In this article, we discuss the existence and uniqueness results for mix derivative involving fractional operators of order β∈(1,2) and γ∈(0,1). We prove some important results by using integro-differential equation of pantograph type. We establish the existence and uniqueness of the solutions using fixed point theorem. Furthermore, one application is likewise given to represent our fundamental results.
Citation: Abeer Al Elaiw, Farva Hafeez, Mdi Begum Jeelani, Muath Awadalla, Kinda Abuasbeh. Existence and uniqueness results for mixed derivative involving fractional operators[J]. AIMS Mathematics, 2023, 8(3): 7377-7393. doi: 10.3934/math.2023371
[1] | Xiaodie Lv, Yi Liu, Yihua Zhong . A novel method to solve the optimization problem of uncertain network system based on uncertainty theory. AIMS Mathematics, 2023, 8(3): 5445-5461. doi: 10.3934/math.2023274 |
[2] | T. K. Buvaneshwari, D. Anuradha . Solving bi-objective bi-item solid transportation problem with fuzzy stochastic constraints involving normal distribution. AIMS Mathematics, 2023, 8(9): 21700-21731. doi: 10.3934/math.20231107 |
[3] | Shima Soleimani Manesh, Mansour Saraj, Mahmood Alizadeh, Maryam Momeni . On robust weakly ε-efficient solutions for multi-objective fractional programming problems under data uncertainty. AIMS Mathematics, 2022, 7(2): 2331-2347. doi: 10.3934/math.2022132 |
[4] | Vishwas Deep Joshi, Medha Sharma, Huda Alsaud . Solving a multi-choice solid fractional multi objective transportation problem: involving the Newton divided difference interpolation approach. AIMS Mathematics, 2024, 9(6): 16031-16060. doi: 10.3934/math.2024777 |
[5] | Zhimin Liu . Data-driven two-stage sparse distributionally robust risk optimization model for location allocation problems under uncertain environment. AIMS Mathematics, 2023, 8(2): 2910-2939. doi: 10.3934/math.2023152 |
[6] | Md. Musa Miah, Ali AlArjani, Abdur Rashid, Aminur Rahman Khan, Md. Sharif Uddin, El-Awady Attia . Multi-objective optimization to the transportation problem considering non-linear fuzzy membership functions. AIMS Mathematics, 2023, 8(5): 10397-10419. doi: 10.3934/math.2023527 |
[7] | Habibe Sadeghi, Fatemeh Moslemi . A multiple objective programming approach to linear bilevel multi-follower programming. AIMS Mathematics, 2019, 4(3): 763-778. doi: 10.3934/math.2019.3.763 |
[8] | Shima Soleimani Manesh, Mansour Saraj, Mahmood Alizadeh, Maryam Momeni . Correction: On robust weakly ε-efficient solutions for multi-objective fractional programming problems under data uncertainty. AIMS Mathematics, 2022, 7(5): 7462-7463. doi: 10.3934/math.2022417 |
[9] | Jiawei Yuan . A constraint handling technique using compound distance for solving constrained multi-objective optimization problems. AIMS Mathematics, 2021, 6(6): 6220-6241. doi: 10.3934/math.2021365 |
[10] | Nana Tao, Chunxiao Ding . Global attractivity for uncertain differential systems. AIMS Mathematics, 2022, 7(2): 2142-2159. doi: 10.3934/math.2022122 |
In this article, we discuss the existence and uniqueness results for mix derivative involving fractional operators of order β∈(1,2) and γ∈(0,1). We prove some important results by using integro-differential equation of pantograph type. We establish the existence and uniqueness of the solutions using fixed point theorem. Furthermore, one application is likewise given to represent our fundamental results.
The biharmonic equation, besides providing a benchmark problem for various analytical and numerical methods, arises in many practical applications. For example, the bending behavior of a thin elastic rectangular plate, as might be encountered in ship design and manufacture, or the equilibrium of an elastic rectangle, can be formulated in terms of the two-dimensional biharmonic equation, e.g., Timoshenko & Woinowsky-Krieger [1]. Also, Stokes flow of a viscous fluid in a rectangular cavity under the influence of the motion of the walls, can be described in terms of the solution of this equation, e.g., Pan and Acrivos (1967), Shankar [2], Srinivasan [3], Meleshko [4] or Shankar and Deshpande [5]. A more recent application of the biharmonic equation has been in the area of geometric and functional design, where it has been used as a mapping to produce efficient mathematical descriptions of surfaces in physical space, e.g., Sevant et al. [6] and Bloor and Wilson [7]. Interest in solutions of the biharmonic equation and their mathematical properties go back over 130 years, and comprehensive reviews of this work have been given by Meleshko [8,9]. In his review article, he concentrates upon the method of superposition in which the solution is described in terms of a sum of separable solutions of the biharmonic equation. In another work, Meleshko [4] obtained some results for Stokes flow in a rectangular cavity in which the solution is based upon the sum of terms consisting of the product of exponential and sinusoidal functions, where the coefficients in the series are determined from the requirement that the prescribed boundary conditions are satisfied, and Meleshko [10] described the work which has been done in trying to solve this problem, e.g., Meleshko and Gomilko [11]. Other physical phenomena like flows of electro-rheological fluids, fluids with temperature dependent viscocity, filtration processes through a porous media, image processing and thermorheological fluids give rise to mathematical models of hyperbolic, parabolic and biharmonic equations with variable exponents of nonlinearity. More details can also be found in references [12,13]. Recently, the hyperbolic equations with nonlinearities of variable exponents type had received a considerable amount of attention. We refer the reader to [14,15,16,17] and the references therein. Only few works concerning coupled systems of wave equations in the variable-exponents case have been found in the literature. For examples, Bouhoufani and Hamchi [18] obtained the global existence of a weak solution and established decay rates of the solutions, in a bounded domain, of a coupled system of nonlinear hyperbolic equations with variable-exponents. Messaoudi et al. [15] studied a system of wave equations with nonstandard nonlinearities and proved a theorem of existence and uniqueness of a weak solution, established a blow-up result for certain solutions with positive-initial energy and gave some numerical applications for their theoretical results. In [16], Messaoudi et al. considered the following system
utt−Δu+|ut|m(x)−2ut+f1(u,v)=0in Ω×(0,T),vtt−Δv+|vt|r(x)−2vt+f2(u,v)=0in Ω×(0,T), | (1.1) |
with initial and Dirichlet-boundary conditions (here, f1 and f2 are the coupling terms introduced in (1.3). The authors proved the existence of global solutions, obtained explicit decay rate estimates under suitable assumptions on the variable exponents m,r and p and presented some numerical tests. In this work, we consider the following initial-boundary-value problem
{utt+Δ2u+|ut|m(x)−2ut=f1(u,v)in Ω×(0,T),vtt−Δv+|vt|r(x)−2vt=f2(u,v)in Ω×(0,T),u=v=∂u∂η=0on ∂Ω×(0,T),u(0)=u0 and ut(0)=u1in Ω,v(0)=v0 and vt(0)=v1in Ω, | (1.2) |
where Ω is a smooth and bounded domain of Rn,(n=1,2,3), the exponents m and r are continuous functions on ¯Ω satisfying some conditions to be specified later, ∂u∂η denotes the external normal derivatives of u on the boundary ∂Ω and the coupling terms f1 and f2 are given as follows: for all x∈¯Ω and (u,v)∈R2,
f1(x,u,v)=∂∂uF(x,u,v) and f2(x,u,v)=∂∂vF(x,u,v), | (1.3) |
with
F(x,u,v)=a|u+v|p(x)+1+2b|uv|p(x)+12, | (1.4) |
where a,b>0 are two positive constants and p is a given continuous function on ¯Ω satisfying the condition (H.2) (below).
This section presents some material needed to prove the main result. Let q:Ω⟶[1,∞) be a continuous function. We define the Lebesgue space with a variable exponent by
Lq(.)(Ω)={f:Ω⟶R measurable in Ω: ϱq(.)(λf)<+∞, for some λ>0}, |
where
ϱq(.)(f)=∫Ω|f(x)|q(x)dx. |
Lemma 2.1. [13,19] If 1<q−≤q(x)≤q+<+∞ holds then, for any f∈Lq(.)(Ω),
min{‖f‖q−q(.),‖f‖q+q(.)}≤ϱq(.)(f)≤max{‖f‖q−q(.),‖f‖q+q(.)}, |
where
q−=essinfx∈Ω q(x) and q+=esssupx∈Ω q(x). |
Lemma 2.2. (Embedding property [20]) Let q:¯Ω⟶[1,∞) be a measurable function and k≥1 be an integer. Suppose that r is a log-Hölder continuous function on Ω, such that, for all x∈Ω, we have
{k≤q−≤q(x)≤q+<nr(x)n−kr(x),if r+<nk,k≤q−≤q+<∞,if r+≥nk. |
Then, the embedding Wk,r(.)0(Ω)↪Lq(.)(Ω) is continuous and compact.
Throughout this paper, we denote by V the following space
V={u∈H2(Ω): u=∂u∂η=0 on ∂Ω}=H20(Ω). |
So, V is a separable Hilbert space endowed with the inner product and norm, respectively,
(w,z)V=∫ΩΔwΔzdx and ‖w‖V=‖Δw‖2, |
where ‖Δw‖k=‖Δw‖Lk(Ω).
We assume the following hypotheses:
(H.1) The exponents m and r are continuous on ¯Ω such that
2≤m(x), if n=1,2,2≤m1≤m(x)≤m2≤6, if n=3 | (2.1) |
and
2≤r(x), if n=1,2,2≤r1≤r(x)≤r2≤6, if n=3, | (2.2) |
for all x∈¯Ω, where
m1= infx∈¯Ω m(x), m2= supx∈¯Ω m(x), r1= infx∈¯Ω r(x) and r2= supx∈¯Ω r(x). |
(H.2) The variable exponent p is a given continuous function on ¯Ω such that
3≤p−≤p(x)≤p+<+∞, if n=1,2,p(x)=3, if n=3, | (2.3) |
for all x∈¯Ω.
In this section, we prove the local existence of the solutions of (1.2). For this purpose, we introduce the definition of a weak solution for system (1.2). We multiply the first equation in (1.2) by Φ∈C∞0(Ω) and the second equation by Ψ∈C∞0(Ω), integrate each result over Ω, use Green's formula and the boundary conditions to obtain the following definition:
Definition 3.1. Let (u0,v0)∈V×H10(Ω),(u1,v1)∈L2(Ω)×L2(Ω). Any pair of functions (u,v), such that
{u∈L∞([0,T);V),v∈L∞([0,T);H10(Ω)),ut∈L∞([0,T);L2(Ω))∩Lm(.)(Ω×(0,T)),vt∈L∞([0,T);L2(Ω))∩Lr(.)(Ω×(0,T)), | (3.1) |
is called a weak solution of (1.2) on [0,T), if
{ddt∫ΩutΦdx+∫ΩΔuΔΦdx+∫Ω|ut|m(x)−2utΦdx=∫Ωf1Φdx,ddt∫ΩvtΨdx+∫Ω∇v∇Ψdx+∫Ω|vt|r(x)−2vtΨdx=∫Ωf2Ψdx,u(0)=u0,ut(0)=u1,v(0)=v0,vt(0)=v1, |
for a.e. t∈(0,T) and all test functions Φ∈V and Ψ∈H10(Ω). Note that C∞0(Ω) is dense in V and in H10(Ω) as well. In addition, the spaces V, H10(Ω)⊂Lm(.)(Ω)∩Lr(.)(Ω), under the conditions (H.1) and (H.2).
In order to establish an existence result of a local weak solution for the system (1.2); we, first, consider the following auxiliary problem:
{utt+Δ2u+ut|ut|m(x)−2=f(x,t)in Ω×(0,T),vtt−Δv+vt|vt|r(x)−2=g(x,t)in Ω×(0,T),u=v=∂u∂η=0on ∂Ω×(0,T),u(0)=u0,ut(0)=u1,v(0)=v0,vt(0)=v1in Ω, | (S) |
for given f,g∈L2(Ω×(0,T)) and T>0.
We have the following theorem of existence and uniqueness for Problem (S).
Theorem 3.1. Let n=1,2,3 and (u0,v0)∈V×H10(Ω),(u1,v1)∈H10(Ω)×L2(Ω). Assume that assumptions (H.1) and (H.2) hold. Then, the problem (S) admits a unique weak solution on [0,T).
Proof. Let {ωj}∞j=1 be an orthogonal basis of V and define, for all k≥1, (uk,vk) a sequence in Vk=span{ω1,ω2,...,ωk}⊂V, given by
uk(x,t)=Σkj=1aj(t)ωj(x) and vk(t)=Σkj=1bj(t)ωj(x) |
for all x∈Ω and t∈(0,T) and solves the following approximate problem:
{∫Ωuktt(x,t)ωjdx+∫ΩΔuk(x,t)Δωjdx+∫Ω|ukt(x,t)|m(x)−2ukt(x,t)ωjdx=∫Ωf(x,t)ωj,∫Ωvktt(x,t)ωjdx+∫Ω∇vk(x,t)∇ωjdx+∫Ω|vkt(x,t)|r(x)−2vkt(x,t)ωjdx=∫Ωg(x,t)ωj, | (Sk) |
for all j=1,2,...,k, with
uk(0)=uk0=Σki=1⟨u0,ωi⟩ωi, ukt(0)=uk1=Σki=1⟨u1,ωi⟩ωivk(0)=vk0=Σki=1⟨v0,ωi⟩ωi, vkt(0)=vk1=Σki=1⟨v1,ωi⟩ωi, | (3.2) |
such that
uk0⟶u0 and vk0⟶v0 in H10(Ω),uk1⟶u1 and vk1⟶v1 in L2(Ω). | (3.3) |
For any k≥1, problem (Sk) generates a system of k nonlinear ordinary differential equations. The ODE standard existence theory assures the existence of a unique local solution (uk,vk) for (Sk) on [0,Tk), with 0<Tk≤T. Next, we have to show that Tk=T,∀k≥1. Multiplying (Sk)1 and (Sk)2 by a′j(t) and b′j(t), respectively, and then summing each result over j=1,...,k, we obtain, for all 0<t≤Tk,
12ddt[∫Ω(|ukt(x,t)|2+(Δuk)2(x,t))dx]+∫Ω|ukt(x,t)|m(x)dx=∫Ωf(x,t)ukt(x,t)dx | (3.4) |
and
12ddt[∫Ω(|vkt(x,t)|2+|∇vk|2(x,t))dx]+∫Ω|vkt(x,t)|r(x)dx=∫Ωg(x,t)vkt(x,t)dx. | (3.5) |
The addition of (3.4) and (3.5), and then the integration of the result, over (0,t), lead to
12[‖ukt(t)‖22+‖uk(t)‖2V+‖vkt(t)‖22+‖∇vk(t)‖22]+∫t0∫Ω(|ukt(x,s)|m(x)+|vkt(x,s)|r(x))dxds=12[‖uk1‖22+‖uk0‖2V+‖vk1‖22+‖∇vk0‖22]+∫t0∫Ω[f(x,s)ukt(x,s)+g(x,s)vkt(x,s)]dxds. | (3.6) |
Using Young's inequality and the convergence (3.3), then Eq (3.6) becomes, for some C>0,
12[‖ukt(t)‖22+‖vkt(t)‖22+‖uk(t)‖2V+‖∇vk(t)‖22]+∫Tk0∫Ω(|ukt(x,s)|m(x)+|vkt(x,s)|r(x))dxds≤C+ε∫Tk0(‖ukt(s)‖22+‖vkt(s)‖22)ds+Cε∫T0∫Ω(|f(x,s)|2+|g(x,s)|2)dxds. |
Using the fact that f,g∈L2(Ω×(0,T)) and choosing ε=14T, we infer
12sup(0,Tk)[‖ukt‖22+‖vkt‖22+‖uk‖2V+‖∇vk‖22]+∫Tk0∫Ω(|ukt(x,s)|m(x)+|vkt(x,s)|r(x))dxds≤Cε+Tεsup(0,Tk)(‖ukt‖22+‖vkt‖22)≤CT, | (3.7) |
where CT>0 is a constant depending on T only. Consequently, the solution (uk,vk) can be extended to (0,T), for any k≥1. In addition, we have
{(uk) is bounded in L∞((0,T),V),(vk) is bounded in L∞((0,T),H10(Ω)),(ukt) is bounded in L∞((0,T),L2(Ω))∩Lm(.)(Ω×(0,T)),(vkt) is bounded in L∞((0,T),L2(Ω))∩Lr(.)(Ω×(0,T)). |
Therefore, we can extract two subsequences, denoted by (ul) and (vl), respectively, such that, when l→∞, we have
{ul→u weakly * in L∞((0,T),V),vl→v weakly * in L∞((0,T),H10(Ω)),ult→ut weakly * in L∞((0,T),L2(Ω)) and weakly in Lm(.)(Ω×(0,T)),vlt→vt weakly * in L∞((0,T),L2(Ω)) and weakly in Lr(.)(Ω×(0,T)). |
Under the assumptions (H.1) and (H.2) and using similar ideas and arguments as in [[15], Theorem 3.2, p.6], one can see that
∣ult∣m(.)−2ult→ ∣ut∣m(.)−2ut weakly in Lm(.)m(.)−1(Ω×(0,T)), |
∣vlt∣r(.)−2vlt→ ∣vt∣r(.)−2vt weakly in Lr(.)r(.)−1(Ω×(0,T)) |
and establish that (u,v) satisfies the two differential equations in (S), on Ω×(0,T).
To handle the initial conditions, we follow the same procedures as in [15], and we easily conclude that (u,v) satisfies the initial conditions. For the uniqueness, Assume that (S) has two weak solutions (u1,v1) and (u2,v2), in the sense of Definition 3.1. Let (Φ,Ψ)=(u1t−u2t,v1t−v2t), then (u,v)=(u1−u2,v1−v2) satisfies the following identities, for all t∈(0,T),
ddt[∫Ω(|ut|2+(Δu)2)dx]+2∫Ω(|u1t|m(x)−2u1t−|u2t|m(x)−2u2t)(u1t−u2t)dx=0 | (3.8) |
and
ddt[∫Ω(|vt|2+|∇v|2)dx]+2∫Ω(|v1t|r(x)−2v1t−|v2t|r(x)−2v2t)(v1t−v2t)dx=0. | (3.9) |
Integrating (3.8) and (3.9) over (0,t), with t≤T, we obtain
‖ut‖22+‖u‖2V+2∫t0∫Ω(|u1t|m(x)−2u1t−|u2t|m(x)−2u2t)(u1t−u2t)dxdτ=0 | (3.10) |
and
‖vt‖22+‖∇v‖22+2∫t0∫Ω(|v1t|r(x)−2v1t−|v2t|r(x)−2v2t)(v1t−v2t)dxdτ=0. | (3.11) |
But we have, for all x∈Ω,Y,Z∈R and q(x)≥2,
(|Y|q(x)−2Y−|Z|Zq(x)−2)(Y−Z)≥0, | (3.12) |
then, estimates (3.10) and (3.11) yield
‖ut‖2+‖u‖2V=‖vt‖2+‖∇v‖22=0. |
Thus, ut(.,t)=vt(.,t)=0 and u(.,t)=v(.,t)=0, for all t∈(0,T). Thanks to the boundary conditions, we conclude u=v=0 on Ω×(0,T), which proves the uniqueness of the solution. Therefore, (u,v) is the unique local solution of (S), in the sense of Definition 3.1, having the regularity (3.1).
Lemma 3.1. Let y∈L∞((0,T),V) and z∈L∞((0,T),H10(Ω)). Then
f1(y,z),f2(y,z)∈L2(Ω×(0,T)). | (3.13) |
Proof. From (1.3) and (1.4), we have, for all (u,v)∈R2,
f1(u,v)=(p(x)+1)[a|u+v|p(x)−1(u+v)+bu|u|p(x)−32|v|p(x)+12] | (3.14) |
and
f2(u,v)=(p(x)+1)[a|u+v|p(x)−1(u+v)+bv|v|p(x)−32|u|p(x)+12]. | (3.15) |
Let y∈L∞((0,T),V) and z∈L∞((0,T),H10(Ω)). Applying Young's inequality and the Sobolev embedding, we obtain, for all t∈(0,T) and some C1,C2>0, the following results:
∫Ω|f1(y,z)|2dx≤2[a2∫Ω|y+z|2p(x)dx+b2∫Ω|y|p(x)−1|z|p(x)+1dx]≤C0[∫Ω|y+z|2p+dx+∫Ω|y+z|2p−dx+∫Ω|y|3(p(x)−1)dx+∫Ω|z|32(p(x)+1)dx], | (3.16) |
where C0=2max{a2,3b2}>0. By the embeddings, we have for n=1,2,
●
1<32(p−+1)≤32(p++1)≤2p+≤3(p+−1)<∞, |
since 3≤p−≤p(x)≤p+<∞. Therefore, estimate (3.16) leads to
∫Ω|f1(y,z)|2dx≤C1[‖∇(y+z)‖2p+2+‖∇(y+z)‖2p−2+‖Δy‖3(p+−1)2+‖Δy‖3(p−−1)2]+C1[‖∇z‖32(p++1)2+‖∇z‖32(p−+1)2]<+∞, | (3.17) |
where C1=C0Ce.
● For n=3, we use the embedding H10(Ω) in L6(Ω) to obtain (3.17), since p≡3 on ¯Ω.
So, under the assumption (H.2), we have
∫Ω|f1(y,z)|2dx<∞, |
and similarly
∫Ω|f2(y,z)|2dx<∞, |
for all t∈(0,T). Which completes the proof.
Corollary 3.1. There exists a unique (u,v) solution of the problem:
{utt+Δ2u+|ut|m(x)−2ut=f1(y,z),in Ω×(0,T),vtt−Δv+|vt|r(x)−2vt=f2(y,z),in Ω×(0,T),u=v=∂u∂η=0on ∂Ω×(0,T),u(0)=u0 and ut(0)=u1in Ω,v(0)=v0 and vt(0)=v1,in Ω, | (R) |
in the sense of Definition 3.1 and having the regularity 3.1.
Proof. A combination of Theorem 3.1 and Lemma 3.1 implies this corollary.
Now, consider the following Banach spaces
AT={w∈L∞((0,T),V)/wt∈L∞((0,T),L2(Ω))}, |
equipped with the norm:
‖w‖2AT=sup(0,T)‖w‖2V+sup(0,T)‖wt‖22 |
and
BT={w∈L∞((0,T),H10(Ω))/wt∈L∞((0,T),L2(Ω))}, |
equipped with the norm:
‖w‖2BT=sup(0,T)‖∇w‖22+sup(0,T)‖wt‖22 |
and define a map F:AT×BT:⟶AT×BT by F(y,z)=(u,v).
Lemma 3.2. F maps D(0,d) into itself where
D(0,d)={(w,w)∈AT×BTsuch that||(w,w)||AT×BT≤d}. |
Proof. Let (y,z) be in D(0,d) and (u,v) be the corresponding solution of problem (R) (i.e., F(y,z)=(u,v)). Taking (Φ,Ψ)=(ut,vt) in Definition 3.1 and integrating each identity over (0,t), we obtain, for all t≤T,
12[‖ut‖22−‖u1‖22+‖Δu‖22−‖Δu0‖22]+∫t0∫Ω|ut(x,s)|m(x)dxds=∫t0∫Ωutf1(y,z)dxds | (3.18) |
and
12[‖vt‖22−‖v1‖22+‖∇v‖22−‖∇v0‖22]+∫t0∫Ω|vt(x,s)|r(x)dxds=∫t0∫Ωvtf2(y,z)dxds. | (3.19) |
The addition of (3.18) and (3.19) lead to
12[‖ut‖22+‖vt‖22+‖Δu‖22+‖∇v‖22]≤12[‖u1‖22+‖v1‖22+‖Δu0‖22+‖∇v0‖22]+∫t0(|∫Ωutf1(y,z)dx|+|∫Ωvtf2(y,z)dx|)ds. |
for all t∈(0,T). Therefore,
sup0≤t≤T(‖ut‖22+‖vt‖22+‖u‖2V+‖∇v‖22)≤γ+2sup0≤t≤T∫t0(|∫Ωutf1(y,z)dx|+|∫Ωvtf2(y,z)dx|)dτ, | (3.20) |
where γ=‖u1‖22+‖v1‖22+‖u0‖2V+‖∇v0‖22. Under the assumption (2.3) and applying Young's inequality and the Sobolev embedding (Lemma 2.2), we obtain for all t∈(0,T),
|∫Ωutf1(y,z)dx|≤(p++1)[a∫Ω|ut||y+z|p(x)dx+b∫Ω|ut|.|y|p(x)−12|z|p(x)+12dx]≤(p++1)[ε(a+b)2∫Ω|ut|2dx+2aε∫Ω|y+z|2p(x)dx+2bε∫Ω|y|p(x)−1|z|p(x)+1dx]≤c1[ε2‖ut‖22+Cε(∫Ω|y+z|2p++∫Ω|y+z|2p−+∫Ω|y|3(p(x)−1)+∫Ω|z|32(p(x)+1))]≤c2[ε‖ut‖22+‖Δy‖2p−2+‖∇z‖2p−2+‖Δy‖2p+2+‖∇z‖2p+2]+c2[‖Δy‖3(p−−1)2+‖Δy‖3(p+−1)2+‖∇z‖32(p−+1)2+‖∇z‖32(p++1)2], | (3.21) |
where ε,c1,c2 are positive constants. Likewise, we get
|∫Ωvtf2(y,z)dx|≤(p++1)[a∫Ω|vt||y+z|p(x)dx+b∫Ω|vt|.|z|p(x)−12|y|p(x)+12dx]≤c2[ε‖vt‖22+‖Δy‖2p−2+‖∇z‖2p−2+‖Δy‖2p+2+‖∇z‖2p+2]+c2[‖∇z‖3(p−−1)2+‖∇z‖3(p+−1)2+‖Δy‖32(p−+1)2+‖Δy‖32(p++1)2]. | (3.22) |
Combining (3.21) and (3.22), yields
sup(0,T)∫t0(|∫Ωutf1(y,z)dx|+|∫Ωvtf2(y,z)dx|)ds≤εTc2‖(u,v)‖2AT×BT+2Tc2(‖(y,z)‖2p−AT×BT+‖(y,z)‖2p+AT×BT)+Tc2(‖(y,z)‖3(p−−1)AT×BT+‖(y,z)‖3(p+−1)AT×BT+‖(y,z)‖32(p−+1)AT×BT+‖(y,z)‖32(p++1)AT×BT). | (3.23) |
By substituting (3.23) into (3.20), we obtain, for some c3>0,
12‖(u,v)‖2AT×BT≤γ0+εTc3‖(u,v)‖2AT×BT+2Tc3(‖(y,z)‖2p−AT×BT+‖(y,z)‖2p+AT×BT)+Tc3(‖(y,z)‖3(p−−1)AT×BT+‖(y,z)‖3(p+−1)AT×BT+‖(y,z)‖32(p−+1)AT×BT+‖(y,z)‖32(p++1)AT×BT). | (3.24) |
Choosing ε such that εTc3=14 and recalling that ‖(y,z)‖AT×BT≤d, for some d>1 (large enough), inequality (3.24) implies
‖(u,v)‖2AT×BT≤4γ0+8Tc3(‖(y,z)‖2p−AT×BT+‖(y,z)‖2p+AT×BT)+4Tc3(‖(y,z)‖3(p−−1)AT×BT+‖(y,z)‖3(p+−1)AT×BT+‖(y,z)‖32(p−+1)AT×BT+‖(y,z)‖32(p++1)AT×BT)≤4γ0+Tc4d3(p+−1), c4>0, |
So, if we take d such that d2>>4γ0 and T≤T0=d2−4γ0c4d3(p+−1), we find
4γ0+Tc4d3(p+−1)≤d2. |
Therefore,
‖(u,v)‖2AT×BT≤d2. |
Thus, F maps D(0,d) to D(0,d).
Lemma 3.3. F:D(0,d)⟶D(0,d) is a contraction.
Proof. Let (y1,z1) and (y2,z2) be in D(0,d) and set (u1,v1)=F(y1,z1) and (u2,v2)=F(y2,z2). Clearly, (U,V)=(u1−u2,v1−v2) is a weak solution of the following system
{Utt+Δ2U+|u1t|m(x)−2u1t−|u2t|m(x)−2u2t=f1(y1,z1)−f1(y2,z2)in Ω×(0,T),Vtt−ΔV+|v1t|r(x)−2v1t−|v2t|r(x)−2v2t=f2(y1,z1)−f2(y2,z2)in Ω×(0,T),U=V=0on ∂Ω×(0,T),(U(0),V(0))=(Ut(0),Vt(0))=(0,0)in Ω, |
in the sense of Definition 3.1. So, taking (Φ,Ψ)=(Ut,Vt), in this definition, using Green's formula together with the boundary conditions and then, integrating each result over (0,t), we obtain, for a.e. t≤T,
12(‖Ut‖22+‖ΔU‖22)+∫t0∫Ω(u1t|u1t|m(x)−2−u2t|u2t|m(x)−2)Utdxds≤∫t0∫Ω|f1(y1,z1)−f1(y2,z2)||Ut|dxds |
and
12(‖Vt‖22+‖∇V‖22)+∫t0∫Ω(v1t|v1t|r(x)−2−v2t|v2t|r(x)−2)Vtdxds≤∫t0∫Ω|f2(y1,z1)−f2(y2,z2)||Vt|dxds. |
Under the condition (H.2), using Hölder's inequality and inequality (3.12), these two estimates give, for n=1,2,3,
‖Ut‖22+‖U‖2V≤4∫t0‖Ut‖2‖f1(y1,z1)−f1(y2,z2)‖2ds | (3.25) |
and
‖Vt‖22+‖∇V‖22≤4∫t0‖Vt‖2‖f2(y1,z1)−f2(y2,z2)‖2ds. | (3.26) |
The addition of (3.25) and (3.26) imply
‖Ut‖22+‖Vt‖22+‖U‖2V+‖∇V‖22≤4∫t0‖Ut‖2‖f1(y1,z1)−f1(y2,z2)‖2ds+4∫t0‖Vt‖2‖f2(y1,z1)−f2(y2,z2)‖2ds, | (3.27) |
for all t∈(0,T). Now, we estimate the terms:
‖f1(y1,z1)−f1(y2,z2)‖2 and ‖f2(y1,z1)−f2(y2,z2)‖2. |
Using appropriate algebraic inequalities (see [21]), we obtain for two constants C1,C2>0 and for all x∈Ω and t∈(0,T),
∫Ω|f1(y1,z1)−f1(y2,z2)|2dx≤I1+I2+I3+I4, | (3.28) |
where
I1=C1∫Ω|y1−y2|2(|y1|2(p(x)−1)+|z1|2(p(x)−1))dx+C1∫Ω|y1−y2|2(|y2|2(p(x)−1)+|z2|2(p(x)−1))dx,I2=C1∫Ω|z1−z2|2(|y1|2(p(x)−1)+|z1|2(p(x)−1))dx+C1∫Ω|z1−z2|2(|y1|2(p(x)−1)+|z2|2(p(x)−1))dx,I3=C2∫Ω|z1−z2|2|y1|p(x)−1(|z1|p(x)−1+|z2|p(x)−1)dx,I4=C2∫Ω|y1−y2|2|z2|p(x)+1(|y1|p(x)−3+|y2|p(x)−3)dx. |
By using Hölder's and Young's inequalities and the Sobolev embedding (Lemma 2.2), we get the following estimate for a typical term in I1 and I2,
∫Ω|y1−y2|2|y1|2(p(x)−1)dx≤2(∫Ω|y1−y2|6dx)13(∫Ω|y1|3(p(x)−1))23≤C||y1−y2||26[(∫Ω|y1|3(p+−1)dx)23+(∫Ω|y1|3(p−−1)dx)23]≤C||Δ(y1−y2)||22(||y1||2(p+−1)3(p+−1)+||y1||2(p−−1)3(p−−1))≤C||ΔY||22(||Δy1||2(p+−1)2+||Δy1||2(p−−1)2)≤C||ΔY||22(||(y1,z1)||2(p+−1)AT×BT+||(y1,z1)||2(p−−1)AT×BT), | (3.29) |
since
● 1≤3(p−−1)≤3(p+−1)<∞, when n=1,2.
● 1≤3(p−−1)=3(p+−1)=6=2nn−2, when n=3.
Likewise, we obtain
∫Ω|z1−z2|2|y2|2(p(x)−1)dx≤C||∇Z||22(||(y2,z2)||2(p+−1)AT×BT+||(y2,z2)||2(p−−1)AT×BT). | (3.30) |
Since (y1,z1),(y2,z2)∈D(0,d) and d>1, estimates (3.29) and (3.30) lead to
I1≤C||ΔY||22d2(p+−1) and I2≤C||∇Z||22d2(p+−1). |
Hence,
I1+I2≤Cd2(p+−1)(||ΔY||22+||∇Z||22). | (3.31) |
Similarly, a typical term in I3 can be handled as follows
∫Ω|z1−z2|2|y1|p(x)−1|z1|p(x)−1dx≤2(∫Ω|z1−z2|6dx)13(∫Ω|y1|32(p(x)−1)|z1|32(p(x)−1))23≤C||z1−z2||26[(∫Ω|y1|32(p(x)−1)dx)23+(∫Ω|z1|32(p(x)−1)dx)23]≤C||∇(z1−z2)||22(||y1||(p+−1)32(p+−1)+||y1||(p−−1)32(p−−1)+||z1||(p+−1)32(p+−1)+||z1||(p−−1)32(p−−1))≤C||∇(z1−z2)||22(||Δy1||(p+−1)2+||Δy1||(p−−1)2+||∇z1||(p+−1)2+||∇z1||(p−−1)2)≤2C||∇Z||22(||(y1,z1)||(p+−1)AT×BT+||(y1,z1)||(p−−1)AT×BT), |
since
● 1≤32(p−−1)≤32(p+−1)<∞, when n=1,2.
● 1≤32(p−−1)=32(p+−1)=6=2nn−2, when n=3.
Therefore,
I3≤Cdp+−1||∇Z||22, | (3.32) |
since (y1,z1),(y2,z2)∈D(0,d). Using the same arguments, a typical term in I4, can be estimated as follows:
Case 1: If n=1,2, we have 3≤p−≤p+<∞. So,
∫Ω|y1−y2|2|z2|p(x)+1|y1|p(x)−3dx≤2(∫Ω|y1−y2|3dx)23(∫Ω|z2|3(p(x)+1)|y1|3(p(x)−3))13≤C||y1−y2||23[(∫Ω|z2|6(p(x)+1)dx)13+(∫Ω|y1|6(p(x)−3)dx)13]≤C||ΔY||22(||∇z2||2(p++1)2+||∇z2||2(p−+1)2+||Δy1||2(p+−3)2+||Δy1||2(p−−3)2)≤4C||ΔY||22d2(p++1), |
since (y1,z1),(y2,z2)∈D(0,d) and d>1.
Case 2: If n=3, then p≡3 on ¯Ω. Hence,
∫Ω|y1−y2|2|z2|p(x)+1|y1|p(x)−3dx=∫Ω|y1−y2|2|z2|4dx≤C(∫Ω|y1−y2|6dx)13(∫Ω|z2|6dx)23≤C||y1−y2||26.||z2||46≤C||ΔY||22.||(y2,z2)||4AT×BT. |
So, for all t∈(0,T), we deduce that
I4≤C||ΔY||22d2(p++1). | (3.33) |
Finally, by substituting (3.31)–(3.33) in (3.28), the following can be obtained
∫Ω|f1(y1,z1)−f1(y2,z2)|2dx≤Cd2(p++1)(||ΔY||22+||∇Z||22), | (3.34) |
for all t∈(0,T). Similarly, we get
∫Ω|f2(y1,z1)−f2(y2,z2)|2dx≤Cd2(p++1)(||ΔY||22+||∇Z||22). | (3.35) |
Now, we use (3.34) and (3.35) in (3.27) to obtain
‖(u,v)‖2AT×BT≤Cd2(p++1)sup(0,T)∫t0(‖ΔY(s)‖22+‖∇Z(s)‖22)ds≤Cd2(p++1)T‖(Y,Z)‖2AT×BT. |
Hence, if we take T small enough, we get for, 0<γ<1,
‖(u,v)‖2AT×BT≤γ‖(Y,Z)‖2AT×BT. |
Thus,
‖K(y1,z1)−K(y2,z2)‖2AT×BT≤γ‖(y1,z1)−(y2,z2)‖2AT×BT. |
This proves that F:D(0,d)⟶D(0,d) is a contraction.
Theorem 3.2. Let n=1,2,3. Under the assumptions (H.1) and (H.2) and for any (u0,v0)∈V×H10(Ω),(u1,v1)∈H10(Ω)×L2(Ω) the problem (1.2) admits a unique weak solution (u,v), in the sense of Definition 3.1, having the regularity (3.1), for T small enough.
Proof. The above Lemmas and the Banach-fixed-point theorem guarantee the existence of a unique (u,v)∈D(0,d), such that F(u,v)=(u,v), which is a local weak solution of (1.2).
Remark 3.1. From the definitions (1.3) and (1.4), one can easily see that, for all (u,v)∈R2,
u f1(x,u,v)+vf2(x,u,v)=(p(x)+1)F(x,u,v). | (3.36) |
We, also, have the following results.
Lemma 3.1. [22] There exist C1,C2>0 such that, for all x∈¯Ω and (u,v)∈R2, we have
C1(|u|p(x)+1+|v|p(x)+1)≤F(x,u,v)≤C2(|u|p(x)+1+|v|p(x)+1). | (3.37) |
Corollary 3.2. For all x∈¯Ω and (u,v)∈R2, we have
C1(ζ(u)+ζ(v))≤∫ΩF(x,u,v)dx≤C2(ζ(u)+ζ(v)), | (3.38) |
where
ζ(u)=∫Ω|u |p(x)+1dx and ζ(v)=∫Ω|v |p(x)+1dx. |
Now, we introduce the energy functional associated with our problem
E(t)=12(‖ut‖22+‖vt‖22+‖Δu‖22+‖∇v‖22)−∫ΩF(x,u,v)dx, | (3.39) |
for all t∈[0,T). A direct computation implies, for a.e. t∈(0,T),
E′(t)=−∫Ω|ut|m(x)dx−∫Ω|vt|r(x)dx≤0. | (3.40) |
In this section, our goal is to prove that any solution of Problem (1.2) blows-up in some finite time T∗, if
max{m+,r+}<p− and 0<E(0)<E1, | (4.1) |
where
E1=(12−1p−+1)γ21, γ1=(d∗(p−+1))11−p−, | (4.2) |
d∗=(√2(p−+1)a+2b)cp−+1∗ |
and c∗ is a positive constant, which comes from the Sobolev embedding.
Remark 4.1. The following well-known inequalities are needed in the proof of the lemmas.
(1) For A,B≥0 and d≥1, we have
(A+B)d≤2d−1(Ad+Bd). | (4.3) |
(2) For z≥0, 0<δ≤1 and a>0, we have
zδ≤z+1≤(1+1a)(z+a). | (4.4) |
(3) For X, Y≥0, δ>0 and 1λ+1β=1, Young's inequality gives
XY≤δλλXλ+δ−ββYβ. | (4.5) |
(4) The embedding Lemma 2.2, Hölder's and Young's inequalities and (4.3) imply that
‖u+v‖p(.)+1≤√2c∗[(‖Δu‖22+‖∇v‖22)]1/2 | (4.6) |
and
‖uv‖p(.)+12≤c2∗(‖Δu‖22+‖∇v‖22). | (4.7) |
Lemma 4.1. For any solution (u,v) of the system (1.2), with initial energy
E(0)<E1 | (4.8) |
and
γ1<(‖Δu0‖22+‖∇v0‖22)1/2≤1√2c∗, | (4.9) |
there exists γ2>γ1 such that
γ2≤(‖Δu‖22+‖∇v‖22)1/2, ∀t∈[0,T). | (4.10) |
Proof. Let γ=(‖Δu‖22+‖∇v‖22)1/2, then using (3.39), we have
E(t)≥12γ2−∫ΩF(x,u,v)dx. | (4.11) |
The use of Lemma 2.1, (4.6) and (4.7) leads to
∫ΩF(x,u,v)dx=a∫Ω|u+v|p(x)+1dx+2b∫Ω|uv|p(x)+12dx≤amax{‖u+v‖p−+1p(.)+1,‖u+v‖p++1p(.)+1}+2bmax{‖uv‖p−+12p(.)+12,‖uv‖p++12p(.)+12}≤amax{(√2c∗γ)p−+1,(√2c∗γ)p++1 }+2bmax{(c∗γ)p−+1,(c∗γ)p++1}. | (4.12) |
Combining (4.11) and (4.12), we obtain
E(t)≥12γ2−amax{(√2c∗γ)p−+1,(√2c∗γ)p++1}−2bmax{(c∗γ)p−+1,(c∗γ)p++1}. | (4.13) |
For γ in [0,1√2c∗], one can easily check that
c2∗γ2≤2c2∗γ2≤1. |
Consequently, we have
(√2c∗γ)p−+1≥(√2c∗γ)p++1 and (c∗γ)p−+1≥(√2c∗γ)p++1. |
Thus, (4.13) reduces to
E(t)≥12γ2−(√2(p−+1)a+2b)cp−+1∗γp−+1. |
If we set
h(γ)=12γ2−kγp−+1,wherek=(√2(p−+1)a+2b)cp−+1∗, |
then
E(t)≥h(γ), for all γ∈[0,1√2c∗]. | (4.14) |
It is clear that h is strictly increasing on [0,γ1) and strictly decreasing on [γ1,+∞). Since E(0)<E1 and E1=h(γ1), then, we can find γ2>γ1 such that h(γ2)=E(0). But,
α0=(‖Δu0‖22+‖∇v0‖22)1/2, |
therefore, by (4.14), we get
h(γ2)=E(0)≥h(γ0). |
This implies that γ0≥γ2. Hence, γ2∈(γ1,1√2c∗]. To prove (4.10), we assume that there is a t0∈[0,T) such that
(‖Δu(.,t0)‖22+‖∇v(.,t0)‖22)1/2<γ2. |
Since (‖Δu‖22+‖∇v‖22)1/2 is continuous and γ2>γ1, t0 can be selected so that
[‖Δu(.,t0)‖22+‖∇v(.,t0)‖22]1/2>γ1. |
Using (4.14) and the fact that h is decreasing on [γ1,1√2c∗], we obtain
E(t0)≥h((‖Δu(.,t0)‖22+‖∇v(.,t0)‖22)1/2)>h(γ2)=E(0), |
which contradicts the fact that E(t)≤E(0), for all t∈[0.T). Thus, (4.10) is established.
Lemma 4.2. Let H(t)=E1−E(t), for all t∈[0, T). Then, we have
0<H(0)≤H(t)≤∫ΩF(x,u,v)dx, for all t∈[0, T) | (4.15) |
and
∫ΩF(x,u,v)dx≥d∗γp−+12. | (4.16) |
Proof. Using (3.40), (4.8) and (4.11), we have
0<E1−E(0) =H(0)≤H(t)≤E1−12γ2+∫ΩF(x,u,v)dx. | (4.17) |
From the fact that h(γ1)=12γ21−d∗γp−+11=E1, we have
E1−12γ21=−d∗γp−+11, |
then since γ≥γ2>γ1, we obtain
H(t)≤−d∗γp−+11+∫ΩF(x,u,v)dx≤∫ΩF(x,u,v)dx. |
Thus, (4.15) is established. To establish (4.16), we use (4.15) to obtain
E(0)≥12γ2−∫ΩF(x,u,v)dx, |
which implies,
∫ΩF(x,u,v)dx≥12γ2−E(0). |
But E(0)=h(γ2) and γ≥γ2, so
∫ΩF(x,u,v)dx≥12γ22−h(γ2)=d∗γp−+12. |
Lemma 4.3. There exist C3,C4,C5>0 such that any solution of (1.2) satisfies
‖u‖p−+1p−+1+‖v‖p−+1p−+1≤C3(ζ(u)+ζ(v)), | (4.18) |
∫Ω|u|m(x)dx≤C4[(ζ(u)+ζ(v))m+p−+1+(ζ(u)+ζ(v))m−p−+1] | (4.19) |
and
∫Ω|v|r(x)dx≤C5[(ζ(u)+ζ(v))r+p−+1+(ζ(u)+ζ(v))r−p−+1], | (4.20) |
where ζ(u) and ζ(v) are defined in Corollary 3.2.
Proof. We define the following partition of Ω
Ω+={x∈Ω / |u(x,t)|≥1} and Ω−={x∈Ω / |u(x,t)|<1}. |
The properties of p(.) and Hölder's inequality imply that, for some c1>0,
ζ(u)=∫Ω+|u|p(x)+1dx +∫Ω−|u|p(x)+1dx≥∫Ω+|u|p−+1dx +∫Ω−|u|p++1dx≥∫Ω+|u|p−+1dx +c1(∫Ω−|u|p−+1dx)p++1p−+1. |
Hence,
ζ(u)≥∫Ω+|u|p−+1dx and (ζ(u)c1)p−+1p++1≥∫Ω−|u|p−+1dx. | (4.21) |
Use (4.21) to obtain, for some c2>0.
‖u‖p−+1p−+1≤ζ(u)+c2(ζ(u))p−+1p++1≤ζ(u)+ζ(v)+c2(ζ(u)+ζ(v))p−+1p++1=(ζ(u)+ζ(v))[1+c2(ζ(u)+ζ(v))p−− p+p++1]. |
Recalling (3.38) and (4.15), we deduce that
0<H(0)≤H(t)≤C2(ζ(u)+ζ(v)). | (4.22) |
Therefore,
‖u‖p−+1p−+1≤(ζ(u)+ζ(v))[1+c2(H(0)/C2)p−− p+p++1]≤c(ζ(u)+ζ(v)). |
Similarly, we arrive at
‖v‖p−+1p−+1≤c(ζ(u)+ζ(v)). |
Therefore, (4.18) is established. To establish (4.19), we recall that p−≥ max {m+,r+}, to conclude that
∫Ω|u|m(x)dx≤∫Ω+|u|m+dx +∫Ω−|u|m−dx≤c(∫Ω+|u|p−+1dx)m+p−+1 +c(∫Ω−|u|p−+1dx)m−p−+1≤c(‖u‖m+p−+1+‖u‖m−p−+1), c>0. |
Using similar calculations as above, we obtain (4.19) and (4.20).
Lemma 4.4. Let G(t)=H1−σ(t)+ε∫Ω(uut+vvt)dx,t>0, where ε>0 to be fixed later. Then, there exists ρ>0, such that
G′(t)≥ερ(H(t)+‖ut‖22+‖vt‖22+ζ(u)+ζ(v)) | (4.23) |
and hence,
G(t)≥G(0)>0, for t>0, |
where
0<σ≤min{p−−m++1(p−+1)(m+−1), p−−r++1(p−+1)(r+−1), p−−12(p−+1)}. | (4.24) |
Proof. Differentiate G and use (1.2) to have
G′(t)=(1−σ)H−σ(t)H′(t)+ε(‖ut‖22+‖vt‖22)+ε∫Ω(uf1(x,u,v)+vf2(x,u,v))dx−ε(‖Δu‖22+‖∇v‖22)−ε∫Ω(|ut|m(x)−2utu+|vt|r(x)−2vtv)dx. | (4.25) |
By the definition of H and E, we get
‖Δu‖22+‖∇v‖22=2∫ΩF(x,u,v)dx−‖ut‖22−‖vt‖22+2E1 −2H(t). | (4.26) |
Combining (3.36), (4.25) and (4.26), we obtain
G′(t)≥(1−σ)H−σ(t)H′(t)+2ε(‖ut‖22+‖vt‖22)+2εH(t)−2εE1+ε(p−−1)∫ΩF(x,u,v)dx−ε∫Ω(|u||ut|m(x)−1+|v||vt|r(x)−1)dx. | (4.27) |
A combination of (4.16) and (4.27) leads to
G′(t)≥(1−σ)H−σ(t)H′(t)+2ε(‖ut‖22+‖vt‖22) | (4.28) |
+ε(p−−1−2(d∗γp−+12)−1E1)∫ΩF(x,u,v)dx+2εH(t)−ε∫Ω(|u||ut|m(x)−1+|v||vt|r(x)−1)dx, | (4.29) |
where p−−1−2(d∗αp−+12)−1E1>0, since γ2>γ1.
Now, the last two terms of (4.29) can be estimated by applying (4.5) with X=|u|, Y=|ut|m(x)−1, λ=m(x), β=m(x)m(x)−1, as follows:
∫Ω|u||ut|m(x)−1dx≤∫Ωδm(x)m(x)|u|m(x)dx +∫Ωm(x)−1m(x)δ−m(x)/(m(x)−1)|ut|m(x)dx. | (4.30) |
Let ˜k be a positive constant to be selected later and take δ=[˜kH−σ(t)]1−m(x)m(x) to obtain
∫Ω|u||ut|m(x)−1dx≤˜k1−m−m−∫Ω[H(t)]σ(m(x)−1)|u|m(x)dx +m+−1m−˜kH−σ(t)∫Ω|ut|m(x)dx. | (4.31) |
The properties of m(x) and H(t) give
∫Ω[H(t)]σ(m(x)−1)|u|m(x)dx=∫Ω[H(t)H(0)]σ(m(x)−1)[H(0)]σ(m(x)−1)|u|m(x)dx≤~c2[H(t)]σ(m+−1)∫Ω[H(0)]σ(m(x)−1)|u|m(x)dx, |
where ~c2=1/[H(0)]σ(m+−1). But [H(0)]σ(m(x)−1)≤c3, for all x∈Ω, where c3>0. So, for some c4>0, we get
∫Ω[H(t)]σ(m(x)−1)|u|m(x)dx≤c4[H(t)]σ(m+−1)∫Ω|u|m(x)dx. | (4.32) |
Combining (4.31) and (4.32) to obtain
∫Ω|u||ut|m(x)−1dx≤c4˜k1−m−m−[H(t)]σ(m+−1)∫Ω|u|m(x)dx +m+−1m−˜kH−σ(t)∫Ω|ut|m(x)dx. | (4.33) |
Applying Similar calculations, we arrive at
∫Ω|vt|r(x)−1vdx≤c5˜k1−r−r−[H(t)]σ(r+−1)∫Ω|v|r(x)dx +r+−1r−˜kH−σ(t)∫Ω|vt|r(x)dx. | (4.34) |
Adding (4.33) and (4.34), we have
∫Ω(|u||ut|m(x)−1+|v||vt|r(x)−1)dx≤c4˜k1−m−m−[H(t)]σ(m+−1)∫Ω|u|m(x)dx+c5˜k1−r−r−[H(t)]σ(r+−1)∫Ω|v|r(x)dx+˜αH−σ(t)(∫Ω|ut|m(x)dx+∫Ω|vt|r(x)dx), | (4.35) |
where ˜α=max{m+−1m−˜k,r+−1r−˜k}. Using (3.43), we have
H′(t)=∫Ω|ut|m(x)dx+∫Ω|vt|r(x)dx. |
Hence, (4.35) becomes
∫Ω(|u||ut|m(x)−1+|v||vt|r(x)−1)dx≤c4˜k1−m−m−[H(t)]σ(m+−1)∫Ω|u|m(x)dx+c5˜k1−r−r−[H(t)]σ(r+−1)∫Ω|v|r(x)dx+˜αH−σ(t)H′(t). | (4.36) |
Using (3.38) and (4.15), we have
[H(t)]σ(m+−1)≤c(ζ(u)+ζ(v))σ(m+−1). |
Using the last inequality and (4.19), it can be concluded that
[H(t)]σ(m+−1)∫Ω|u|m(x)dx≤c6(ζ(u)+ζ(v))σ(m+−1)+m+p−+1+c6(ζ(u)+ζ(v))σ(m+−1)+m−p−+1, | (4.37) |
Applying (4.4) with z=ζ(u)+ζ(v), a=H(0), δ=σ(m+−1)+m+p−+1 and then with δ=σ(m+−1)+m−p−+1, respectively, we get
(ζ(u)+ζ(v))σ(m+−1)+m+p−+1≤[1+1H(0)](ζ(u)+ζ(v)+H(0))≤α(ζ(u)+ζ(v)+H(t)) | (4.38) |
and
(ζ(u)+ζ(v))σ(m+−1)+m−p−+1≤α(ζ(u)+ζ(v)+H(t)) | (4.39) |
where α=1+1H(0).
A combination of (4.37)–(4.39) implies that, for some c7>0,
[H(t)]σ(m+−1)∫Ω|u|m(x)dx≤c7(ζ(u)+ζ(v)+H(t)). | (4.40) |
Similar calculations give, for some c8>0,
[H(t)]σ(r+−1)∫Ω|v|r(x)dx≤c8(ζ(u)+ζ(v)+H(t)). | (4.41) |
Using (4.35), (4.40) and (4.41), we obtain, for c9,c10>0,
∫Ω(|u||ut|m(x)−1+|v||vt|r(x)−1)dx≤˜k1−m−m−c9(ζ(u)+ζ(v)+H(t))+˜k1−r−r−c10(ζ(u)+ζ(v)+H(t))+r+−1r−˜kH−σ(t)H′(t). | (4.42) |
Inserting (4.42) into (4.29), we have
G′(t)≥(1−σ−ε˜R)H−σ(t)H′(t)+2ε(‖ut‖22+‖vt‖22)+ε(2−˜k1−m−m−c9−˜k1−r−r−c10)H(t)+ε(c11−˜k1−m−m−c9−˜k1−r−r−c10)(ζ(u)+ζ(v)). |
where c11>0 and ˜R=˜k(m+−1m−+r+−1r−). Now, we select ˜k large enough so that
G′(t)≥(1−σ−ε˜R)H−σ(t)H′(t)+εc12(‖ut‖22+‖vt‖22+H(t)+ζ(u)+ζ(v)), |
where c12>0. Once ˜k is fixed, we select ε small enough so that
1−σ−ε˜R≥0 and G(0)=H1−σ(0)+ε∫Ω(u0u1+v0v1)dx>0. |
Using the fact that H is a non-decreasing function, therefore (4.23) is established.
Theorem 4.1. Under the assumptions (4.1) and (4.9), any solution of the system (1.2) blows-up in a finite time.
Proof. Using (4.3) and the definition of G, we have
G1/(1−σ)(t)≤(H1−σ(t)+ε∫Ω|uut+vvt|dx)1/(1−σ)≤2σ/(1−σ)(H(t)+(ε∫Ω(|uut|+|vvt|)dx)1/(1−σ))≤c13(H(t)+(∫Ω(|u||ut|+|v||vt|)dx)1/(1−σ)), | (4.43) |
where c13=2σ/(1−σ)max{1,ε1/(1−σ)}.
The embedding Lemma 2.2, Lemma 4.2, Hölder's and Young's inequalities give
(∫Ω(|u||ut|+|v||vt|)dx)1/(1−σ)≤2σ/(1−σ)(∫Ω|u||ut|dx)1/(1−σ)+2σ/(1−σ) (∫Ω|v||vt|dx)1/(1−σ)≤2σ/(1−σ)(‖u‖1/(1−σ)2‖ut‖1/(1−σ)2+‖v‖1/(1−σ)2‖vt‖1/(1−σ)2)≤c14(‖u‖1/(1−σ)p−+1‖ut‖1/(1−σ)2+‖v‖1/(1−σ)p−+1‖vt‖1/(1−σ)2)≤c15(‖u‖2/(1−2σ)p−+1+‖ut‖22+‖v‖2/(1−2σ)p−+1+‖vt‖22)≤c15((ζ(u)+ζ(v))τ+‖ut‖22+‖vt‖22), | (4.44) |
where τ=2/(p−+1)(1−2σ).
Using (4.15), (3.38) and since τ≤1, we get, for some c18>0,
(∫Ω(|u||ut|+|v||vt|)dx)1/(1−σ)≤c16(ζ(u)+ζ(v)+‖ut‖22+‖vt‖22+H(t)). |
Inserting the last estimate in (4.43), we obtain
G1/(1−σ)(t)≤c17(ζ(u)+ζ(v)+H(t)+‖ut‖22+‖vt‖22). | (4.45) |
Combining (4.23) and (4.45), we deduce that
G′(t)≥˜cG1/(1−σ)(t), for all t>0. |
where ˜c=ερc16. A simple integration over (0,t) yields
Gσ/(1−σ)(t)≥1G−σ1−σ(0)−σ˜ct1−σ, |
which implies that G(t)⟶+∞, as t⟶T∗, where T∗≤1−σσ˜c[Gσ(1−σ)(0)]. Consequently, the solution of Problem (1.2) blows-up in a finite time.
In this section, we establish the existence of global solutions for initial data in a certain stable set. Then, we show that the decay estimates of the solution energy are exponential or polynomial, depending on the max{m+,r+}.
To state and prove our first result, we introduce the two functionals defined for all t∈(0,T) by
I(t)=I(u(t))=‖Δu‖22+‖∇v‖22−(p++1)∫ΩF(x,u,v)dx, | (5.1) |
J(t)=J(u(t))=12(‖Δu‖22+‖∇v‖22)−∫ΩF(x,u,v)dx | (5.2) |
and give the following Lemma.
Lemma 5.1. Under the assumptions (H.1) and (H.2), we suppose that
I(0)>0 and β<1, |
where
β=C2(p++1)max{cp−+1∗(2(p++1)p+−1E(0))p−−12,cp++1∗(2(p++1)p+−1E(0))p+−12}. |
Then,
I(t)>0, for all t∈(0,T). | (5.3) |
Proof. From the continuity of I and the fact that I(0)>0, there exists tk in ]0,T) such that
I(t)≥0, ∀t∈(0,tk). | (5.4) |
We have to show that this inequality is strict.
Recalling (5.1) and (5.2), we have
J(t)=p+−12(p++1)(‖Δu‖22+‖∇v‖22)+1p++1I(t), |
Combining with (5.4), this gives
J(t)≥p+−12(p++1)(‖Δu‖22+‖∇v‖22),∀t∈(0,tk). | (5.5) |
From the definition of the energy, we have
E(t)=J(t)+12(‖ut‖22+‖vt‖22), | (5.6) |
for all t∈(0,T). Consequently,
‖Δu‖22+‖∇v‖22≤2(p++1)(p+−1)E(t). |
Thus, the decreasing property of E leads to
max{‖Δu‖22,‖∇v‖22}≤2(p++1)(p+−1)E(0),∀t∈(0,tk). | (5.7) |
On the other hand, from Lemma 2.1 and the Sobolev embedding H20(Ω)↪Lp(⋅)+1(Ω), we have
∫Ω|u|p(x)+1dx≤max{cp−+1∗‖Δu‖p−+12,cp++1∗‖Δu‖p++12}≤max {cp−+1∗‖Δu‖p−−12,cp++1∗‖Δu‖p+−12}‖Δu‖22. |
Combining with (5.7), this yields, for all t∈(0,tk),
∫Ω|u|p(x)+1dx≤max{cp−+1∗(2(p++1)(p+−1)E(0))p−−12,cp++1∗(2(p++1)(p+−1)E(0))p+−12}‖Δu‖22. |
Therefore,
∫Ω|u|p(x)+1dx≤βC2(p++1)‖Δu‖22. | (5.8) |
Similarly, we have
∫Ω|v|p(x)+1dx≤βC2(p++1)‖∇v‖22. | (5.9) |
The addition of (5.8) and (5.9) gives
∫Ω(|u|p(x)+1+|v|p(x)+1)dx≤βC2(p++1)(‖Δu‖22+‖∇v‖22). | (5.10) |
Combining (5.10) with (3.41), we infer that
∫ΩF(x,u,v)dx≤βp++1(‖Δu‖22+‖∇v‖22)<1p++1(‖Δu‖22+‖∇v‖22), | (5.11) |
for all t∈(0,tk). From the definition of I, this leads to
I(t)>0. ∀t∈(0,tk). |
By repeating the above procedure and using the decreasing property of E, we can extend tk to T and obtain (5.3).
Theorem 5.1. Suppose that all assumptions of Lemma 5.1 are fulfilling. Then, the local solution (u,v) of the system (1.2) exists globally.
Proof. Substituting (5.5) into (5.6) and thanks to (5.3), it yields
E(t)≥p+−12(p++1)(‖Δu‖22+‖∇v‖22)+12(‖ut‖22+‖vt‖22), |
for all t∈(0,T). Then, we have
‖Δu‖22+‖∇v‖22+‖ut‖22+‖vt‖22≤C3E(t)≤C3E(0), | (5.12) |
for C3=max{2,2(p++1)p+−1}. This means that the norm in (5.12) is bounded independently of t. Therefore, the solution (u,v) exists globally.
To prove the decay result, we need the following Lemma.
Lemma 5.2. Suppose that the assumptions of Lemma 5.1 hold. Then, there exists a positive constant C4, such that the global solution (u,v) satisfies
∫Ω(|u(t)|m(x)+|v(t)|r(x))dx≤C4E(t) for all t≥0. | (5.13) |
Proof. The result is immediate by replacing p with m and r in (5.8) and (5.9), respectively, and by recalling (5.12).
Theorem 5.2. Under the assumptions of Lemma 5.1, the solution of the system (1.2) satisfies the following decay estimates, for all t≥0,
E(t)≤{k(1+t)2/(λ+−2), if α>2,ke−ωt, if α=2, | (5.14) |
where α=max {m+,r+} and k,w>0 are two positive constants.
Proof. Multiplying (1.2)1 by u(t)Eη(t) and (1.2)2 by v(t)Eη(t) and then, integrating each result over Ω×(s,T), for s∈(0,T) and η≥0 to be specified later, we arrive at
∫Ts∫ΩEη(t)[u(t)utt(t)+u(t)Δ2u(t)+u(t)|ut|m(x)−2ut(t)]dxdt=∫Ts∫ΩEη(t)u(t)f1(x,u,v)dxdt |
and
∫Ts∫ΩEη(t)[v(t)vtt(t)−v(t)Δv(t)+v(t)|vt(t)|r(x)−2vt(t)]dxdt=∫Ts∫ΩEη(t)v(t)f2(x,u,v)dxdt. |
Green's formula and the boundary conditions lead to
∫Ts∫ΩEη(t)[(u(t)ut(t))t−|ut(t)|2+|Δu(t)|2+u(t)ut(t)|ut(t)|m(x)−2]dxdt=∫Ts∫ΩEη(t)u(t)f1(x,u,v)dxdt, | (5.15) |
and
∫Ts∫ΩEη(t)[(v(t)vt(t))t−|vt(t)|2+|∇v(t)|2+v(t)vt(t)|vt(t)|r(x)−2]dxdt=∫Ts∫ΩEη(t)v(t)f2(x,u,v)dxdt. | (5.16) |
Adding and subtracting the following two terms
|∫Ts∫ΩEη(t)[β|Δu(t)|2+(1+β)|ut(t)|2]dxdt∫Ts∫ΩEη(t)[β|∇v(t)|2+(1+β)|vt(t)|2]dxdt, |
to (5.15) and (5.16), respectively, and recalling (5.11), we arrive at
(1−β)∫TsEη(t)∫Ω(|Δu(t)|2+|∇v(t)|2+|ut(t)|2+|vt(t)|2)dxdt+∫TsEη(t)∫Ω[(u(t)ut(t)+v(t)vt(t))t−(2−β)(|ut(t)|2+|vt(t)|2)]dxdt+∫TsEη(t)∫Ω(u(t)ut(t)|ut(t)|m(x)−2+v(t)vt(t)|vt(t)|r(x)−2)dxdt=−∫TsEη(t)∫Ω[β(|Δu(t)|2+|∇v(t)|2)−(p(x)+1)F(x,u,v)]dxdt≤0. | (5.17) |
Now, by exploiting the formula:
Eη(t)∫Ω(u(t)ut(t)+v(t)vt(t))tdx=ddt(Eη(t)∫Ω(u(t)ut(t)+v(t)vt(t))dx)−ηEη−1(t)E′(t)∫Ω(u(t)ut(t)+v(t)vt(t))dx, |
estimate (5.17) yields
2(1−β)∫TsEη+1(t)dt≤η∫TsEη−1(t)E′(t)∫Ω(u(t)ut(t)+v(t)vt(t))dxdt−∫Tsddt(Eη(t)∫Ω(u(t)ut(t)+v(t)vt(t))dx)dt−∫TsEη(t)∫Ω(u(t)ut(t)|ut(t)|m(x)−2+v(t)vt(t)|vt(t)|r(x)−2)dxdt+(2−β)∫TsEη(t)∫Ω(|ut(t)|2+|vt(t)|2)dxdt=I1+I2+I3+I4. | (5.18) |
Next, we handle the terms Ii,i=¯1,4 and denote by C a positive generic constant.
● First, applying Young's and Poincaré's inequalities, we obtain
\begin{align*} I_{1}& = \eta \int_{s }^{T} E^{\eta -1}\left( t\right)E^{'}\left(t\right)\int_{\Omega } \left( u \left( t\right)u_{t}\left( t\right)+v\left( t\right)v_{t}\left( t\right)\right)dxdt\\ & \leq \frac{\eta }{2}\int_{s }^{T}E^{\eta-1}\left( t\right)\left(-E^{'}\left( t\right)\right)\left[ \left\Vert u\left( t\right)\right\Vert ^{2}_{2}+\left\Vert u_{t}\left( t\right)\right\Vert ^{2}_{2}+ \left\Vert v\left( t\right)\right\Vert ^{2}_{2}+\left\Vert v_{t}\left( t\right)\right\Vert ^{2}_{2}\right] dt \\ & \leq C\int_{s }^{T}E^{\eta -1}\left( t\right) \left( -E^{'}\left( t\right)\right) \left[ \left\Vert \Delta u\left( t\right)\right\Vert ^{2}_{2}+\left\Vert \nabla v\left( t\right)\right\Vert ^{2}_{2}+\left\Vert u_{t}\left( t\right)\right\Vert ^{2}_{2}+\left\Vert v_{t}\left( t\right)\right\Vert ^{2}_{2}\right] dt, \end{align*} |
By (5.12), this gives
\begin{align} I_{1} & \leq C \int_{s }^{T}E^{\eta}\left( t\right)\left( -E^{'}\left( t\right)\right) dt \\ & \leq CE^{\eta+1}\left( s\right)-CE^{\eta+1}\left( T\right) \leq CE^{\eta}\left( 0\right)E\left( s\right)\leq CE\left( s \right). \end{align} | (5.19) |
● Concerning the second term, we have
\begin{align*} I_{2}& = -\int_{s }^{T} \frac{d}{dt}\left( E^{\eta}\left( t\right)\int_{\Omega }\left( u\left( t\right)u_{t}\left( t\right)+v\left( t\right)v_{t}\left( t\right)\right)dx\right)dt \nonumber \\ & = E^{\eta }\left( s\right) \left( \int_{\Omega } \left( u\left( x, s\right)u_{t}\left( x, s\right)+v\left( x, s\right)v_{t}\left( x, s\right)\right) dx\right) \nonumber \\ &-E^{\eta}\left(T\right) \left( \int_{\Omega } \left( u \left( x, T\right)u_{t}\left( x, T\right)+v\left( x, T\right)v_{t}\left( x, T \right)\right) dx \right) \end{align*} |
Again, by (5.12) and the inequalities of Young and Poincaré, we get
\begin{align*} \left\vert \int_{\Omega } u\left( x, s\right)u_{t}\left( x, s\right) dx \right\vert \leq C\left( \left\Vert \Delta u\left( s\right)\right\Vert ^{2}_{2}+\left\Vert u_{t}\left( s\right)\right\Vert ^{2}_{2}\right) \leq CE\left( s\right), \nonumber \\ \left\vert \int_{\Omega } u\left( x, T\right)u_{t}\left( x, T\right) dx \right\vert \leq C\left( \left\Vert \Delta u\left( T\right)\right\Vert ^{2}_{2}+\left\Vert u_{t}\left( T\right)\right\Vert ^{2}_{2}\right) \leq CE\left( T\right) \end{align*} |
and likewise
\begin{align*} \left\vert \int_{\Omega } v\left( x, s\right)v_{t}\left( x, s\right) dx \right\vert \leq C\left( \left\Vert \nabla v\left( s\right)\right\Vert ^{2}_{2}+\left\Vert v_{t}\left( s\right)\right\Vert ^{2}_{2}\right) \leq CE\left( s\right)\nonumber \\ \left\vert \int_{\Omega } v\left( x, T\right)v_{t}\left( x, T\right) dx \right\vert \leq C\left( \left\Vert \nabla v\left( T\right)\right\Vert ^{2}_{2}+\left\Vert v_{t}\left( T\right)\right\Vert ^{2}_{2}\right) \leq CE\left( T\right). \end{align*} |
Therefore,
\begin{align} I_{2} \leq C E^{\eta+1}\left( s \right) \leq CE^{\eta}\left( 0\right)E\left( s\right)\leq CE\left( s\right). \end{align} | (5.20) |
● For the third term, we apply Young's inequality (as in (4.30)) to obtain, for some \varepsilon > 0,
\begin{align*} I_{3} = & - \int_{s }^{T}E^{\eta}\left( t\right)\int_{\Omega }\left( u\left( t\right)u_{t}\left( t\right)\left\vert u_{t}\left( t\right)\right\vert^{m\left( x\right) -2}+v\left( t\right)v_{t}\left( t\right)\left\vert v_{t}\left( t\right)\right\vert ^{r\left( x\right) -2}\right)dxdt \nonumber \\ & \leq \int_{s }^{T} E^{\eta}\left( t\right)\left( \frac{\varepsilon}{2} \int_{\Omega } \left\vert u\left( t\right)\right\vert ^{m\left( x\right)}dx+ \frac{1}{\varepsilon} \int_{\Omega } \left\vert u_{t}\left( t\right)\right\vert ^{m\left( x\right)}dx\right)dt \\ &+ \int_{s }^{T} E^{\eta}\left( t\right)\left( \frac{\varepsilon}{2} \int_{\Omega } \left\vert v\left( t\right)\right\vert ^{r\left( x\right)}dx+ \frac{1}{\varepsilon} \int_{\Omega } \left\vert v_{t}\left( t\right)\right\vert ^{r\left( x\right)}dx\right) dt. \end{align*} |
Invoking Lemma 5.2 and recalling (3.40), yields
\begin{align} I_{3} &\leq \frac{\varepsilon}{2} \int_{s }^{T} E^{\eta }\left( t\right)\int_{\Omega } \left( \left\vert u\left( t\right)\right\vert ^{m\left( x\right)}+\left\vert v\left( t\right)\right\vert ^{r\left( x\right)}\right) dxdt+ \frac{1}{\varepsilon}\int_{s }^{T} E^{\eta }\left( t\right)\left( -E^{'}\left( t\right)\right) dt \\ & \leq \varepsilon C \int_{s }^{T} E^{\eta +1}\left( t\right)dt+C_{\varepsilon}E\left(s\right). \end{align} | (5.21) |
● Now, we handle I_{4}, as follows:
\begin{align*} I_{4}& = (2-\beta)\int_{s }^{T}E^{\eta}\left( t\right) \int_{\Omega } \left( \left \vert u_{t}\left( t\right)\right\vert ^{2}+\left\vert v_{t}\left( t \right) \right\vert ^{2} \right) dxdt \nonumber \\ & = (2-\beta)\left[ \int_{s }^{T}E^{\eta}\left( t\right) \int_{\Omega } \left \vert u_{t}\left( t\right)\right\vert ^{2}dxdt + \int_{s }^{T}E^{\eta}\left( t\right) \int_{\Omega } \left \vert v_{t}\left( t\right)\right\vert ^{2}dxdt\right] \nonumber \\ & = (2-\beta)(J_{1}+J_{2}). \end{align*} |
We claim that
\begin{align} J_{1}, J_{2} \leq \varepsilon C \int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}E\left(s\right). \end{align} | (5.22) |
Since 2 \leq \tilde{\alpha} \leq m(.) \leq \alpha on \Omega, we obtain
\begin{align*} J_{1}& = \int_{s }^{T}E^{\eta}\left( t\right) \int_{\Omega} \left\vert u_{t} \left( t\right) \right\vert ^{2}dx dt\\ & = \int_{s }^{T}E^{\eta}\left( t\right)\left[ \int_{\Omega_{-} } \left\vert u_{t}\left( t\right)\right\vert ^{2}dx+\int_{\Omega_{+} } \left\vert u_{t}\left( t\right)\right\vert ^{2}dx\right] dt \nonumber \\ &\leq C \int_{s }^{T}E^{\eta}\left( t\right)\left[ \left( \int_{\Omega_{-} } \left\vert u_{t}\left( t\right)\right\vert ^{\alpha}dx\right)^{2/ \alpha }+\left( \int_{\Omega_{+} } \left\vert u_{t}\left( t\right)\right\vert ^{\tilde{\alpha}}dx\right) ^{2/ \tilde{\alpha}}\right] dt\\ &\leq C \int_{s }^{T}E^{\eta}\left( t\right)\left[ \left( \int_{\Omega_{-}} \left\vert u_{t}\left( t\right)\right\vert ^{m(x)}dx\right)^{2/ \alpha}+\left( \int_{\Omega _{+}} \left\vert u_{t}\left( t\right)\right\vert ^{m(x)}dx\right) ^{2/ \tilde{\alpha}}\right] dt, \end{align*} |
where
\tilde{\alpha} = \ min\left\lbrace m^{-}, r^{-}\right\rbrace, \ \alpha = \ max\left\lbrace m^{+}, r^{+}\right\rbrace, |
\Omega_+ = \{x\in \Omega:\vert u(x, t)\vert \ge 1\} \text{ and }\Omega_- = \{x\in \Omega: \vert u(x, t)\vert < 1\}. |
Therefore,
\begin{align} J_{1} & \leq C \int_{s }^{T}E^{\eta}\left( t\right)\left( -E'\left( t\right)\right)^{2 / \alpha} dt + C \int_{s }^{T}E^{\eta}\left( t\right)\left( -E'\left( t\right)\right) ^{2/ \tilde{\alpha}}dt \\ & = C(J_{\alpha} + J_{ \tilde{\alpha}}). \end{align} | (5.23) |
Three cases are possible:
(1) if \alpha = \tilde{\alpha} = 2 \ (m(x) = r(x) = 2, on \Omega ), then
\begin{align*} J_{1} &\leq C\int_{s }^{T} E^{\eta}\left( t\right)\left( -E^{'}\left( t\right)\right) dt \\ &\leq CE\left(s\right)\leq \varepsilon C\int_{s }^{T}E^{\eta+1}\left( t\right)dt+CE\left(s\right). \end{align*} |
(2) if \alpha > 2 and \tilde{\alpha} = 2 , we exploit Young's inequality with
\delta = \left( \eta+1\right) / \eta \ \text{and }\ \delta' = \eta+1 |
to find
\begin{align*} J_{\alpha}& = \int_{s }^{T}E^{\eta}\left( t\right)\left( -E'\left( t\right)\right)^ {2 / \alpha} dt \nonumber \\ & \leq \varepsilon C\int_{s }^{T}E^{\eta+1}\left( t\right)dt+ C_{\varepsilon}\int_{s }^{T} \left( -E'\left( t\right)\right) ^{2 \left(\eta +1 \right) / \alpha}dt. \end{align*} |
So, for \eta = \frac{\alpha}{2}-1 , we get
\begin{align} J_{\alpha} &\leq \varepsilon C \int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}\int_{s }^{T}\left( -E'\left( t\right)\right) dt \\ &\leq \varepsilon C \int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}E\left( s\right). \end{align} | (5.24) |
Also, in this case, we have
\begin{align} J_{\tilde{\alpha}} = \int_{s }^{T}E^{\eta}\left( t\right)\left( -E'\left( t\right)\right)dt\leq CE(s). \end{align} | (5.25) |
By inserting (5.24) and (5.25) into (5.23), we infer that J_{1} (and similarly J_{ 2} ) satisfies (5.22).
(3) if \alpha > \tilde{\alpha} > 2 , we apply Young's inequality with
\delta = \tilde{\alpha}/ \left( \tilde{\alpha}-2 \right) \ \text{and }\ \delta' = \tilde{\alpha}/2 |
to obtain
\begin{align*} J_{\tilde{\alpha}}& = \int_{s }^{T}E^{\eta}\left( t\right)\left( -E'\left( t\right)\right) ^{2 / \tilde{\alpha}} dt\\ & \leq \varepsilon C \int_{s }^{T}E\left( t\right) ^{\eta \tilde{\alpha} /\left( \tilde{\alpha}-2\right)}dt+C_{\varepsilon}E\left(s\right). \end{align*} |
But \eta \tilde{\alpha}/ \left(\tilde{\alpha}-2\right) = \eta+1+\left(\alpha-\tilde{\alpha}\right) /\left(\tilde{\alpha}-2\right), then
\begin{align} J_{\tilde{\alpha}} &\leq \varepsilon C \left( E\left(s\right) \right) ^{\left( \alpha-\tilde{\alpha}\right) /\left( \alpha-2\right)}\int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}E\left( s\right) \\ &\leq \varepsilon C \int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}E\left(s\right). \end{align} | (5.26) |
The addition of (5.24) and (5.26) leads to (5.22).
We conclude that the claim is true for any \alpha \geq \tilde{\alpha} \geq 2. Therefore,
\begin{align} I_{4} \leq \varepsilon C \int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}E\left(s\right). \end{align} | (5.27) |
Now, substituting (4.22)–(5.21) and (5.27) into (5.18), we get
\begin{align*} 2\left( 1-\beta \right)\int_{s }^{T}E^{\eta+1}\left( t\right)dt\leq \varepsilon C \int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}E\left(s\right), \end{align*} |
with \eta = \frac{\alpha}{2}-1. So,
\begin{align*} 2\left( 1-\beta \right)\int_{s }^{T}E^{\frac{\alpha}{2}}\left( t\right)dt \leq \varepsilon C \int_{s }^{T}E^{\frac{\alpha}{2}}\left( t\right)dt+C_{\varepsilon}E\left(s\right). \end{align*} |
Choosing \varepsilon small enough, we obtain
\begin{align*} \int_{s }^{T}E^{\frac{\alpha}{2}}\left( t\right)dt\leq CE\left(s\right). \end{align*} |
Letting T\longrightarrow \infty, it yields
\begin{align*} \int_{s }^{\infty}E^{\frac{\alpha}{2}}\left( t\right)dt\leq CE\left(s\right), \forall s > 0. \end{align*} |
Applying Komornik's lemma [23], we get the desired decay estimates.
We considered a coupled system of Laplacian and bi-Laplacian equations with nonlinear damping and source terms of variable-exponents nonlinearities. We gave a detailed proof of the local existence using Faedo-Galerkin method and Banach-fixed-point theorem. We also showed that the solutions with positive-initial energy blow-up in a finite time. Furthermore, we proved a global existence theorem, using the Stable-set method and established a decay estimate of the solution energy, by Komornik's integral approach.
The authors would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia. The support provided by the Interdisciplinary Research Center for Construction & Building Materials (IRC-CBM) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, for funding this work through Project No. INCB2205, is also greatly acknowledged.
The authors declare that there is no conflict of interest.
[1] |
A. A. Alderremy, R. Shah, N. A. Shah, S. Aly, K. Nonlaopan, Evaluation of fractional-order pantograph delay differential equation via modified Laguerre wavelet method, Symmetry, 14 (2022), 2356. https://doi.org/10.3390/sym14112356 doi: 10.3390/sym14112356
![]() |
[2] |
J. Hajishafieiha, S. Abbasbandy, Numerical approach for solving the fractional pantograph delay differential equations, Complexity, 2022 (2022), 4134892. https://doi.org/10.1155/2022/4134892 doi: 10.1155/2022/4134892
![]() |
[3] |
M. M. Al-Sawalha, A. S. Alshehry, K. Nonlaopon, R. Shah, O. Y. Ababneh, Fractional view analysis of delay differential equations via numerical method, AIMS Math., 7 (2022), 20510–20523. https://doi.org/10.3934/math.20221123 doi: 10.3934/math.20221123
![]() |
[4] |
M. B. Ali Khan, T. Abdeljawad, K. Shah, G. Alil, H. Khan, A. Khan, Study of a nonlinear multi-terms boundary value problem of fractional pantograph differential equations, Adv. Differ. Equ., 2021 (2021), 143. https://doi.org/10.1186/s13662-021-03313-z doi: 10.1186/s13662-021-03313-z
![]() |
[5] |
J. Zhao, Y. Cao, Y. Xu, Tau approximate solution of linear pantograph Volterra delay-integro-differential equation, Comput. Appl. Math., 39 (2020), 46. https://doi.org/10.1007/s40314-020-1080-5 doi: 10.1007/s40314-020-1080-5
![]() |
[6] |
A. D. Polyanin, V. G. Sorokin, Nonlinear pantograph-type diffusion PDEs: Exact solutions and the principle of analogy, Mathematics, 9 (2021), 511. https://doi.org/10.3390/math9050511 doi: 10.3390/math9050511
![]() |
[7] | M. Houas, Existence and stability of fractional pantograph differential equations with Caputo-Hadamard type derivative, Turkish J. Ineq., 4 (2020), 1–10. |
[8] | M. A. Darwish, K. Sadarangani, Existence of solutions for hybrid fractional pantograph equations, Appl. Anal. Discrete Math. 9 (2015), 150–167. |
[9] | D. Vivek, K. Kanagarajan, S. Sivasundaram, On the behavior of solutions of Hilfer-Hadamard type fractional neutral pantograph equations with boundary conditions, Commun. Appl. Anal., 22 (2018), 211–232. |
[10] |
I. Ahmad, P. Kumam, T. Abdeljawad, F. Jarad, P. Borisut, M. A. Demba, et al., Existence and uniqueness results for \varphi-Caputo implicit fractional pantograph differential equation with generalized anti-periodic boundary condition, Adv. Differ. Equ., 2020 (2020), 555. https://doi.org/10.1186/s13662-020-03008-x doi: 10.1186/s13662-020-03008-x
![]() |
[11] |
M. S. Abdo, T. Abdeljawad, K. D. Kucche, M. A. Alqudah, S. M. Saeed, M. B. Jeelani, On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative, Adv. Differ. Equ., 2021 (2021), 65. https://doi.org/10.1186/s13662-021-03229-8 doi: 10.1186/s13662-021-03229-8
![]() |
[12] |
K. Shah, D. Vivek, K. Kanagarajan, Dynamics and stability of \psi-fractional pantograph equations with boundary conditions, Bol. Soc. Parana. Mat., 39 (2021), 43–55. https://doi.org/10.5269/bspm.41154 doi: 10.5269/bspm.41154
![]() |
[13] | M. Houas, Existence and Ulam stability of fractional pantograph differential equations with two Caputo-Hadamard derivatives, Acta Univ. Apulensis, 63 (2020), 35–49. |
[14] |
G. Wu, K. Dong, Z. Xu, S. Xiao, W. Wei, H. Chen, et al., Pantograph-catenary electrical contact system of high-speed railways: recent progress, challenges, and outlooks, Rail. Eng. Sci., 30 (2022), 437–467. https://doi.org/10.1007/s40534-022-00281-2 doi: 10.1007/s40534-022-00281-2
![]() |
[15] |
H. Wang, D. Zheng, P. Huang, W. Yan, Design optimisation of railway pantograph-catenary systems with multiple objectives, Vehicle Syst. Dyn., 2022. https://doi.org/10.1080/00423114.2022.2151921 doi: 10.1080/00423114.2022.2151921
![]() |
[16] |
H. Jafari, N. A. Tuan, R. M. Ganji, A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations, J. King Saud Univ.-Sci., 33 (2021), 101185. https://doi.org/10.1016/j.jksus.2020.08.029 doi: 10.1016/j.jksus.2020.08.029
![]() |
[17] |
G. Deng, Y. Yang, E. Tohidi, High accurate pseudo-spectral Galerkin scheme for pantograph type Volterra integro-differential equations with singular kernels, Appl. Math. Comput., 396 (2021), 125866. https://doi.org/10.1016/j.amc.2020.125866 doi: 10.1016/j.amc.2020.125866
![]() |
[18] | L. Podlubny, Fractional differential equations, New York: Academic Press, 1999. |
[19] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006. |
[20] | A. Granas, J. Dugundji, Elementary fixed point theorems, In: Fixed point theory, Springer, New York: Springer, 2003, 9–84. https://doi.org/10.1007/978-0-387-21593-8_2 |
[21] | A. H. Bhrawy, A. A. Al-Zahrani, Y. A. Alhamed, D. Baleanu, A new generalized Laguerre-Gauss collocation scheme for numerical solution of generalized fractional pantograph equations, Rom. J. Phys., 59 (2014), 646–657. |
[22] |
A. Pedas, E. Tamme, Numerical solution of nonlinear fractional differential equations by spline collocation methods, J. Comput. Appl. Math., 255 (2014), 216–230. https://doi.org/10.1016/j.cam.2013.04.049 doi: 10.1016/j.cam.2013.04.049
![]() |
[23] |
M. B. Jeelani, A. S. Alnahdi, M. A. Almalahi, M. S. Abdo, H. A. Wahash, N. H. Alharthi, Qualitative analyses of fractional integro-differential equations with a variable order under the Mittag-Leffler power law, J. Funct. Spaces, 2022 (2022), 6387351. https://doi.org/10.1155/2022/6387351 doi: 10.1155/2022/6387351
![]() |
[24] |
M. B. Jeelani, A. S. Alnahdi, M. A. Almalahi, M. S. Abdo, H. A. Wahash, M. A. Abdelkawy, Study of the Atangana-Baleanu-Caputo type fractional system with a generalized Mittag-Leffler kernel, AIMS Math., 7 (2022), 2001–2018. https://doi.org/10.3934/math.2022115 doi: 10.3934/math.2022115
![]() |
1. | Xiaojian Yi, Huiyang Yu, Tao Xu, Solving multi-objective weapon-target assignment considering reliability by improved MOEA/D-AM2M, 2024, 563, 09252312, 126906, 10.1016/j.neucom.2023.126906 | |
2. | Tengda Li, Gang Wang, Qiang Fu, MADDPG-D2: An Intelligent Dynamic Task Allocation Algorithm Based on Multi-Agent Architecture Driven by Prior Knowledge, 2024, 140, 1526-1506, 2559, 10.32604/cmes.2024.052039 |