Soft sets provide a suitable framework for representing and dealing with vagueness. A scenario for vagueness can be that alternatives are composed of specific factors and these factors have specific attributes. Towards this scenario, this paper introduces soft order and its associated order topology on the soft sets with a novel approach. We first present the definitions and properties of the soft order relations on the soft sets via soft elements. Next, we define soft order topology on any soft set and provide some properties of this topology. In order to implement what we introduced about the soft orders, we describe soft preference and soft utility mapping on the soft sets and we finally demonstrate a decision-making application over the soft orders intended for comparing graphs.
Citation: Kemal Taşköprü. Soft order topology and graph comparison based on soft order[J]. AIMS Mathematics, 2023, 8(4): 9761-9781. doi: 10.3934/math.2023492
[1] | Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603 |
[2] | Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681 |
[3] | Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2−Dy2=−1 and x2−Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170 |
[4] | Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780 |
[5] | Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143 |
[6] | Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461 |
[7] | Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196 |
[8] | Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937 |
[9] | Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638 |
[10] | Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227 |
Soft sets provide a suitable framework for representing and dealing with vagueness. A scenario for vagueness can be that alternatives are composed of specific factors and these factors have specific attributes. Towards this scenario, this paper introduces soft order and its associated order topology on the soft sets with a novel approach. We first present the definitions and properties of the soft order relations on the soft sets via soft elements. Next, we define soft order topology on any soft set and provide some properties of this topology. In order to implement what we introduced about the soft orders, we describe soft preference and soft utility mapping on the soft sets and we finally demonstrate a decision-making application over the soft orders intended for comparing graphs.
Let q be a positive integer. For each integer a with 1⩽a<q,(a,q)=1, we know that there exists one and only one ˉa with 1⩽ˉa<q such that aˉa≡1(q). Let r(q) be the number of integers a with 1⩽a<q for which a and ˉa are of opposite parity.
D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(q) when q is an odd prime. Zhang [2,3] gave some asymptotic formulas for r(q), one of which reads as follows:
r(q)=12ϕ(q)+O(q12d2(q)log2q). |
Zhang [4] generalized the problem over short intervals and proved that
∑a≤Na∈R(q)1=12Nϕ(q)q−1+O(q12d2(q)log2q), |
where
R(q):={a:1⩽a⩽q,(a,q)=1,2∤a+ˉa}. |
Let n⩾2 be a fixed positive integer, q⩾3 and c be two integers with (n,q)=(c,q)=1. Let 0<δ1,δ2≤1. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as
rn(δ1,δ2,c;q):=∑a⩽δ1q∑ˉa⩽δ2qaˉa≡cmodqn∤a+ˉa1, |
and obtained an interesting asymptotic formula,
rn(δ1,δ2,c;q)=(1−n−1)δ1δ2ϕ(q)+O(q12d6(q)log2q). |
Liu and Zhang [6] r-th residues and roots, and obtained two interesting mean value formulas. Guo and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences. For fixed real numbers α and β, the associated non-homogeneous Beatty sequence is the sequence of integers defined by
Bα,β:=(⌊αn+β⌋)∞n=1, |
where ⌊t⌋ denotes the integer part of any t∈R. Such sequences are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [8] that Bα,β contains infinitely many prime numbers; in fact, one has the asymptotic estimate
#{ prime p⩽x:p∈Bα,β}∼α−1π(x) as x→∞ |
where π(x) is the prime counting function.
We define type τ=τ(α) for any irrational number α by the following definition:
τ:=sup{t∈R:lim infn→∞nt‖αn‖=0}. |
Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals in this paper. That is,
rn(δ1,δ2,⋯,δk,c,α,β;q):=∑x1⩽δ1q⋯∑xk⩽δkqx1⋯xk≡cmodqx1,⋯xk−1∈Bα,βn∤x1+⋯+xk1,(0<δ1,δ2,⋯,δk≤1), |
and where k = 2, we get the result of [7].
By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we obtain the following result.
Theorem 1.1. Let k≥2 be a fixed positive integer, q≥n3 and c be two integers with (n,q)=(c,q)=1, and δ1,δ2,⋯,δk be real numbers satisfying 0<δ1,δ2,⋯,δk≤1. Let α>1 be an irrational number of finite type. Then, we have the following asymptotic formula:
rn(δ1,δ2,⋯,δk,c,α,β;q)=(1−n−1)α−(k−1)δ1δ2⋯δkϕk−1(q)+O(qk−1−1τ+1+ε), |
where ϕ(⋅) is the Euler function, ε is a sufficiently small positive number, and the implied constant only depends on n.
Notation. In this paper, we denote by ⌊t⌋ and {t} the integral part and the fractional part of t, respectively. As is customary, we put
e(t):=e2πit and {t}:=t−⌊t⌋. |
The notation ‖t‖ is used to denote the distance from the real number t to the nearest integer; that is,
‖t‖:=minn∈Z|t−n|. |
Let χ0 be the principal character modulo q. The letter p always denotes a prime. Throughout the paper, ε always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O,≪ and ≫ may depend (where obvious) on the parameters α,n,ε but are absolute otherwise. For given functions F and G, the notations F≪G, G≫F and F=O(G) are all equivalent to the statement that the inequality |F|⩽C|G| holds with some constant C>0.
To complete the proof of the theorem, we need the following several definitions and lemmas.
Definition 2.1. For an arbitrary set S, we use 1S to denote its indicator function:
1S(n):={1ifn∈S,0ifn∉S. |
We use 1α,β to denote the characteristic function of numbers in a Beatty sequence:
1α,β(n):={1ifn∈Bα,β,0ifn∉Bα,β. |
Lemma 2.2. Let a,q be integers, δ∈(0,1) be a real number, θ be a rational number. Let α be an irrational number of finite type τ and H=qε>0. We have
∑a≤δqa∈Bα,β′1=α−1δϕ(q)+O((ϕ(q))ττ+1+ε), |
and
∑a⩽δqa∈Bα,βe(θa)=α−1∑a⩽δ1qe(θa)+O(‖θ‖−1q−ε+qε). |
Taking
H=‖θ‖−1τ+1+ε, |
we have
∑a⩽δqa∈Bα,βe(θa)=α−1∑a⩽δ1qe(θa)+O(‖θ‖−(ττ+1+ε)). |
Proof. This is Lemma 2.4 and Lemma 2.5 of [7].
Lemma 2.3. Let
Kl(r1,r2,⋯,rk;q)=∑x1⩽q−1⋯∑xk−1⩽q−1e(r1x1+⋯+rk−1xk−1+rk¯x1⋯xk−1p). |
Then
Kl(r1,r2,⋯,rk;q)≪qk−12kω(q)(r1,rk,q)12⋯(rk−1,rk,q)12 |
where (a,b,c) is the greatest common divisor of a,b and c.
Proof. See [9].
Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two real numbers. If
a=sr+θr2,(r,s)=1,r≥1,|θ|≤1, |
then
∑k⩽Kmin(U,1‖ak+b‖)≪(Kr+1)(U+rlogr). |
Proof. The proof is given in [10].
We begin by the definition
rn(δ1,δ2,⋯,δk,c,α,β;q)=S1−S2, |
where
S1:=∑x1⩽δ1q⋯∑xk⩽δkqx1⋯xk≡cmodqx1,⋯xk−1∈Bα,β1, |
and
S2:=∑x1⩽δ1q⋯∑xk⩽δkqx1⋯xk≡cmodqx1,⋯xk−1∈Bα,βn∣x1+⋯+xk1. |
By the Definition 2.1, Lemma 2.2 and congruence properties, we have
S1=∑x1⩽δ1q⋯∑xk⩽δkqx1⋯xk≡cmodq1α,β(x1)⋯1α,β(xk−1)=1ϕ(q)∑x1⩽δ1q⋯∑xk⩽δkq∑χmodqχ(x1)⋯χ(xk)χ(¯c)1α,β(x1)⋯1α,β(xk−1)=S11+S12, |
where
S11:=1ϕ(q)∑′x1⩽δ1q⋯∑′xk⩽δkq1α,β(x1)⋯1α,β(xk−1), |
and
S12:=1ϕ(q)∑χmodqχ≠χ0χ(¯c)(∑x1⩽δ1q⋯∑xk⩽δkqχ(x1)⋯χ(xk)1α,β(x1)⋯1α,β(xk−1)). |
For S2, it follows that
S2=1ϕ(q)∑x1⩽δ1q⋯∑xk⩽δkqn∣x1+⋯+xk∑χmodqχ(x1)⋯χ(xk)χ(¯c)1α,β(x1)⋯1α,β(xk−1)=S21+S22, |
where
S21:=1ϕ(q)∑′x1⩽δ1q⋯∑′xk⩽δkqn∣x1+⋯+xk1α,β(x1)⋯1α,β(xk−1), |
and
S22:=1ϕ(q)∑χmodqχ≠χ0χ(¯c)∑x1⩽δ1q⋯∑xk⩽δkqn∣x1+⋯+xkχ(x1)⋯χ(xk−1)1α,β(x1)⋯1α,β(xk−1). |
From the classical bound
∑a≤δq′1=δϕ(q)+O(d(q)) |
and Lemma 2.2, we have
S11=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑′xk⩽δkq1)=(δk+O(d(q)ϕ(q)))k−1∏i=1(α−1δiϕ(q)+O((ϕ(q))ττ+1+ε))=α−(k−1)ϕk−1(q)k−1∏i=1δi+O(qk−1−1τ+1+ε). | (3.1) |
From Lemma 2.2, we obtain
S21=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑′xk⩽δkqn∣xk+(x1+⋯+xk−1)1)=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑xk⩽δkqxk≡−(x1+⋯+xk−1)modn∑d∣(xk,q)μ(d))=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑d∣qμ(d)∑xk⩽δkqd∣xkxk≡−(x1+⋯+xk−1)modn1)=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑d∣qμ(d)(δkqnd+O(1)))=1ϕ(q)(δkϕ(q)n+O(d(q)))k−1∏i=1(α−1δiϕ(q)+O((ϕ(q))ττ+1+ε))=α−(k−1)n−1ϕk−1(q)k−1∏i=1δi+O(qk−1−1τ+1+ε). | (3.2) |
By the properties of exponential sums,
S22=1nϕ(q)∑χmodqχ≠χ0χ(¯c)(∑x1⩽δ1q⋯∑xk⩽δk−1qχ(x1)⋯χ(xk)1α,β(x1)⋯1α,β(xk−1))×(n∑l=1e(x1+⋯+xknl))=1nϕ(q)∑χmodqχ≠χ0χ(¯c)n∑l=1k−1∏i=1(∑xi⩽δiq1α,β(xi)χ(xi)e(xinl))(∑xk⩽δkqχ(xk)e(xknl)). | (3.3) |
Let
G(r,χ):=q∑h=1χ(h)e(rhq) |
be the Gauss sum, and we know that for χ≠χ0,
χ(xi)=1qq∑r=1G(r,χ)e(−xirq)=1qq−1∑r=1G(r,χ)e(−xirq), |
and
ln−rq≠0 |
for 1⩽l⩽n,1⩽r⩽q−1 and (n,q)=1.
Therefore,
∑xk⩽δkqχ(xk)e(xknl)=1qq−1∑rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkq−lh)−1, | (3.4) |
where
f(δ,l,r;n,p):=1−e((ln−rq)⌊δq⌋) |
and
|f(δk,l,rk;n,q)|⩽2. |
For xi(1⩽i⩽k−1), using Lemma 2.2, we also have
∑xi⩽δiq1α,β(xi)χ(xi)e(xinl)=1q∑xi⩽δiq1α,β(xi)q−1∑ri=1G(ri,χ)e((ln−riq)xi)=1qq−1∑ri=1G(ri,χ)∑xi⩽δiq1α,β(xi)e((ln−riq)xi)=1qq−1∑ri=1G(ri,χ)(α−1∑a⩽δiqe((ln−riq)xi)+O(q−ε‖ln−riq‖+qε))=1qαq−1∑ri=1G(ri,χ)(f(δi,l,ri;n,q)e(riq−ln)−1+O(q−ε‖ln−riq‖+qε)). | (3.5) |
Let
S23=1nϕ(q)∑χmodqχ≠χ0χ(¯c)n∑l=1k−1∏i=1(1qαq−1∑ri=1G(ri,χ)f(δi,l,ri;n,q)e(riq−ln)−1)(1qq−1∑rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkq−ln)−1)=1nϕ(q)qkαk−1n∑l=1q−1∑r1=1⋯q−1∑rk=1f(δ1,l,r1;n,q)⋯f(δk,l,rk;n,q)(e(r1q−ln)−1)⋯(e(rkq−ln)−1)×∑χmodqχ≠χ0χ(¯c)G(r1,χ)⋯G(rk,χ). | (3.6) |
From the definition of Gauss sum and Lemma 2.3, we know that
∑χmodqχ(¯c)G(r1,χ)⋯G(rk,χ)=q−1∑h1=1⋯q−1∑hk=1∑χmodqχ(¯c)χ(h1)⋯χ(hk)e(r1h1+⋯+rkhkq)=ϕ(q)q−1∑h1=1⋯q−1∑hk=1h1⋯hk≡cmodqe(r1h1+⋯+rkhkq)=ϕ(q)q−1∑h1=1⋯q−1∑hk=1e(r1h1+⋯rk−1hk−1+rkc¯h1⋯hk−1q)=ϕ(q)Kl(r1,r2,⋯,rkc;q)≪ϕ(q)qk−12kω(q)(r1,rkc,q)12⋯(rk−1,rkc,q)12≪ϕ(q)qk−12kω(q)(r1,q)⋯(rk,q). | (3.7) |
By Mobius inversion, we get
G(r,χ0)=q∑h=1′e(rhq)=μ(q(r,q))φ(q)φ(q/(r,q))≪(r,q), |
and
χ0(¯c)G(r1,χ0)⋯G(rk,χ0)≪(r1,q)⋯(rk,q). |
Hence,
∑χmodqχ≠χ0χ(¯c)G(r1,χ)⋯G(rk,χ)=∑χmodqχ(¯c)G(r1,χ)⋯G(rk,χ)−χ0(¯c)G(r1,χ0)⋯G(rk,χ0)≪ϕ(q)qk−12kω(q)(r1,q)⋯(rk,q). | (3.8) |
From (3.8) we may deduce the following result:
S23≪kω(q)nqk+12αk−1n∑l=1(q−1∑r=1(r,q)|e(rq−ln)−1|)k≪kω(q)nqk+12αk−1n∑l=1(q−1∑r=1(r,q)|sinπ(rq−ln)|)k≪kω(q)nqk+12αk−1n∑l=1(q−1∑r=1(r,q)‖rq−ln‖)k=kω(q)nqk+12αk−1n∑l=1(∑d∣qd<q∑r≤q−1(r,q)=dd‖rq−ln‖)k=kω(q)nqk+12αk−1n∑l=1(∑d∣qd<qd∑m≤q−1d(m,q)=11‖mdq−ln‖)k=kω(q)nqk+12αk−1n∑l=1(∑d∣qd<qd∑k∣qμ(k)∑m≤q−1kd1‖mkdq−ln‖)k. |
It is easy to see
‖mkdq−ln‖=‖mkn−l(q/d)(q/d)n‖≥1(q/d)n, |
and we obtain
S23≪kω(q)nϕ(q)qk+12αk−1n∑l=1(∑d∣qd<qd∑k∣q∑m≤q−1kdmin(qnd,1‖mkdq−ln‖))k. |
Let kd/q=h0/q0, where q0≥1,(h0,q0)=1, and we will easily obtain q/(kd)≤q0≤q/d. By using Lemma 2.4, we have
S23≪kω(q)nqk+12αk−1n∑l=1(∑d∣qd<qd∑k∣q((q−1)/(kd)q0+1)(qnd+q0logq0))k≪kω(q)nqk+12αk−1n∑l=1(∑d∣qd<qd∑k∣q((q−1)/(kd)q/(kd)+1)(qnd+qdlogqd))k≪kω(q)qk−12αk−1(∑d∣qd<q∑k∣qn+logq)k≪qk−12d2k(q)(logq+n)k. |
Let
S24:=q(k−1)(−ε)nϕ(q)∑χmodqχ≠χ0χ(¯c)n∑l=1k−1∏i=1(1qαq−1∑ri=1G(ri,χ)1‖ln−riq‖)(1qq−1∑rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkq−ln)−1) |
and
S25:=q(k−1)(ε)nϕ(q)∑χmodqχ≠χ0χ(¯c)n∑l=1k−1∏i=1(1qαq−1∑ri=1G(ri,χ))(1qq−1∑rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkq−ln)−1). |
By the same argument of S23, it follows that
S24≪qk−12−εd2k(q)(logq+n)k, |
S25≪qk−32+ε(logq+n). |
Since n≪q13, we have
S25≪S24≪S23≪qk−12+εnk≪qk−2+ε. | (3.9) |
Taking n=1, we get
S12≪qk−12+ε. | (3.10) |
With (3.1), (3.2), (3.9) and (3.10), the proof is complete.
This paper considers the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.
This work is supported by Natural Science Foundation No. 12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. http://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
![]() |
[2] |
M. I. Ali, M. Shabir, F. Feng, Representation of graphs based on neighborhoods and soft sets, Int. J. Mach. Learn. Cyber., 8 (2017), 1525–1535. http://doi.org/10.1007/s13042-016-0525-z doi: 10.1007/s13042-016-0525-z
![]() |
[3] |
M. B. Kandemir, The concept of σ-algebraic soft set, Soft Comput., 22 (2018), 4353–43607. http://doi.org/10.1007/s00500-017-2901-3 doi: 10.1007/s00500-017-2901-3
![]() |
[4] |
E. Aygün, H. Kamacı, Some generalized operations in soft set theory and their role in similarity and decision making, J. Intell. Fuzzy Syst., 36 (2019), 6537–6547. http://doi.org/10.3233/JIFS-182924 doi: 10.3233/JIFS-182924
![]() |
[5] |
V. Çetkin, E. Güner, H. Aygün, On 2S-metric spaces, Soft Comput., 24 (2020), 12731–12742. http://doi.org/10.1007/s00500-020-05134-w doi: 10.1007/s00500-020-05134-w
![]() |
[6] |
S. A. Ghour, W. Hamed, On two classes of soft sets in soft topological spaces, Symmetry, 12 (2020), 265. http://doi.org/10.3390/sym12020265 doi: 10.3390/sym12020265
![]() |
[7] |
J. C. R. Alcantud, Soft open bases and a novel construction of soft topologies from bases for topologies, Mathematics, 8 (2020), 672. http://doi.org/10.3390/math8050672 doi: 10.3390/math8050672
![]() |
[8] |
J. C. R. Alcantud, An operational characterization of soft topologies by crisp topologies, Mathematics, 9 (2021), 1656. http://doi.org/10.3390/math9141656 doi: 10.3390/math9141656
![]() |
[9] |
G. Muhiuddin, D. Al-Kadi, K. P. Shum, A. M. Alanazi, Generalized ideals of BCK/BCI-algebras based on fuzzy soft set theory, Adv. Fuzzy Syst., 2021 (2021), 8869931. http://doi.org/10.1155/2021/8869931 doi: 10.1155/2021/8869931
![]() |
[10] |
İ. Zorlutuna, Soft set-valued mappings and their application in decision making problems, Filomat, 35 (2021), 1725–1733. http://doi.org/10.2298/FIL2105725Z doi: 10.2298/FIL2105725Z
![]() |
[11] |
T. M. Al-shami, E. A. Abo-Tabl, Soft α-separation axioms and α-fixed soft points, AIMS Math., 6 (2021), 5675–5694. http://doi.org/10.3934/math.2021335 doi: 10.3934/math.2021335
![]() |
[12] |
S. A. Ghour, On soft generalized ω-closed sets and soft T1/2 spaces in soft topological spaces, Axioms, 11 (2022), 194. http://doi.org/10.3390/axioms11050194 doi: 10.3390/axioms11050194
![]() |
[13] |
G. Ali, M. N. Ansari, Multiattribute decision-making under Fermatean fuzzy bipolar soft framework, Granular Comput., 7 (2022), 337–352. http://doi.org/10.1007/s41066-021-00270-6 doi: 10.1007/s41066-021-00270-6
![]() |
[14] |
T. M. Al-shami, J. C. R. Alcantud, A. Mhemdi, New generalization of fuzzy soft sets: (a,b)-fuzzy soft sets, AIMS Math., 8 (2023), 2995–3025. http://doi.org/10.3934/math.2023155 doi: 10.3934/math.2023155
![]() |
[15] | S. Das, S. K. Samanta, Soft real sets, soft real numbers and their properties, J. Fuzzy Math., 20 (2012), 551–576. |
[16] | S. Das, S. K. Samanta, On soft metric spaces, J. Fuzzy Math., 21 (2013), 707–734. |
[17] |
A. Ç. Güler, E. D. Yıldırım, O. B. Özbakır, A fixed point theorem on soft G-metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 885–894. http://doi.org/10.22436/jnsa.009.03.18 doi: 10.22436/jnsa.009.03.18
![]() |
[18] | M. Chiney, S. K. Samanta, Soft topology redefined, J. Fuzzy Math., 27 (2019), 459–486. |
[19] |
İ. Altıntaş, K. Taşköprü, Compactness of soft cone metric space and fixed point theorems related to diametrically contractive mapping, Turk. J. Math., 44 (2020), 2199–2216. http://doi.org/10.3906/mat-2004-63 doi: 10.3906/mat-2004-63
![]() |
[20] |
K. Taşköprü, İ. Altıntaş, A new approach for soft topology and soft function via soft element, Math. Meth. Appl. Sci., 44 (2021), 7556–7570. http://doi.org/10.1002/mma.6354 doi: 10.1002/mma.6354
![]() |
[21] |
İ. Altıntaş, K. Taşköprü, B. Selvi, Countable and separable elementary soft topological space, Math. Meth. Appl. Sci., 44 (2021), 7811–7819. http://doi.org/10.1002/mma.6976 doi: 10.1002/mma.6976
![]() |
[22] |
İ. Demir, Some soft topological properties and fixed soft element results in soft complex valued metric spaces, Turk. J. Math., 45 (2021), 971–987. http://doi.org/10.3906/mat-2101-15 doi: 10.3906/mat-2101-15
![]() |
[23] |
İ. Altıntaş, K. Taşköprü, P. Esengul kyzy, Soft partial metric spaces, Soft Comput., 26 (2022), 8997–9010. http://doi.org/10.1007/s00500-022-07313-3 doi: 10.1007/s00500-022-07313-3
![]() |
[24] | D. S. Bridges, G. B. Mehta, Representations of preferences orderings, Springer, 1995. http://dx.doi.org/10.1007/978-3-642-51495-1 |
[25] | S. Barberà, P. J. Hammond, C. Seidl, Handbook of utility theory, Springer, 1999. |
[26] |
G. Herden, G. B. Mehta, The Debreu Gap Lemma and some generalizations, J. Math. Econ., 40 (2004), 747–769. http://doi.org/10.1016/j.jmateco.2003.06.002 doi: 10.1016/j.jmateco.2003.06.002
![]() |
[27] |
M. J. Campión, J. C. Candeal, E. Induráin, Preorderable topologies and order-representability of topological spaces, Topol. Appl., 156 (2009), 2971–2978. http://doi.org/10.1016/j.topol.2009.01.018 doi: 10.1016/j.topol.2009.01.018
![]() |
[28] |
Ö. Evren, E. A. Ok, On the multi-utility representation of preference relations, J. Math. Econ., 47 (2011), 554–563. http://doi.org/10.1016/j.jmateco.2011.07.003 doi: 10.1016/j.jmateco.2011.07.003
![]() |
[29] |
J. C. R. Alcantud, G. Bosi, M. Zuanon, Richter-Peleg multi-utility representations of preorders, Theory Decis., 80 (2016), 443–450. http://doi.org/10.1007/s11238-015-9506-z doi: 10.1007/s11238-015-9506-z
![]() |
[30] | A. F. Beardon, Topology and preference relations, Springer, 2020. http://doi.org/10.1007/978-3-030-34226-5-1 |
[31] |
M. I. Ali, T. Mahmood, M. M. U. Rehman, M. F. Aslam, On lattice ordered soft sets, Appl. Soft Comput., 36 (2015), 499–505. http://doi.org/10.1016/j.asoc.2015.05.052 doi: 10.1016/j.asoc.2015.05.052
![]() |
[32] |
A. Ali, M. I. Ali, N. Rehman, A more efficient conflict analysis based on soft preference relation, J. Intell. Fuzzy Syst., 34 (2018), 283–293. http://doi.org/10.3233/JIFS-171172 doi: 10.3233/JIFS-171172
![]() |
[33] |
M. A. Qamar, N. Hassan, Q-neutrosophic soft relation and its application in decision making, Entropy, 20 (2018), 1–14. http://doi.org/10.3390/e20030172 doi: 10.3390/e20030172
![]() |
[34] |
R. S. Kanwal, M. Shabir, Rough approximation of a fuzzy set in semigroups based on soft relations, Comput. Appl. Math., 38 (2019), 89. http://doi.org/10.1007/s40314-019-0851-3 doi: 10.1007/s40314-019-0851-3
![]() |
[35] |
M. E. El-Shafei, T. M. Al-shami, Applications of partial belong and total non-belong relations on soft separation axioms and decision-making problem, Comput. Appl. Math., 39 (2020), 138. http://doi.org/10.1007/s40314-020-01161-3 doi: 10.1007/s40314-020-01161-3
![]() |
[36] |
O. Dalkılıç, Relations on neutrosophic soft set and their application in decision making, J. Appl. Math. Comput., 67 (2021), 257–273. http://doi.org/10.1007/s12190-020-01495-5 doi: 10.1007/s12190-020-01495-5
![]() |
[37] |
O. Dalkılıç, N. Demirtaş, A novel perspective for Q-neutrosophic soft relations and their application in decision making, Artif. Intell. Rev., 56 (2022), 1493–1513. http://doi.org/10.1007/s10462-022-10207-3 doi: 10.1007/s10462-022-10207-3
![]() |
[38] |
G. Yaylalı, N. Ç. Polat, B. Tanay, Soft intervals and soft ordered topology, CBU Fen Derg., 13 (2017), 81–89. http://doi.org/10.18466/cbayarfbe.302645 doi: 10.18466/cbayarfbe.302645
![]() |
[39] |
T. M. Al-Shami, M. E. El-Shafei, M. Abo-Elhamayel, On soft topological ordered spaces, J. King Saud Univ. Sci., 31 (2019), 556–566. http://doi.org/10.1016/j.jksus.2018.06.005 doi: 10.1016/j.jksus.2018.06.005
![]() |
[40] |
T. M. Al-Shami, M. E. El-Shafei, Two new forms of ordered soft separation axioms, Demonstr. Math., 53 (2020), 8–26. http://doi.org/10.1515/dema-2020-0002 doi: 10.1515/dema-2020-0002
![]() |
[41] |
S. Jafari, A. E. F. El-Atik, R. M. Latif, M. K. El-Bably, Soft topological spaces induced via soft relations, WSEAS Trans. Math., 20 (2021), 1–8. http://doi.org/10.37394/23206.2021.20.1 doi: 10.37394/23206.2021.20.1
![]() |
[42] |
K. Taşköprü, E. Karaköse, A soft set approach to relations and its application to decision making, Math. Sci. Appl. E-Notes, 11 (2023), 1–13. http://doi.org/10.36753/mathenot.1172408 doi: 10.36753/mathenot.1172408
![]() |
[43] |
N. M. Kriege, F. D. Johansson, C. Morris, A survey on graph kernels, Appl. Network Sci., 5 (2020), 1–42. http://doi.org/10.1007/s41109-019-0195-3 doi: 10.1007/s41109-019-0195-3
![]() |