In this paper we present the following two results: 1.- A characterization of the renorming invariant family of asymptotically nonexpansive mappings defined on a convex, closed and bounded set of a Banach space; 2.- A comparison of the renorming invariant family of asymptotically nonexpansive mappings with the renorming invariant family of nonexpansive mappings. Additionally, a series of examples are shown for general and particular cases.
Citation: Juan Rafael Acosta-Portilla, Lizbeth Yolanda Garrido-Ramírez. On minimal asymptotically nonexpansive mappings[J]. AIMS Mathematics, 2023, 8(4): 9416-9435. doi: 10.3934/math.2023474
[1] | Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Arumugam Deiveegan, Reny George, Ahmed M. Hassan, Sina Etemad . Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators. AIMS Mathematics, 2023, 8(12): 30374-30404. doi: 10.3934/math.20231551 |
[2] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[3] | H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220 |
[4] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Suliman Alsaeed, Kottakkaran Sooppy Nisar . New interpretation of topological degree method of Hilfer fractional neutral functional integro-differential equation with nonlocal condition. AIMS Mathematics, 2023, 8(7): 17154-17170. doi: 10.3934/math.2023876 |
[5] | Krishnan Kavitha, Velusamy Vijayakumar, Kottakkaran Sooppy Nisar, Anurag Shukla, Wedad Albalawi, Abdel-Haleem Abdel-Aty . Existence and controllability of Hilfer fractional neutral differential equations with time delay via sequence method. AIMS Mathematics, 2022, 7(7): 12760-12780. doi: 10.3934/math.2022706 |
[6] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses. AIMS Mathematics, 2021, 6(5): 4474-4491. doi: 10.3934/math.2021265 |
[7] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[8] | Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Significant results in the pth moment for Hilfer fractional stochastic delay differential equations. AIMS Mathematics, 2025, 10(4): 9852-9881. doi: 10.3934/math.2025451 |
[9] | Qing Yang, Chuanzhi Bai, Dandan Yang . Finite-time stability of nonlinear stochastic ψ-Hilfer fractional systems with time delay. AIMS Mathematics, 2022, 7(10): 18837-18852. doi: 10.3934/math.20221037 |
[10] | Abdelkader Moumen, Ammar Alsinai, Ramsha Shafqat, Nafisa A. Albasheir, Mohammed Alhagyan, Ameni Gargouri, Mohammed M. A. Almazah . Controllability of fractional stochastic evolution inclusion via Hilfer derivative of fixed point theory. AIMS Mathematics, 2023, 8(9): 19892-19912. doi: 10.3934/math.20231014 |
In this paper we present the following two results: 1.- A characterization of the renorming invariant family of asymptotically nonexpansive mappings defined on a convex, closed and bounded set of a Banach space; 2.- A comparison of the renorming invariant family of asymptotically nonexpansive mappings with the renorming invariant family of nonexpansive mappings. Additionally, a series of examples are shown for general and particular cases.
The scientific world is now paying more and more attention to fractional calculus, which has an expanding variety of applications in fields including astronomy, electricity, life sciences, viscosity, medical science, control theory, data processing, etc. Due to the vast range of domains that fractional concepts are applied to, including physics, mechanics, chemistry, and engineering, fractional differential equations (FDEs), have become incredibly important. The study of ordinary and partial differential equations containing fractional derivatives has advanced significantly in recent years. We recommend the reader to read some books and articles published by Kilbas et al. [1], Diethelm [2], Zhou [3], Podulbny [4], Miller and Ross [5], Lakshmikantham et al. [6], and a series of papers [7,8,9,10] and the references cited therein.
The Caputo and Riemann-Liouville (R-L) fractional derivatives were among the initial fractional order derivatives that Hilfer [11] presented in his new operator named the Hilfer fractional derivative (HFD). Additionally, conceptual simulations of dielectric relaxation in glass components, polymers, rheological permanent simulation, and other domains have revealed the significance and usefulness of the HFD. To study the existence of an integral solution related to an evolution boundary value problem (BVP) equipped with the HFD, Gu and Trujillo [12], recently, employed the measure of noncompactness technique. Along with this article, other numerous academic articles have addressed the HFD in their theorems; see [13,14,15,16]. According to the methods used in [17,18,19,20,21], some researchers used almost sectorial operators to find a mild solution for some BVPs in the framework of the HFD systems.
Neutral differential equations have gained a lot of attention lately because of their many applications in a variety of domains, such as biological models, chemical kinetics, electronics, and fluid dynamics. We refer to the works on the theory and applications of neutral partial differential equations (PDEs) with non-local and classical situations as [21,22,23,24,25,26] and the references therein. We observe that there has been a recent surge in interest in neutral structures due to their prevalence in many applications of applied mathematics.
Since the above differential equations were originally used to numerically mimic a variety of occurrences in the humanities and natural sciences [27], stochastic PDEs have also attracted a lot of interest. Rather than focusing on deterministic models, more research should be done on stochastic models, as unpredictability and uncontrollable fluctuations are intrinsic to both manmade and natural systems. Stochastic differential equations (SDEs) represent a specific event mathematically by including irrationality. The research community has recently shown a great deal of interest in the use of SDEs in finite and infinite dimensions to represent a variety of processes in population fluctuations, mathematics, mechanical engineering, physical location, behavioral science, life sciences, and several other science and technology domains. See [13,23,28,29] for a comprehensive introduction to SDEs and their applications.
Almost sectorial operators are being used by researchers to advance the existence concepts in fractional calculus. In this direction, for a system under study, researchers have created a unique way of identifying mild solutions. In addition, a theory has been developed to predict different requirements of linked semigroups formed by almost sectorial operators using multivalued maps, the Wright function, fractional calculus, semigroup operators, the MNC, and the fixed-point approach. For more details, refer to [18,25,30,31,32,33]. Some researchers in [17,18,19] analyzed their results via the almost sectorial operators by employing the Schauder's fixed-point theorem. The authors in [34,35,36,37] conducted an analysis of fractional evolution equations (FEEs) via a similar method with the sectorial operators. Further, Zhou [38] established the attractivity for FEEs with almost sectorial operators by using the Ascoli-Arzela theorem. Later, Zhou et al. [39] discussed the existence theorems related to the attractive solutions of the Hilfer FEEs with almost sectorial operators. Very recently, Yang et al. [40] established the HF stochastic evolution equations on infinite intervals via the fixed-point method.
To our knowledge, no work has been reported on the attractive solution for HF neutral stochastic evolution integro-differential equations on an infinite interval via almost sectorial operators. To fill this gap, by taking inspiration from the previous studies, this research intends to address this subject completely. In other words, the goal of this publication is to prove an attractive solution using the almost sectorial operators in the following form for HF neutral stochastic evolution integro-differential equations on an infinite interval:
{HDλ,μ0+[g(s)−ϖ(s,g(s))]=A[g(s)−ϖ(s,g(s))]+F(s,g(s))+∫s0G(l,g(l))dW(l),I(1−λ)(1−μ)0+g(0)=g0,s∈(0,∞), | (1.1) |
where HDλ,μ0+ is the HFD of order 0<μ<1 and type 0≤λ≤1, I(1−λ)(1−μ)0+ is a R-L integral of the fractional order (1−λ)(1−μ), and A denotes an almost sectorial operator in the Hilbert space Y. F:(0,∞)×Y→Y, G:[0,∞)×Y→L02(K,Y), and ϖ:(0,∞)×Y→Y are the given functions. {W(s)}s≥0 specifies a one-dimensional K-valued Wiener process along with a finite trace nuclear covariance operator Q≥0 formulated on a filtered complete probability space (Ξ,E,{Es}s≥0,P), and g0∈L02(Ξ,Y).
The following is a summary of this article's primary contributions:
(1) In this work, we investigate the attractive solution for HF neutral stochastic evolution integro-differential equations on an infinite interval via almost sectorial operators.
(2) This work applies some concepts of functional analysis, like the Wright function, the Ascoli-Arzela theorem, Kuratowski's measure of noncompactness, and Schauder's fixed point theorem, to prove the main results.
(3) The Ascoli-Arzela theorem, which is effectively employed to establish the new results, is the foundation of our method in the present research.
(4) The proved theorems are validated via a theoretical example.
The structure of this manuscript is as follows: Section 2 covers fractional calculus, MNC, and semigroup operators as a reminder. In Section 3, we establish the global existence and attractivity results of mild solutions for HF neutral stochastic evolution integro-differential equation (1.1). We present conceptual applications in Section 4 to assist us in making our discussion more successful.
We present a few foundational definitions in this section. We require certain fundamental notations of fractional calculus and measures of noncompactness as a reminder.
Denote by L2(Ξ,Y), the collection of all strongly measurable square-integrable Y-valued random variables, which is a Banach space for the norm ‖g(⋅)‖L2(Ξ,Y)=(E‖g(⋅,W)‖2)12 for each g∈L2(Ξ,Y). Moreover, L02(Ξ,Y)={g∈L2(Ξ,Y): g is an subspace of L2(Ξ,Y) and is E0-measurable}.
Let C((0,∞),L2(Ξ,Y)):(0,∞)→L2(Ξ,Y) be a Banach space of all continuous functions. For each g∈C((0,∞),L2(Ξ,Y)), define
‖g‖C((0,∞),L2(Ξ,Y))=(sups∈(0,∞)E‖g(s)‖2)12<∞. |
Suppose that (Ξ,E,P) denotes the complete probability space defined with a complete family of right continuous increasing sub-σ-algebras {Es,s∈(0,∞)} fulfilling Es⊂E, so that Y,K denote two real separable Hilbert spaces, and {W(s)}s≥0 denotes a Q-Wiener process defined on (Ξ,E,P) with values in K. Let L(K,Y):K→Y be the space of all operators with boundedness property, and LQ(K,Y):K→Y stands for the space of all Q-Hilbert-Schmidt operators.
Furthermore, we suppose that O(s) is continuous in the uniform operator topology for s>0, and also, O(s) has uniform boundedness, i.e., there exists K>1 such that sups∈(0,∞)‖O(s)‖<K, throughout this paper.
Definition 2.1. [31] For 0<κ<1,0<φ<π2, we define that Ψ−κφ is a family of all closed linear operators with the sector Sφ={v∈C∖{0}:|arg v|≤φ} and let A:D(A)⊂Y→Y be such that
(a)σ(A)⊆Sφ;
(b) for all ω<λ<π, there exists a constant Rλ>0 such that ‖(vI−A)−1‖≤Rλ|v|−κ.
Then, A∈Ψ−κφ is called an almost sectorial operator on Y.
Define the semigroup operator {T(s)}s≥0 as
T(s)=e−sv(A)=12πi∫Γϱe−svR(v;A)dv,s∈S0π2−φ, |
where Γϱ={R+eiϱ}⋃{R+e−iϱ} with φ<ϱ<δ<π2−|args| is oriented counter-clockwise.
Proposition 2.2. [31] Let T(s) be the compact semigroup and A∈Ψ−κφ for 0<κ<1 and 0<φ<π2. Then, we have the following:
(1) T(s+ν)=T(s)T(ν), for all ν,s∈Sπ2−φ.
(2) ‖T(s)‖L(Y)≤K0sκ−1, s>0 (K0>0 is a constant).
(3) R(T(s)) belongs to T(s) for s∈Sπ2−φ⊆D(A∞), where R(T) is the range of T. Also, R(T(s))⊂D(Aθ), for any θ∈C with Re(θ)>0, and
AθT(s)g=12πi∫Γμvθe−svR(v;A)gdv, for all g∈Y. |
Hence, there exists a constant C′=C′(γ,θ)>0 such that
‖AθT(s)‖L(Y)≤C′s−γ−Re(θ)−1, for all s>0. |
(4) If ΣT={g∈Y:lims→0+T(s)g=g}, then D(Aθ)⊂ΣTfor θ>1+κ.
(5) (vI−A)−1=∫∞0e−vνT(ν)dν, v∈C, and Re(v)>0.
Definition 2.3. [41] The fractional integral of order μ for the function G:[0,∞)→R is defined as
Iμ0+G(s)=1Γ(μ)∫s0G(l)(s−l)1−μdl,s>0;μ>0, |
provided the R.H.S. is point-wise convergent.
Definition 2.4. [11] Let 0<μ<1 and 0≤λ≤1. The HFD of order μ and type λ for G:[0,∞)→R is
HDλ,μ0+G(s)=[Iλ(1−μ)0+D(I(1−λ)(1−μ)0+G)](s). |
For a Banach space Y, let P be a non-empty subset in Y. The Kuratowski's MNC α is introduced as
α(P)=inf{c>0:P⊂n⋃ı=1Mı, diam(Mı)≤c}. |
Here, the diameter of Mı is provided by diam(Mı)=sup{|x−y|: x,y∈Mı}, ı=1,2,⋯,n.
Lemma 2.5. [42] Let V1 and V2 be two bounded sets in the Banach space E. Then, we have the follwoing
(i) α(V1)=0 if and only if V1 is relatively compact;
(ii) α(V1)≤α(V2) if V1⊆V2;
(iii) α(V1+V2)≤α(V1)+α(V2), where V1+V2={g+v:g∈V1,v∈V2};
(iv) α{{g}∪V}=α(V) for all g∈E and every non-empty subset V∈E;
(v) α{V1∪V2}≤max{α(V1),α(V2)};
(vi) α(γV)≤|γ|α(V).
Lemma 2.6. [43] Assume that Y is a Hilbert space, and the sequence gn(s):[0,∞)→Y, (n=1,2,⋯) includes all continuous functions. If there exists ϱ∈L1[0,∞) such that
‖xn(s)‖≤ϱ(s),s∈[0,∞), n=1,2,…, |
then α({xn}∞n=1) is integrable on [0,∞), and
α({∫∞0xn(s)ds:n=1,2,…})≤2∫∞0α({xn(s):n=1,2,…})ds. |
Definition 2.7. [44] The Wright function Mλ(ϑ) is formulated as
Mλ(ϑ)=∑n∈N(−ϑ)n−1(n−1)!Γ(1−ϑn), ϑ∈C, |
with
∫∞0ϑιMλ(ϑ)dϑ=Γ(1+ι)Γ(1+λι),for ι≥0. |
Lemma 2.8. The system (1.1) has a solution in the form of the integral equation
g(s)=[g0−ϖ(0,g(0))]Γ(λ(1−μ)+μ)s(λ−1)(1−μ)+ϖ(s,g(s))+1Γ(μ)∫s0(s−l)μ−1Ag(l)dl+1Γ(μ)∫s0(s−l)μ−1F(l,g(l))dl+1Γ(μ)∫s0(s−l)μ−1∫l0G(ω,g(ω))dW(ω)dl, s∈(0,∞). | (2.1) |
Proof. This proof is similar to that of [14]; therefore, we do not repeat it.
Lemma 2.9. Suppose that g(s) fulfills the integral equation (2.1). Then,
g(s)=Oλ,μ[g0−ϖ(0,g(0))]+ϖ(s,g(s))+∫s0Pμ(s−l)F(l,g(l))dl+∫s0Pμ(s−l)∫l0G(ω,g(ω))dW(ω)dl,s∈(0,∞), |
where Oλ,μ=Iλ(1−μ)0+Pμ(s), Pμ(s)=sμ−1Qμ(s), and Qμ(s)=∫∞0μϑMμ(ϑ)T(sμϑ)dϑ.
Proof. This proof is similar to that of [14]; therefore, we do not repeat it.
In relation to Lemma 2.8, we have a definition.
Definition 2.10. An Es-adapted stochastic process g(s):(0,∞)→Y is called a mild solution of the given system (1.1), if I(1−λ)(1−μ)0+g(0)=g0, g0∈L02(Ξ,Y), and for each s∈(0,∞), the function G(ω,g(ω)) is integrable, and the stochastic integral equation
g(s)=Oλ,μ[g0−ϖ(0,g(0))]+ϖ(s,g(s))+∫s0Pμ(s−l)F(l,g(l))dl+∫s0Pμ(s−l)∫l0G(ω,g(ω))dW(ω)dl,s∈(0,∞), |
holds.
Definition 2.11. The mild solution g(s) of the system (1.1) is said to be attractive if g(s)→0 as s→∞.
Lemma 2.12. [18] For any fixed s>0, {Qμ(s)}s>0, {Pμ(s)}s>0, and {Oλ,μ(s)}s>0 are linear operators, and for every g∈Y,
‖Qμ(s)g‖≤K1sμ(κ−1)‖g‖, ‖Pμ(s)g‖≤K1s−1+μκ‖g‖, and ‖Oλ,μ(s)g‖≤K2s−1+λ−λμ+μκ‖g‖, |
where
K1=μK0Γ(1+κ)Γ(1+μκ) and K2=K1Γ(μκ)Γ(λ(1−μ)+μκ). |
Lemma 2.13. [18] Assume that O(s) is equicontinuous for s>0. Then, {Qμ(s)}s>0, {Pμ(s)}s>0 and {Oλ,μ(s)}s>0 are strongly continuous, i.e., for any g∈Y and s′′>s′>0, we have
‖Qμ(s′)g−Qμ(s′′)g‖→0, ‖Pμ(s′)g−Pμ(s′′)g‖→0, and ‖Oλ,μ(s′)g−Oλ,μ(s′′)g‖→0, |
as s′′→s′.
Let
C([0,∞),L2(Ξ,Y))={x:x∈C([0,∞),L2(Ξ,Y)):lims→∞E‖x(s)1+s‖2=0}. |
Clearly, (C([0,∞),L2(Ξ,Y)),‖⋅‖) is a Banach space with
‖x‖∞=(sups∈[0,∞)E‖x(s)1+s‖2)12<∞,for any x∈C([0,∞),(Ξ,Y)). |
We provide the generalized Ascoli-Arzela theorem below.
Lemma 2.14. [45] The set Υ⊂C([0,∞),L2(Ξ,Y)) is relatively compact iff:
(i) for any f>0, the set I={u:u(s)=y(s)1+s, y∈Υ} is equicontinuous on [0,f];
(ii) lims→∞E‖y(s)1+s‖2=0 uniformly for y∈Υ;
(iii) for all s∈[0,∞), I(s)={u:u(s)=y(s)1+s, y∈Υ} is relatively compact in L2(Ξ,Y).
Now, the main theorems will be proved in this section. Some assumptions are required to prove these theorems. We list them as follows:
(H1) For any g∈Y, F(⋅,g) is measurable on (0,∞), and for any s∈(0,∞), F(s,⋅) is continuous.
(H2) There exists a function p:(0,∞)→(0,∞) such that for all g∈Y and all s∈(0,∞),
(Iμ0+p)(s)∈C((0,∞),(0,∞)),E‖F(s,g)‖2≤p(s), |
and
lims→0s2(1−λ+λμ−μκ)+μ(Iμ0+p)(s)=0,lims→∞s2(1−λ+λμ−μκ)+μ(1+s2)(Iμ0+p)(s)=0. |
(H3) For every g∈Y, G(⋅,g) is Es-measurable on (0,∞), and for all s∈(0,∞), G(s,⋅) is continuous.
(H4) There exists a function q:(0,∞)→(0,∞) such that for all g∈Y and all s∈(0,∞),
(I2μ−10+q)(s)∈C((0,∞),(0,∞)),E‖∫s0G(l,g(l))dl‖2≤q(s), |
and
lims→0s2(1−λ+λμ−μκ)(I2μ−10+q)(s)=0,lims→∞s2(1−λ+λμ−μκ)(1+s2)(I2μ−10+q)(s)=0. |
(H5) ϖ:(0,∞)×Y→Y is a continuous function, and there exists Kϖ>0 such that ϖ is a Y-valued function and satisfies
E‖ϖ(s,g(s))‖2≤Kϖs1−λ+λμ−μκ(1+‖g‖2), g∈Y, s∈(0,∞). |
Define Cμ((0,∞),L2(Ξ,Y))={g∈C((0,∞),L2(Ξ,Y)):lims→0+s(1−λ)(1−μ)g(s) exists and is finite, lims→∞E‖s(1−λ)(1−μ)g(s)(1+s)‖2=0}, equipped with norm
‖g(s)‖2μ=(sups∈[0,∞)E‖s1−λ+λμ−μκg(s)1+s‖2)12. |
Thus, (Cμ((0,∞),L2(Ξ,Y)),‖⋅‖2μ) is a Hilbert space. For each g∈Cμ((0,∞),L2(Ξ,Y)) and for any s∈(0,∞), define the operator Σ by
(Σg)(s)=(Σ1g)(s)+(Σ2g)(s), |
where
(Σ1g)(s)=Oλ,μ[g0−ϖ(0,g(0))]+ϖ(s,g(s)),(Σ2g)(s)=∫s0Pμ(s−l)F(l,g(l))dl+∫s0Pμ(s−l)∫l0G(ω,g(ω))dW(ω)dl. |
Clearly, the neutral stochastic HF-system (1.1) has a mild solution g∗∈Cμ((0,∞),L2(Ξ,Y)) if and only if Σ has a fixed-point g∗∈Cμ((0,∞),L2(Ξ,Y)).
For each x∈Cμ((0,∞),L2(Ξ,Y)), we set
g(s)=s1−λ+λμ−μκx(s),s∈(0,∞). |
Clearly, g∈Cμ((0,∞),L2(Ξ,Y)).
We now define the operator ℧ by
(℧x)(s)=(℧1x)(s)+(℧2x)(s), |
where
(℧1x)(s)={s1−λ+λμ−μκ(Σ1g)(s),for s∈(0,∞),0,s=0, |
and
(℧2x)(s)={s1−λ+λμ−μκ(Σ2g)(s),for s∈(0,∞),0,s=0. |
By using (H2) and (H4), we claim that there exists r>0 such that the inequality
sups∈(0,∞){8K22(1+s)2[E‖g0‖2+K2ϖ(1+‖g0‖2)]+4K2ϖ(1+s)2s2(1−λ+λμ−μκ)(1+‖g‖2)+4K21μκ(1+s)2s2(1−λ+λμ−μκ)+μκ∫s0(s−l)μκ−1p(l)dl+4Tr(Q)K21s2(1−λ+λμ−μκ)(1+s)2∫s0(s−l)2(μκ−1)q(l)dl}≤r |
holds.
Let g(s)=s1−λ+λμ−μκx(s). Define
Φ1={x:x∈C([0,∞),L2(Ξ,Y)), E‖x‖2≤r},ˆΦ1={g:g∈Cμ((0,∞),L2(Ξ,Y)), E‖g‖2≤r}. |
It is clear that Φ1 is a non-empty, closed, and convex subset of C([0,∞),L2(Ξ,Y)). ˆΦ1 is a closed, convex and non-empty set of Cμ((0,∞),L2(Ξ,Y), and g∈ˆΦ1 whenever x∈Φ1.
Let
D:={z:z(s)=(℧x)(s)1+s, x∈Φ1}. |
We must establish the next lemmas in order to establish the main theorems of this paper.
Lemma 3.1. If (H1)–(H5) are satisfied, then, D is equicontinuous.
Proof. We follow some steps.
Step 1: We prove D1:={z:z(s)=(℧1x)(s)1+s, x∈Φ1} is equicontinuous.
We have,
s1−λ+λμ−μκOλ,μ(s)[g0−ϖ(0,g(0))]+ϖ(s,g(s))=s1−λ+λμ−μκΓ(λ(1−μ))∫s0(s−l)λ(1−μ)−1lμ−1Qμ(l)[g0−ϖ(0,g(0))]dl+ϖ(s,g(s))=∫10(1−v)λ(1−μ)−1vμ−1sμ(1−κ)Qμ(sv)[g0−ϖ(0,g(0))]dv+ϖ(s,g(s)). |
Noting that lims→0+sμ(1−κ)Qμ(sv)[g0−ϖ(0,g(0))]+ϖ(s,g(s)) and ∫10(1−v)λ(1−μ)−1vμ−1dv are finite, we have
lims→0+s1−λ+λμ−μκOλ,μ(s)[g0−ϖ(0,g(0))]+ϖ(s,g(s))=0. |
Thus, from the aforesaid equality, when s1=0,s2∈(0,∞), it follows that
E‖(℧1x)(s2)1+s2−(℧1x)(0)‖2≤E‖11+s2s1−λ+λμ−μκ2Oλ,μ(s2)[g0−ϖ(0,g(0))]+ϖ(s,g(s))−0‖2→0, |
as s2→0.
Furthermore, for any 0<s1<s2<∞, using the elementary inequality, we get
E‖(℧1x)(s2)1+s2−(℧1x)(s1)1+s1‖2≤E‖s1−λ+λμ−μκ2Oλ,μ(s2)[g0−ϖ(0,g(0))]+ϖ(s,g(s))1+s2−s1−λ+λμ−μκ1Oλ,μ(s1)[g0−ϖ(0,g(0))]+ϖ(s,g(s))1+s1‖2≤2E‖s1−λ+λμ−μκ2Oλ,μ(s2)[g0−ϖ(0,g(0))]+ϖ(s,g(s))1+s2−s1−λ+λμ−μκ2Oλ,μ(s2)[g0−ϖ(0,g(0))]+ϖ(s,g(s))1+s1‖2+2E‖s1−λ+λμ−μκ2Oλ,μ(s2)[g0−ϖ(0,g(0))]+ϖ(s,g(s))1+s1−s1−λ+λμ−μκ2Oλ,μ(s2)[g0−ϖ(0,g(0))]+ϖ(s,g(s))1+s1‖2≤2E‖s1−λ+λμ−μκ1Oλ,μ(s1)[g0−ϖ(0,g(0))]+ϖ(s,g(s))‖2(s2−s1(1+s2)(1+s1))2+2E‖s1−λ+λμ−μκ2Oλ,μ(s2)[g0−ϖ(0,g(0))]+ϖ(s,g(s))−s1−λ+λμ−μκ1Oλ,μ(s1)[g0−ϖ(0,g(0))]+ϖ(s,g(s))‖2(11+s1)2≤2E‖s1−λ+λμ−μκ2Oλ,μ(s2)[g0−ϖ(0,g(0))]+ϖ(s,g(s))‖2(s2−s1(1+s2)(1+s1))2+4E‖s1−λ+λμ−μκ2[Oλ,μ(s2)[g0−ϖ(0,g(0))]+ϖ(s,g(s))−Oλ,μ(s1)[g0−ϖ(0,g(0))]+ϖ(s,g(s))]‖2(s2−s1(1+s2)(1+s1))2+4E‖[s1−λ+λμ−μκ2−s1−λ+λμ−μκ1]Oλ,μ(s2)[g0−ϖ(0,g(0))]+ϖ(s,g(s))‖2(s2−s1(1+s2)(1+s1))2→0, as s2→s1. |
Thus, D1:={z:z(s)=(℧1x)(s)1+s, x∈Φ1} is equicontinuous.
Step 2: Next we prove that D2:={z:z(s)=(℧2x)(s)1+s, x∈Φ1} is equicontinuous.
For every ϵ>0, one may write
E‖(℧2x)(s2)1+s2−(℧2x)(s1)1+s1‖2≤4E‖s1−λ+λμ−μκ21+s2∫s20Pμ(s2−l)F(l,g(l))dl‖2+4E‖s1−λ+λμ−μκ21+s2∫s20Pμ(s2−l)∫l0G(ω,g(ω))dW(ω)dl‖2+4E‖s1−λ+λμ−μκ11+s1∫s10Pμ(s1−l)F(l,g(l))dl‖2+4E‖s1−λ+λμ−μκ11+s1∫s10Pμ(s1−l)∫l0G(ω,g(ω))dW(ω)dl‖2≤4(K1s1−λ+λμ−μκ21+s2)2∫s20(s2−l)2(μκ−1)p(l)dl+4Tr(Q)(K1s1−λ+λμ−μκ21+s2)2∫s20(s2−l)2(μκ−1)q(l)dl+4(K1s1−λ+λμ−μκ11+s1)2∫s10(s1−l)2(μκ−1)p(l)dl+4Tr(Q)(K1s1−λ+λμ−μκ11+s1)2∫s10(s1−l)2(μκ−1)q(l)dl<ϵ. |
When s1=0, 0<s2≤T, by using the hypotheses (H2) and (H4), we have
E‖(℧2x)(s2)1+s2−(℧2x)(0)‖2≤2E‖s1−λ+λμ−μκ21+s2∫s20Pμ(s2−l)F(l,g(l))dl‖2+2E‖s1−λ+λμ−μκ21+s2∫s20Pμ(s2−l)∫l0G(ω,g(ω))dW(ω)dl‖2≤4(K1s1−λ+λμ−μκ21+s2)2∫s20(s2−l)2(μκ−1)p(l)dl+4Tr(Q)(K1s1−λ+λμ−μκ21+s2)2∫s20(s2−l)2(μκ−1)q(l)dl→0, as s2→0. |
When 0<s1<s2≤T, we obtain
E‖(℧2x)(s2)1+s2−(℧2x)(s1)1+s1‖2≤8E‖s1−λ+λμ−μκ11+s1∫s2s1(s2−l)μ−1Qμ(s2−l)F(l,g(l))dl‖2+8E‖s1−λ+λμ−μκ11+s1∫s10[(s2−l)μ−1−(s1−l)μ−1]Qμ(s2−l)F(l,g(l))dl‖2+8E‖s1−λ+λμ−μκ11+s1∫s10(s1−l)μ−1[Qμ(s2−l)−Qμ(s1−l)]F(l,g(l))dl‖2+8E‖[s1−λ+λμ−μκ21+s2−s1−λ+λμ−μκ11+s1]∫s20(s2−l)μ−1Qμ(s2−l)F(l,g(l))dl‖2+8E‖s1−λ+λμ−μκ11+s1∫s2s1(s2−l)μ−1Qμ(s2−l)∫l0G(ω,g(ω))dW(ω)dl‖2+8E‖s1−λ+λμ−μκ11+s1∫s10[(s2−l)μ−1−(s1−l)μ−1]Qμ(s2−l)∫l0G(ω,g(ω))dW(ω)dl‖2+8E‖s1−λ+λμ−μκ11+s1∫s10(s1−l)μ−1[Qμ(s2−l)−Qμ(s1−l)]∫l0G(ω,g(ω))dW(ω)dl‖2+8E‖[s1−λ+λμ−μκ21+s2−s1−λ+λμ−μκ11+s1]∫s20(s2−l)μ−1Qμ(s2−l)∫l0G(ω,g(ω))dW(ω)dl‖2≤88∑j=1Sj, |
where
S1=K21(s1−λ+λμ−μκ11+s1)2∫s2s1(s2−l)2(μκ−1)p(l)dl,S2=K21(s1−λ+λμ−μκ11+s1)2∫s20‖(s2−l)μ−1−(s1−l)μ−1‖2(s2−l)2μ(κ−1)p(l)dl,S3=(s1−λ+λμ−μκ11+s1)2∫s10(s1−l)μ−1‖Qμ(s2−l)−Qμ(s1−l)‖2E‖F(l,g(l))‖2dl,S4=K21[s1−λ+λμ−μκ21+s2−s1−λ+λμ−μκ11+s1]2∫s20(s2−l)2(μκ−1)p(l)dl,S5=Tr(Q)K21(s1−λ+λμ−μκ11+s1)2∫s2s1(s2−l)2(μκ−1)q(l)dl,S6=Tr(Q)K21(s1−λ+λμ−μκ11+s1)2∫s20‖(s2−l)μ−1−(s1−l)μ−1‖2(s2−l)2μ(κ−1)q(l)dl,S7=Tr(Q)(s1−λ+λμ−μκ11+s1)2∫s10(s1−l)μ−1‖Qμ(s2−l)−Qμ(s1−l)‖2E‖∫l0G(l,g(l))dω‖2dl,S8=Tr(Q)K21[s1−λ+λμ−μκ21+s2−s1−λ+λμ−μκ11+s1]2∫s20(s2−l)2(μκ−1)q(l)dl. |
By a straightforward calculation, we obtain
S1→0 as s2→s1. |
Since, ‖(s2−l)μ−1−(s1−l)μ−1‖2(s2−l)2μ(κ−1)≤(s2−l)2(μκ−1), by using the Lebesgue dominated convergence theorem (LDCT), we obtain
∫s20‖(s2−l)μ−1−(s1−l)μ−1‖2p(l)dl→0 as s2→s1. |
Thus, S2→0 as s2→s1.
By (H2), for ϵ>0, we have
S3≤(s1−λ+λμ−μκ11+s1)2∫s1−ϵ0(s1−l)μ−1‖Qμ(s2−l)−Qμ(s1−l)‖2E‖F(l,g(l))‖2dl+(s1−λ+λμ−μκ11+s1)2ϵμμ∫s1s1−ϵ(s1−l)μ−1‖Qμ(s2−l)−Qμ(s1−l)‖2E‖F(l,g(l))‖2dl≤(s1−λ+λμ−μκ11+s1)2sμ1−ϵμμ∫s1−ϵ0(s1−l)μ−1p(l)dlsupl∈[0,s1−ϵ]‖Qμ(s2−l)−Qμ(s1−l)‖2+2K1(s1−λ+λμ−μκ11+s1)2ϵμμ∫s1s1−ϵ(s1−l)μκ−1p(l)dl,≤S31+S32+S33, |
where
\begin{align*} S_{31}& = \bigg(\frac{\mathfrak{s}_1^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}_1}\bigg)^2\frac{\mathfrak{s}_1^{\mu}-\epsilon^{\mu}}{\mu}\int_{0}^{\mathfrak{s}_1-\epsilon}(\mathfrak{s}_1-\mathfrak{l})^{\mu-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\sup\limits_{\mathfrak{l}\in [0,\mathfrak{s}_1-\epsilon]}\|\mathscr{Q}_{\mu}(\mathfrak{s}_2-\mathfrak{l})-\mathscr{Q}_{\mu}(\mathfrak{s}_1-\mathfrak{l})\|^2\\[0.3cm] S_{32}& = 2\mathcal{K}_1\bigg(\frac{\mathfrak{s}_1^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}_1}\bigg)^2\frac{\epsilon^{\mu}}{\mu}\bigg\|\int_0^{\mathfrak{s}_1}(\mathfrak{s}_1-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}-\int_0^{\mathfrak{s}_1-\epsilon}(\mathfrak{s}_1-\epsilon-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg\|,\\[0.3cm] S_{33}& = 2\mathcal{K}_1\bigg(\frac{\mathfrak{s}_1^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}_1}\bigg)^2\frac{\epsilon^{\mu}}{\mu}\int_0^{\mathfrak{s}_1-\epsilon}\|(\mathfrak{s}_1-\epsilon-\mathfrak{l})^{\mu\kappa-1}-(\mathfrak{s}_1-\mathfrak{l})^{\mu\kappa-1}\|\mathfrak{p}(\mathfrak{l})d\mathfrak{l}. \end{align*} |
From Lemma 2.13, we conclude that S_{31}\rightarrow 0 as \mathfrak{s}_2\rightarrow \mathfrak{s}_1 . Using the corresponding deductions in relation to the proofs of S_1, S_2\rightarrow 0 , we obtain S_{32}\rightarrow 0 and S_{33}\rightarrow 0 as \epsilon\rightarrow 0 . Hence, S_3\rightarrow 0 as \mathfrak{s}_2\rightarrow \mathfrak{s}_1 . We can also derive that S_4\rightarrow 0 as \mathfrak{s}_2\rightarrow \mathfrak{s}_1 by the continuity of \bigg(\frac{\mathfrak{s}_1^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}_1}\bigg)^2 with respect to \mathfrak{s} . For the terms S_5, \cdots, S_8 , we can show that S_5, \cdots, S_8\rightarrow 0 as \mathfrak{s}_2\rightarrow \mathfrak{s}_1 by the similar proofs of S_1, \cdots, S_4\rightarrow 0 as \mathfrak{s}_2\rightarrow \mathfrak{s}_1 , respectively.
Let 0\leq \mathfrak{s}_1 < T < \mathfrak{s}_2 . When \mathfrak{s}_2\rightarrow \mathfrak{s}_1 , then \mathfrak{s}_2\rightarrow T and \mathfrak{s}_1\rightarrow T hold, simultaneously. So, for any \mathsf{x}\in \Phi_1 ,
\begin{align*} E\bigg\|\frac{(\mho_2\mathsf{x})(\mathfrak{s}_2)}{1+\mathfrak{s}_2}-\frac{(\mho_2\mathsf{x})(\mathfrak{s}_1)}{1+\mathfrak{s}_1}\bigg\|^2\leq 2E\bigg\|\frac{(\mho_2\mathsf{x})(\mathfrak{s}_2)}{1+\mathfrak{s}_2}-\frac{(\mho_2\mathsf{x})(T)}{1+T}\bigg\|^2+E\bigg\|\frac{(\mho_2\mathsf{x})(T)}{1+T}-\frac{(\mho_2\mathsf{x})(\mathfrak{s}_1)}{1+\mathfrak{s}_1}\bigg\|^2, \end{align*} |
holds. So we have,
\begin{align*} E\bigg\|\frac{(\mho_2\mathsf{x})(\mathfrak{s}_2)}{1+\mathfrak{s}_2}-\frac{(\mho_2\mathsf{x})(\mathfrak{s}_1)}{1+\mathfrak{s}_1}\bigg\|^2\rightarrow 0,\ \text{as}\ \mathfrak{s}_2\rightarrow \mathfrak{s}_1. \end{align*} |
Hence, \mathcal{D}_2: = \bigg\{\mathrm{z}:\mathrm{z}(\mathfrak{s}) = \frac{(\mho_2\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}, \ \mathsf{x}\in \Phi_1\bigg\} is equicontinuous. As a consequence, \mathcal{D} = \mathcal{D}_1+\mathcal{D}_2 is equicontinuous. Hence, the proof is ended.
Lemma 3.2. If (H_1) – (H_5) are satisfied, then, for all \mathsf{x}\in \Phi_1 , \lim\limits_{\mathfrak{s}\rightarrow \infty}E\bigg\|\dfrac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\bigg\|^2 = 0 uniformly.
Proof. Indeed, for any \mathsf{x}\in \Phi_1 , by using Lemma 2.12 and the assumptions (H_2) , (H_4) , and (H_5) , we obtain
\begin{align*} E\|(\mho\mathsf{x})(\mathfrak{s})\|^2&\leq 4E\|\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}\mathscr{O}_{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]\|^2+4E\|\mathfrak{s}^{(1-\lambda)(1-\mu)}\varpi(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))\|^2\nonumber\\[0.3cm] & \quad+4E\|\mathfrak{s}^{(1-\lambda)(1-\mu)}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\mathfrak{l}\|^2\nonumber\\[0.3cm] & \quad+4E\|\mathfrak{s}^{(1-\lambda)(1-\mu)}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)d\mathfrak{l}\|^2\\[0.3cm] & \leq 8\mathcal{K}_2^2[E\|\mathfrak{g}_0\|^2+\mathcal{K}_{\varpi}^2(1+\|\mathfrak{g}_0\|^2)]+4\mathcal{K}_\varpi^2\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}(1+\|\mathfrak{g}\|^2)\\[0.3cm] & \quad +\frac{4\mathcal{K}_1^2}{\mu\kappa}\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)+\mu\kappa}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{s})d\mathfrak{l}\\[0.3cm] & \quad +4Tr(Q)\mathcal{K}_1^2\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\mathfrak{q}(\mathfrak{s})d\mathfrak{l}. \end{align*} |
Dividing both sides of the above inequalities by (1+\mathfrak{s})^2 , we obtain
\begin{align} E\bigg\|\frac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\bigg\|^2& \leq \frac{8\mathcal{K}_2^2}{(1+\mathfrak{s})^2}[E\|\mathfrak{g}_0\|^2+\mathcal{K}_{\varpi}^2(1+\|\mathfrak{g}_0\|^2)]+\frac{4\mathcal{K}_\varpi^2}{(1+\mathfrak{s})^2}\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}(1+\|\mathfrak{g}\|^2)\\[0.3cm] & \quad +\frac{4\mathcal{K}_1^2}{\mu\kappa(1+\mathfrak{s})^2}\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)+\mu\kappa}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\\[0.3cm] & \quad +4Tr(Q)\mathcal{K}_1^2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\mathfrak{q}(\mathfrak{l})d\mathfrak{l}\rightarrow 0,\ \text{as}\ \mathfrak{s}\rightarrow \infty, \end{align} | (3.1) |
which proves that for any \mathsf{x}\in \Phi_1 , \lim\limits_{\mathfrak{s}\rightarrow \infty}E\bigg\|\frac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\bigg\|^2 = 0 holds uniformly.
Lemma 3.3. If (H_1) – (H_5) are satisfied, then \mho\Phi_1\subset \Phi_1 .
Proof. For the case \mathfrak{s} > 0 , by Eq (3.1), we have
\begin{align*} E\bigg\|\frac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\bigg\|^2& \leq \frac{8\mathcal{K}_2^2}{(1+\mathfrak{s})^2}[E\|\mathfrak{g}_0\|^2+\mathcal{K}_{\varpi}^2(1+\|\mathfrak{g}_0\|^2)]+\frac{4\mathcal{K}_\varpi^2}{(1+\mathfrak{s})^2}\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}(1+\|\mathfrak{g}\|^2)\\[0.3cm] & \quad +\frac{4\mathcal{K}_1^2}{\mu\kappa(1+\mathfrak{s})^2}\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)+\mu\kappa}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{s})d\mathfrak{l}\\[0.3cm] & \quad +4Tr(Q)\mathcal{K}_1^2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\mathfrak{q}(\mathfrak{s})d\mathfrak{l}\leq \mathfrak{r}. \end{align*} |
For the case \mathfrak{s} = 0 , we have
\begin{align*} E\bigg\|\frac{(\mho\mathsf{x})(0)}{1+0}\bigg\|^2 = E\|(\mho\mathsf{x})(0)\|^2\leq 8\mathcal{K}_2^2[E\|\mathfrak{g}_0\|^2+\mathcal{K}_{\varpi}^2(1+\|\mathfrak{g}_0\|^2)]\leq \mathfrak{r}. \end{align*} |
As a consequence, \mho\Phi_1\subset \Phi_1 .
Lemma 3.4. If (H_1) – (H_5) are satisfied, then \mho is continuous.
Proof. Let the sequence \{\mathsf{x}_m\}_{m = 1}^{\infty} be in \Phi_1 and convergent to \mathsf{x}\in \Phi_1 . In this case, it follows that \lim\limits_{m\rightarrow \infty}E\|\mathsf{x}_m(\mathfrak{s})\|^2 = E\|\mathsf{x}(\mathfrak{s})\|^2 and \lim\limits_{m\rightarrow \infty}E\|\mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{s})\|^2 = E\|\mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}(\mathfrak{s})\|^2 , for \mathfrak{s}\in (0, \infty) .
We assume \mathfrak{g}(\mathfrak{s}) = \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}(\mathfrak{s}), \ \mathfrak{g}_m(\mathfrak{s}) = \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{s}), \mathfrak{s}\in(0, \infty) . Then, clearly \mathfrak{g}, \mathfrak{g}_m\in \Phi_1 . According to (H_1) and (H_3) , we get \lim\limits_{m\rightarrow \infty} E\|\mathcal{F}(\mathfrak{s}, \mathfrak{g}_m(\mathfrak{s}))\|^2 = E\|\mathcal{F}(\mathfrak{s}, \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathfrak{g}_m(\mathfrak{s}))\|^2 = E\|\mathcal{F}(\mathfrak{s}, \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathfrak{g}(\mathfrak{s}))\|^2 = E\|\mathcal{F}(\mathfrak{s}, \mathfrak{g}_m(\mathfrak{s}))\|^2 and \lim\limits_{m\rightarrow \infty} E\|\mathit{G}(\mathfrak{s}, \mathfrak{g}_m(\mathfrak{s}))\|^2 = E\|\mathit{G}(\mathfrak{s}, \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathfrak{g}_m(\mathfrak{s}))\|^2 = E\|\mathit{G}(\mathfrak{s}, \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathfrak{g}(\mathfrak{s}))\|^2 = E\|\mathit{G} (\mathfrak{s}, \mathfrak{g}_m(\mathfrak{s}))\|^2 .
From (H_2) , for all \mathfrak{s}\in (0, \infty) , we obtain
\begin{align*} (\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}E\|\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))-\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))\|^2\leq 2(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{l}),\ \text{a.e. in}\ [0,\mathfrak{s}). \end{align*} |
Moreover, since 2(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{l}) is integrable for \mathfrak{l} \in [0, \mathfrak{s}) and \mathfrak{s}\in [0, \infty) , the LDCT enables us to claim that
\begin{equation*} \int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}E\|\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))-\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))\|^2d\mathfrak{l}\rightarrow 0\ \text{as}\ m\rightarrow \infty. \end{equation*} |
Identically, by using (H_4) and LDCT, we obtain
\begin{equation*} \int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}E\|[\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)-\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)]\|^2d\mathfrak{l}\rightarrow 0\ \text{as}\ m\rightarrow \infty. \end{equation*} |
Thus, for \mathfrak{s}\in [0, \infty) , we have
\begin{align*} &\quad E\bigg\|\frac{(\mho\mathsf{x}_m)(\mathfrak{s})}{1+\mathfrak{s}}-\frac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\bigg\|^2\\[0.3cm] & \leq 2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}E\bigg\|\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})[\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))-\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))]d\mathfrak{l}\bigg\|^2\\[0.3cm] & \quad+2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}E\bigg\|\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\bigg[\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)-\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)\bigg]d\mathfrak{l}\bigg\|^2\\[0.3cm] & \leq 2\mathcal{K}_1\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}d\mathfrak{l}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}E\|\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))-\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))\|^2d\mathfrak{l}\\[0.3cm] & \quad +2\mathcal{K}_1Tr(Q)\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}E\|\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))d\omega-\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))d\omega\|^2d\mathfrak{l}\\[0.3cm] & \rightarrow 0\ \text{as}\ m\rightarrow \infty. \end{align*} |
Hence, \|\mho\mathsf{x}_m-\mho\mathsf{x}\|\rightarrow 0 as m\rightarrow \infty ; i.e., \mho is continuous.
We are now prepared to present and support our first theorem about the mild solutions of the neutral stochastic HF-system (1.1).
Theorem 3.5. Assume that the semigroup operator \mathscr{O}(\mathfrak{s}) is compact, for every \mathfrak{s} > 0 . If (H_1) – (H_5) are satisfied, then (i) there exist some mild solutions in \widehat{\Phi}_1 for the given neutral stochastic HF-system (1.1) ; (ii) all mild solutions of (1.1) are attractive.
Proof. (ⅰ) According to the properties of \mho and \Sigma , we know that the neutral stochastic HF-system (1.1) possesses a mild solution \mathfrak{g}\in \widehat{\Phi}_1 if \mho has a fixed-point \mathsf{x}\in \Phi_1 , where \mathsf{x}(\mathfrak{s}) = \mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}\mathfrak{g}(\mathfrak{s}) . We have to prove that \mho has a fixed-point in \Phi_1 . In fact, from Lemmas 3.3 and 3.4, we already have that \mho maps \Phi_1 into itself and \mho is continuous on \Phi_1 . To demonstrate that \mho is completely continuous, we have to show that the set \mho\Phi_1 is relatively compact. According to Lemmas 3.1 and 3.2, the set \mathcal{D}: = \{\mathrm{z}:\mathrm{z}(\mathfrak{s}) = \dfrac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}, \ \mathsf{x}\in \Phi_1\} is equicontinuous, and for any \mathsf{x}\in \Phi_1, \ \lim\limits_{\mathfrak{s}\rightarrow \infty}E\|\dfrac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\|^2 = 0 satisfies uniformly. From Lemma 2.14, for each \mathfrak{s}\in [0, \infty) , we prove \mathcal{D}: = \{\mathrm{z}:\mathrm{z}(\mathfrak{s}) = \dfrac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}, \ \mathsf{x}\in \Phi_1\} is relatively compact in L_2(\Xi, \mathscr{Y}) . It is obvious that \mathcal{D}(0) is relatively compact in L_2(\Xi, \mathscr{Y}) . Therefore, we just need to investigate the case \mathfrak{s}\in (0, \infty) . For any \epsilon\in (0, \mathfrak{s}) and \gamma > 0 , we consider \mho_{\epsilon, \gamma} on \Phi_1 in the form:
\begin{align*} (\mho_{\epsilon,\gamma}\mathsf{x})(\mathfrak{s}):& = \mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}(\Sigma_{\epsilon,\gamma}\mathfrak{g})(\mathfrak{s})\\[0.3cm] & = \mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}\bigg\{\mathscr{O}_{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))\\[0.3cm] & \quad+\int_0^{\mathfrak{s}-\epsilon}\int_0^{\infty}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta)\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\vartheta d\mathfrak{l}\\[0.3cm] & \quad+\int_0^{\mathfrak{s}-\epsilon}\int_0^{\infty}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta)\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)d\vartheta d\mathfrak{l}\bigg\}. \end{align*} |
Thus,
\begin{align*} \frac{(\mho_{\epsilon,\gamma}\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}& = \frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg\{\mathscr{O}_{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))\\[0.3cm] & \quad+\mathscr{T}(\epsilon^{\mu}\gamma)\int_0^{\mathfrak{s}-\epsilon}\int_0^{\infty}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta-\epsilon^{\mu}\gamma)\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\vartheta d\mathfrak{l}\\[0.3cm] & \quad+\mathscr{T}(\epsilon^{\mu}\gamma)\int_0^{\mathfrak{s}-\epsilon}\int_0^{\infty}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta-\epsilon^{\mu}\gamma)\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)d\vartheta d\mathfrak{l}\bigg\}. \end{align*} |
Since the semigroup \mathscr{O}(\mathfrak{s}) is compact for any \mathfrak{s} > 0 , so \mathscr{O}_{\lambda, \mu}(\mathfrak{s}) is also compact. Furthermore, \mathscr{T}(\epsilon^{\mu}\gamma) is compact. Then for all \epsilon\in (0, \mathfrak{s}) and for any \gamma > 0 , the set \{\dfrac{(\mho_{\epsilon, \gamma}\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}, \ \mathsf{x}\in \Phi_1\} is relatively compact in L_2(\Xi, \mathscr{Y}) . From (H_2) and (H_4) and Lemma 2.12, for each \mathsf{x}\in \Phi_1 , we derive that
\begin{align*} &\quad E\bigg\|\frac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}-\frac{(\mho_{\epsilon,\gamma}\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\bigg\|^2\\[0.3cm] & \leq 4E\bigg\|\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}\int_0^{\gamma}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta)\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\vartheta d\mathfrak{l}\bigg\|^2\\[0.3cm] & \quad +4E\bigg\|\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}\int_0^{\gamma}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta)\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)d\vartheta d\mathfrak{l}\bigg\|^2\\[0.3cm] & \quad +4E\bigg\|\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}\int_{\gamma}^{\infty}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta)\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\vartheta d\mathfrak{l}\bigg\|^2\\[0.3cm] & \quad +4E\bigg\|\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}\int_{\gamma}^{\infty}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta)\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)d\vartheta d\mathfrak{l}\bigg\|^2\\[0.3cm] & \leq 4(\mu\mathcal{K})^2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu-1}d\mathfrak{l}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\int_0^{\gamma}\vartheta\mathscr{M}_{\mu}(\vartheta)d\vartheta\bigg)^2\\[0.3cm] & \quad +4(\mu\mathcal{K})^2Tr(Q)\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu-1)}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\int_0^{\gamma}\vartheta\mathscr{M}_{\mu}(\vartheta)d\vartheta\bigg)^2\\[0.3cm] & \quad +4(\mu\mathcal{K})^2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu-1}d\mathfrak{l}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\int_0^{\infty}\vartheta\mathscr{M}_{\mu}(\vartheta)d\vartheta\bigg)^2\\[0.3cm] & \quad +4(\mu\mathcal{K})^2Tr(Q)\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu-1)}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\int_0^{\infty}\vartheta\mathscr{M}_{\mu}(\vartheta)d\vartheta\bigg)^2\\[0.3cm] & \leq 4\mu\mathcal{K}^2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\int_0^{\gamma}\vartheta\mathscr{M}_{\mu}(\vartheta)d\vartheta\bigg)^2\\[0.3cm] & \quad +4(\mu\mathcal{K})^2Tr(Q)\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu-1)}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\int_0^{\gamma}\vartheta\mathscr{M}_{\mu}(\vartheta)d\vartheta\bigg)^2\\[0.3cm] & \quad +4\mu\mathcal{K}^2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\frac{1}{\Gamma(\mu+1)}\bigg)^2\\[0.3cm] & \quad +4(\mu\mathcal{K})^2Tr(Q)\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu-1)}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\frac{1}{\Gamma(\mu+1)}\bigg)^2\\[0.3cm] & \rightarrow 0\ \text{as}\ \epsilon\rightarrow 0, \gamma\rightarrow 0. \end{align*} |
Therefore, \mathcal{D}(\mathfrak{s}) is also a relatively compact set in L_2(\Xi, \mathscr{Y}) for \mathfrak{s}\in [0, \infty) . Now, the Schauder's fixed point theorem implies that \mho has at least a fixed-point \mathsf{x}^*\in \Phi_1 . Let \mathfrak{g}^*(\mathfrak{s}) = \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}^*(\mathfrak{s}) . From the relationship between \Sigma and \mho , we have
\begin{align*} \mathfrak{g}^*(\mathfrak{s})& = \mathscr{O}_{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}^*(\mathfrak{s}))+\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}^*(\mathfrak{l}))d\mathfrak{l}\nonumber\\[0.3cm] & \quad+\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}^*(\omega))dW(\omega)d\mathfrak{l},\quad \mathfrak{s}\in [0,\infty), \end{align*} |
which shows that \mathfrak{g}^* is a mild solution of the neutral stochastic HF-system (1.1).
(ⅱ) If \mathfrak{g}(\mathfrak{s}) is a mild solution of the neutral stochastic HF-system (1.1), then
\begin{align*} \mathfrak{g}(\mathfrak{s})& = \mathscr{O}_{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))+\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\mathfrak{l}\nonumber\\[0.3cm] & \quad+\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)d\mathfrak{l},\quad \mathfrak{s}\in [0,\infty). \end{align*} |
By (H_2) , (H_4) , and (H_5) , noting that -1+\lambda-\lambda\mu+\mu\kappa < 0 , we obtain
\begin{align*} E\|\mathfrak{g}(\mathfrak{s})\|^2&\leq 8\mathcal{K}_2^2[E\|\mathfrak{g}_0\|^2+\mathcal{K}_{\varpi}^2(1+\|\mathfrak{g}_0\|^2)]+4\mathcal{K}_\varpi^2\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}(1+\|\mathfrak{g}\|^2)\\[0.3cm] & \quad +\frac{4\mathcal{K}_1^2}{\mu\kappa}\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)+\mu\kappa}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{s})d\mathfrak{l}\\[0.3cm] & \quad +4Tr(Q)\mathcal{K}_1^2\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\mathfrak{q}(\mathfrak{s})d\mathfrak{l}\rightarrow 0,\ \text{as}\ \mathfrak{s}\rightarrow \infty. \end{align*} |
Immediately, we can conclude that \mathfrak{g}(\mathfrak{s}) is an attractive solution which completes the proof.
We assume that the subsequent hypothesis is true to demonstrate the existence results when the semigroup operator \{\mathscr{O}(\mathfrak{s})\}_{\mathfrak{s} > 0} is noncompact.
(H_6) There exists a constant \mathscr{L} > 0 such that for every bounded set D\subset \mathscr{Y} , \alpha(\mathcal{F}(\mathfrak{s}, D))\vee \alpha(\int_0^{\mathfrak{l}}\mathit{G}(\mathfrak{l}, D))\leq \mathscr{L}\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}\alpha(D) , for a.e. \mathfrak{s}\in [0, \infty) .
Theorem 3.6. Assume the semigroup operator \mathscr{O}(\mathfrak{s}) is noncompact for any \mathfrak{s} > 0 . If (H_1) – (H_6) are satisfied, then
(i) there exists at least one mild solution in \widehat{\Phi}_1 for the neutral stochastic HF-system (1.1);
(ii) all these mild solutions are attractive.
Proof. (ⅰ) We set \mathsf{x}_0(\mathfrak{s}) = \mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}\mathscr{O}_{\lambda, \mu}(\mathfrak{s})\mathfrak{g}_0, \ \mathfrak{s}\in [0, \infty) and \mathsf{x}_{m+1} = \mho\mathsf{x}_m, \ m = 0, 1, 2, \cdots . From Lemma 3.3, \mho\mathsf{x}_m\subset \Phi_1 whenever \mathsf{x}_m\in \Phi_1, \ m = 0, 1, 2, \cdots . Define \widehat{\mathcal{D}} = \{\mathrm{z}_m:\mathrm{z}_m(\mathfrak{s}) = \dfrac{(\mho\mathsf{x}_m)(\mathfrak{s})}{1+\mathfrak{s}}, \ \mathsf{x}_m\in \Phi_1\}_{m = 0}^{\infty} . We have to show that set \widehat{\mathcal{D}} is relatively compact.
According to Lemmas 3.1 and 3.2, we already know that \widehat{\mathcal{D}} is equicontinuous, and for \mathsf{x}_m\in \Phi_1, \ \lim\limits_{\mathfrak{s}\rightarrow \infty}E\|\dfrac{(\mho\mathsf{x}_m)(\mathfrak{s})}{1+\mathfrak{s}}\|^2 = 0 uniformly. From Lemma 2.14, we have to show
\widehat{\mathcal{D}} = \{\mathrm{z}_m:\mathrm{z}_m(\mathfrak{s}) = \dfrac{(\mho\mathsf{x})_m(\mathfrak{s})}{1+\mathfrak{s}},\ \mathsf{x}_m\in \Phi_1\}_{m = 0}^{\infty} |
is relatively compact in L^2(\Xi, \mathscr{Y}) .
By Lemmas 2.6 and 2.12, along with the condition (H_6) , we obtain
\begin{align*} &\quad \alpha\bigg(\bigg\{\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))d\mathfrak{l}\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] &\leq 2\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\alpha\bigg(\mathcal{F}\bigg(\mathfrak{l},\bigg\{\mathfrak{l}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{l})\bigg\}_{m = 0}^{\infty}\bigg)\bigg)d\mathfrak{l}\\[0.3cm] &\leq 2\mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{l}^{1-\lambda+\lambda\mu-\mu\kappa}\alpha\bigg(\bigg\{\mathfrak{l}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{l})\bigg\}_{m = 0}^{\infty}\bigg)d\mathfrak{l}\\[0.3cm] &\leq 2\mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}(1+\mathfrak{l})\alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{l})}{1+\mathfrak{l}}\bigg\}_{m = 0}^{\infty}\bigg)d\mathfrak{l}. \end{align*} |
On the other side, for all \mathfrak{g}, v\in \mathscr{Y} , from Lemmas 2.6 and 2.12, we obtain
\begin{align*} &\quad\bigg\|\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\bigg[\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))-\int_0^{\mathfrak{l}}\mathit{G}(\omega,v(\omega))\bigg]dW(\omega)\bigg\|\\[0.3cm] &\leq \mathcal{K}_1\bigg(\bigg\|\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}[\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))-\int_0^{\mathfrak{l}}\mathit{G}(\omega,v(\omega))]dW(\omega)\bigg\|^2\bigg)^{\frac{1}{2}}\\[0.3cm] &\leq \mathcal{K}_1Tr(Q)\bigg(\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)} \mathcal{K}_1\bigg\|\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))-\int_0^{\mathfrak{l}}\mathit{G}(\omega,v(\omega)) \mathcal{K}_1\bigg\|^2d\omega\bigg)^{\frac{1}{2}}. \end{align*} |
Thus, one has
\begin{align*} &\quad\alpha\bigg(\bigg\{\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] &\leq \mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\bigg[\alpha\bigg(\mathit{G}\bigg(\mathfrak{l},\bigg\{\mathfrak{l}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{l})\bigg\}_{m = 0}^{\infty}\bigg)\bigg)\bigg]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}\\[0.3cm] &\leq \mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\mathfrak{l}^{2(1-\lambda+\lambda\mu-\mu\kappa)}\bigg[\alpha\bigg(\bigg\{\mathfrak{l}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{l})\bigg\}_{m = 0}^{\infty}\bigg)\bigg]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}\\[0.3cm] &\leq \mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}(1+\mathfrak{l})^2\bigg[\alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{l})}{1+\mathfrak{l}}\bigg\}_{m = 0}^{\infty}\bigg)\bigg]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}. \end{align*} |
The above estimates yield that
\begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))& = \alpha\bigg(\bigg\{\frac{(\mho\mathsf{x})_m(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] & = \alpha\bigg(\bigg\{\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\mathscr{O}{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}_m(\mathfrak{s}))\\[0.3cm] & \quad+\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))d\mathfrak{l}\\[0.3cm] &\quad+\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)d\mathfrak{l}\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] & = \alpha\bigg(\bigg\{\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))d\mathfrak{l}\\[0.3cm] &\quad+\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)d\mathfrak{l}\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] & = 2\mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}(1+\mathfrak{l})\alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{l})}{1+\mathfrak{l}}\bigg\}_{m = 0}^{\infty}\bigg)d\mathfrak{l}\\[0.3cm] &\quad +\mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}(1+\mathfrak{l})^2\bigg[\alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{l})}{1+\mathfrak{l}}\bigg\}_{m = 0}^{\infty}\bigg)\bigg]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}. \end{align*} |
For any \mathfrak{s}\in [0, \infty) , from Lemma 2.5, one can derive that
\begin{align*} \alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}_{m = 0}^{\infty}\bigg) = \alpha\bigg(\bigg\{\frac{\mathsf{x}_0(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}\cup\bigg\{\frac{\mathsf{x}_m(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}_{m = 1}^{\infty}\bigg) = \alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}_{m = 1}^{\infty}\bigg) = \alpha(\widehat{\mathcal{D}}(\mathfrak{s})). \end{align*} |
Hence, we deduce that
\begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))&\leq 2\mathscr{L}\mathcal{K}_1\mathcal{M}^*\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}(1+\mathfrak{l})\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))d\mathfrak{l}\\[0.3cm] &\quad +\mathscr{L}\mathcal{K}_1\mathcal{M}^*\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}(1+\mathfrak{l})^2[\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}\\[0.3cm] & = M_1+M_2, \end{align*} |
where \mathcal{M}^* = \max\limits_{\mathfrak{s}\in [0, \infty)}\bigg\{\dfrac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg\} .
If M_1 > M_2 , from the estimates above, we have
\begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))&\leq 4\mathscr{L}\mathcal{K}_1\mathcal{M}^*\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}(1+\mathfrak{l})\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))d\mathfrak{l}. \end{align*} |
Therefore, by a similar estimation, one of the inequalities
\begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))&\leq 8\mathscr{L}\mathcal{K}_1\mathcal{M}^*\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))d\mathfrak{l}, \end{align*} |
or
\begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))&\leq 8\mathscr{L}\mathcal{K}_1\mathcal{M}^*\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{l}\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))d\mathfrak{l} \end{align*} |
holds. As a result, the inequality, in ([46], p. 188), enables us to claim that \alpha(\widehat{\mathcal{D}}(\mathfrak{s})) = 0 .
If M_1 < M_2 , a standard calculation yields that
\begin{align*} \big(\alpha(\widehat{\mathcal{D}}(\mathfrak{s}))\big)^2\leq (2\mathscr{L}\mathcal{K}_1\mathcal{M}^*)^2\bigg(2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}(1+\mathfrak{l})^2[\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))]^2d\mathfrak{l}\bigg). \end{align*} |
We may also conclude that \alpha(\widehat{\mathcal{D}}(\mathfrak{s})) = 0 by using an analogous argument to the first scenario. Therefore, \widehat{\mathcal{D}}(\mathfrak{s}) is relatively compact. Lemma 2.14, finally, gives this fact that the set \widehat{\mathcal{D}} is relatively compact. A subsequence of \{\mathsf{x}_m\}_{m = 0}^{\infty} exists so that it is convergent to, say, \mathsf{x}^* , i.e., \lim_{m\rightarrow \infty}\mathsf{x}_m = \mathsf{x}^*\in \Phi_1 . Thus, the continuity of the operator \mho enables us to declare that
\begin{align*} \mathsf{x}^* = \lim\limits_{m\rightarrow \infty}\mathsf{x}_m = \lim\limits_{m\rightarrow \infty}\mho\mathsf{x}_{m-1} = \mho(\lim\limits_{m\rightarrow \infty}\mathsf{x}_{m-1}) = \mho\mathsf{x}^*. \end{align*} |
Let \mathfrak{g}^*(\mathfrak{s}) = \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}^*(\mathfrak{s}) . Thus, \mathfrak{g}^* is a fixed-point of \Sigma , which will be the mild solution of the neutral stochastic HF-system (1.1).
(ⅱ) This proof is similar to (ⅱ) in Theorem 3.5.
By Theorems 3.5 and 3.6, we have a corollary.
Corollary 3.7. Assume that the semigroup operator \mathscr{O}(\mathfrak{s}) is compact for any \mathfrak{s} > 0 and assumptions (H_1) and (H_3) are fulfilled.
(H_7) There exist a function \mathfrak{p}:(0, \infty)\rightarrow (0, \infty) and constants \chi\in (0, 1), \ \mathscr{N} > 0 such that for any \mathfrak{g}\in \mathscr{Y}, \ \mathfrak{s}\in (0, \infty) ,
(I_{0+}^{\mu}\mathfrak{p})(\mathfrak{s})\in C((0,\infty),(0,\infty)),\ \mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)+\mu}(I_{0+}^{\mu}\mathfrak{p})(\mathfrak{s})\leq \mathscr{N}\mathfrak{s}^{2\chi}, |
and
E\|\mathcal{F}(\mathfrak{s},\mathfrak{g})\|^2\leq \mathfrak{p}(\mathfrak{s}). |
(H_8) There exist a function \mathfrak{q}:(0, \infty)\rightarrow (0, \infty) and constants \widehat{\chi}\in (0, 1), \ \widehat{\mathscr{N}} > 0 such that for any \mathfrak{g}\in \mathscr{Y}, \ \mathfrak{s}\in (0, \infty) ,
(I_{0+}^{2\mu-1}\mathfrak{q})(\mathfrak{s})\in C((0,\infty),(0,\infty)),\ \mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}(I_{0+}^{2\mu-1}\mathfrak{q})(\mathfrak{s})\leq \widehat{\mathscr{N}}\mathfrak{s}^{2\widehat{\chi}}, |
and
E\|\int_0^{\mathfrak{s}}\mathit{G}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\mathfrak{l}\|^2\leq \mathfrak{q}(\mathfrak{s}). |
Then, there exists at least one mild solution in \widehat{\Phi}_1 for the neutral stochastic HF-system (1.1).
Corollary 3.8. Suppose that the semigroup operator \mathscr{O}(\mathfrak{s}) is noncompact for all \mathfrak{s} > 0 . If (H_1) , (H_3) , (H_7) , (H_8) , and (H_6) are hold, then one can find at least one mild solution in \widehat{\Phi}_1 to the neutral stochastic HF-system (1.1).
Consider the following HF neutral stochastic evolution integro-differential system on an infinite interval:
\begin{align} \begin{cases} ^{H}D_{0+}^{\mu}[\mathfrak{g}(\mathfrak{s})-w(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))] = \mathcal{A}[\mathfrak{g}(\mathfrak{s})-w(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))]+f(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))+ \int_0^{\mathfrak{s}}g(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))dW(\mathfrak{l}),\\[0.2cm] I_{0+}^{1-\mu}\mathfrak{g}(0) = \mathfrak{g}_0,\; \; \; \; \; \mathfrak{s}\in (0,\infty), \end{cases} \end{align} | (4.1) |
where f(\mathfrak{s}, \mathfrak{g}(\mathfrak{s})) and \int_0^{\mathfrak{s}}g(\mathfrak{l}, \mathfrak{g}(\mathfrak{l}))dW(\mathfrak{l}) fulfill (H_1) and (H_3) , respectively, and the constants \zeta, \beta > 0 exist such that E\|f(\mathfrak{s}, \mathfrak{g}(\mathfrak{s}))\|^2\leq \mathfrak{s}^{-\zeta}, \ E\| \int_0^{\mathfrak{s}}g(\mathfrak{l}, \mathfrak{g}(\mathfrak{l}))d\mathfrak{l}\|^2\leq \mathfrak{s}^{-\beta} for \zeta\in (\mu, 1), \ \beta\in (2\mu-1, 1) , and for \mathfrak{s}\in (0, \infty), \ \{\mathscr{O}(\mathfrak{s})\}_{\mathfrak{s}\geq 0} is compact.
Let \mathfrak{p}(\mathfrak{s}) = \mathfrak{s}^{-\zeta}, \ \mathfrak{q}(\mathfrak{s}) = \mathfrak{s}^{-\beta} , for \mathfrak{s} > 0 . Then, it is easy to verify that
\begin{align*} (I_{0+}^{\mu}\mathfrak{p})(\mathfrak{s})& = \frac{\Gamma(1-\zeta)}{\Gamma(1+\mu-\zeta)}\mathfrak{s}^{\mu-\zeta}\in C((0,\infty),(0,\infty)),\ \mathfrak{s}^{2(1-\mu)+\mu}(I_{0+}^{\mu}\mathfrak{p})(\mathfrak{s})\leq \mathscr{N}\mathfrak{s}^{2\chi},\\[0.3cm] (I_{0+}^{2\mu-1}\mathfrak{q})(\mathfrak{s})& = \frac{\Gamma(1-\beta)}{\Gamma(2\mu-\beta)}\mathfrak{s}^{2\mu-\beta-1}\in C((0,\infty),(0,\infty)),\ \mathfrak{s}^{2(1-\mu)}(I_{0+}^{2\mu-1}\mathfrak{q})(\mathfrak{s})\leq \widehat{\mathscr{N}}\mathfrak{s}^{2\widehat{\chi}}, \end{align*} |
where \chi = \dfrac{1}{2}(2-\zeta)\in (0, 1), \ \widehat{\chi} = \dfrac{1}{2}(1-\beta)\in (0, 1), \ \mathscr{N}\geq \dfrac{\Gamma(1-\zeta)}{\Gamma(1+\mu-\zeta)}\mathfrak{s}^{\mu-\zeta}, \widehat{\mathscr{N}}\geq \dfrac{\Gamma(1-\beta)}{\Gamma(2\mu-\beta)}\mathfrak{s}^{2\mu-\beta-1} , which means that the conditions (H_7) and (H_8) are fulfilled. Further, it is easy to prove that 1-\dfrac{\mu}{2} > \dfrac{1}{2}(2-\zeta) = \chi and 1-\mu > \dfrac{1}{2}(1-\beta) = \widehat{\chi} . By Corollary 3.7, the neutral stochastic HF-system (4.1) has at least a mild solution and also an attractive solution.
Remark 4.1. This result may also extend to the attractive solution for Hilfer fractional neutral stochastic differential equations with Poisson jump.
In this paper, we proved that Hilfer fractional neutral stochastic integro-differential equations on an infinite interval with almost sectorial operators have global mild and attractive solutions, and that the corresponding semigroup is either compact or noncompact. We determined the Wright function, the measure of noncompactness, and several alternative criteria to ensure the worldwide existence of mild solutions to the HF-system (1.1) by using the generalized Ascoli-Arzela theorem. To demonstrate the acquired theoretical findings, an example was given. This result may also be used to study Hilfer fractional neutral stochastic integro-differential equations with impulses on an infinite interval and their approximate controllability.
The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.
This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (grant no. 6041). This study is supported via funding from Prince Sattam bin Abdulaziz University, project number (PSAU/2024/R/1445).
The authors declare no conflicts of interest.
[1] | R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach Spaces, Harlow, Essex: Longman Scientific & Technical, 1993. |
[2] | M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant, V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, New York: Springer, 2001. |
[3] | G. Godefroy, Renormings of Banach spaces, In: Handbook of the Geometry of Banach Spaces, Amsterdam: North Holland, 2001,781–835. https://doi.org/10.1016/S1874-5849(01)80020-6 |
[4] | A. J. Guirao, V. Montesinos, V. Zizler, Renormings in Banach Spaces, Birkhäuser Cham, 2022. https://doi.org/10.1007/978-3-031-08655-7 |
[5] |
J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. https://doi.org/10.2307/1989630 doi: 10.2307/1989630
![]() |
[6] | S. Banach, Theory of Linear Operations, Amsterdam: North-Holland, 1987. |
[7] |
A. Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Am. Math. Soc., 13 (1962), 329–334. https://doi.org/10.2307/2034494 doi: 10.2307/2034494
![]() |
[8] |
R. C. James, Uniformly non-square Banach spaces, Ann. Math., 80 (1964), 542–550. https://doi.org/10.2307/1970663 doi: 10.2307/1970663
![]() |
[9] |
C. A. Kottman, Packing and reflexivity in Banach spaces, T. Am. Math. Soc., 150 (1970), 565–576. https://doi.org/10.2307/1995538 doi: 10.2307/1995538
![]() |
[10] |
K. P. R. Sastry, S. V. R. Naidu, Convexity conditions in normed linear spaces, J. für die Reine und Angew. Math., 297 (1978), 36–53. https://doi.org/10.1515/crll.1978.297.35 doi: 10.1515/crll.1978.297.35
![]() |
[11] | K. Goebel, W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152 |
[12] | W. A. Kirk, B. Sims, Handbook of Metric Fixed Point Theory, Dordrecht: Springer, 2001. https://doi.org/10.1007/978-94-017-1748-9 |
[13] |
P. K. Lin, There is an equivalent norm on \ell_1 that has the fixed point property, Nonlinear Anal., 68 (2008), 2303–2308. https://doi.org/10.1016/j.na.2007.01.050 doi: 10.1016/j.na.2007.01.050
![]() |
[14] |
T. Domínguez-Benavides, A renorming of some nonseparable Banach spaces with the fixed point property, J. Math. Anal. Appl., 350 (2009), 525–530. https://doi.org/10.1016/j.jmaa.2008.02.049 doi: 10.1016/j.jmaa.2008.02.049
![]() |
[15] |
A. Betiuk-Pilarska, T. Domínguez-Benavides, The fixed point property for some generalized nonexpansive mappings and renormings, J. Math. Anal. Appl., 429 (2015), 800–813. https://doi.org/10.1016/j.jmaa.2015.04.043 doi: 10.1016/j.jmaa.2015.04.043
![]() |
[16] | E. Moreno-Gálvez, E. Llorens-Fuster, The fixed point property for some generalized nonexpansive mappings in a nonreflexive Banach space, Fixed Point Theory, 14 (2013), 141–150. |
[17] | T. Domínguez Benavides, S. Phothi, Porosity of the fixed point property under renorming, Fixed Point Theory Appl., 1 (2008), 29–41. |
[18] |
T. Domínguez Benavides, S. Phothi, The fixed point property under renorming in some classes of Banach spaces, Nonlinear Anal., 72 (2010), 1409–1416. https://doi.org/10.1016/j.na.2009.08.024 doi: 10.1016/j.na.2009.08.024
![]() |
[19] | T. Domínguez Benavides, S. Phothi, Genericity of the fixed point property for reflexive spaces under renormings, In: Nonlinear Analysis and Optimization I: Nonlinear Analysis, Contemporary Mathematics, 2010,143–155. http://doi.org/10.1090/conm/513/10080 |
[20] | T. Domínguez Benavides, S. Phothi, Genericity of the fixed point property under renorming in some classes of Banach spaces, Fixed Point Theory Appl., 1 (2010), 55–69. |
[21] | J. R. Acosta-Portilla, Intersection of nonexpansive mappings with respect to a finite number of renormings, Fixed Point Theory, 22 (2021), 343–358. |
[22] | J. R. Acosta-Portilla, L. Y. Garrido-Ramírez, A characterization of constructible norms for bounded Lipschitzian mappings, Fixed Point Theory, 2022. |
[23] |
J. R. Acosta-Portilla, C. A. Hernández-Linares, V. Pérez-García, About some families of nonexpansive mappings with respect to renorming, J. Funct. Spaces, 2016 (2016), 9310515. https://doi.org/10.1155/2016/9310515 doi: 10.1155/2016/9310515
![]() |
[24] | J. R. Acosta-Portilla, C. A. De la Cruz-Reyes, C. A. Hernández-Linares, V. Pérez-García, Lipschitzian mappings under renormings, J. Nonlinear Convex. Anal., 20 (2019), 2239–2257. |
[25] |
K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Am. Math. Soc., 35 (1972), 171–174. https://doi.org/10.2307/2038462 doi: 10.2307/2038462
![]() |
[26] | C. E. Silva, Invitation to Ergodic Theory, American Mathematical Society, 2018. |
1. | M. Lavanya, B. Sundara Vadivoo, Kottakkaran Sooppy Nisar, Controllability Analysis of Neutral Stochastic Differential Equation Using \psi -Hilfer Fractional Derivative with Rosenblatt Process, 2025, 24, 1575-5460, 10.1007/s12346-024-01178-7 | |
2. | A. Priyadharshini, K. Jothimani, V. Vijayakumar, Existence and Uniqueness of the Solution for the Hilfer Fuzzy Fractional Integrodifferential Equation Via Resolvent Operators, 2025, 24, 1575-5460, 10.1007/s12346-024-01192-9 |