The appearance and disappearance of the optimal solution for the change of system parameters in optimization theory is a fundamental problem. This paper aims to address this issue by transforming the solutions of a constrained optimization problem into equilibrium points (EPs) of a dynamical system. The bifurcation of EPs is then used to describe the appearance and disappearance of the optimal solution and saddle point through two classes of bifurcation, namely the pseudo bifurcation and saddle-node bifurcation. Moreover, a new class of pseudo-bifurcation phenomena is introduced to describe the transformation of regular and degenerate EPs, which sheds light on the relationship between the optimal solution and a class of infeasible points. This development also promotes the proposal of a tool for predicting optimal solutions based on this phenomenon. The study finds that the bifurcation of the optimal solution is closely related to the bifurcation of the feasible region, as demonstrated by the 5-bus and 9-bus optimal power flow problems.
Citation: Tengmu Li, Zhiyuan Wang. The bifurcation of constrained optimization optimal solutions and its applications[J]. AIMS Mathematics, 2023, 8(5): 12373-12397. doi: 10.3934/math.2023622
[1] | Ying Sun, Yuelin Gao . An improved composite particle swarm optimization algorithm for solving constrained optimization problems and its engineering applications. AIMS Mathematics, 2024, 9(4): 7917-7944. doi: 10.3934/math.2024385 |
[2] | Juhe Sun, Guolin Huang, Li Wang, Chuanjun Yin, Ning Ma . A multi-strategy upgraded Harris Hawk optimization algorithm for solving nonlinear inequality constrained optimization problems. AIMS Mathematics, 2025, 10(5): 11783-11812. doi: 10.3934/math.2025533 |
[3] | Bothina El-Sobky, Yousria Abo-Elnaga, Gehan Ashry . A nonmonotone trust region technique with active-set and interior-point methods to solve nonlinearly constrained optimization problems. AIMS Mathematics, 2025, 10(2): 2509-2540. doi: 10.3934/math.2025117 |
[4] | Aziz Belmiloudi . Time-varying delays in electrophysiological wave propagation along cardiac tissue and minimax control problems associated with uncertain bidomain type models. AIMS Mathematics, 2019, 4(3): 928-983. doi: 10.3934/math.2019.3.928 |
[5] | Yu Yuan, Qicai Li . Maximizing the goal-reaching probability before drawdown with borrowing constraint. AIMS Mathematics, 2021, 6(8): 8868-8882. doi: 10.3934/math.2021514 |
[6] | Yunjae Nam, Dongsun Lee . Efficient one asset replacement scheme for an optimized portfolio. AIMS Mathematics, 2022, 7(9): 15881-15903. doi: 10.3934/math.2022869 |
[7] | Jun Moon . A Pontryagin maximum principle for terminal state-constrained optimal control problems of Volterra integral equations with singular kernels. AIMS Mathematics, 2023, 8(10): 22924-22943. doi: 10.3934/math.20231166 |
[8] | Hengdi Wang, Jiakang Du, Honglei Su, Hongchun Sun . A linearly convergent self-adaptive gradient projection algorithm for sparse signal reconstruction in compressive sensing. AIMS Mathematics, 2023, 8(6): 14726-14746. doi: 10.3934/math.2023753 |
[9] | Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kamele Nassiri Pirbazari, Stanford Shateyi . A pseudo-spectral approach for optimal control problems of variable-order fractional integro-differential equations. AIMS Mathematics, 2024, 9(9): 23692-23710. doi: 10.3934/math.20241151 |
[10] | Regina S. Burachik, Bethany I. Caldwell, C. Yalçın Kaya . Douglas–Rachford algorithm for control- and state-constrained optimal control problems. AIMS Mathematics, 2024, 9(6): 13874-13893. doi: 10.3934/math.2024675 |
The appearance and disappearance of the optimal solution for the change of system parameters in optimization theory is a fundamental problem. This paper aims to address this issue by transforming the solutions of a constrained optimization problem into equilibrium points (EPs) of a dynamical system. The bifurcation of EPs is then used to describe the appearance and disappearance of the optimal solution and saddle point through two classes of bifurcation, namely the pseudo bifurcation and saddle-node bifurcation. Moreover, a new class of pseudo-bifurcation phenomena is introduced to describe the transformation of regular and degenerate EPs, which sheds light on the relationship between the optimal solution and a class of infeasible points. This development also promotes the proposal of a tool for predicting optimal solutions based on this phenomenon. The study finds that the bifurcation of the optimal solution is closely related to the bifurcation of the feasible region, as demonstrated by the 5-bus and 9-bus optimal power flow problems.
Fractional calculus has been widely and deeply used in many fields, for example, continuum mechanics, control theory of dynamical systems, and so on. For this reason, fractional differential equations (FDEs, in short), as a useful tool to model the dynamics of numerous physical systems, have gained considerable popularity in physics, population dynamics, chemical technology, control of dynamical systems, etc. For further details on FDEs, see [1,2,3] and their references.
In the last few decades, as a significant branch of FDEs, impulsive differential equation (IDE, for short), which provides a natural description of observed evolution processes, has been emerging as a very meaningful research area. In addition, IDEs are also as important mathematical tools for better understanding real-world problems (see, for instance, [4,5,6,7,8]). Hence, many authors have used IDEs to describe some phenomenon with abrupt changes, such as, harvest, disease, control theory of dynamical systems and so on. For example, [9,10,11] researched some different types IDEs, which are nonlinear impulsive differential systems with infinite delays, impulsive neural networks, singularly perturbed nonlinear impulsive differential systems with delays of small parameter, respectively. Moreover, [12] studied persistence of delayed cooperative models by means of impulsive control method.
Meanwhile, boundary value problems (BVPs, for short) of IDEs have been researched extensively and deeply. Correspondingly, many scholars have studied some BVPs of fractional differential equations (FIDEs, for short) and obtain lots of important conclusions. For example, [13] researched singular semipositive BVPs of fourth-order differential systems with parameters. [14] studied a class of BVPs for nonlinear fractional Kirchhoff equations and obtained the existence of multiple sign-changing solutions.
As far as we know, continuity is a fundamental assumption in degree theory. However, there are a lot of discontinuous differential equations in many areas, such as, automatic control, neural network, etc. Because of the corresponding operators are not continuous, general topological degree theory is invalid to studying the existence of solutions for most discontinuous differential equations, such as, [20,21]. To overcome this problem, a new definition of topological degree for a class of discontinuous operators is introduced by R. Figueroa et al. Subsequently, a number of fixed point theorems for such operators are derived in [16], such as, Schauder-type and Krasnoselskii's theorem for discontinuous operators. Then they are used to solve discontinuous differential systems. For example, [17] considered the existence for a class of second-order discountious BVPs by constructing a closed-convex Krasovskij envelope and Schauder-type theorem for discontinuous operators. [18] researched a class of BVPs of second-order discontinuous differential equations with impulse effects by using the nonlinear alternative of Krasnoselskii's fixed point theorem for discontinuous operators on cones.
However, to our best knowledge, there are few studies on multiple solutions for integral boundary value problems of fractional discontinuous differential equations with impulse effects. The purpose of present paper is to fill this gap.
Motivated by the above discussions, this paper studies multiple solutions for the following boundary value problem:
{CtDR0+Λ(t)=E(t)F(t,Λ(t)), a.e. t∈Q′,△Λ|t=tκ=Φκ(Λ(tκ)), κ=1, 2, ⋯, m,△Λ′|t=ti=0, κ=1, 2, ⋯, m,ϑΛ(0)−χΛ(1)=∫10ϱ1(υ)Λ(υ)dυ,ζΛ′(0)−δΛ′(1)=∫10ϱ2(υ)Λ(υ)dυ, | (1.1) |
where CtDR0+ is the Caputo fractional derivative with t, 1<R<2, ϑ>χ>0, ζ>δ>0, Ek∈C( R +, R +), E, ϱ1, ϱ2≥0 a.e. on J=[0,1], Q′=Q∖{t1, ⋯, tm}, E, ϱ1, ϱ2∈L1(0,1), ϝ:Q× R +→ R +, R +=[0,+∞), 0<t1<t2<⋯<tm<1. △Λ|t=tk, △Λ′|t=tk denote the jump of Λ(t) and Λ′(t) at t=tk, respectively. This paper has the following innovations and features. Firstly, BVP (1.1) is of fractional discontinuous differential equations with instantaneous impulse effects. The nonlinearity F here is discontinuous over countable families of curve[22]. Secondly, the boundary value condition considered here is of integral type. It makes BVP (1.1) more widely applicable in solving practical problems. Thirdly, the used approach in this paper has certain advantages over some reference as above. In detail, the distinctive tool used here is multivalued analysis in the study of discontinuous problems and the novelty is the use of multivalued analysis to obtain results for single-valued operators. Compared with [18], we redefine the admissible continuous curves for the new system (1.1). At the same time, a suitable cone is established by researching properties of Green's function deeply. Therefore, the positive solutions can be obtained by means of Krasnoselskii's fixed point theorem for discontinuous operators on cones.
The rest of this paper is organized as follows. Some basic definitions and notations are contained in Section 2. Section 3 presents the main results. Finally, an illustrative example is given in Section 4.
In this section, we first introduce some definitions and lemmas that are used in this paper.
Definition 2.1. [3] The Riemann-Liouville fractional integral of order ℜ∈R+ of a function ϝ on interval (α,β) is defined as follows:
(Iℜ0+ϝ)(t)=1Γ(ℜ)∫tα(t−υ)R−1ϝ(υ)dυ. |
Definition 2.2. [3] The Caputo fractional derivative of order ℜ∈R+ of a function ϝ on interval (α,β) is defined as follows:
(CtDR0+)ϝ(t)=1Γ(n−R)∫tα(t−υ)n−R−1ϝ(n)(υ)dυ. |
Let
PC(Q)={Λ:[0,1]→R,Λ∈C(Q′), and Λ(t+κ), Λ(t−κ) exists,and Λ(t−κ)=Λ(tκ), 1≤κ≤m}, |
and
PC1(Q)={Λ:[0,1]→R,Λ∈PC(Q), CtDℜ−10+Λ∈PC(Q), CtDℜ−10+Λ(t+κ), CtDℜ−10+Λ′(t−κ)exists, and CtDℜ−10+Λ(t−κ)= CtDℜ−10+Λ(tκ), 1≤κ≤m}. |
Obviously, they are Banach spaces with the norm
‖Λ‖0=sup0≤t≤1|Λ(t)| |
and
‖Λ‖1=max{‖Λ‖0, ‖CtDℜ−10+Λ‖0}, |
respectively.
For the sake of simplicity, let Aj=∫10ϱj(υ)dυ, Qj=1ϑ−χAj (j=1,2) , Pj=∫10(ϑ−χ)υ+χ(ϑ−χ)(ζ−δ)ϱj(υ)dυ, Γ1=(1−P2)(1−Q1)−P1Q2 and QM=max{Q2Γ(ζ−δ),1−Q1Γ(ζ−δ)}.
Lemma 2.3. If (1−P2)(1−Q1)≠P1Q2, for H∈L(Q, R +), the following boundary value problem
{CtDℜ0+Λ(t)=H(t), a.e. t∈Q′,△Λ|t=tκ=Φκ(Λ(tκ)), κ=1, 2, ⋯, m,△Λ′|t=tκ=0, κ=1, 2, ⋯, m,ϑΛ(0)−χΛ(1)=∫10ϱ1(υ)Λ(υ)dυ,ζΛ′(0)−δΛ′(1)=∫10ϱ2(υ)Λ(υ)dυ, | (2.1) |
has a solution
Λ(t)=∫10H1(t,υ)H(υ)dυ+m∑i=1H2(t,ti)Φi(Λ(ti)), |
where
H1(t,υ)=ℵ(t,υ)+2∑n=1φn(t)∫10ℵ(υ,t)ϱn(t)dt, |
H2(t,ti)={χϑ−χ+χϑ−χ2∑n=1Anφn(t),0≤t≤ti≤1;ϑϑ−χ+ϑϑ−χ2∑n=1Anφn(t),0≤ti<t≤1, |
φ1(t)=(ζ−δ)(1−P2)+[χ+(ϑ−χ)t]Q2(ϑ−β)(ζ−δ)Γ1, |
φ2(t)=(ζ−δ)P1+[χ+(ϑ−χ)t](1−Q1)(ϑ−χ)(ζ−δ)Γ1. |
and
ℵ(t,υ)={χ(1−υ)ℜ−1(ϑ−χ)Γ(ℜ)+[χδ+(ϑ−χ)δt](1−υ)ℜ−2(ϑ−β)(ζ−δ)Γ(ℜ−1)+(t−υ)q−1Γ(ℜ),0≤υ≤t≤1;χ(1−υ)ℜ−1(ϑ−χ)Γ(ℜ)+[χδ+(ϑ−χ)δt](1−υ)ℜ−2(ϑ−χ)(ζ−δ)Γ(ℜ−1),0≤t≤υ≤1. |
Proof. Let Λ be a general solution on each interval (tκ,tκ+1] (κ=0, 1, 2, ⋯, m). By integrating both sides of Eq (2.1), one can obtain that
Λ(t)=1Γ(ℜ)∫t0(t−υ)ℜ−1H(υ)dυ−cκ−dt, for t∈(tκ,tκ+1], | (2.2) |
where t0=0, tm+1=1. Then,
Λ′(t)=1Γ(ℜ−1)∫t0(t−υ)ℜ−2H(υ)dυ−d, t∈(tκ,tκ+1]. |
In view of Eq (2.1), we get
−ϑc0−χ[1Γ(ℜ)∫10(1−υ)ℜ−1H(υ)dυ−cm−d]=∫10ϱ1(υ)Λ(υ)dυ, | (2.3) |
−ζd−δ[1Γ(ℜ−1)∫10(1−υ)ℜ−2H(υ)dυ−d]=∫10ϱ2(υ)Λ(υ)dυ, | (2.4) |
cκ−1−cκ=Φκ(Λ(tκ)), | (2.5) |
and
d=−∫10ϱ2(υ)Λ(υ)dυ+δΓ(ℜ−1)∫10(1−υ)ℜ−2H(υ)dυζ−δ. | (2.6) |
From (2.3), (2.5) and (2.6), one can easily get that
c0 = −1ϑ−χ[∫10ϱ1(υ)Λ(υ)dυ+χΓ(ℜ)∫10(1−υ)ℜ−1H(υ)dυ+χm∑i=1Φi(Λ(ti))+χ(∫10ϱ2(υ)Λ(υ)dυ+δΓ(ℜ−1)∫10(1−υ)ℜ−2H(υ)dυ)ζ−δ], | (2.7) |
and
cκ = c0−κ∑i=1Φi(Λ(ti))= −1ϑ−χ[∫10ϱ1(υ)Λ(υ)dυ+χΓ(ℜ)∫10(1−υ)ℜ−1H(υ)dυ+χm∑i=1Φi(Λ(ti))+χ(∫10ϱ2(υ)Λ(υ)dυ+δΓ(ℜ−1)∫10(1−υ)ℜ−2H(υ)dυ)ζ−δ]−κ∑i=1Φi(Λ(ti)). | (2.8) |
Hence, (2.7) and (2.8) imply that
cκ+dt=−1ϑ−χ[∫10ϱ1(υ)Λ(υ)dυ+χΓ(ℜ)∫10(1−υ)ℜ−1H(υ)dυ+χm∑i=1Φi(Λ(ti))+χ(∫10ϱ2(υ)Λ(υ)dυ+δΓ(ℜ−1)∫10(1−υ)ℜ−2H(υ)dυ)ζ−δ]−κ∑i=1Φi(Λ(ti))+[−∫10ϱ2(υ)Λ(υ)dυ+δΓ(ℜ−1)∫10(1−υ)ℜ−2H(υ)dυζ−δ]t=−∫10ϱ1(υ)Λ(υ)dυϑ−χ−(ϑ−χ)t+χ(ϑ−χ)(ζ−δ)∫10ϱ2(s)Λ(υ)dυ−χ(ϑ−χ)Γ(ℜ)∫10(1−υ)ℜ−1H(υ)dυ−δ[(ϑ−χ)t+χ](ϑ−χ)(ζ−δ)1Γ(ℜ−1)∫10(1−υ)ℜ−2H(υ)dυ−χϑ−χm∑i=1Φi(Λ(ti))−κ∑i=1Φi(Λ(ti)), | (2.9) |
for κ=0, 1, 2, ⋯, m. Now substituting (2.9) into (2.2), for t∈Q0=[0,t1],
Λ(t)=1Γ(ℜ)∫t0(t−υ)ℜ−1H(υ)dυ+∫10ϱ1(υ)Λ(υ)dυϑ−χ+(ϑ−β)t+χ(ϑ−χ)(ζ−δ)∫10ϱ2(υ)Λ(υ)dυ+χ(ϑ−χ)Γ(ℜ)∫10(1−υ)ℜ−1H(υ)dυ+δ[(ϑ−χ)t+χ](ϑ−χ)(ζ−δ)1Γ(ℜ−1)∫10(1−υ)ℜ−2H(υ)dυ+χϑ−χm∑i=1Φi(Λ(ti))=∫t0[(t−υ)ℜ−1Γ(ℜ)+χ(1−υ)ℜ−1(ϑ−χ)Γ(ℜ)+χδ+(ϑ−χ)δt(ϑ−χ)(ζ−δ)(1−υ)ℜ−2Γ(ℜ−1)]H(υ)dυ+∫1t[χ(1−υ)ℜ−1(ϑ−χ)Γ(ℜ)+χδ+(ϑ−χ)δt(ϑ−χ)(ζ−δ)(1−υ)ℜ−2Γ(ℜ−1)]H(υ)dυ+1ϑ−χ∫10ϱ1(υ)Λ(υ)dυ+(ϑ−χ)t+χ(ϑ−χ)(ζ−δ)∫10ϱ2(s)Λ(υ)dυ+χϑ−χm∑i=1Φi(Λ(ti))=∫10ℵ(t,s)H(υ)dυ+1ϑ−χ∫10ϱ1(υ)Λ(υ)dυ+(ϑ−χ)t+χ(ϑ−χ)(ζ−δ)∫10ϱ2(υ)Λ(υ)dυ+χϑ−χm∑i=1Φi(Λ(ti)). |
Then,
∫10ϱ1(υ)∫10ℵ(υ,˜t)h(˜t)d˜tdυ=(1−Q1)∫10ϱ1(υ)Λ(υ)dυ−P1∫10ϱ2(υ)Λ(υ)dυ−A1χϑ−χ[m∑i=1Φi(Λ(ti))], |
∫10ϱ2(υ)∫10ℵ(υ,˜t)h(˜t)d˜tdυ=−Q2∫10ϱ1(υ)Λ(υ)dυ+(1−P2)∫10ϱ2(υ)Λ(υ)dυ−A2χϑ−χ[m∑i=1Φi(Λ(ti))], |
Hence,
∫10ϱ1(υ)Λ(υ)dυ=1Γ1[(1−P2)(∫10ϱ1(υ)∫10ℵ(υ,˜t)H(˜t)d˜tdυ+A1χϑ−χm∑i=1Φi(Λ(ti)))+P1(∫10ϱ2(υ)∫10ℵ(υ,˜t)H(˜t)d˜tdυ+A2χϑ−χm∑i=1Φi(Λ(ti)))], |
∫10ϱ2(υ)Λ(υ)dυ=1Γ1[Q2(∫10ϱ1(υ)∫10ℵ(υ,˜t)H(˜t)d˜tdυ+A1χϑ−χm∑i=1Φi(Λ(ti)))+(1−Q1)(∫10ϱ2(υ)∫10ℵ(υ,˜t)H(˜t)d˜tdυ+A2χϑ−χm∑i=1Φi(Λ(ti)))], |
which show that
Λ(t)=∫10ℵ(t,υ)H(υ)dυ+1ϑ−χ∫10ϱ1(υ)Λ(υ)dυ+(ϑ−χ)t+χ(ϑ−χ)(ζ−δ)∫10ϱ2(υ)Λ(υ)dυ+χϑ−χm∑i=1Φi(Λ(ti))=∫10ℵ(t,υ)H(υ)dυ+φ1(t)[∫10ϱ1(υ)∫10ℵ(υ,˜t)H(˜t)d˜tdυ+A1χϑ−χm∑i=1Φi(Λ(ti))]+φ2(t)[∫10ϱ2(υ)∫10ℵ(υ,˜t)H(˜t)d˜tdυ+A2χϑ−χm∑i=1Φi(Λ(ti))]+χϑ−χm∑i=1Φi(Λ(ti))=∫10ℵ(t,υ)H(υ)dυ+2∑n=1φn(t)[∫10ϱn(υ)∫10ℵ(υ,˜t)H(˜t)d˜tdυ+Anχϑ−χm∑i=1Φi(Λ(ti))]+χϑ−χm∑i=1Φi(Λ(ti))=∫10ℵ(t,υ)H(υ)dυ+2∑n=1φn(t)[∫10ϱn(˜t)∫10ℵ(˜t,υ)H(υ)dυd˜t+Anχϑ−χm∑i=1Φi(Λ(ti))]+χϑ−χm∑i=1Φi(Λ(ti))=∫10ℵ(t,υ)H(υ)dυ+2∑n=1φn(t)[∫10H(υ)∫10ℵ(˜t,s)ϱn(˜t)d˜tdυ+Anχϑ−χm∑i=1Φi(Λ(ti))]+χϑ−χm∑i=1Φi(Λ(ti))=∫10[ℵ(t,υ)+2∑n=1φn(t)∫10ℵ(˜t,s)ϱi(˜t)d˜t]H(υ)dυ+[χϑ−χ+(2∑n=1χϑ−χAnφn(t))]m∑i=1Φi(Λ(ti))=∫10H1(t,υ)H(υ)dυ+m∑i=1H2(t,ti)Φi(Λ(ti)). |
Similar to the above process, for t∈Qκ=(tκ,tk+1], we have
Λ(t)=∫10ℵ(t,υ)H(υ)dυ+1ϑ−χ∫10ϱ1(υ)Λ(υ)dυ+(ϑ−χ)t+χ(ϑ−χ)(ζ−δ)∫10ϱ2(υ)Λ(υ)dυ+χϑ−χm∑i=1Φi(Λ(ti))+κ∑i=1Φi(Λ(ti))=∫10ℵ(t,υ)H(υ)dυ+φ1(t)[∫10ϱ1(υ)∫10ℵ(υ,˜t)H(˜t)d˜tdυ+A1(χϑ−χm∑i=1Φi(Λ(ti))+κ∑i=1Φi(Λ(ti)))]+φ2(t)[∫10ϱ2(υ)∫10ℵ(υ,˜t)H(˜t)d˜tdυ+A2(χϑ−χm∑i=1Φi(Λ(ti))+κ∑i=1Φi(Λ(ti)))]+χϑ−χm∑i=1Φi(Λ(ti))+κ∑i=1Φi(Λ(ti))=∫10ℵ(t,υ)H(υ)dυ+2∑n=1φn(t)[∫10ϱn(υ)∫10ℵ(υ,˜t)H(˜t)d˜tdυ+An(χϑ−χm∑i=1Φi(Λ(ti))+κ∑i=1Φi(Λ(ti)))]+χϑ−χm∑i=1Φi(Λ(ti))+κ∑i=1Φi(Λ(ti))=∫10ℵ(t,υ)H(υ)dυ+2∑n=1φn(t)[∫10ϱn(t)∫10Φ(˜t,υ)H(υ)dυd˜t+An(χϑ−χm∑i=1Φi(Λ(ti))+κ∑i=1Φi(Λ(ti)))]+χϑ−χm∑i=1Φi(Λ(ti))+κ∑i=1Φi(Λ(ti))=∫10ℵ(t,υ)H(υ)dυ+2∑n=1φn(t)[∫10H(υ)∫10Φ(˜t,υ)ϱn(˜t)d˜tdυ+An(χϑ−χm∑i=1Φi(Λ(ti))+κ∑i=1Φi(Λ(ti)))]+χϑ−χm∑i=1Φi(Λ(ti))+κ∑i=1Φi(Λ(ti))=∫10[ℵ(t,υ)+2∑n=1φn(t)∫10ℵ(˜t,υ)ϱn(˜t)d˜t]H(υ)dυ+[χϑ−χ+(2∑n=1χϑ−χAnφn(t))]m∑i=k+1Φi(Λ(ti))+[ϑϑ−χ+(2∑n=1ϑϑ−χAnφn(t))]κ∑i=1Φi(Λ(ti))=∫10H1(t,υ)H(υ)dυ+m∑i=1H2(t,ti)Φi(Λ(ti)). |
The proof is completed.
We assume that the following condition is satisfied in this paper:
(H1) Q1<1, P2<1, (1−Q1)(1−P2)>P1Q2.
Lemma 2.4. The functions H1 and H2 have the following properties:
(1) for all t, υ∈[0,1], i=1, ⋯, m, H1(t,υ)≥0, H2(t,ti) >0;
(2) for all t, υ∈[0,1], d1M(υ) ≤ m(υ)≤ H1(t,υ) ≤ M(υ);
(3) for all t∈[0,1], i=1, ⋯, m, d2H2(1,0) ≤ H2(t,ti) ≤H2(1,0);
(4) for all υ∈[0,1], maxt∈[0,1] CtDℜ−10+H1(t,υ)≤1Γ(3−ℜ)M(υ);
(5) maxt∈[0,1] CtDℜ−10+H2(t,ti)≤ 1Γ(3−ℜ)H2(1,0), i=1, 2, ⋯, m,
where
M(υ)=g(υ)+2∑n=1φn(1)∫10ℵ(υ,˜t)ϱn(˜t)d˜t, |
m(υ)=d1g(υ)+2∑n=1φn(0)∫10ℵ(υ,˜t)ϱn(˜t)d˜t, |
g(υ)=χ(1−υ)ℜ−1(ϑ−χ)Γ(ℜ)+ϑδ(1−υ)ℜ−2(ϑ−χ)(ζ−δ)Γ(ℜ−1)+1Γ(ℜ), |
Π=1+2∑n=1Anφn(0)1+2∑n=1Anφn(1), Π1=minυ∈[0,1][χ(1−υ)ℜ−1(ϑ−χ)Γ(ℜ)+χδ(1−υ)ℜ−2(ϑ−χ)(ζ−δ)Γ(ℜ−1)], |
and d1=χΓ(ℜ)Π1ϑΓ(ℜ)Π1+χ, d2=χϑΠ.
Proof. First, it is easy to see that
H1(t,s), H2(t,ti)>0, |
for all t, υ∈[0,1], i=1, 2, ⋯, m. For given υ∈[0,1], we can get ℵ(t,υ) is increasing with respect to t for t∈Q by the definition of ℵ(t,υ). Then,
ℵ(t,υ)≤χ(1−υ)ℜ−1(ϑ−χ)Γ(ℜ)+ϑδ(1−υ)ℜ−2(ϑ−χ)(ζ−δ)Γ(ℜ−1)+1Γ(ℜ)=g(υ), |
and
ℵ(t,υ)g(υ)≥χ(1−υ)ℜ−1(ϑ−χ)Γ(ℜ)+χδ(1−υ)ℜ−2(ϑ−χ)(ζ−δ)Γ(ℜ−1)+(t−υ)ℜ−1Γ(ℜ)χ(1−υ)ℜ−1(ϑ−χ)Γ(ℜ)+ϑδ(1−υ)ℜ−2(ϑ−χ)(ζ−δ)Γ(ℜ−1)+1Γ(ℜ)≥χ(1−υ)ℜ−1(ϑ−χ)Γ(ℜ)+χδ(1−υ)ℜ−2(ϑ−χ)(ζ−δ)Γ(ℜ−1)χ(1−υ)ℜ−1(ϑ−χ)Γ(ℜ)+ϑδ(1−υ)ℜ−2(ϑ−χ)(ζ−δ)Γ(ℜ−1)+1Γ(ℜ)≥1ϑχ+1Γ(ℜ)[χ(1−υ)ℜ−1(ϑ−χ)Γ(ℜ)+χδ(1−υ)ℜ−2(ϑ−χ)(ζ−δ)Γ(ℜ−1)]≥1ϑχ+1Γ(ℜ)Π1=d1. |
Hence,
d1g(υ)≤ℵ(t,υ)≤g(υ), for all t, υ∈ [0,1], |
and
d1M(υ) ≤ m(υ)≤ H1(t,υ) ≤ M(υ), for all t, υ∈[0,1]. |
The proof of (3) is given below.
On the one hand, from the definition of H2(t,ti) and φn(t)(n=1,2), for 0≤t≤ti≤1, it is easily to see that
H2(t,ti)H2(1,0)=χϑ−χ+χϑ−χ2∑n=1Anφn(t)ϑϑ−χ+ϑϑ−χ2∑n=1Anφn(1)≥χϑ[1+2∑n=1Anφn(0)1+2∑n=1Anφn(1)]=χϑΠ=d2. |
On the other hand, for 0≤ti<t≤1, we get
H2(t,ti)H2(1,0)=ϑϑ−χ+ϑϑ−χ2∑n=1Anφn(t)ϑϑ−χ+ϑϑ−χ2∑n=1Anφn(1)>1+2∑n=1Anφn(0)1+2∑n=1Anφn(1)=Π. |
Therefore,
d2H2(1,0) ≤ H2(t,ti) ≤H2(1,0), |
for all t∈[0,1], i=1, 2, ⋯, m.
Next, by calculation, one can obtain that
CtDℜ−10+ℵ(t,υ)={δ(1−υ)ℜ−2t2−ℜ(ζ−δ)Γ(ℜ−1)Γ(3−ℜ)+1,0≤υ<t≤1;δ(1−υ)ℜ−2t2−ℜ(ζ−δ)Γ(ℜ−1)Γ(3−ℜ),0≤t≤υ≤1, |
CtDℜ−10+H1(t,υ)= CtDℜ−10+ℵ(t,υ)+2∑n=1[ CtDℜ−10+φn(t)]∫10ℵ(υ,˜t)ϱn(˜t)d˜t, |
and
CtDℜ−10+H2(t,υ)={χϑ−χ2∑n=1An[ CtDℜ−10+φn(t)],0≤t≤ti≤1;ϑϑ−χ2∑n=1An[ CtDℜ−10+φn(t)],0≤ti<t≤1. |
Hence,
maxt∈[0,1] CtDℜ−10+ℵ(t,υ)≤1Γ(3−ℜ)g(υ), for all υ∈[0,1], |
maxt∈[0,1] CtDℜ−10+H1(t,υ)≤1Γ(3−ℜ)M(υ), for all υ∈[0,1], |
maxt∈[0,1] CtDℜ−10+H2(t,ti)≤ 1Γ(3−ℜ)H2(1,0), i=1, 2, ⋯, m. |
Hence, (4) and (5) are valid.
Lemma 2.5. [19] The set Υ⊂PC([0,1],Rn) is relatively compact if and only if
(1) Υ is bounded, that is, ‖ϕ‖≤C for each ϕ∈Υ and some C>0.
(2) Υ is quasi-equicontinuous in (tκ−1,tκ](κ∈N), that is to say, for any ε>0, there exists δ>0 such that
|ϕ(t1)−ϕ(t2)|<ε |
for all ϕ∈Υ, t1,t2∈(tκ−1,tκ] with |t1−t2|<δ.
Let Ω be a nonempty open subset of a Banach space (X, ‖⋅‖). T:¯Ω→X is an operator, where T may be discontinuous.
Definition 2.6. [15] The closed-convex Krasovskij envelope (cc-envelope, for short) of an operator T:¯Ω→X is the multivalued mapping T:¯Ω→2X given by
TΛ=⋂ε>0¯coT(¯Bε(Λ)∩¯Ω) for every Λ∈¯Ω, |
where ¯co means closed convex hull, ¯Bε(Λ) is the closed ball centered at Λ and radius ε.
Lemma 2.7. [15] ˜Λ∈TΛ if for every ε>0 and every p>0 there exist m∈N and a finite family of vectors Λi∈¯Bε(Λ)∩¯Ω and coefficients πi∈[0,1](i=1,2,⋯,m) such that m∑i=1πi=1 and
‖˜Λ−m∑i=1πiTΛi‖<p. |
Next, we introduce Krasnoselskii's fixed point theorems for discontinuous operators on cones. Let P be a cone of Banach space X. Then, P defines the partial ordering in given by Λ≤˜Λ if and only if ˜Λ−Λ∈P. For Λ,˜Λ∈P, the set [Λ,˜Λ]={ˆΛ∈P:Λ≤ˆΛ≤˜Λ} is an order interval with Λ≤˜Λ. Denote PR={Λ∈P:‖Λ‖<R}, for given R>0.
Lemma 2.8. [16] Let R>0, 0∈Ωi⊂PR be relatively open subsets of P (i=1,2). T:¯PR→P is a mapping, where T¯PR is relatively compact and it fulfills condition
Λ∩TΛ⊂{TΛ} | (2.10) |
in ¯PR.
(a)For all Λ∈∂Ω1(λ≥1), if λΛ∉TΛ, then i(T, Ω1, P)=1.
(b)For every ℓ≥0 and all Λ∈P with Λ∈∂Ω2, if there exists ℓ∈P(ℓ≠0) such that Λ∉TΛ+ℓω, then i(T, Ω2, P)=0.
Lemma 2.9. [16] Assume that one of the following two conditions holds:
(i) ˜Λ≱Λ for all ˜Λ∈TΛ with Λ∈P and ‖Λ‖=r1.
(ii) ‖˜Λ‖<‖Λ‖ for all ˜Λ∈TΛ and all Λ∈P with ‖Λ‖=r1.
Then, Condition (a) in Lemma 2.8 is satisfied.
Analogously, if one of the following two conditions holds:
(i) ˜Λ≰Λ for all ˜Λ∈TΛ with Λ∈P and ‖Λ‖=r1.
(ii) If ‖˜Λ‖>‖Λ‖ for all ˜Λ∈TΛ and all Λ∈P with ‖Λ‖=r2.
Then, assumption (b) in Lemma 2.8 holds.
For the discontinuous nonlinearities ϝ, we define the admissible discontinuities curves.
Definition 2.10. We say that ℏ:Q→ R +, ℏ∈PC1(Q) is an admissible discontinuity curve for the differential system (1.1) if ℏ satisfies △ℏ′|t=ti=0(i=1, …, m), the boundary value conditions of (1.1) and one of the following conditions holds:
(i)
{ CtDℜ0+ℏ(t)=E(t)ϝ(t,ℏ(t)), a.e. t∈Q′,△ℏ|t=tκ=Φκ(ℏ(tκ)), κ=1, ⋯, m, | (2.11) |
(ii) there exist G, ¯G∈L1(J), G(t), ¯G(t)>0 a.e. for t∈[0,1], S, Θ⊂J, m(S∩Θ)=0, m(S∪Θ)>0, and ε>0 such that
{CtDℜ0+ℏ(t)+¯G(t)<E(t)ϝ(t,x), a.e. t∈Θ, x∈[ℏ(t)−ε,ℏ(t)+ε],CtDℜ0+ℏ(t)−G(t)>E(t)ϝ(t,x), a.e. t∈S, x∈[ℏ(t)−ε,ℏ(t)+ε],CtDℜ0+ℏ(t)=E(t)ϝ(t,ℏ(t)), a.e. t∈Q′∖(S∪Θ),△ℏ|t=tκ=Φκ(ℏ(tκ)), k=1, ⋯, m, | (2.12) |
(iii) there exist κ∈{1, 2, ⋯, m} such that
{CtDℜ0+ℏ(t)=E(t)ϝ(t,ℏ(t)), a.e. t∈Q′,△ℏ|t=tκ≠Φκ(ℏ(tκ)), | (2.13) |
(iv) there exists G, ¯G∈L1(Θ), G(t), ¯G(t)>0 a.e. for t∈[0,1], S, ˜Θ⊂Θ, m(S∩˜Θ)=0, m(S∪˜Θ)>0, and ε>0, κ∈{1, 2, ⋯, m} such that
{CtDℜ0+ℏ(t)+¯G(t)<E(t)ϝ(t,Λ), a.e. t∈Θ, x∈[ℏ(t)−ε,ℏ(t)+ε],CtDq0+ℏ(t)−G(t)>E(t)ϝ(t,x), a.e. t∈S, x∈[ℏ(t)−ε,ℏ(t)+ε],CtDq0+ℏ(t)=E(t)ϝ(t,ℏ(t)), a.e. t∈Q′∖(S∪Θ),△ℏ|t=tκ≠Φκ(ℏ(tκ)). | (2.14) |
Then, we assert that ℏ is viable for BVP (1.1) if (i) is satisfied; we say that ℏ is inviable if one of (ii)-(iv) is satisfied.
Let Ξ=PC1[0,1], P:={Λ∈Ξ:Λ(t)≥d‖Λ‖1, ∀t∈[0,1]}(d=Γ(3−ℜ)d3, d3=min{d1, d2}) and Pr:={Λ∈P: ‖Λ‖1≤r}. In order to apply Krasnoselskii's compression-expansion type fixed point theorems for discontinuous operators to BVP (1.1), we recall that if Λ is a solution of the following equation:
Λ(t)=∫10H1(t,s)E(s)ϝ(s,Λ(υ))dυ+m∑i=1H2(t,ti)Φi(Λ(ti)), | (3.1) |
then Λ∈Ξ is a solution of BVP (1.1).
Define an operator T:P→Ξ as follows:
TΛ(t):=∫10H1(t,s)E(s)ϝ(s,Λ(υ))dυ+m∑i=1H2(t,ti)Φi(Λ(ti)), Λ∈P. | (3.2) |
For any Λ∈P, TΛ is well defined by E∈L(0,1), the continuity of H1 and the assumption of ϝ. One can see that the existence of positive fixed points of T implies the existence of positive solutions for BVP (1.1).
Subsequently, let
N1=(∫10M(υ)g(υ)dυ)−1, N2=(∫10m(υ)g(υ)dυ)−1, |
N3=(supt∈[0,1]∫10 CtDℜ−10+H1(t,υ)g(υ)dυ)−1, N4=(inft∈[0,1]∫10 CtDℜ−10+H1(t,υ)g(υ)dυ)−1, |
N5=supt∈[0,1], i∈{1, ⋯,m}H2(t,ti), N6=inft∈[0,1], i∈{1, ⋯,m}H2(t,ti), |
N7=supt∈[0,1], i∈{1, ⋯,m} CtDℜ−10+H2(t,ti), N8=inft∈[0,1], i∈{1, ⋯,m} CtDℜ−10+H2(t,ti). |
Now, we are in position to give the assumptions satisfied throughout the paper.
(H2)ϝ:Q× R +→ R + satisfies:
(a) t∈Q↦ϝ(⋅,Λ) is measurable for any Λ∈ R +;
(b) For a.e. t∈Q and all Λ∈[0,r], there exists R>0 such that ϝ(t,Λ)≤R for each r>0.
(H3) E(t)≥0 almost everywhere for t∈[0,1] and E is measurable.
(H4) Admissible discontinuity curves ℏn:Q→ R +(n∈N) satisfy that the function Λ↦ϝ(t,Λ) is continuous in [0,∞)∖⋃n∈N{ℏn(t)} for a.e. t∈Q.
(H5) limΛ→0+inft∈[0,1]ϝ(t,Λ)Λ>54d[1N2+mN6]−1, limΛ→0+Φκ(Λ)Λ>54d[1N2+mN6]−1,
(H6) limΛ→+∞supt∈[0,1]ϝ(t,Λ)Λ<56[1N1+mN5]−1, limΛ→+∞Φκ(Λ)Λ<56[1N1+mN5]−1,
(H7) limΛ→0+supt∈[0,1]ϝ(t,Λ)Λ<56[1N1+mN5]−1, limΛ→0+Φκ(Λ)Λ<56[1N1+mN5]−1,
(H8) limΛ→+∞inft∈[0,1]ϝ(t,Λ)Λ>54d[1N2+mN6]−1, limΛ→+∞Φκ(Λ)Λ>54d[1N2+mN6]−1.
Lemma 3.1. The operator T: P→P is well-defined and maps bounded sets into relatively compact sets.
Proof. In view of the nonnegativity of ϝ, H1, H2, Φκ(κ=1, ⋯, m) and E(t)≥0 for a.e. t∈ Q, we conclude that TΛ(t)≥0 for t∈[0,1]. Hence, T: P→P is well-defined.
Then, by calculation, for Λ∈P, it is easy to see
CtDℜ−10+(TΛ)(t)=∫10[ CtDℜ−10+H1(t,υ)]E(υ)ϝ(υ,Λ(υ))dυ+m∑i=1[ CtDℜ−10+H2(t,ti)]Φi(Λ(ti)), |
where
CtDℜ−10+ℵ(t,υ)={ζ(1−υ)ℜ−2t2−ℜ(ζ−δ)Γ(ℜ−1)Γ(3−ℜ)+1,0≤υ<t≤1;ζ(1−υ)ℜ−2t2−ℜ(ζ−δ)Γ(ℜ−1)Γ(3−ℜ),0≤t≤υ≤1, |
CtDℜ−10+H1(t,υ)= CtDℜ−10+ℵ(t,υ)+2∑n=1[ CtDℜ−10+φn(t)]∫10ℵ(υ,˜t)ϱn(˜t)d˜t, |
and
CtDℜ−10+H2(t,ti)={χϑ−χ2∑n=1An[ CtDℜ−10+φn(t)],0≤t≤ti≤1;ϑϑ−χ2∑n=1An[ CtDℜ−10+φn(t)],0≤ti<t≤1. |
By Lemma 2.4, one can get that
d‖CtDℜ−10+TΛ‖0=d maxt∈[0,1][∫10(CtDℜ−10+H1(t,υ))E(υ)ϝ(υ,Λ(υ))dυ+m∑i=1(CtDℜ−10+H2(t,ti))Φi(Λ(ti))]≤d3[∫10M(υ)E(υ)ϝ(υ,Λ(υ))dυ+m∑i=1H2(1,0)Φi(Λ(ti))]≤∫10m(υ)E(υ)ϝ(υ,Λ(υ))dυ+m∑i=1H2(0,1)Φi(Λ(ti))=mint∈[0,1]TΛ(τ). |
Thinking about it from the other side, we have
d‖TΛ‖0≤d3[∫10M(υ)E(υ)ϝ(υ,Λ(υ))dυ+m∑i=1H2(1,0)Φi(Λ(ti))]≤∫10m(υ)E(υ)ϝ(υ,Λ(υ))dυ+m∑i=1H2(0,1)Φi(Λ(ti))=mint∈[0,1]TΛ(t). |
Therefore,
mint∈[0,1]TΛ(t)≥d(υ) max{‖TΛ‖0,‖ CtDℜ−10+TΛ‖0}=d(υ)‖TΛ‖1. |
Next, we notice that there exists Mκ>0 such that
Φκ(Λ)≤Mκ, for Λ∈[0,r], |
where κ=1, 2, ⋯, m for each r>0. Therefore, T(Pr) is bounded by (H2).
Moreover, we have
CtDq0+TΛ(t)=E(t)ϝ(t,Λ(t))≤RE(t), |
for any Λ∈Pr and a.e. t∈Qκ.
Therefore,
|CtDℜ−10+(TΛ)(ˆt2)− CtDℜ−10+(TΛ)(ˆt1)|≤∫ˆt2ˆt1|CrDq0+(TΛ)(r)|dr≤∫ˆt2ˆt1RE(r)dr, |
where ˆt1, ˆt2∈Qκ. Hence, T(Pr) is relatively compact.
Lemma 3.2. Let T be the cc-envelope of the operator T:PR→P. If (H4) is satisfied, then
Λ∩TΛ⊂{TΛ}, for all Λ∈PR. |
Proof. Let Wn={t∈Q:Λ(t)=ℏn(t)}(n∈N). Fix Λ∈PR and we think about three cases below.
Case 1: m(Wn)=0 for all n∈N.
If Λκ→Λ in PR, by (H4), it is easy to see that ϝ(t,Λκ(t))→ϝ(t,Λ(t)) for a.e. t∈Q. This, together with (H2) and (H3), implies that
TΛκ→TΛ in PR. |
Hence T is continuous at Λ. Hence, TΛ=TΛ.
Case 2: there exists n∈N such that ℏn is inviable and m(Wn)>0. Let B={n:m(Wn)>0, ℏn is inviable}. Case 2 will be demonstrated in three subcases.
Case 2.1: The above ℏn satisfies (ii) in Definition 2.10.
By (ii) in Definition 2.10, there exist G, ¯G∈L1(Q′), G(t), ¯G(t)>0 for a.e. t∈[0,1], Sn, Θn⊂Q, m(Sn∩Θn)=0, m(Sn∪Θn)>0, and ε>0 such that
{CtDℜ0+ℏ(t)+¯G(t)<E(t)ϝ(t,ℏn(t)), a.e. t∈Θn, Λ∈[ℏn(t)−ε,ℏn(t)+ε],CtDℜ0+ℏ(t)−G(t)>E(t)ϝ(t,ℏn(t)), a.e. t∈Sn, Λ∈[ℏn(t)−ε,ℏn(t)+ε],CtDℜ0+ℏ(t)=E(t)ϝ(t,ℏn(t)), a.e. t∈Q′∖(Sn∪Θn),△ℏn|t=tκ=Φκ(ℏn(tκ)), κ=1, ⋯, m. | (3.3) |
(I) m({t∈Sn∪Θn|Λ(t)=ℏn(t)})=0 for all n∈B.
By m({t∈Sn∪Θn|Λ(t)=ℏn(t)})=0, for a.e. t∈Wn, one can obtain that
CtDℜ0+ℏn(t)=E(t)ϝ(Λ,ℏn(t)). |
This is,
CtDℜ0+Λ(t)=E(t)ϝ(t,Λ), t∈⋃n∈BWn. |
For each κ∈N, on account of Λ∈TΛ, there exist functions Λp,i∈B1p(Λ)∩PR and coefficients λp,i∈[0,1](i=1, 2,⋯, m(p)) such that
m(p)∑i=1λp,i=1, |
and
‖Λ−m(p)∑i=1λp,iTΛp,i‖<1p, |
by Lemma 2.7 with ε=p=1p.
Denote Vp=m(p)∑i=1λp,iTΛp,i. If p→ ∞ in Q, we can see that Vp→Λ uniformly.
For a.e. t∈Q∖⋃n∈BWn, one can see that E(t)ϝ(t,⋅) is continuous at Λ(t). Consequently, for any ε>0, there is some p0=p(t)∈N such that, for all κ∈N, p≥p0, we have
|E(t)ϝ(t,Λp,i(t))−E(t)ϝ(t,Λ(t))|<ε, |
for all i∈{1, 2, ⋯, m(p)}. Then,
|CtDℜ0+Vp(t)−E(t)ϝ(t,Λ(t))|≤m(p)∑i=1λp,i|E(t)ϝ(t,Λp,i(t))−E(t)ϝ(t,Λ(t))|<ε. |
This is,
CtDℜ0+Vp(t)→E(t)ϝ(t,Λ(t)), when p→∞, |
for a.e. t∈Q∖⋃n∈BWn.
On the other hand,
|CtDℜ0+Vp(t)− CtDℜ0+Λ(t)|=1Γ(ℜ)|∫t0(t−υ)ℜ−1Vp(υ)dυ−∫t0(t−υ)ℜ−1Λ(υ)dυ|≤1Γ(ℜ)∫t0(t−υ)ℜ−1|Vp(υ)−Λ(υ)|dυ≤ε1(1Γ(ℜ)∫t0(t−υ)ℜ−1dυ)≤1Γ(ℜ+1)ε1, |
which guarantees that CtDℜ0+Λ(t)=E(t)ϝ(t,Λ) for a.e. t∈Q∖⋃n∈BWn. The process above implies Λ=TΛ if Λ∈TΛ.
(II) There exists n∈B such that m({t∈Sn∪Θn|Λ(t)=ℏn(t)})>0.
Suppose m({t∈Sn|Λ(t)=ℏn(t)})>0. Now we are in position to prove
Λ∉TΛ. |
For a.e. t∈Q, by (H2), there exists HR>0 such that ϝ(t,Λ(t))<HR. Let F(t)=E(t)HR and A={t∈Sn| Λ(t)=ℏn(t)}(n∈N). There exists an interval Qκ0(κ0∈{1, ⋯, m}) such that m(Qk0∩A)>0. Let A=Qk0∩A. On account of F∈L(Q) and Lemma 3.8 in [15], there is a measurable set A0⊂A with m(A0)=m(A)>0 such that, we obtain
limt→ˆt+02∫[ˆt0,t]∖AF(υ)dυ14∫tˆt0G(υ)dυ=0=limt→ˆt−02∫[t,ˆt0]∖AF(υ)dυ14∫ˆt0tG(υ)dυ, | (3.4) |
for all ˆt0∈A0.
Moreover, by Corollary 3.9 in [15], there exists A1⊂A0 with m(A0∖A1)=0 such that,
limt→ˆt+0∫[ˆt0,t]∩A0G(υ)dυ∫tˆt0G(υ)dυ=1=limt→ˆt−0∫[t,ˆt0]∩A0G(υ)dυ∫tˆt0G(υ)dυ, | (3.5) |
for all ˆt0∈A1.
Fix a point ˆt0∈A1. By (3.4) and (3.5), we konw that t−<ˆt0, t+>ˆt0 exist with t+, t−→ˆt0. Moreover, t+, t− satisfies the following inequalities.
2∫[ˆt0,t+]∖AF(υ)dυ<14∫t+ˆt0G(υ)dυ, | (3.6) |
∫[ˆt0,t+]∖AG(υ)dυ≥∫[ˆt0,t+]∩A0G(υ)dυ>12∫t+ˆt0G(υ)dυ, | (3.7) |
2∫[t−,ˆt0]∖AF(υ)dυ<14∫ˆt0t−G(υ)dυ, | (3.8) |
∫[t−,ˆt0]∩AG(υ)dυ>12∫ˆt0t−G(υ)dυ. | (3.9) |
Now we will prove that Λ∉TΛ.
Claim: For every finite family Λi∈Bε(Λ)∩¯BR and πi∈[0,1] (i=1,2, ⋯,m1), there exists p>0 such that
‖Λ−m1∑i=1πiTΛi‖≥p, |
where m1∑i=1πi=1.
Denote V=m1∑i=1πiTΛi. Then for a.e. t∈A, we have
CtDℜ0+v(t)=m1∑i=1πi CtDℜ0+(TΛi)(t)=m1∑i=1πiE(t)ϝ(t,Λi(t)). | (3.10) |
For every i∈{1, 2, ⋯, m1} and t∈A, one can obtain that
|Λi(t)−ℏn(t)|=|Λi(t)−Λ(t)|<ε. |
Then, for a.e. t∈A, we have
CtDℜ0+V(t)=m1∑i=1πiE(t)ϝ(t,Λi(t))<m1∑i=1πi(CtDℜ0+ℏn(t)−G(t))= CtDℜ0+Λ(t)−G(t). | (3.11) |
Now we compute
CtDℜ−10+V(t+)− CtDℜ−10+V(ˆt0)=∫t+ˆt0[CsDℜ−10+V(υ)]′dυ=∫t+ˆt0[CsDℜ0+V(υ)]dυ=∫[ˆt0,t+]∩A[CsDℜ0+V(υ)]dυ+∫[ˆt0,t+]∖A[CtDℜ0+V(υ)]dυ<∫[ˆt0,t+]∩A CsDℜ0+Λ(υ)dυ−∫[ˆt0,t+]∩AG(υ)dυ+∫[ˆt0,t+]∖AF(υ)dυ= CtDℜ−10+Λ(t+)− CtDℜ−10+Λ(ˆt0)−∫[ˆt0,t+]∖A CsDℜ0+Λ(υ)dυ−∫[ˆt0,t+]∖AG(s)dυ+∫[ˆt0,t+]∖AF(υ)dυ≤ CtDℜ−10+Λ(t+)− CtDℜ−10+Λ(ˆt0)−∫[ˆt0,t+]∩AG(υ)dυ+2∫[ˆt0,t+]∖AF(υ)dυ< CtDℜ−10+Λ(t+)− CtDℜ−10+Λ(ˆt0)−14∫t+ˆt0G(υ)dυ. |
Choosing
p=min{14∫ˆt0t−G(υ)dυ,14∫t+ˆt0G(υ)dυ}. | (3.12) |
Hence, ‖Λ−V‖1≥ CtDℜ−10+Λ(t+)− CtDℜ−10+V(t+)≥p, provided that CtDℜ−10+Λ(ˆt0)≥ CtDℜ−10+V(ˆt0).
Using t− instead of t+, we can get that
CtDℜ−10+Λ(ˆt0)≤ CtDℜ−10+v(ˆt0), |
by similar progress. Hence, we have ‖Λ−V‖1≥p. The claim is proven.
By Lemma 2.7, one can see that Λ∉TΛ.
Case 2.2: The above ℏn satisfies (iii) in Definition 2.4. Let B1={n:m(Wn)>0, ℏn satisfies (iii) in Definition 2.4}.
Then, there exist k∈{1, 2, ⋯, m} such that
{CtDℜ0+ℏ(t)=E(t)ϝ(t,ℏn(t)), a.e. t∈Q′;△ℏn|t=tκ≠Φκ(ℏn(tκ)), κ=1, ⋯, m. | (3.13) |
We suppose that there exist Y, ε>0 such that △ℏn|t=tκ+Y<Φκ(z), z∈[ℏn(tκ)−ε,ℏn(tκ)+ε] by the continuity of Φκ.
(I) Λ(tκ)≠ℏn(tκ) or Λ(t+κ)≠ℏn(t+κ).
By (2.13), for a.e. t∈⋃n∈B1Wn, we have CtDℜ0+Λ(t)=E(t)ϝ(t,Λ(t)). Similar to the proof of (I) in Case 2.1, it is easy to see that Λ∉TΛ or Λ=TΛ if Λ∈TΛ. Hence, Λ∩TΛ⊂{TΛ} for all Λ∈PR.
(II) When Λ(tκ)=ℏn(tκ) and Λ(t+κ)=ℏn(t+κ), we assert that Λ∉TΛ.
Claim: Let ε>0 and p=Y2, for every finite family Λi∈Bϵ(Λ)∩PR and πi∈[0,1](i=1,2, ⋯,m1) with m1∑i=1πi=1, we have
‖Λ−m1∑i=1πiTΛi‖≥p. |
For simplicity, denote V=m1∑i=1πiTΛi. In view of |Λi(tκ)−Λ(tκ)|=|Λi(tκ)−ℏn(tκ)|<ε1, one can get
△V|t=tκ=m1∑i=1πi(△TΛi|t=tκ)=m1∑i=1πi(Φκ(Λi(tκ)))>m1∑i=1πi(△ℏn|t=tκ+Y)=△ℏn|t=tκ+Y=△Λ|t=tκ+Y, |
which implies that
V(t+κ)−Λ(+κ)>V(tκ)−Λ(tκ)+Λ≥−|V(tκ)−Λ(tκ)|+Y. |
That is
‖Λ−V‖1≥Y2. |
The claim is proven.
Case 2.3: The above ℏn satisfies (iv) in Definition 2.10.
Hence, one can also obtain that
Λ∩TΛ⊂{TΛ}, for all Λ∈PR. |
by the process similar to proving Case 2.1 and Case 2.2.
Case 3: m({Wn})>0 for n∈N such that ℏn is viable.
For each n∈N and a.e. t∈Wn,
CtDℜ0+Λ(t)= CtDℜ0+ℏn(t)=E(t)ϝ(t,ℏn(t))=E(t)ϝ(t,Λ(t)). |
Therefore,
CtDℜ0+Λ(t)=E(t)ϝ(t,Λ(t)) a.e. in B=⋃n∈NWn. |
If Λ∈TΛ, we can obtain that
CtDℜ0+Λ(t)=E(t)ϝ(t,Λ(t)) a.e. in Q∖B, |
by the process of proving (I) in Case 2.1. Hence, Λ=TΛ.
Theorem 3.3. If (H1)–(H6) hold, then BVP (1.1) admits at least one positive solution.
Proof. Claim 1: For all ˜Λ∈TΛ and Λ∈P, there exists r1>0 such that ˜Λ≰Λ, where ‖Λ‖=r1.
In fact, the condition (H5) means that there exist ˜ε0, r1>0 such that
ϝ(t,Λ)>(λ+˜ε0)Λ, Φκ(Λ)>(λ+˜ε0)Λ, t∈[0,1], Λ∈[0,65r1]. | (3.14) |
Suppose Λ∈P with ‖Λ‖1=r1. For every finite family Λi∈Bϵ(Λ)∩P and πi∈[0,1](i=1, 2, ⋯, m2), with m2∑i=1πi=1, and ϵ∈[0,r15], one can obtain that
˜Λ(t)=m2∑i=1πiTΛi(t)=m2∑i=1πi[∫10H1(t,υ)E(υ)ϝ(υ,Λi(υ))dυ+m∑i=1H2(t,ti)Φi(Λi(ti))]>m2∑i=1πi(λ+˜ε0)[∫10H1(t,υ)g(υ)Λi(υ)dυ+m∑i=1H2(t,ti)Λi(ti)]≥m2∑i=1πi(λ+˜ε0)[d(υ)‖Λi‖1N2+mN6d(υ)‖Λi‖1]≥d(υ)(‖Λ‖1−ϵ)(λ+˜ε0)[1N2+mN6]>r1=‖Λ‖1. |
This implies that ˜Λ≰Λ for all ˜Λ∈TΛ with Λ∈P and ‖Λ‖1=r1. By Lemma 2.8 and 2.9, we get
i(T,P∩∂Br1,P)=0. | (3.15) |
Claim 2: There exists ℜ1>r1>0 such that ‖˜Λ‖1<‖Λ‖1 for all ˜Λ∈TΛ and all Λ∈P with ‖Λ‖1=ℜ1.
In fact, the assumption (H6) implies that there exists 0<ε1<˜λ such that
ϝ(t,Λ)<(˜λ−ε1)Λ, Φκ(Λ)<(˜λ−ε1)Λ, t∈[0,1], Λ≥45R1. |
Choosing ℜ1>max{r1, 4R15d(υ)}, for Λ∈∂Pℜ1, one can see that
Λ(t)≥d(υ)‖Λ‖1=d(υ)ℜ1>45R. |
Suppose Λ∈P with ‖Λ‖1=ℜ1. For πi∈[0,1](i=1, 2, ⋯, m3), with m3∑i=1πi=1 and every finite family Λi∈Bϵ(Λ)∩P, ϵ∈[0,r15], one can see that
˜Λ(t)=m3∑i=1πiTΛi(t)=m3∑i=1πi[∫10H1(t,υ)E(υ)ϝ(υ,Λi(υ))dυ+m∑i=1H2(t,ti)Φi(Λi(ti))]<m3∑i=1πi[∫10H1(t,υ)g(υ)(˜λ−ε1)Λi(υ)dυ+m3∑i=1H2(t,ti)](˜λ−ε1)Λi(ti)≤(ℜ1+ϵ)(˜λ−ε1)[1N1+mN5]<ℜ1=‖Λ‖1, |
and
CtDℜ−10+˜Λ(t)=m3∑i=1πi(CtDℜ−10+TΛi)(t)=m3∑i=1πi[∫10 CtDℜ−10+H1(t,υ)E(υ)ϝ(υ,Λi(υ))dυ+m∑i=1 CtDℜ−10+H2(t,ti)Φi(Λi(ti))]<‖Λi‖1(˜λ−ε1)[1N3+mN7]≤(ℜ1+ϵ)(˜λ−ε1)[1N3+mN7]<ℜ1=‖Λ‖1. |
Hence, ‖˜Λ‖1<‖Λ‖1, for all ˜Λ∈TΛ and all Λ∈P with ‖Λ‖1=ℜ1. By Lemma 2.8 and 2.9, we get
i(T,P∩∂Bℜ1,P)=1. | (3.16) |
Together with (3.15), we have
i(T,P∩(Bℜ1∖¯Br1),P)=1−0=1. | (3.17) |
Hence, BVP (1.1) admits at least one positive solution.
Theorem 3.2. Assume that (H1)–(H4), (H7) and (H8) hold. In addition, suppose that the following condition is satisfied.
(H9) There exist R>0 such that ϝR<N12 and m∑k=1ΦRκ<12N5, where
ΦRκ:=sup 0≤‖Λ‖≤6R5{Φκ(Λ)R}, ϝR:=supt∈[0,1], 0≤‖Λ‖≤6R5{ϝ(t,Λ)R}. |
Then, BVP (1.1) admits at least two positive solutions.
Proof. We will prove that T has at least two positive fixed points.
First, by the condition (H7), one can see that there exist r2, ˜ε2∈(0,ν). Moreover, r2, ˜ε2 satisfy
ϝ(t,Λ)<(ν−˜ε2)Λ, Φκ(Λ)<(ν−˜ε2)Λ, t∈[0,1], Λ∈[0,65r2]. |
We claim that
\begin{equation} \mu \Lambda\notin \mathbb{T}\Lambda, \ \forall \Lambda\in \mathcal{P}\cap \partial B_{{\mathfrak{r}}_{2}}, \end{equation} | (3.18) |
for \mu\geq1. In fact, on the contrary, if there exist \Lambda\in \mathcal{P}\cap \partial B_{{\mathfrak{r}}_{2}} , \mu\geq 1 such that \mu \Lambda(t) = \mathcal{T}\widetilde{\Lambda}(t) for some \widetilde{\Lambda}\in \overline{B}_{\epsilon}(\Lambda)\cap P, \ i.e.,
\begin{array}{l} \mu \Lambda(t)& = &\int_{0}^{1} \mathcal {H}_{1}(t, {\upsilon}) \mathcal {E}({\upsilon})\digamma({\upsilon}, \widetilde{\Lambda} ({\upsilon}))d{\upsilon}+\sum\limits_{i = 1}^{m} \mathcal {H}_{2}(t, t_{i}) \Phi_{i}(\widetilde{\Lambda}(t_{i}))\\ & < &(\nu-\widetilde{\varepsilon}_{2})(\|\Lambda\|_{1}+\epsilon)[({ }\frac{1}{ \mathcal {N}_{1}} +m\mathcal{N}_{5}]\\ & < &{\mathfrak{r}}_{2}. \end{array} |
Then,
\begin{array}{l} \mu (_{t}^{C} \mathcal {D} ^{\Re -1}_{0^{+}}\Lambda(t))& = &\int_{0}^{1}\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \mathcal {H}_{1}(t, {\upsilon}) \mathcal {E}({\upsilon})\digamma({\upsilon}, \widetilde{\Lambda}({\upsilon}))d{\upsilon}+\sum\limits_{i = 1}^{m}\ _{t}^{C} \mathcal {D} ^{\Re -1}_{0^{+}} \mathcal {H}_{2}(t, t_{i}) \Phi_{i}(\widetilde{\Lambda}(t_{i}))\\ & < &(\nu-\widetilde{\varepsilon}_{2})(\|\Lambda\|_{1}+\epsilon)[{ }\frac{1}{ \mathcal {N}_{3}} +m \mathcal {N}_{7}]\\ &\leq&(\nu-\widetilde{\varepsilon}_{2})(\|\Lambda\|_{1}+\epsilon)[({ }\frac{1}{ \mathcal {N}_{1}} +m \mathcal {N}_{5}]\\ & < &{\mathfrak{r}}_{2}. \end{array} |
Over t\in [0, 1] , we obtain
\begin{equation} \mu\|\Lambda\|_{1} = \mu {\mathfrak{r}}_{2} < {\mathfrak{r}}_{2}, \end{equation} | (3.19) |
by taking the supremum, which is a contradiction.
Then, to prove \mu \Lambda \notin co(T(B_{\widetilde{\varepsilon}}(\Lambda) \cap \mathcal{P})) , we consider two cases: \mu = 1 and \mu > 1 . If \mu = 1 , we obtain by the reasonings done above that \Lambda \neq \mathcal {T}\Lambda . This together with condition {\Lambda} \cap \mathbb{T}\Lambda \subset \{ \mathcal {T}\Lambda\} implies \Lambda\notin \mathbb{T}\Lambda . If \mu > 1 , by inequality (3.19), it is a contradiction.
Next, the condition (H8) means that there exist \widetilde{\varepsilon}_{3} > 0 , \mathcal{R} > r_{2} . They satisfy
\digamma(t, \Lambda) > (\widetilde{\nu}+\widetilde{\varepsilon}_{3})\Lambda, \ \Phi_{{\kappa}}(\Lambda) > (\widetilde{\nu}+\widetilde{\varepsilon}_{3})\Lambda, \ t\in[0, 1], \ \Lambda\geq { }\frac{4}{5}\mathcal{R}. |
Choosing \Re _{2} > max\{{\mathfrak{r}}_{1}, \ { }\frac{4\mathcal{R}}{5\mathfrak{d}(s)}\} , for any \Lambda\in \partial \mathcal {P}_{\Re _{2}} , we have
\Lambda(t)\geq \mathfrak{d} \|\Lambda\|_{1} = \mathfrak{d}(s) \Re _{2} > { }\frac{4}{5}\mathcal{R}. |
We claim that
\Lambda\notin \mathbb{T}\Lambda+\mu e, \ e(t)\equiv 1, \ t\in[0, 1], |
for all \Lambda\in \mathcal{P}\cap \partial B_{\Re _{2}} and \mu \geq 0 .
In fact, on the contrary, suppose that there exist \Lambda\in P\cap \partial B_{\Re _{2}} , \mu\geq 0 such that \Lambda = \mathcal{T}\widetilde{\Lambda}+\mu e for some {\widetilde{\Lambda}}\in \overline{B}_{\epsilon}(\Lambda)\cap \mathcal{P}, \ i.e.,
\begin{array}{l} \Lambda(t)& = &\int_{0}^{1} \mathcal {H}_{1}(t, {\upsilon}) \mathcal {E}({\upsilon})\digamma ({\upsilon}, {\widetilde{\Lambda}}({\upsilon}))d{\upsilon}+\sum\limits_{i = 1}^{m} \mathcal {H}_{2}(t, t_{i}) \Phi_{i}({\widetilde{\Lambda}}(t_{i}))+\mu\\ &\geq&(\Re _{2}-\epsilon)\mathfrak{d}({\upsilon}) (\widetilde{\nu}+\widetilde{\varepsilon}_{3}) [{ }\frac{1}{ \mathcal {N}_{2}}+m \mathcal {N}_{6}]+\mu\\ & > &\Re _{2}+\mu. \end{array} |
This together with the definition of \|\cdot\|_{1} guarantees that
\begin{equation} \Re _{2} = \|\Lambda\|_{1}\geq max_{ t\in\ [0, 1]}\Lambda(t) > \Re _{2}+\mu, \end{equation} | (3.20) |
which is a contradiction for \mu \geq 0 .
For p \in { \mathbb{N} } , one can see that \Lambda \neq \sum\limits_{i = 1}^{p}\pi_{i}T{\widetilde{\Lambda}}_{i}+\mu e(\mu\geq0) for \pi_{i}\in[0, 1](i = 1, \ \cdots, \ p) and v_{i}\in B_{\widetilde{\varepsilon}}(\Lambda) \cap P , where \sum\limits_{i = 1}^{p}\pi_{i} = 1 . Hence, \Lambda \notin co(\mathcal{T}(B_{\varepsilon}(\Lambda) \cap \mathcal{P}))+\mu e(\mu\geq0).
Now we are in a position to prove that \Lambda \notin \mathbb{T}\Lambda+\mu e . If \mu = 0 , we obtain by the reasonings done above that \Lambda \neq \mathcal {T}\Lambda .This together with condition {\Lambda} \cap \mathbb{T}\Lambda \subset \{ \mathcal {T}\Lambda\} implies \Lambda\notin \mathbb{T}\Lambda . If \mu > 0 , in view of inequality (3.20), it is a contradiction.
By Lemma 2.8, one can get that i(\mathcal{T}, \ \mathcal{P}\cap \partial B_{{\mathfrak{r}}_{2}}, \ \mathcal{P}) = 1 and i(\mathcal{T}, \ \mathcal{P}\cap \partial B_{\Re _{2}}, \ \mathcal{P}) = 0 . Hence,
\begin{equation} i(\mathcal{T}, \ \mathcal{P}\cap(B_{\Re _{2}}\backslash{\overline{B}}_{{\mathfrak{r}}_{2}}, \ \mathcal{P}) = 0-1 = -1. \end{equation} | (3.21) |
Third, (H9) implies that there exist \Re _{3} > \Re _{2} and \epsilon\in[0, { }\frac{{\mathfrak{r}}_{2}}{5}] such that \digamma^{\Re _{3}} < { }\frac{ \mathcal {N}_{1}}{2} and \sum\limits\limits_{k = 1}^{m}\Phi_{{\kappa}}^{\Re _{3}} < { }\frac{1}{2 \mathcal {N}_{5}} .
Similar to the process above, there exist \Re _{3} > \Re _{2} such that
i(\mathcal{T}, \ \mathcal{P}\cap \partial B_{\Re _{3}}, \mathcal{ P} ) = 1. |
Hence,
i(\mathcal{T}, \ \mathcal{P}\cap(B_{R_{3}}\backslash{\overline{B}}_{\Re _{2}}, \mathcal{P}) = 1-0 = 1. |
Together with (3.21), BVP (1.1) admits at least two positive solutions in \mathcal{P}\cap(B_{\overline{\Re }_{2}}\backslash{\overline{B}}_{{\mathfrak{r}}_{2}}) and \mathcal{P}\cap(B_{\overline{\Re }_{3}}\backslash{\overline{B}}_{\Re _{2}}), respectively.
Example 4.1. Consider the following BVP
\begin{equation} \hskip 3mm\left\{ \begin{array}{lll} _{t}^{C} \mathcal {D}^{1.5}_{0^{+}}\Lambda(t) = \digamma(t, \Lambda), \ a.e.\ t\in[0, 1], \\ \triangle \Lambda|_{t = t_{1}} = \Phi_{1}(\Lambda(t_{1})), \\ \triangle \Lambda'|_{t = t_{1}} = 0, \\ 3 \Lambda(0)- \Lambda(1) = \int_{0}^{1}\frac{1}{2}\Lambda({\upsilon})d{\upsilon}, \\ 3 \Lambda'(0)- \Lambda'(1) = \int_{0}^{1}\Lambda({\upsilon})d{\upsilon}, \end{array}\right. \end{equation} | (4.1) |
where 0 < t_{1} < 1, \Phi_{1}(\Lambda) = { }\frac{\Lambda^{2}}{10^{3}} and
\digamma(t, \Lambda) = \begin{cases} { }\frac{[\Gamma(2.5)]^{2}}{4}{ }\frac{\Lambda^{2}}{10^{3}}[\cos^{2}({ }\frac{\Gamma(2.5)}{2t^{1.5}-\Gamma(2.5)\Lambda})+1], \ \Lambda\neq { }\frac{2t^{1.5}}{\Gamma(2.5)}, \ 0\leq t\leq1;\\ { }\frac{t^{3}}{500}, \ \Lambda = { }\frac{2t^{1.5}}{\Gamma(2.5)}, \ 0\leq t\leq1. \end{cases} |
Conclusion: BVP (4.1) has at least two positive solutions.
Proof. First, \digamma satisfies condition (H2) by it's expression. On the other hand, the function \Lambda\rightarrow \digamma(t, \Lambda) is continuous on
{ \mathbb{R} }^{+}\setminus\bigcup\limits_{t\in Q} \{\hbar_{n}(t)\}, |
where for each n \in \mbox{ $\mathbb{Z}$ } \setminus \{0\} and a.e. t \in Q . The curves \hbar_{n}(t) = { }\frac{2t^{1.5}}{\Gamma(2.5)}-n^{-1} and \hbar_{0}(t) = { }\frac{2t^{1.5}}{\Gamma(2.5)} are admissible discontinuity curves satisfying
1 = \ _{t}^{C} \mathcal {D}^{1.5}_{0^{+}}\hbar_{n}(t)-1 > \digamma(t, z) |
where z\in [\hbar_{n}(t)-1, \hbar_{n}(t)+1], \ t\in[0, 1].
By Lemma 2.3, one can obtain that \mathfrak{A}_{1} = { }\frac{1}{2}, \ \mathfrak{A}_{2} = 1 , \mathfrak{P}_{1} = \mathfrak{Q}_{1} = { }\frac{1}{4} , \mathfrak{P}_{2} = \mathfrak{Q}_{2} = { }\frac{1}{2} , \Gamma_{1} = { }\frac{1}{8} > 0 , \varphi_{1}(t) = 2t+2 , \varphi_{2}(t) = 3t+{ }\frac{5}{2} ,
\aleph(t, {\upsilon}) = \begin{cases} { }\frac{(t-{\upsilon})^{0.5}}{\Gamma(1.5)}+{ }\frac{(1-{\upsilon})^{0.5}}{2\Gamma(1.5)}+{ }\frac{(1+2t)(1-{\upsilon})^{-0.5}}{4\Gamma(0.5)}, \ 0\leq {\upsilon}\leq t\leq1;\\ { }\frac{(1-{\upsilon})^{0.5}}{2\Gamma(1.5)}+{ }\frac{(1+2t)(1-{\upsilon})^{-0.5}}{4\Gamma(0.5)}, \ 0\leq t\leq {\upsilon}\leq 1, \end{cases} |
\begin{equation} \mathcal {H}_{2}(t, t_{i}) = \left\{ \begin{aligned} { }\frac{1}{2}+{ }\frac{1}{2}(4t+{ }\frac{7}{2}), \ 0\leq t\leq t_{i}\leq1;\\ { }\frac{3}{2}+{ }\frac{3}{2}(4t+{ }\frac{7}{2}), \ 0\leq t_{i} < t\leq 1. \end{aligned} \right. \end{equation} | (4.2) |
Thus, by calculation, we can get that (\mathcal {N}_{1})^{-1}\approx10.458 , (\mathcal {N}_{2})^{-1}\approx4.375 , (\mathcal {N}_{3})^{-1}\approx5.333 , (\mathcal {N}_{4})^{-1}\approx4.333 , \mathcal {N}_{5} = { }\frac{51}{4} , \mathcal {N}_{6} = { }\frac{9}{4} , \mathcal {N}_{7} = 6 , \mathcal {N}_{8} = 2 . Choosing \nu = 0.03 and \widetilde{\nu} = 2 , which satisfies 5\nu({ }\frac{1}{ \mathcal {N}_{1}}+mN_{5})\leq 4 and 3\mathfrak{d} \widetilde{\nu}({ }\frac{1}{ \mathcal {N}_{2}}+mN_{6})\geq 4 .
Therefore,
\lim\limits_{\Lambda\rightarrow 0^{+}}{ }\frac {\Phi_{{\kappa}}(\Lambda)}{\Lambda} = 0 < \nu, \ \lim\limits_{\Lambda\rightarrow 0^{+}}\sup \limits_{t\in [0, 1]}{ }\frac{\digamma(t, \Lambda)}{\Lambda} = 0 < \nu. |
\lim\limits_{\Lambda\rightarrow +\infty}{ }\frac {\Phi_{{\kappa}}(\Lambda)}{\Lambda} = +\infty > \widetilde{\nu}, \ \lim\limits_{\Lambda\rightarrow +\infty}\inf \limits_{t\in [0, 1]}{ }\frac {\digamma(t, \Lambda)}{\Lambda} = +\infty > \widetilde{\nu}. |
Moreover, we have (\mathcal {N}_{1})^{-1}\approx10.458 , \mathcal {N}_{5} = { }\frac{51}{4} and let R_{3} = 10 . Then, (H9) is satisfied.
Hence, all conditions in Theorem 3.4 are satisfied. The proof is completed.
In this work, we studies the existence of positive and multiple positive solutions for a class of BVPs of fractional discontinuous differential equations with impulse effects. The main results are obtained by means of the multivalued analysis and Krasnoselskii's fixed point theorem for discontinuous operators on cones.
For our subsequent work, the following issues will continue to be focused on:
(i) The system is studied on this topic more extensive and complicated. Therefore, it is valuable to investigate FDEs with generalized derivatives or hybrid FDEs with delay.
(ii) With the development of the theoretical study on FDEs, the application area of FDEs with generalized derivatives in reality needs to be investigated in depth.
The authors are thankful to the editor and anonymous referees for their valuable comments and suggestions. This research was funded by NNSF of P.R. China (12271310), Natural Science Foundation of Shandong Province (ZR2020MA007), and Doctoral Research Funds of Shandong Management University(SDMUD202010), QiHang Research Project Funds of Shandong Management University(QH2020Z02).
The authors declare that there are no conflicts of interest.
[1] |
C. Arancibia-Ibarra, P. Aguirre, J. Flores, P. van Heijster, Bifurcation analysis of a predator-prey model with predator intraspecific interactions and ratio-dependent functional response, Appl. Math. Comput., 402 (2021), 126152. https://doi.org/10.1016/j.amc.2021.126152 doi: 10.1016/j.amc.2021.126152
![]() |
[2] |
A. M. Dehrouyeh-Semnani, On bifurcation behavior of hard magnetic soft cantilevers, Int. J. Non-Linear Mech., 134 (2021), 103746. https://doi.org/10.1016/j.ijnonlinmec.2021.103746 doi: 10.1016/j.ijnonlinmec.2021.103746
![]() |
[3] |
R. Zhou, Y. Gu, J. Cui, G. Ren, S. Yu, Nonlinear dynamic analysis of supercritical and subcritical Hopf bifurcations in gas foil bearing-rotor systems, Nonlinear Dyn., 103 (2021), 2241–2256. https://doi.org/10.1007/s11071-021-06234-4 doi: 10.1007/s11071-021-06234-4
![]() |
[4] | J. Nocedal, S. J. Wright, Numerical optimization, New York: Springer, 1999. |
[5] |
A. B. Poore, Bifurcations in parametric nonlinear programming, Ann. Oper. Res., 27 (1990), 343–369. https://doi.org/10.1007/BF02055201 doi: 10.1007/BF02055201
![]() |
[6] |
A. B. Poore, C. A. Tiahrt, Bifurcation problems in nonlinear parametric programming, Math. Program., 39 (1987), 189–205. https://doi.org/10.1007/bf02592952 doi: 10.1007/bf02592952
![]() |
[7] | M. Kojima, Strongly stable stationary solutions in nonlinear programs, In: Analysis and computation of fixed points, Elsevier, 1980, 93–138. |
[8] | M. Kojima, R. Hirabayashi, Continuous deformation of nonlinear programs, In: A. V. Fiacco, Sensitivity, stability and parametric analysis, Mathematical Programming Studies, Springer Berlin Heidelberg, Berlin, Heidelberg, 21 (1984), 150–198. https://doi.org/10.1007/BFb0121217 |
[9] |
H. D. Chiang, C. Y. Jiang, Feasible region of optimal power flow: characterization and applications, IEEE Trans. Power Syst., 33 (2018), 236–244. https://doi.org/10.1109/TPWRS.2017.2692268 doi: 10.1109/TPWRS.2017.2692268
![]() |
[10] |
W. A. Bukhsh, A. Grothey, K. I. M. McKinnon, P. A. Trodden, Local solutions of the optimal power flow problem, IEEE Trans. Power Syst., 28 (2013), 4780–4788. https://doi.org/10.1109/TPWRS.2013.2274577 doi: 10.1109/TPWRS.2013.2274577
![]() |
[11] |
C. Y. Jiang, H. D. Chiang, Pseudo-pitchfork bifurcation of feasible regions in power systems, Int. J. Bifurcation Chaos, 28 (2018), 1830002. https://doi.org/10.1142/S0218127418300021 doi: 10.1142/S0218127418300021
![]() |
[12] | D. P. Bertsekas, Nonlinear programming, 2 Eds., Athena Scientific, Belmont, Massachusetts, 2003. |
[13] |
M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, S. C. H. Hoi, Deep learning for person re-identification: a survey and outlook, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2022), 2872–2893. https://doi.org/10.1109/TPAMI.2021.3054775 doi: 10.1109/TPAMI.2021.3054775
![]() |
[14] |
A. M. Shaheen, R. A. El-Sehiemy, H. M. Hasanien, A. R. Ginidi, An improved heap optimization algorithm for efficient energy management based optimal power flow model, Energy, 250 (2022), 123795. https://doi.org/10.1016/j.energy.2022.123795 doi: 10.1016/j.energy.2022.123795
![]() |
[15] |
Z. Y. Wu, F. S. Bai, X. Q. Yang, L. S. Zhang, An exact lower order penalty function and its smoothing in nonlinear programming, Optimization, 53 (2004), 51–68. https://doi.org/10.1080/02331930410001662199 doi: 10.1080/02331930410001662199
![]() |
[16] | H. D. Chiang, L. F. C. Alberto, Stability regions of nonlinear dynamic systems: theory, estimation, and applications, Cambridge, U.K.: Cambridge University Press, 2015. https://doi.org/10.1017/CBO9781139548861 |
[17] |
F. Capitanescu, Critical review of recent advances and further developments needed in AC optimal power flow, Electr. Power Syst. Res., 136 (2016), 57–68. https://doi.org/10.1016/j.epsr.2016.02.008 doi: 10.1016/j.epsr.2016.02.008
![]() |
[18] | M. B. Cain, R. P. O'Neill, A. Castillo, History of optimal power flow and formulations, Federal Energy Regul. Comm., 1 (2012), 1–36. |
[19] |
N. Yang, Z. Dong, L. Wu, L. Zhang, X. Shen, D. Chen, et al., A comprehensive review of security-constrained unit commitment, J. Mod. Power Syst. Clean Energy, 10 (2022), 562–576. https://doi.org/10.35833/MPCE.2021.000255 doi: 10.35833/MPCE.2021.000255
![]() |
[20] |
M. Zhang, Q. Wu, J. Wen, Z. Lin, F. Fang, Q. Chen, Optimal operation of integrated electricity and heat system: a review of modeling and solution methods, Renew. Sustain. Energy Rev., 135 (2021), 110098. https://doi.org/10.1016/j.rser.2020.110098 doi: 10.1016/j.rser.2020.110098
![]() |
[21] |
J. Mulvaney-Kemp, S. Fattahi, J. Lavaei, Smoothing property of load variation promotes finding global solutions of time-varying optimal power flow, IEEE Trans. Control Netw Syst., 8 (2021), 1552–1564. https://doi.org/10.1109/TCNS.2021.3084039 doi: 10.1109/TCNS.2021.3084039
![]() |
[22] | W. A. Bukhsh, A. Grothey, K. McKinnon, P. A. Trodden, Test case archive of optimal power flow (OPF) problems with local optima, 2013. Available from: https://www.maths.ed.ac.uk/optenergy/LocalOpt/. |
1. | Nauman Raza, Adil Jhangeer, Zeeshan Amjad, Beenish Rani, Dumitru Baleanu, Exploring soliton dynamics and wave interactions in an extended Kadomtsev-Petviashvili-Boussinesq equation, 2025, 16, 20904479, 103395, 10.1016/j.asej.2025.103395 |