ)(θ)=ζ(θ)Θ(θ),(ψ)(θ)=(ζ˜Θ)(θ)=ζ(θ)Θ(θ). (9)

    Definition 2.4. [38] A fuzzy-interval-valued map ˜Ψ:[u,υ]RF0 is called F-I-V-F. For each θ(0,1], whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]RKC are given by Ψθ(w)=[Ψ(w,θ),Ψ(w,θ)] for all w[u,υ]. Here, for each θ(0,1], the end point real functions Ψ(.,θ),Ψ(.,θ):[u,υ]R are called lower and upper functions of ˜Ψ.

    The following conclusions can be drawn from the preceding literature review [38,39,40]:

    Definition 2.5. Let ˜Ψ:[u,ν]RF0 be an F-I-V-F. Then fuzzy integral of ˜Ψ over [u,ν], denoted by (FR)νu˜Ψ(w)dw, it is given level-wise by

    [(FR)νu˜Ψ(w)dw]θ=(IR)νuΨθ(w)dw={νuΨ(w,θ)dw:Ψ(w,θ)R([u,ν],θ)}, (10)

    for all θ(0,1], where R([u,ν],θ) denotes the collection of Riemannian integrable functions of I-V-Fs. ˜Ψ is FR-integrable over [u,ν] if (FR)νu˜Ψ(w)dwF0. Note that, if Ψ(w,θ),Ψ(w,θ) are Lebesgue-integrable, then Ψ is fuzzy Aumann-integrable function over [u,ν], see [18,39,40].

    Theorem 2.6. Let ˜Ψ:[u,ν]RF0 be a F-I-V-F, whose θ-levels define the family of I-V-Fs Ψθ:[u,ν]RKC are given by Ψθ(w)=[Ψ(w,θ),Ψ(w,θ)] for all w[u,ν] and for all θ(0,1]. Then ˜Ψ is FR-integrable over [u,ν] if and only if, Ψ(w,θ) and Ψ(w,θ) both are R-integrable over [u,ν]. Moreover, if ˜Ψ is FR-integrable over [u,ν], then

    [(FR)νu˜Ψ(w)dw]θ=[(R)νuΨ(w,θ)dw,(R)νuΨ(w,θ)dw]=(IR)νuΨθ(w)dw (11)

    for all θ(0,1]. For all θ(0,1],FR([u,ν],θ) denotes the collection of all FR-integrable F-I-V-Fs over [u,ν].

    Definition 2.7. [42] A set K=[u,υ]R+=(0,) is said to be convex set, if, for all w,yK,ξ[0,1], we have

    wyξw+(1ξ)yK. (12)

    Definition 2.8. [42] The Ψ:[u,υ]R+ is called harmonically convex function on [u,υ] if

    Ψ(wyξw+(1ξ)y)(1ξ)Ψ(w)+ξΨ(y), (13)

    for all w,y[u,υ],ξ[0,1], where Ψ(w)0 for all w[u,υ]. If (13) is reversed then, Ψ is called harmonically concave F-I-V-F on [u,υ].

    Definition 2.11. [30] The F-I-V-F ˜Ψ:[u,υ]F0 is called harmonically convex F-I-V-F on [u,υ] if

    ˜Ψ(wyξw+(1ξ)y)(1ξ)˜Ψ(w)˜+ξ˜Ψ(y), (14)

    for all w,y[u,υ],ξ[0,1], where ˜Ψ(w)˜0, for all w[u,υ]. If (14) is reversed then, ˜Ψ is called harmonically concave F-I-V-F on [u,υ].

    Definition 2.12. The F-I-V-F ˜Ψ:[u,υ]F0 is called harmonically convex F-I-V-F on [u,υ] if

    ˜Ψ(wyξw+(1ξ)y)(1ξ)˜Ψ(w)˜+ξ˜Ψ(y), (15)

    for all w,y[u,υ],ξ[0,1], where ˜Ψ(w)˜0, for all w[u,υ]. If (15) is reversed then, ˜Ψ is called harmonically concave F-I-V-F on [u,υ]. The set of all harmonically convex (harmonically concave) F-I-V-F is denoted by

    HFSX([u,υ],F0)
    (HFSV([u,υ],F0)).

    Theorem 2.13. Let [u,υ] be harmonically convex set, and let ˜Ψ:[u,υ]FC(R) be a F-I-V-F, whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]RK+CKC are given by

    Ψθ(w)=[Ψ(w,θ),Ψ(w,θ)],w[u,υ]. (16)

    for all w[u,υ], θ[0,1]. Then, ˜ΨHFSX([u,υ],F0), if and only if, for all [0,1],Ψ(w,θ), Ψ(w,θ)HSX([u,υ],R+).

    Proof. The demonstration of proof is similar to proof of Theorem 2.12, see [26].

    Example 2.14. We consider the F-I-V-Fs ˜Ψ:[0,2]FC(R) defined by,

    ˜Ψ(w)()={w[0,w]22w(w,2w]0otherwise.

    Then, for each θ[0,1], we have Ψθ(w)=[θw,(2θ)w]. Since Ψ(w,θ), Ψ(w,θ)HSX([u,υ],R+), for each θ[0,1]. Hence ˜ΨHFSX([u,υ],F0).

    Remark 2.15. If T(u,θ)=T(υ,θ) with θ=1, then harmonically convex F-I-V-F reduces to the classical harmonically convex function, see [42].

    In this section, we will prove two types of inequalities. First one is 𝐻.𝐻 and their variant forms, and the second one is H·H Fejér inequalities for convex F-I-V-Fs where the integrands are F-I-V-Fs.

    Theorem 3.1. Let ˜ΨHFSX([u,υ],F0), whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]RK+C are given by Ψθ(w)=[Ψ(w,θ),Ψ(w,θ)] for all w[u,υ], θ[0,1]. If ˜ΨFR([u,υ],θ), then

    ˜Ψ(2uυu+υ)uυυuυu˜Ψ(w)w2dw˜Ψ(u)˜+˜Ψ(υ)2. (17)

    If ˜ΨHFSV([u,υ],F0), then

    ˜Ψ(2uυu+υ)uυυuυu˜Ψ(w)w2dw˜Ψ(u)˜+˜Ψ(υ)2. (18)

    Proof. Let ˜ΨHFSX([u,υ],F0),. Then, by hypothesis, we have

    2˜Ψ(2uυu+υ)˜Ψ(uυξu+(1ξ)υ)˜+˜Ψ(uυ(1ξ)u+ξυ).

    Therefore, for each θ[0,1], we have

    2Ψ(2uυu+υ,θ)Ψ(uυξu+(1ξ)υ,θ)+Ψ(uυ(1ξ)u+ξυ,θ),2Ψ(2uυu+υ,θ)Ψ(uυξu+(1ξ)υ,θ)+Ψ(uυ(1ξ)u+ξυ,θ).

    Then

    210Ψ(2uυu+υ,θ)dξ10Ψ(uυξu+(1ξ)υ,θ)dξ+10Ψ(uυ(1ξ)u+ξυ,θ)dξ,210Ψ(2uυu+υ,θ)dξ10Ψ(uυξu+(1ξ)υ,θ)dξ+10Ψ(uυ(1ξ)u+ξυ,θ)dξ.

    It follows that

    Ψ(2uυu+υ,θ)uυυuυuΨ(w,θ)w2dw,Ψ(2uυu+υ,θ)uυυuυuΨ(w,θ)w2dw.

    That is

    [Ψ(2uυu+υ,θ),Ψ(2uυu+υ,θ)]Iuυυu[υuΨ(w,θ)w2dw,υuΨ(w,θ)w2dw].

    Thus,

    ˜Ψ(2uυu+υ)uυυu(FR)υu˜Ψ(w)w2dw. (19)

    In a similar way as above, we have

    uυυu(FR)υu˜Ψ(w)w2dw˜Ψ(u)˜+˜Ψ(υ)2. (20)

    Combining (19) and (20), we have

    ˜Ψ(2uυu+υ)uυυuυu˜Ψ(w)w2dw˜Ψ(u)˜+˜Ψ(υ)2.

    Hence, the required result.

    Remark 3.2. If Ψ(w,θ)=Ψ(w,θ) with θ=1, then Theorem 3.1 reduces to the result for classical harmonically convex function, see [42]:

    Ψ(2uυu+υ)uυυu(R)υuΨ(w)w2dwΨ(u)+Ψ(υ)2.

    Example 3.3. We consider the FIVFs ˜Ψ:[0,2]FC(R), as in Example 2.14. Then, for each θ[0,1], we have Ψθ(w)=[θw,(2θ)w] is harmonically convex FIVF. Since, Ψ(w,θ)=θw,Ψ(w,θ)=(2θ)w. We now compute the following:

    Ψ(2uυu+υ,θ)uυυuυuΨ(w,θ)w2dwΨ(u,θ)+Ψ(υ,θ)2,
    Ψ(2uυu+υ,θ)=Ψ(0,θ)=0,
    uυυuυuΨ(w,θ)w2dw=0220θww2dw=0,
    Ψ(u,θ)+Ψ(υ,θ)2=θ2,

    for all θ[0,1]. That means

    00θ2.

    Similarly, it can be easily show that

    Ψ(2uυu+υ,θ)uυυuυuΨ(w,θ)w2dwΨ(u,θ)+Ψ(υ,θ)2.

    for all θ[0,1], such that

    Ψ(2uυu+υ,θ)=Ψ(0,θ)=0,
    uυυuυuΨ(w,θ)w2dw=0220(2θ)ww2dw=0,
    Ψ(u,θ)+Ψ(υ,θ)2=(2θ)2.

    From which, we have

    00(2θ)2,

    that is

    [0,0]I[0,0]I12[θ,(2θ)],forallθ[0,1].

    Hence,

    ˜Ψ(2uυu+υ)uυυuυu˜Ψ(w)w2dw˜Ψ(u)˜+˜Ψ(υ)2.

    Theorem 3.4. Let ˜ΨHFSX([u,υ],F0), whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]RK+C are given by Ψθ(w)=[Ψ(w,θ),Ψ(w,θ)] for all w[u,υ], θ[0,1]. If ˜ΨFR([u,υ],θ), then

    ˜Ψ(2uυu+υ)2uυυu(FR)υu˜Ψ(w)w2dw1˜Ψ(u)˜+˜Ψ(υ)2, (21)

    where

    1=12[˜Ψ(u)˜+˜Ψ(υ)2˜+˜Ψ(2uυu+υ)],
    2=12[˜Ψ(4uυu+3υ)˜+˜Ψ(4uυ3u+υ)],

    and 1=[1,1], 2=[2,2]. If ˜ΨHFSV([u,υ],F0), then inequality (21) is reversed.

    Proof. Take [u,2uυu+υ], we have

    2˜Ψ(u4uυu+υξu+(1ξ)2uυu+υ+u4uυu+υ(1ξ)u+ξ2uυu+υ)
    ˜Ψ(u2uυu+υξu+(1ξ)2uυu+υ)˜+˜Ψ(u2uυu+υ(1ξ)u+ξ2uυu+υ).

    Therefore, for every θ[0,1], we have

    2Ψ(u4uυu+υξu+(1ξ)2uυu+υ+u4uυu+υ(1ξ)u+ξ2uυu+υ,θ)Ψ(u2uυu+υξu+(1ξ)2uυu+υ,θ)+Ψ(u2uυu+υ(1ξ)u+ξ2uυu+υ,θ),2Ψ(u4uυu+υξu+(1ξ)2uυu+υ+u4uυu+υ(1ξ)u+ξ2uυu+υ,θ)Ψ(u2uυu+υξu+(1ξ)2uυu+υ,θ)+Ψ(u2uυu+υ(1ξ)u+ξ2uυu+υ,θ).

    In consequence, we obtain

    12Ψ(4uυu+3υ,θ)uυυu2uυu+υuΨ(w,θ)w2dw,12Ψ(4uυu+3υ,θ)uυυu2uυu+υuΨ(w,θ)w2dw.

    That is

    12[Ψ(4uυu+3υ,θ),Ψ(4uυu+3υ,θ)]Iuυυu[2uυu+υuΨ(w,θ)w2dw,2uυu+υuΨ(w,θ)w2dw].

    It follows that

    12˜Ψ(4uυu+3υ)uυυu2uυu+υu˜Ψ(w)w2dw. (22)

    In a similar way as above, we have

    12˜Ψ(4uυ3u+υ)uυυuυ2uυu+υ˜Ψ(w)w2dw. (23)

    Combining (22) and (23), we have

    12[˜Ψ(4uυu+3υ)˜+˜Ψ(4uυ3u+υ)]uυυuυu˜Ψ(w)w2dw. (24)

    Therefore, for every θ[0,1], by using Theorem 3.1, we have

    Ψ(2uυu+υ,θ)12[Ψ(4uυu+3υ,θ)+Ψ(4uυ3u+υ,θ)],Ψ(2uυu+υ,θ)12[Ψ(4uυu+3υ,θ)+Ψ(4uυ3u+υ,θ)],
    =2,=2,
    uυυuυuΨ(w,θ)w2dw,uυυuυuΨ(w,θ)w2dw,
    12[Ψ(u,θ)+Ψ(υ,θ)2+Ψ(2uυu+υ,θ)],12[Ψ(u,θ)+Ψ(υ,θ)2+Ψ(2uυu+υ,θ)],
    =1,=1,
    12[Ψ(u,θ)+Ψ(υ,θ)2+12(Ψ(u,θ)+Ψ(υ,θ))],12[Ψ(u,θ)+Ψ(υ,θ)2+12(Ψ(u,θ)+Ψ(υ,θ))],
    =12[Ψ(u,θ)+Ψ(υ,θ)],=12[Ψ(u,θ)+Ψ(υ,θ)],

    that is

    ˜Ψ(2uυu+υ)2uυυu(FR)υu˜Ψ(w)w2dw112[˜Ψ(u)˜+˜Ψ(υ)].

    Theorem 3.5. Let ˜ΨHFSX([u,υ],F0) and ˜PHFSX([u,υ],F0), whose θ-levels Ψθ,Pθ:[u,υ]RK+C are defined by Ψθ(w)=[Ψ(w,θ),Ψ(w,θ)] and Pθ(w)=[P(w,θ),P(w,θ)] for all w[u,υ], θ[0,1], respectively. If ˜Ψ˜×˜PFR([u,υ],θ), then

    uυυu(FR)υu˜Ψ(w)˜×˜P(w)w2dw˜M(u,υ)3˜+˜N(u,υ)6,

    where ˜M(u,υ)=˜Ψ(u)˜×˜P(u)˜+˜Ψ(υ)˜×˜P(υ),˜N(u,υ)=˜Ψ(u)˜×˜P(υ)˜+˜Ψ(υ)˜×˜P(u), and Mθ(u,υ)=[M((u,υ),θ),M((u,υ),θ)] and Nθ(u,υ)=[N((u,υ),θ),N((u,υ),θ)].

    Proof. Since ˜Ψ,˜P are harmonically convex F-I-V-Fs then, for each θ[0,1] we have

    Ψ(uυ(1ξ)u+ξυ,θ)ξΨ(u,θ)+(1ξ)Ψ(υ,θ),Ψ(uυ(1ξ)u+ξυ,θ)ξΨ(u,θ)+(1ξ)Ψ(υ,θ).

    And

    P(uυ(1ξ)u+ξυ,θ)ξP(u,θ)+(1ξ)P(υ,θ),P(uυ(1ξ)u+ξυ,θ)ξP(u,θ)+(1ξ)P(υ,θ).

    From the definition of harmonically convexity of F-I-V-Fs it follows that ˜Ψ(w)˜0 and ˜P(w)˜0, so

    Ψ(uυ(1ξ)u+ξυ,θ)×P(uυ(1ξ)u+ξυ,θ)(ξΨ(u,θ)+(1ξ)Ψ(υ,θ))(ξP(u,θ)+(1ξ)P(υ,θ))=Ψ(u,θ)×P(u,θ)[(ξ)(ξ)]+Ψ(υ,θ)×P(υ,θ)[(1ξ)(1ξ)]+Ψ(u,θ)P(υ,θ)ξ(1ξ)+Ψ(υ,θ)×P(u,θ)ξ(1ξ),
    Ψ(uυ(1ξ)u+ξυ,θ)×P(uυ(1ξ)u+ξυ,θ)(ξΨ(u,θ)+(1ξ)Ψ(υ,θ))(ξP(u,θ)+(1ξ)P(υ,θ))=Ψ(u,θ)×P(u,θ)[(ξ)(ξ)]+Ψ(υ,θ)×P(υ,θ)[(1ξ)(1ξ)]+Ψ(u,θ)×P(υ,θ)ξ(1ξ)+Ψ(υ,θ)×P(u,θ)ξ(1ξ).

    Integrating both sides of above inequality over [0, 1] we get

    10Ψ(uυ(1ξ)u+ξυ,θ)×P(uυ(1ξ)u+ξυ,θ)=uυυuυuΨ(w,θ)×P(w,θ)w2dw(Ψ(u,θ)×P(u,θ)+Ψ(υ,θ)×P(υ,θ))10(ξ)(ξ)dξ+(Ψ(u,θ)×P(υ,θ)+Ψ(υ,θ)×P(u,θ))10ξ(1ξ)dξ,10Ψ(uυ(1ξ)u+ξυ,θ)×P(uυ(1ξ)u+ξυ,θ)=uυυuυuΨ(w,θ)×P(w,θ)w2dw
    (Ψ(u,θ)×P(u,θ)+Ψ(υ,θ)×P(υ,θ))10(ξ)(ξ)dξ
    +(Ψ(u,θ)×P(υ,θ)+Ψ(υ,θ)×P(u,θ))10ξ(1ξ)dξ.

    It follows that,

    uυυuυuΨ(w,θ)×P(w,θ)dwM((u,υ),θ)3+N((u,υ),θ)6uυυuυuΨ(w,θ)×P(w,θ)dwM((u,υ),θ)3+N((u,υ),θ)6,

    that is

    uυυu[υuΨ(w,θ)×P(w,θ)dw,υuΨ(w,θ)×P(w,θ)dw]
    I13[M((u,υ),θ),M((u,υ),θ)]+16[N((u,υ),θ),N((u,υ),θ)].

    Thus,

    uυυu(FR)υu˜Ψ(w)˜×˜P(w)w2dw˜M(u,υ)3˜+˜N(u,υ)6.

    Theorem 3.6. Let ˜Ψ,˜PHFSX([u,υ],F0), whose θ-levels Ψθ,Pθ:[u,υ]RK+C are defined by Ψθ(w)=[Ψ(w,θ),Ψ(w,θ)] and Pθ(w)=[P(w,θ),P(w,θ)] for all w[u,υ], θ[0,1], respectively. If ˜Ψ˜×˜PFR([u,υ],θ), then

    2˜Ψ(2uυu+υ)˜×˜P(2uυu+υ)uυυu(FR)υu˜Ψ(w)˜×˜P(w)w2dw+˜M(u,υ)6˜+˜N(u,υ)3,

    where ˜M(u,υ)=˜Ψ(u)˜×˜P(u)˜+˜Ψ(υ)˜×˜P(υ),˜N(u,υ)=˜Ψ(u)˜×˜P(υ)˜+˜Ψ(υ)˜×˜P(u), and Mθ(u,υ)=[M((u,υ),θ),M((u,υ),θ)] and Nθ(u,υ)=[N((u,υ),θ),N((u,υ),θ)].

    Proof. By hypothesis, for each θ[0,1], we have

    Ψ(2uυu+υ,θ)×J(2uυu+υ,θ)Ψ(2uυu+υ,θ)×J(2uυu+υ,θ)
    14[Ψ(uυξu+(1ξ)υ,θ)×J(uυξu+(1ξ)υ,θ)+Ψ(uυξu+(1ξ)υ,θ)×J(uυξu+(1ξ)υ,θ)]+14[Ψ(uυ(1ξ)u+ξυ,θ)×J(uυξu+(1ξ)υ,θ)+Ψ(uυξu+(1ξ)υ,θ)×J(uυ(1ξ)u+ξυ,θ)],14[Ψ(uυξu+(1ξ)υ,θ)×J(uυξu+(1ξ)υ,θ)+Ψ(uυξu+(1ξ)υ,θ)×J(uυξu+(1ξ)υ,θ)]+14[Ψ(uυ(1ξ)u+ξυ,θ)×J(uυξu+(1ξ)υ,θ)+Ψ(uυξu+(1ξ)υ,θ)×J(uυ(1ξ)u+ξυ,θ)],
    14[Ψ(uυξu+(1ξ)υ,θ)×J(uυξu+(1ξ)υ,θ)+Ψ(uυ(1ξ)u+ξυ,θ)×J(uυξu+(1ξ)υ,θ)]+14[(ξΨ(u,θ)+(1ξ)Ψ(υ,θ))×((1ξ)J(u,θ)+ξJ(υ,θ))+((1ξ)Ψ(u,θ)+ξΨ(υ,θ))×(ξJ(u,θ)+(1ξ)J(υ,θ))],14[Ψ(uυξu+(1ξ)υ,θ)×J(uυξu+(1ξ)υ,θ)+Ψ(uυξu+(1ξ)υθ)×J(uυξu+(1ξ)υ,θ)]+14[(ξΨ(u,θ)+(1ξ)Ψ(υ,θ))×((1ξ)J(u,θ)+ξJ(υ,θ))+((1ξ)Ψ(u,θ)+ξΨ(υ,θ))×(ξJ(u,θ)+(1ξ)J(υ,θ))],
    =14[Ψ(uυξu+(1ξ)υ,θ)×J(uυξu+(1ξ)υ,θ)+Ψ(uυξu+(1ξ)υ,θ)×J(uυξu+(1ξ)υ,θ)]+14[{(ξ)(ξ)+(1ξ)(1ξ)}N((u,υ),θ)+{ξ(1ξ)+ξ(1ξ)}M((u,υ),θ)],=14[Ψ(uυξu+(1ξ)υ,θ)×J(uυξu+(1ξ)υ,θ)+Ψ(uυξu+(1ξ)υ,θ)×J(uυξu+(1ξ)υ,θ)]+14[{(ξ)(ξ)+(1ξ)(1ξ)}N((u,υ),θ)+{ξ(1ξ)+ξ(1ξ)}M((u,υ),θ)].

    Integrating over [0,1], we have

    2Ψ(2uυu+υ,θ)×J(2uυu+υ,θ)1υu(R)υuΨ(w,θ)×J(w,θ)dw+M((u,υ),θ)10ξ(1ξ)dξ+N((u,υ),θ)10(ξ)(ξ)dξ,2Ψ(2uυu+υ,θ)×J(2uυu+υ,θ)1υu(R)υuΨ(w,θ)×J(w,θ)dw+M((u,υ),θ)10ξ(1ξ)dξ+N((u,υ),θ)10(ξ)(ξ)dξ,

    that is

    2˜Ψ(2uυu+υ)˜×˜P(2uυu+υ)uυυu(FR)υu˜Ψ(w)˜×˜P(w)w2dw+˜M(u,υ)6˜+˜N(u,υ)3.

    The theorem has been proved.

    First, we will purpose the following inequality linked with the right part of the classical HH Fejér inequality for harmonically convex F-I-V-Fs through fuzzy order relation, which is said to be 2nd fuzzy HH Fejér inequality.

    Theorem 3.7. (Second fuzzy HH Fejér inequality) Let ˜ΨHFSX([u,υ],F0), whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]RK+C are given by Ψθ(w)=[Ψ(w,θ),Ψ(w,θ)] for all w[u,υ], θ[0,1]. If ˜ΨFR([u,υ],θ) and :[u,υ]R,(11u+1υ1w)=(w)0, then

    (FR)νu˜Ψ(w)w2(w)dw˜Ψ(u)˜+˜Ψ(ν)210(w)w2dw. (25)

    If ˜ΨHFSV([u,υ],F0), then inequality (25) is reversed.

    Proof. Let Ψ be a harmonically convex F-I-V-F. Then, for each θ[0,1], we have

    Ψ(uυ(1ξ)u+ξυ,θ)(uυ(1ξ)u+ξυ)
    (ξΨ(u,θ)+(1ξ)Ψ(ν,θ))(uυ(1ξ)u+ξυ),
    Ψ(uυ(1ξ)u+ξυ,θ)(uυ(1ξ)u+ξυ)
    (ξΨ(u,θ)+(1ξ)Ψ(ν,θ))(uυ(1ξ)u+ξυ). (26)

    And

    Ψ(uυξu+(1ξ)υ,θ)(uυξu+(1ξ)υ)
    ((1ξ)Ψ(u,θ)+ξΨ(ν,θ))(uυξu+(1ξ)υ),
    Ψ(uυξu+(1ξ)υ,θ)(uυξu+(1ξ)υ)
    ((1ξ)Ψ(u,θ)+ξΨ(ν,θ))(uυξu+(1ξ)υ). (27)

    After adding (26) and (27), and integrating over [0,1], we get

    10Ψ(uυ(1ξ)u+ξυ,θ)(uυ(1ξ)u+ξυ)dξ
    +10Ψ(uυξu+(1ξ)υ,θ)(uυξu+(1ξ)υ)dξ10[Ψ(u,θ){ξ(uυ(1ξ)u+ξυ)+(1ξ)(uυξu+(1ξ)υ)}+Ψ(ν,θ){(1ξ)(uυ(1ξ)u+ξυ)+ξ(uυξu+(1ξ)υ)}]dξ,10Ψ(uυ(1ξ)u+ξυ,θ)(uυ(1ξ)u+ξυ)dξ+10Ψ(uυξu+(1ξ)υ,θ)(uυξu+(1ξ)υ)dξ10[Ψ(u,θ){ξ(uυ(1ξ)u+ξυ)+(1ξ)(uυξu+(1ξ)υ)}+Ψ(ν,θ){(1ξ)(uυ(1ξ)u+ξυ)+ξ(uυξu+(1ξ)υ)}]dξ.
    =2Ψ(u,θ)10ξ(uυ(1ξ)u+ξυ)dξ+2Ψ(ν,θ)10ξ(uυξu+(1ξ)υ)dξ,=2Ψ(u,θ)10ξ(uυ(1ξ)u+ξυ)dξ+2Ψ(ν,θ)10ξ(uυξu+(1ξ)υ)dξ.

    Since is symmetric, then

    =2[Ψ(u,θ)+Ψ(ν,θ)]10ξ(uυξu+(1ξ)υ)dξ,
    =2[Ψ(u,θ)+Ψ(ν,θ)]10ξ(uυξu+(1ξ)υ)dξ. (28)

    Since

    10Ψ(ξu+(1ξ)ν,θ)(uυ(1ξ)u+ξυ)dξ=10Ψ((1ξ)u+ξν,θ)(uυξu+(1ξ)υ)dξ=uυνuνuΨ(w,θ)(w)dw10Ψ((1ξ)u+ξν,θ)(uυξu+(1ξ)υ)dξ=10Ψ(ξu+(1ξ)ν,θ)(uυξu+(1ξ)υ)dξ
    = \frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }^{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}. (29)

    From (28) and (29), we have

    \frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }_{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}\le \left[{\varPsi }_{*}\left({u}, \theta\right)+{\varPsi }_{*}\left(\nu , \theta\right)\right]{\int }_{0}^{1}\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}d\xi , \\ \frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }^{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}\le \left[{\varPsi }^{*}\left({u}, \theta\right)+{\varPsi }^{*}\left(\nu , \theta\right)\right]{\int }_{0}^{1}\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}d\xi ,

    that is

    \left[\frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }_{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}, \frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }^{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}\right]
    {\le }_{I}\left[{\varPsi }_{*}\left({u}, \theta\right)+{\varPsi }_{*}\left(\nu , \theta\right), {\varPsi }^{*}\left({u}, \theta\right)+{\varPsi }^{*}\left(\nu , \theta\right)\right]{\int }_{0}^{1}\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}d\xi \text{, }

    hence

    \frac{{u}\upsilon }{\nu -{u}}\left(FR\right){\int }_{{u}}^{\nu }\frac{\widetilde{\varPsi }\left({w}\right)}{{{w}}^{2}}\nabla \left({w}\right)d{w}\preccurlyeq \left[\widetilde{\varPsi }\left({u}\right)\widetilde{+}\widetilde{\varPsi }\left(\nu \right)\right]{\int }_{0}^{1}\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi ,

    this concludes the proof.

    Next, we construct first H·H Fejér inequality for harmonically convex F-I-V-F, which generalizes first H-H Fejér inequality for harmonically convex function.

    Theorem 3.8. (First fuzzy fractional H-H Fejér inequality) Let \widetilde{\varPsi }\in HFSX\left(\left[{u}, \upsilon \right], {\mathbb{F}}_{0}\right) , whose \theta -levels define the family of I-V-Fs {\varPsi }_{\theta}:\left[{u}, \upsilon \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\varPsi }_{\theta}\left({w}\right) = \left[{\varPsi }_{*}\left({w}, \theta\right), {\varPsi }^{*}\left({w}, \theta\right)\right] for all {w}\in \left[{u}, \upsilon \right] , \theta\in \left[0, 1\right] . If \widetilde{\varPsi }\in {\mathcal{F}\mathcal{R}}_{\left(\left[{u}, \nu \right], \theta\right)} and \nabla :\left[{u}, \upsilon \right]\to \mathbb{R}, \nabla \left(\frac{1}{\frac{1}{{u}}+\frac{1}{\upsilon }-\frac{1}{{w}}}\right) = \nabla \left({w}\right)\ge 0, then

    \widetilde{\varPsi }\left(\frac{2{u}\nu }{{u}+\nu }\right){\int }_{{u}}^{\nu }\frac{\widetilde{\varPsi }\left({w}\right)}{{{w}}^{2}}d{w}\preccurlyeq \left(FR\right){\int }_{{u}}^{\nu }\frac{\widetilde{\varPsi }\left({w}\right)}{{{w}}^{2}}\nabla \left({w}\right)d{w}\text{.} (30)

    If \widetilde{\varPsi }\in HFSV\left(\left[{u}, \upsilon \right], {\mathbb{F}}_{0}\right) , then inequality (30) is reversed.

    Proof. Since \varPsi is a harmonically convex, then for \theta\in \left[0, 1\right], we have

    {\varPsi }_{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right)\le \frac{1}{2}\left(\begin{array}{c}{\varPsi }_{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)+{\varPsi }_{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\end{array}\right)
    {\varPsi }^{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right)\le \frac{1}{2}\left(\begin{array}{c}{\varPsi }^{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)+{\varPsi }^{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\end{array}\right). (31)

    By multiplying (31) by \nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right) = \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right) and integrate it by \xi over \left[0, 1\right], we obtain

    {\varPsi }_{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right){\int }_{0}^{1}\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi
    \le \frac{1}{2}\left(\begin{array}{c}{\int }_{0}^{1}{\varPsi }_{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \\ +{\int }_{0}^{1}{\varPsi }_{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \end{array}\right)
    {\varPsi }^{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right){\int }_{0}^{1}\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi
    \le \frac{1}{2}\left(\begin{array}{c}{\int }_{0}^{1}{\varPsi }^{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \\ +{\int }_{0}^{1}{\varPsi }^{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \end{array}\right). (32)

    Since

    {\int }_{0}^{1}{\varPsi }_{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)d\xi \\ = {\int }_{0}^{1}{\varPsi }_{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \\ = \frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }_{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}, \\{\int }_{0}^{1}{\varPsi }^{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \\ = {\int }_{0}^{1}{\varPsi }^{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)d\xi
    = \frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }^{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}. (33)

    From (32) and (33), we have

    {\varPsi }_{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right)\le \frac{1}{{\int }_{{u}}^{\nu }\nabla \left({w}\right)d{w}}{\int }_{{u}}^{\nu }{\varPsi }_{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}, \\{\varPsi }^{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right)\le \frac{1}{{\int }_{{u}}^{\nu }\nabla \left({w}\right)d{w}}{\int }_{{u}}^{\nu }{\varPsi }^{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}.

    From which, we have

    \left[{\varPsi }_{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right), {\varPsi }^{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right)\right] \\ \le _{I}\frac{1}{{\int }_{{u}}^{\nu }\nabla \left({w}\right)d{w}}\left[{\int }_{{u}}^{\nu }{\varPsi }_{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}, {\int }_{{u}}^{\nu }{\varPsi }^{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}\right],

    that is

    \widetilde{\varPsi }\left(\frac{2{u}\nu }{{u}+\nu }\right){\int }_{{u}}^{\nu }\frac{\widetilde{\varPsi }\left({w}\right)}{{{w}}^{2}}d{w}\preccurlyeq \left(FR\right){\int }_{{u}}^{\nu }\frac{\widetilde{\varPsi }\left({w}\right)}{{{w}}^{2}}\nabla \left({w}\right)d{w}\text{.}

    Then we complete the proof.

    Remark 3.9. If \nabla \left({w}\right) = 1 , then from Theorems 3.7 and 3.8, we obtain inequality (17). If {\varPsi }_{*}\left({w}, \theta\right) = {\varPsi }^{*}\left({w}, \theta\right) with \theta = 1, then Theorems 3.7 and 3.8 reduce to classical first and second classical H-H Fejér inequality for classical harmonically convex function.

    Several novel conclusions in convex analysis and associated optimization theory can be obtained using this new class of functions known as harmonically convex F-I-V. The main findings include some new bounds with error estimations via fuzzy Riemann integrals. All of these papers aim to provide new estimations and optimal approaches. But, the main motivation of this paper is that we obtained new method by using fuzzy integrals for harmonically convex F-I-V-Fs calculus. The authors anticipate that this study may inspire more research in a variety of pure and applied sciences fields.

    The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environments and this work was supported by Taif University Researches Supporting Project number (TURSP-2020/326), Taif University, Taif, Saudi Arabia, and the authors T. Abdeljawad and B. Abdalla would like to thank Prince Sultan University for APC and for the support through the TAS research lab.

    All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

    The authors declare that they have no competing interests.



    [1] D. J. Kaup, C. N. Alan, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19 (1978), 798–801. https://doi.org/10.1063/1.523737 doi: 10.1063/1.523737
    [2] K. R. Rajagopal, A. S. Gupta, An exact solution for the flow of a non-Newtonian fluid past an infinite porous plate, Meccanica, 19 (1984), 158–160. https://doi.org/10.1007/BF01560464 doi: 10.1007/BF01560464
    [3] X. Li, L. Wang, Z. Zhou, Y. Chen, Z. Yan, Stable dynamics and excitations of single-and double-hump solitons in the Kerr nonlinear media with PT-symmetric HHG potentials, Nonl. Dyn., 108 (2022), 4045–4056. https://doi.org/10.1007/s11071-022-07362-1 doi: 10.1007/s11071-022-07362-1
    [4] J. G. Liu, X. J. Yang, Y. Y. Feng, P. Cui, Nonlinear dynamic behaviors of the generalized (3+1)-dimensional KP equation, Z. Angew. Math. Mech., 102 (2022), e202000168. https://doi.org/10.1002/zamm.202000168
    [5] J. G. Liu, X. J. Yang, J. J. Wang, A new perspective to discuss Korteweg-de Vries-like equation, Phys. Lett. A, 451 (2022), 128429. https://doi.org/10.1016/j.physleta.2022.128429 doi: 10.1016/j.physleta.2022.128429
    [6] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Press, 2003.
    [7] M. A. Bayrak, A. Demir, A new approach for space-time fractional partial differential equations by residual power series method, Appl. Math. Comput., 336 (2018), 215–230. https://doi.org/10.1016/j.amc.2018.04.032 doi: 10.1016/j.amc.2018.04.032
    [8] J. G. Liu, X. J. Yang, L. L Geng, X. J Yu, On fractional symmetry group scheme to the higher dimensional space and time fractional dissipative Burgers equation, Int. J. Geom. Meth. Moder. Phys., 19 (2022), 2250173. https://doi.org/10.1142/S0219887822501730 doi: 10.1142/S0219887822501730
    [9] J. G. Liu, Y. F. Zhang, J. J. Wang, Investigation of the time fractional generalized (2+1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity, Fractals, 2023. https://doi.org/10.1142/S0218348X23500330
    [10] X. Y. Li, B. Y. Wu, Iterative reproducing kernel method for nonlinear variable-order space fractional diffusion equations, Int. J. Comput. Math., 95 (2018), 1210–1221. https://doi.org/10.1080/00207160.2017.1398325 doi: 10.1080/00207160.2017.1398325
    [11] H. Thabet, S. D. Kendre, J. F. Peters, Travelling wave solutions for fractional Korteweg-de Vries equations via an approximate-analytical method, AIMS Mathematics, 4 (2019), 1203. https://doi.org/10.3934/math.2019.4.1203 doi: 10.3934/math.2019.4.1203
    [12] G. Zhang, D. Zhou, D. Mortari, An approximate analytical method for short-range impulsive orbit rendezvous using relative Lambert solutions, Acta. Astr., 81 (2012), 318–324. https://doi.org/10.1016/j.actaastro.2012.05.037 doi: 10.1016/j.actaastro.2012.05.037
    [13] E. A. Ahmad, O. A. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, J. Comput. Phys., 293 (2015), 81–95. https://doi.org/10.1016/j.jcp.2014.08.004 doi: 10.1016/j.jcp.2014.08.004
    [14] M. J. Khan, R. Nawaz, S. Farid, J. Iqbal, New iterative method for the solution of fractional damped burger and fractional Sharma-Tasso-Olver equations, Complexity, 2018 (2018), 3249720. https://doi.org/10.1155/2018/3249720 doi: 10.1155/2018/3249720
    [15] H. Bateman, Some recent researches on the motion of fluids, Mon. Weath. Rev., 43 (1915), 163–170.
    [16] J. M. Burger, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1 (1948), 171–199. https://doi.org/10.1016/S0065-2156(08)70100-5 doi: 10.1016/S0065-2156(08)70100-5
    [17] M. Inc, The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476–484. https://doi.org/10.1016/j.jmaa.2008.04.007 doi: 10.1016/j.jmaa.2008.04.007
    [18] T. Guo, D. Xu, W. Qiu, Efficient third-order BDF finite difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 140 (2023), 108570. https://doi.org/10.1016/j.aml.2023.108570 doi: 10.1016/j.aml.2023.108570
    [19] T. Guo, M. A. Zaky, A. S. Hendy, Pointwise error analysis of the BDF3 compact finite difference scheme for viscous Burgers' equations, Appl. Numer. Math., 185 (2023), 260–277. https://doi.org/10.1016/j.apnum.2022.11.023 doi: 10.1016/j.apnum.2022.11.023
    [20] X. Peng, D. Xu, W. Qiu, Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers' equation, Math. Comput. Simul., 208 (2023), 702–726. https://doi.org/10.1016/j.matcom.2023.02.004 doi: 10.1016/j.matcom.2023.02.004
    [21] W. Qiu, H. Chen, X. Zheng, An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations, Math. Comput. Simul., 166 (2019), 298–314. https://doi.org/10.1016/j.matcom.2019.05.017 doi: 10.1016/j.matcom.2019.05.017
    [22] P. Agarwal, S. Jain, T. Mansour, Further extended Caputo fractional derivative operator and its applications, Russian. J. Math. Phys., 24 (2017), 415–425. https://doi.org/10.1134/S106192081704001X doi: 10.1134/S106192081704001X
    [23] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential equations, New York: Wiley, 1993.
  • This article has been cited by:

    1. Deepak PACHPATTE, Tariq A. ALJAAİDİ, NEW GENERALIZATION OF REVERSE MINKOWSKI’S INEQUALITY FOR FRACTIONAL INTEGRAL, 2020, 2587-2648, 10.31197/atnaa.756605
    2. Tariq A. Aljaaidi, Deepak B. Pachpatte, The Minkowski’s inequalities via \psi-Riemann–Liouville fractional integral operators, 2020, 0009-725X, 10.1007/s12215-020-00539-w
    3. Tariq A. Aljaaidi, Deepak B. Pachpatte, Mohammed S. Abdo, Thongchai Botmart, Hijaz Ahmad, Mohammed A. Almalahi, Saleh S. Redhwan, (k, ψ)-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities, 2021, 5, 2504-3110, 172, 10.3390/fractalfract5040172
    4. Wengui Yang, Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function, 2022, 6, 2504-3110, 182, 10.3390/fractalfract6040182
    5. Omar Mutab Alsalami, Soubhagya Kumar Sahoo, Muhammad Tariq, Asif Ali Shaikh, Clemente Cesarano, Kamsing Nonlaopon, Some New Fractional Integral Inequalities Pertaining to Generalized Fractional Integral Operator, 2022, 14, 2073-8994, 1691, 10.3390/sym14081691
    6. Asha B. Nale, Satish K. Panchal, Vaijanath L. Chinchane, Grüss-type fractional inequality via Caputo-Fabrizio integral operator, 2022, 14, 2066-7752, 262, 10.2478/ausm-2022-0018
    7. Tariq A. Aljaaidi, Deepak B. Pachpatte, Wasfi Shatanawi, Mohammed S. Abdo, Kamaleldin Abodayeh, Generalized proportional fractional integral functional bounds in Minkowski’s inequalities, 2021, 2021, 1687-1847, 10.1186/s13662-021-03582-8
    8. Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal, A comprehensive review of Grüss-type fractional integral inequality, 2023, 9, 2473-6988, 2244, 10.3934/math.2024112
    9. Saleh S. Redhwan, Tariq A. Aljaaidi, Ali Hasan Ali, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, New Grüss’s inequalities estimates considering the φ-fractional integrals, 2024, 11, 26668181, 100836, 10.1016/j.padiff.2024.100836
    10. Nale Asha B., Satish K. Panchal, L. Chinchane Vaijanath , Certain fractional integral inequalities using generalized Katugampola fractional integral operator, 2020, 8, 23193786, 809, 10.26637/MJM0803/0013
    11. Bhagwat R. Yewale, Deepak B. Pachpatte, 2023, 9781119879671, 45, 10.1002/9781119879831.ch3
    12. Bouharket Benaissa, Noureddine Azzouz, Mehmet Sarikaya, On some Grüss-type inequalities via k-weighted fractional operators, 2024, 38, 0354-5180, 4009, 10.2298/FIL2412009B
    13. Xiaohong Zuo, Wengui Yang, Mohammad W. Alomari, Certain Novel p,q‐Fractional Integral Inequalities of Grüss and Chebyshev‐Type on Finite Intervals, 2025, 2025, 2314-4629, 10.1155/jom/9536854
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2068) PDF downloads(120) Cited by(4)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog