In this paper, a stochastic linear-quadratic (LQ, for short) optimal control problem with jumps in an infinite horizon is studied, where the state system is a controlled linear stochastic differential equation containing affine term driven by a one-dimensional Brownian motion and a Poisson stochastic martingale measure, and the cost functional with respect to the state process and control process is quadratic and contains cross terms. Firstly, in order to ensure the well-posedness of our stochastic optimal control of infinite horizon with jumps, the L2-stabilizability of our control system with jump is introduced. Secondly, it is proved that the L2-stabilizability of our control system with jump is equivalent to the non-emptiness of the admissible control set for all initial state and is also equivalent to the existence of a positive solution to some integral algebraic Riccati equation (ARE, for short). Thirdly, the equivalence of the open-loop and closed-loop solvability of our infinite horizon optimal control problem with jumps is systematically studied. The corresponding equivalence is established by the existence of a stabilizing solution of the associated generalized algebraic Riccati equation, which is different from the finite horizon case. Moreover, any open-loop optimal control for the initial state x admiting a closed-loop representation is obatined.
Citation: Jiali Wu, Maoning Tang, Qingxin Meng. A stochastic linear-quadratic optimal control problem with jumps in an infinite horizon[J]. AIMS Mathematics, 2023, 8(2): 4042-4078. doi: 10.3934/math.2023202
[1] | Yousef Jawarneh, Humaira Yasmin, M. Mossa Al-Sawalha, Rasool Shah, Asfandyar Khan . Fractional comparative analysis of Camassa-Holm and Degasperis-Procesi equations. AIMS Mathematics, 2023, 8(11): 25845-25862. doi: 10.3934/math.20231318 |
[2] | Zheng Dou, Kexin Luo . Global weak solutions of nonlinear rotation-Camassa-Holm model. AIMS Mathematics, 2023, 8(7): 15285-15298. doi: 10.3934/math.2023781 |
[3] | Yunxi Guo, Ying Wang . The Cauchy problem to a gkCH equation with peakon solutions. AIMS Mathematics, 2022, 7(7): 12781-12801. doi: 10.3934/math.2022707 |
[4] | A. K. M. Kazi Sazzad Hossain, M. Ali Akbar . Solitary wave solutions of few nonlinear evolution equations. AIMS Mathematics, 2020, 5(2): 1199-1215. doi: 10.3934/math.2020083 |
[5] | Mahmoud A. E. Abdelrahman, S. Z. Hassan, R. A. Alomair, D. M. Alsaleh . Fundamental solutions for the conformable time fractional Phi-4 and space-time fractional simplified MCH equations. AIMS Mathematics, 2021, 6(6): 6555-6568. doi: 10.3934/math.2021386 |
[6] | Zhe Ji, Yifan Nie, Lingfei Li, Yingying Xie, Mancang Wang . Rational solutions of an extended (2+1)-dimensional Camassa-Holm- Kadomtsev-Petviashvili equation in liquid drop. AIMS Mathematics, 2023, 8(2): 3163-3184. doi: 10.3934/math.2023162 |
[7] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[8] | Umair Ali, Sanaullah Mastoi, Wan Ainun Mior Othman, Mostafa M. A Khater, Muhammad Sohail . Computation of traveling wave solution for nonlinear variable-order fractional model of modified equal width equation. AIMS Mathematics, 2021, 6(9): 10055-10069. doi: 10.3934/math.2021584 |
[9] | M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625 |
[10] | Ying Wang, Yunxi Guo . Blow-up solution and analyticity to a generalized Camassa-Holm equation. AIMS Mathematics, 2023, 8(5): 10728-10744. doi: 10.3934/math.2023544 |
In this paper, a stochastic linear-quadratic (LQ, for short) optimal control problem with jumps in an infinite horizon is studied, where the state system is a controlled linear stochastic differential equation containing affine term driven by a one-dimensional Brownian motion and a Poisson stochastic martingale measure, and the cost functional with respect to the state process and control process is quadratic and contains cross terms. Firstly, in order to ensure the well-posedness of our stochastic optimal control of infinite horizon with jumps, the L2-stabilizability of our control system with jump is introduced. Secondly, it is proved that the L2-stabilizability of our control system with jump is equivalent to the non-emptiness of the admissible control set for all initial state and is also equivalent to the existence of a positive solution to some integral algebraic Riccati equation (ARE, for short). Thirdly, the equivalence of the open-loop and closed-loop solvability of our infinite horizon optimal control problem with jumps is systematically studied. The corresponding equivalence is established by the existence of a stabilizing solution of the associated generalized algebraic Riccati equation, which is different from the finite horizon case. Moreover, any open-loop optimal control for the initial state x admiting a closed-loop representation is obatined.
There have been many literatures on continuous dependence and structural stability for the past few years, including those of Aulisa et al. [1], Celebi et al. [2,3], Liu et al. [4,5,6], Chen et al. [7,8], Ames and Payne [9,10], Ames and Straughan [11], Ciarletta and Straughan [12], Franchi and Straughan [13,14,15,16], Lin and Payne [17,18], Li et al. [19,20,21], Straughan et al. [22,23] and Zhou et al. [24,25]. Particularly, most researches focus on the continuous dependence on the boundary data, domain geometry, initial time geometry, and the model itself. Hirsch and Smale [26] pointed out the necessity of studying the continuous dependence of solutions. They emphasized the physical significance of this type of research. This means that changes in the coefficients of partial differential equations may be physically reflected through changes in constitutive parameters. We trust that mathematical analysis of these equations will help to disclose their applicability in physics. Since inevitable errors occur in both numerical calculations and physical measurements of data, continuous correlation results are very important. It is relevant to understand the extent to which such errors affect the solution.
Harfash [27] researched a system of equations to describe the double-diffusion convection in Darcy flow with magnetic field effect. The author assumed the magnetic fields with only the vertical component which was a specific magnetic field. By establishing a priori results, the author illustrates that the solution of the equations depends continuously on changes in the magnetic force and gravity vector coefficients. Some authors have paid attentions to similar problems. By employing Payne's [28] highly innovative procedure for obtaining a priori estimates, Ames and Payne [9] have established a similar result for the Navier-Stokes equations. But it is necessary to restrict the size of the interval or the size of the initial data in their result. A similar result for a Brinkman porous material and for the Darcy equations of flow in porous media has been derived by Franchi and Straughan [29] and Payne and Straughan [30], respectively.
In this paper, we assume that the Darcy flow with magnetic field effect occupies a bounded region Ω in R3 and that the boundary of the region is denoted by ∂Ω which is sufficient smooth to use the divergence theorem. The variables vi, T, C and p are the fluid velocity vector, the temperature, the salt concentration and the pressure, respectively. The governing equations for Darcy flow with magnetic field effect may be written as
vi=−p,i+giT+hiC+σ[(v×B0)×B0]i, | (1.1) |
T,t+viT,i=ΔT, | (1.2) |
C,t+viC,i=ΔC+γΔT, | (1.3) |
vi,i=0, | (1.4) |
where gi and hi are gravity vector terms arising in the density equation of state, Δ is Laplacian operator, γ is the Soret coefficient, σ is magnetic coefficient, and B0=(0,0,B0) is a magnetic field with only the vertical component and v=(v1,v2,v3). In (1.1), we take a particular magnetic field, as in [27,31].
On the boundary, we impose
vini=0,∂T∂n+kT=F(x,t),∂C∂n+τC=G(x,t), on ∂Ω×{t>0}, | (1.5) |
where F and G are positive functions, ni is the unit outward normal to ∂Ω and k and τ are positive constants. Equation (1.5) may be thought of as expressing Newton's law of cooling with inhomogeneous outside temperature or inhomogeneous outside salt concentration, i.e.
∂T∂n=−k(T−Ta),∂C∂n=−κ(C−Ca), |
where Ta and Ca are the ambient outside temperature and the ambient outside salt concentration, respectively. The initial conditions are written as
T(x,0)=T0(x);C(x,0)=C0(x); in Ω, | (1.6) |
for prescribed functions T0 and C0.
In our work, we still consider the same particular equations as in [27]. But our boundary conditions is Newton's law of cooling type with inhomogeneous outside temperature. Thus, the Sobolev inequalities which are used in [27] are not available in our paper. Compared with [9], we no longer need to impose special restrictions on the region Ω. So their method fails to handle the system in this paper. In this paper, we derive the upper bounds of ∫ΩT4dx and ∫ΩC4dx which are difficulty to obtain. By using the these priori results, we derive the continuous dependence on the magnetic coefficient and the boundary parameter. Throughout this paper, the usual summation convention is employed with repeated Latin subscripts summed from 1 to 3. The comma is used to indicate partial differentiation, i.e. ui,j=∂ui∂xj, ui,jui,j=Σ3i,j=1∂ui∂xj.
In this section, we want to derive bounds for various norms of vi, T and C in term of known data which will be used in the next sections. Before we derive these bounds, we prove some lemmas firstly.
Lemma 2.1. Let functions fi,(i=1,2,3), defined on ∂Ω, be some functions such that
fini≥f0>0 ,on ∂Ω, | (2.1) |
and
|fi,i|≤m1,|fi|≤m2, | (2.2) |
where f0>0 is a constant and m1, m2 are both positiveconstants. Then,
f0∫∂Ωφ2dA≤m3∫Ωφ2dx+α∫Ωφ,iφ,idx, | (2.3) |
for a function φ which is defined on the closure of thedomain Ω. In (2.3), α>0 is an arbitrary constant which may be very small and m3=(m1+m22α).
Proof. We began with the identity
(fiφ2),i=fi,iφ2+2fiφφ,i. | (2.4) |
Integrating (2.4) over Ω, using (2.1) and the divergence theorem, we have
f0∫∂Ωφ2dA≤∫Ω(fiφ2),idx=∫Ωfi,iφ2dx+2∫Ωfiφφ,idx. | (2.5) |
The Hölder inequality and (2.2) allow us to obtain
f0∫∂Ωφ2dA≤m1∫Ωφ2dx+2m2(∫Ωφ2dx)12(∫Ωφ,iφ,idx)12, | (2.6) |
from which it follows that
f0∫∂Ωφ2dA≤(m1+m22α)∫Ωφ2dx+α∫Ωφ,iφ,idx. | (2.7) |
Lemma 2.2. Let T,v∈H1(Ω), T0∈L2P(Ω) and F∈L2P(∂Ω). Then, the solution for (1.2) satisfies
supΩ×[0,ς]|T|≤Tm, |
where Tm=max{|T0|,|F|}.
Proof. We began with
ddt∫ΩT2pdx=2p∫ΩT2p−1T,tdx. |
Using (1.2), the divergence theorem and the Young inequality, we are leaded to
ddt∫ΩT2pdx≤2p∫∂ΩT2p−1FdA−2pk∫∂ΩT2pdA−2p(2p−1)∫ΩT2p−2T,iT,idx≤(2p−1)2p−1(2pk)2p−1∫∂ΩF2pdA. |
An integration of this inequality allows that
(∫ΩT2pdx)12p≤(2p−12pk∫∂ΩF2pdA+∫ΩT2p0dx)12p. |
Allowing p→∞, we obtain
supΩ×[0,ς]|T|≤Tm, |
where Tm depends on the initial-boundary conditions of T.
Lemma 2.3. Let T,v∈H1(Ω) and C be thesolutions for (1.2) and (1.3) and T0,C0∈C2(Ω), F,G∈C2(∂Ω×{t>0}). Then,
∫ΩT2dx≤A1(t),∫ΩC2dx≤A2(t), | (2.8) |
where A1(t) and A2(t) are positive functions which will be given later.
Proof. Using (1.2) and the divergence theorem, we compute
12ddt∫ΩT2dx=∫ΩTT,tdx=∫ΩT[ΔT−viT,i]dx=∫∂ΩTFdA−k∫∂ΩT2dA−∫ΩT,iT,idx. | (2.9) |
By the Hölder inequality and the Young inequality, from (2.9) we have
12ddt∫ΩT2dx+∫ΩT,iT,idx≤14k∫∂ΩF2dA. | (2.10) |
Integrating (2.10) from 0 to t, we have
∫ΩT2dx+2∫t0∫ΩT,iT,idxdη≤12k∫t0∫∂ΩF2dAdη+∫ΩT20dx≐A1(t). | (2.11) |
From the identity
∫ΩC(C,t+viC,i−ΔC−γΔT)dx=0, |
we get
12ddt∫ΩC2dx+∫ΩC,iC,idx=∫∂ΩGCdA−τ∫∂ΩC2dA+γ∫∂ΩFCdA−kγ∫∂ΩTCdA−γ∫ΩT,iC,idx. | (2.12) |
Upon employing the Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality, we can get
∫∂ΩGCdA≤1τ∫∂ΩG2dA+τ4∫∂ΩC2dA,γ∫∂ΩFCdA≤γ2τ∫∂ΩF2dA+τ4∫∂ΩC2dA,kγ∫∂ΩTCdA≤12τk2γ2∫∂ΩT2dA+τ2∫∂ΩC2dA,γ∫ΩT,iC,idx≤12γ2∫ΩT,iT,idx+12∫ΩC,iC,idx. |
We use these inequalities together with (2.12) to arrive at
ddt∫ΩC2dx+∫ΩC,iC,idx≤2τ∫∂ΩG2dA+2γ2τ∫∂ΩF2dA+k2γ2τ∫∂ΩT2dA+γ2∫ΩT,iT,idx. | (2.13) |
Letting φ=T in Lemma 2.1 and using (2.11), we have
f0∫∂ΩT2dA≤m3∫ΩT2dx+α∫ΩT,iT,idx≤m3A1(t)+α∫ΩT,iT,idx. | (2.14) |
Thus, (2.13) can be rewritten as
ddt∫ΩC2dx+∫ΩC,iC,idx≤2τ∫∂ΩG2dA+2γ2τ∫∂ΩF2dA+k2m3γ2f0τA1(t)+2γ2∫ΩT,iT,idx, | (2.15) |
with α=f0τk2. An integration of (2.15) leads to
∫ΩC2dx+∫t0∫ΩC,iC,idxdη≤2τ∫t0∫∂ΩG2dAdη+2γ2τ∫t0∫∂ΩF2dAdη+k2m3γ2f0τ∫t0A1(η)dη+2γ2∫t0∫ΩT,iT,idxdη+∫ΩC20dx. | (2.16) |
In light of (2.11), we have
∫ΩC2dx+∫t0∫ΩC,iC,idxdη≤2τ∫t0∫∂ΩG2dAdη+2γ2τ∫t0∫∂ΩF2dAdη+k2m3γ2f0τ∫t0A1(η)dη+γ2A1(t)+∫ΩC20dx≐A2(t). | (2.17) |
Lemma 2.4. Let T and C be the solutions for(1.2) and (1.3), and T,v∈H1(Ω), T0,C0∈C4(Ω), F,G∈C4(∂Ω×{t>0}). Then,
∫ΩT4dx≤A3(t),∫ΩC4dx≤A4(t), | (2.18) |
where A3(t) and A4(t) will be given later.
Proof. We first let H be a solution of the problem
H,t+viH,i=ΔH, in Ω×{t>0},∂H∂n+τH=G(x,t),on ∂Ω×{t>0},H(x,0)=C0(x),in Ω. | (2.19) |
Using (2.19) and the divergence theorem, we find
14ddt∫ΩH4dx=∫ΩH3H,tdx=∫ΩH3[ΔH−viH,i]dx=∫∂ΩH3GdA−τ∫∂ΩH4dA−34∫Ω(H2),i(H2),idx. | (2.20) |
By the Hölder inequality, we have
∫ΩH4dx+3∫t0∫Ω(H2),i(H2),idxdη≤2764τ3∫∂ΩG4dA+∫ΩC40dx. | (2.21) |
From (2.21), it is clear that ∫ΩH4dx can be bounded by known data. Now, we set
ψ(x,t)=C−H. |
Then, ψ satisfies the initial-boundary condition problem
ψ,t+viψ,i=Δψ+γΔT,in Ω×{t>0},∂ψ∂n+τψ=0,on ∂Ω×{t>0},ψ(x,0)=0,in Ω. | (2.22) |
Next, we also define a new function
Φ(t)=δ1∫ΩT4dx+δ2∫ΩT2ψ2dx+∫Ωψ4dx, | (2.23) |
where δ1 and δ2 are positive constants to be determined later. Now, it is easy to see that
Φ′(t)=4δ1∫ΩT3(ΔT−viT,i)dx+2δ2∫ΩTψ2(ΔT−viT,i)dx+2δ2∫ΩT2ψ(Δψ+γΔT−viψ,i)dx+4∫Ωψ3(Δψ+γΔT−viψ,i)dx, | (2.24) |
from which we may get that
Φ′(t)=−3δ1∫Ω(T2),i(T2),idx−3∫Ω(ψ2),i(ψ2),idx−2δ2∫Ω(ψT,i+ψ,iT)(ψT,i+ψ,iT)dx−4δ2∫ΩTψψ,iT,idx−4δ2γ∫ΩTψT,iT,idx−2δ2γ∫ΩT2ψ,iT,idx−12γ∫Ωψ2ψ,iT,idx−4δ1k∫∂ΩT4dA−4τ∫∂Ωψ4dA+4δ1∫∂ΩT3FdA+2δ2∫∂Ωψ2TFdA+2δ2γ∫∂ΩψT2FdA−2δ2(k+τ)∫∂Ωψ2T2dA−2δ2kγ∫∂ΩψT3dA+4γ∫∂Ωψ3FdA−4kγ∫∂Ωψ3TdA=16∑1Ji. | (2.25) |
Now using the arithmetic-geometric mean and the Schwarz inequalities, we find that
J4≤12δ2ε1∫Ω(T2),i(T2),idx+δ22ε1∫Ω(ψ2),i(ψ2),idx, | (2.26) |
and
J5+J6=−4δ2γ∫ΩTT,i[Tψ,i+T,iψ]dx+2δ2γ∫ΩT2ψ,iT,idx≤δ2ε2∫Ω(T2),i(T2),idx+δ2γ2ε2∫Ω[Tψ,i+T,iψ][Tψ,i+T,iψ]dx+2δ2T2mγ(∫Ω|∇ψ|2dx∫Ω|∇T|2dx)12, | (2.27) |
where Tm is defined in Lemma 2.2. Furthermore,
J7=−12γ∫Ωψψ,i[ψT,i+ψ,iT]dx+12γ∫ΩTψ|∇ψ|2dx≤3ε3∫Ω(ψ2),i(ψ2),idx+3γ2ε3∫Ω[Tψ,i+T,iψ][Tψ,i+T,iψ]dx+3γ2ε4T2m∫Ω|∇ψ|2dx+3ε4∫Ω(ψ2),i(ψ2),idx, | (2.28) |
Inserting (2.26)–(2.28) into (2.25), and using the Hölder and the Young inequalities to the integrals on the boundary, we have
Φ′(t)≤−(3δ1−12δ2ε1−δ2ε2)∫Ω(T2),i(T2),idx−(3−δ22ε1−3ε3−3ε4)∫Ω(ψ2),i(ψ2),idx−(2δ2−δ2γ2ε2−3γ2ε3)∫Ω(ψT,i+ψ,iT)(ψT,i+ψ,iT)dx+2δ2T2mγ(∫Ω|∇ψ|2dx∫Ω|∇T|2dx)12+3γ2ε4T2m∫Ω|∇ψ|2dx−(4δ1γ−3δ1ε5−δ2ε72ε6−δ2ε8−δ2(κ+τ)ε10−32δ2kγε11−γε−313)∮∂ΩT4dA−(4κ−δ2ε6−δ2ε92ε8−δ2(κ+τ)ε10−12δ2kε−311−3γε12−3γε13)∮∂Ωψ4dA+(δ1ε−35+δ22ε6ε7+δ22ε8ε9+γε−312)∮∂ΩF4dA, | (2.29) |
where εi (i=1,2,⋯,13) are positive constants to be determined. To ensure that the coefficients of the first three terms and the sixth and seventh terms to be non-positive, we choose that
δ1=max{5γ4,27γ3(k+τ)2k+(92)43kγ3+12(92)3γ3k3}, δ2=6γ2,ε1=3γ2, ε2=γ2, ε3=12, ε4=6, ε5=γ3, ε6=k9γ2, ε7=kδ154γ3, ε8=δ112γ,ε9=kδ1108γ3, ε10=k9(κ+τ)γ2, ε11=3√92γ, ε12=ε13=2k9γ. |
We drop the non-positive terms in (2.29) to have
Φ′(t)≤2δ2T2mγ(∫Ω|∇ψ|2dx∫Ω|∇T|2dx)12+6γ2ε4T2m∫Ω|∇ψ|2dx+(δ1ε−35+δ22ε6ε7+δ22ε8ε9+γε−312)∮∂ΩF4dA. |
Using the arithmetic-geometric mean inequality and integrating the above formula from 0 to t, we obtain
Φ(t)≤˜m1∫t0∫Ω|∇ψ|2dxdη+˜m2∫t0∫Ω|∇T|2dxdη+˜m3∫t0∮∂ΩF4dAdη, | (2.30) |
where ˜m1=δ2T2mγ+6γ2ε4T2m, ˜m2=δ2T2mγ and ˜m3=(δ1ε−35+δ22ε6ε7+δ22ε8ε9+γε−312).
Next, we multiply (2.22)1 with ψ, integrate in Ω and use Cauchy-Schwarz's inequality to obtain
ddt||ψ||2=−2∫Ωψ,iψ,idx−2τ∫∂Ωψ2dA−2γ∫ΩT,iψ,idx−2γ∫∂ΩFψdA−2kγ∫∂ΩTψdA≤−∫Ωψ,iψ,idx+γ2∫ΩT,iT,idx+γ2τ∫∂ΩF2dA+k2γ2τ∫∂ΩT2dA. | (2.31) |
In light of (2.14), (2.31) yields that
ddt∫Ωψ2dx≤−∫Ωψ,iψ,idx+(k2γ2αf0τ+γ2)∫ΩT,iT,idx+γ2τ∫∂ΩF2dA+k2m3γ2f0τA1(t). | (2.32) |
Integrating (2.32) from 0 to t, we have
∫Ωψ2dx+∫t0∫Ωψ,iψ,idxdη≤(k2γ2αf0τ+γ2)∫t0∫ΩT,iT,idxdη+γ2τ∫t0∫∂ΩF2dAdη+k2m3γ2f0τ∫t0A1(η)dη. | (2.33) |
With the aid of (2.11), inequality (2.33) can be rewritten as
∫Ωψ2dx+∫t0∫Ωψ,iψ,idxdη≤12(k2γ2αf0τ+γ2)A1(t)+γ2τ∫t0∫∂ΩF2dAdη+k2m3γ2f0τ∫t0A1(η)dη. | (2.34) |
Inserting (2.34) into (2.30) and using (2.11) again, we have
Φ(t)≤m(t), | (2.35) |
where
m(t)=12~m1(k2γ2αf0τ+γ2)A1(t)+~m1γ2τ∫t0∫∂ΩF2dAdη+~m1k2m3γ2f0τ∫t0A1(η)dη+m22A1(t)+˜m3∫t0∫∂ΩF4dAdη. |
Recalling the definition of Φ(t) in (2.23), we may get
∫Ω|T|4dx≤1δ1m(t)≐A3(t),∫Ω|ψ|4dx≤m(t). | (2.36) |
By the triangle inequality, we have
(∫ΩC4dx)14≤(∫Ωψ4dx)14+(∫ΩH4dx)14. |
Combining (2.21) and (2.36), we have
∫ΩC4dx≤A4(t), | (2.37) |
where
A4(t)={m14(t)+[2764τ3∫∂ΩG4dA+∫ΩC40dx]14}4. |
Next, we pay our attention to seek the bound for L2 norm of vi as well as ∇v. We obtain the following lemma which will be used in the continuous dependence proof.
Lemma 2.5. Let vi, T and C are the solutions of(1.1)–(1.3) with the initial-boundary conditions (1.5) and(1.6), and T0,C0∈C4(Ω), F,G∈C4(∂Ω×{t>0}). Then,
∫Ωvividx≤A5(t),∫t0∫Ωvi,jvi,jdxdη≤A6(t), | (2.38) |
where A5(t) and A6(t) are positive functions which will bederived later.
Proof. We start with the identity
∫Ωvividx=∫Ωvi{−p,i+giT+hiC+σ[(v×B0)×B0]i}dx. |
Since B0=(0,0,B0), it is clear that [(v×B0)×B0]i=B20(¯kiv3−vi), where ¯k=(¯k1,¯k2,¯k3)=(0,0,1). Obviously,
[(v×B0)×B0]v=B20(¯kiv3−vi)vi=−B20[v21+v22]≤0, | (2.39) |
so by the Hölder inequality and the arithmetic-geometric mean inequality, we have
∫Ωvividx≤2g2∫ΩT2dx+2h2∫ΩC2dx. |
Combining (2.8) and Lemma 2.3, we obtain
∫Ωvividx≤2g2A1(t)+2h2A2(t)≐A5(t). | (2.40) |
We commence bounding the L2 norm for the velocity gradient. To do this, we split the velocity into symmetric and skew parts. We write
∫Ωvi,jvi,jdx=∫Ωvi,j(vi,j−vj,i)dx+∫Ωvi,jvj,idx. | (2.41) |
To bound the first term of (2.41), we use the Eq (1.1) to have
∫Ωvi,j(vi,j−vj,i)dx=∫Ω{−p,ij+giT,j+hiC,j+σB20(¯kiv3−vi),j}vi,jdx−∫Ω{−p,ij+gjT,i+hjC,i+σB20(¯kjv3−vj),i}vi,jdx=∫Ω(giT,j−gjT,i)vi,jdx+∫Ω(hiC,j−hjC,i)vi,jdx+σB20∫Ω(¯kiv3,j−¯kjv3,i)vi,jdx−σB20∫Ω(vi,j−vj,i)vi,jdx. | (2.42) |
Using Hölder inequality and arithmetic-geometric inequality again in (2.42), we arrive at
∫Ω(giT,j−gjT,i)vi,jdx≤∫Ω(giT,j−gjT,i)(giT,j−gjT,i)dx+14∫Ωvi,jvi,jdx=2∫Ω(g2T,iT,i−giT,igjT,j)dx+14∫Ωvi,jvi,jdx≤2∫Ω(g2T,iT,i+12gigiT,iT,i+12gjgjT,jT,j)dx+14∫Ωvi,jvi,jdx≤4g2∫ΩT,iT,idx+14∫Ωvi,jvi,jdx. | (2.43) |
Similarly, we also have
∫Ω(hiC,j−hjC,i)vi,jdx≤4h2∫ΩC,iC,idx+14∫Ωvi,jvi,jdx. | (2.44) |
In view of ¯k=(0,0,1), the third term of (2.42) yields
σB20∫Ω(¯kiv3,j−¯kjv3,i)vi,jdx=12σB20∫Ω(¯kiv3,j−¯kjv3,i)(vi,j−vj,i)dx=σB20∫Ω¯kiv3,j(vi,j−vj,i)dx=σB20∫Ωv3,j(v3,j−vj,3)dx≤σB20∫Ω(vi,j−vj,i)vi,jdx. | (2.45) |
Inserting (2.43)–(2.45) into (2.42), we have
∫Ωvi,j(vi,j−vj,i)dx≤4g2∫ΩT,iT,idx+4h2∫ΩC,iC,idx+12∫Ωvi,jvi,jdx. | (2.46) |
To handle the second term of (2.41), we use the divergence theorem and integrate by parts to obtain
∫Ωvi,jvj,idx=∫∂Ωvi,jvjnidA=∫∂Ω(vini),jvjdA−∫∂Ωvivjni,jdA. | (2.47) |
The first term of (2.47) is zero, since vini=0 on ∂Ω. If the region Ω is convex, Lin and Payne [18] state ∫∂Ωvivjni,jdA≥0 which leads to
∫Ωvi,jvj,idx≤0. |
For non-convex Ω,
∫Ωvi,jvj,idx≤k0∫∂ΩvividA. |
Using Lemma 2.1 with φ=vi, we conclude that
∫Ωvi,jvj,idx≤k0m3f0∫Ωvividx+k0f0α∫Ωvi,jvi,jdx. | (2.48) |
Choosing α=f04k0 and then inserting (2.46) and (2.48) into (2.41), we have
∫Ωvi,jvi,jdx≤4g2∫ΩT,iT,idx+4h2∫ΩC,iC,idx+k0m3f0∫Ωvividx+34∫Ωvi,jvi,jdx, |
from which it follows that
∫Ωvi,jvi,jdx≤16g2∫ΩT,iT,idx+16h2∫ΩC,iC,idx+4k0m3f0∫Ωvividx. |
By (2.11), (2.19) and (2.48), we have
∫t0∫Ωvi,jvi,jdxdη≤8g2A1(t)+16h2A2(t)+4k0m3f0∫t0A5(η)dη≐A6(t), |
where we have used (2.11), (2.17) and (2.40).
Let (vi,p,T,C) and (v∗i,p∗,T∗,C∗) be the solutions to the problem (1.1)–(1.6) for the same initial-boundary data, but for different magnetic coefficients σ1 and σ2, respectively. Differential variables wi, π, θ, Σ and σ are defined by
wi=vi−v∗i,θ=T−T∗,Σ=C−C∗,π=p−p∗,σ=σ1−σ2. |
Then,
wi=−π,i+giθ+hiΣ+σ[(v∗×B0)×B0]i+σ1[(w×B0)×B0]i, | (3.1) |
θ,t+v∗iθ,i+wiT,i=Δθ, | (3.2) |
Σ,t+v∗iΣ,i+wiC,i=ΔΣ+γΔθ, | (3.3) |
wi,i=0, | (3.4) |
with the initial-boundary conditions
wini=0,∂θ∂n=−kθ,∂Σ∂n=−τΣ,on ∂Ω×{t>0}, | (3.5) |
θ(x,0)=Σ(x,0)=0, x∈Ω. | (3.6) |
We have the following theorem.
Theorem 3.1. If T0,C0∈L∞(Ω), F,G∈C4(∂Ω×{t>0}), then the solutions of (1.1)–(1.6)depend continuously on the magnetic coefficient σ, asshown explicit in inequalities (3.26) and (3.27) whichderives a relation of the form
β∫Ωθ2dx+∫ΩΣ2dx≤L1σ2, |
and
∫Ωwiwidx≤L2σ2, |
where L1 and L2 are priori constants and β>0 is acomputable constant.
Proof. Multiplying (3.16) with wi and integrating over Ω, then using Cauchy-Schwarz's inequality and the arithmetic-geometric mean inequality, we obtain
∫Ωwiwidx≤g(∫Ωθ2dx)12(∫Ωwiwidx)12+h(∫ΩΣ2dx)12(∫Ωwiwidx)12+σB20∫Ω(¯kiv∗3−v∗i)widx+σ1B20∫Ω(¯kiw3−wi)widx, | (3.7) |
where g=max{√gigi}, h=max{√hihi}. Since ¯k=(0,0,1), it is easy to find
σ1B20∫Ω(¯kiw3−wi)widx≤0 | (3.8) |
as in (2.39). By the Cauchy-Schwarz inequality, we have
σB20∫Ω(¯kiv∗3−v∗i)widx≤σB20(∫Ω(v∗3)2dx)12(∫Ωwiwidx)12+σB20(∫Ωv∗iv∗idx)12(∫Ωwiwidx)12≤2σB20(∫Ωv∗iv∗idx)12(∫Ωwiwidx)12. | (3.9) |
Inserting (3.8) and (3.9) into (3.7) and applying the arithmetic-geometric mean inequality, we have
∫Ωwiwidx≤4g2∫Ωθ2dx+4h2∫ΩΣ2dx+8σ2B40∫Ωv∗iv∗idx. | (3.10) |
In view of (2.38) in Lemma 2.5, from (3.10) we have
∫Ωwiwidx≤4g2∫Ωθ2dx+4h2∫ΩΣ2dx+8σ2B40A5(t). | (3.11) |
Next, we compute
ddt(β∫Ωθ2dx+∫ΩΣ2dx)=2β∫Ωθθ,tdx+2∫ΩΣΣ,tdx=2β∫Ωθ[Δθ−v∗iθ,i−wiT,i]dx+2∫ΩΣ[ΔΣ+γΔθ−v∗iΣ,i−wiC,i]dx=−2β∫Ωθ,iθ,idx−2∫ΩΣ,iΣ,idx−2βk∫∂Ωθ2dA−2τ∫∂ΩΣ2dA+2β∫Ωθ,iwiTdx+2∫ΩΣ,iwiCdx−2γ∫Ωθ,iΣ,idx−2kγ∫∂ΩθΣdA. | (3.12) |
Using Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality and Lemma 2.4, we have
2β∫Ωθ,iwiTdx≤2β(∫Ωθ,iθ,idx)12(∫Ω(wiwi)2dx)14(∫ΩT4dx)14≤β∫Ωθ,iθ,idx+β(∫Ω(wiwi)2dx)12A123(t), | (3.13) |
and
2∫ΩΣ,iwiCdx≤∫ΩΣ,iΣ,idx+(∫Ω(wiwi)2dx)12A124(t). | (3.14) |
Inserting these two inequalities into (3.12) and using the Cauchy-Schwarz inequality in the last two terms on the right of (3.12), we have
ddt(β∫Ωθ2dx+∫ΩΣ2dx)≤−(β−γβ1)∫Ωθ,iθ,idx−(1−γβ1)∫ΩΣ,iΣ,idx−k(2β−γβ2)∫∂Ωθ2dA−(2τ−kγβ2)∫∂ΩΣ2dA+(∫Ω(wiwi)2dx)12[βA123(t)+A124(t)], | (3.15) |
for some arbitrary positive constants \beta_1 and \beta_2 .
Now, we use the bound for L_4 norm of w_i which has been derived in [18] (see (B.17)). We write here as the form
\begin{equation} \begin{split} \Big(\int_\Omega(w_iw_i)^2dx\Big)^\frac{1}{2}\leq M\Big\{(1+\frac{\delta}{4})\int_\Omega w_iw_idx+\frac{3}{4}\delta^{-\frac{1}{3}}\int_\Omega w_{i,j}w_{i,j}dx\Big\}, \end{split} \end{equation} | (3.16) |
where M is a positive computable constant and \delta > 0 is an arbitrary constant. To get the bound for \int_\Omega w_{i, j}w_{i, j}dx , we use a similar methods which were used in (2.41) and (2.48) with \alpha = \frac{f_0}{2k_0} to have
\begin{equation} \begin{split} \int_\Omega w_{i,j}w_{i,j}dx\leq2\int_\Omega w_{i,j}(w_{i,j}-w_{j,i})dx+\frac{2k_0m_3}{f_0}\int_\Omega w_{i}w_{i}dx. \end{split} \end{equation} | (3.17) |
To handle the first term of (3.17), we compute
\begin{equation} \begin{split} &\int_\Omega(w_{i,j}-w_{j,i})(w_{i,j}-w_{j,i})dx\\ = &2\int_\Omega w_{i,j}(w_{i,j}-w_{j,i})dx\\ = &2\int_\Omega w_{i,j}[-\pi_{,ij}+g_i\theta_{,j}+h_i\Sigma_{,j}+\sigma B_0^2(\overline{k}_iv^*_{3,j}-v^*_{i,j})+\sigma_1 B_0^2(\overline{k}_iw_{3,j}-w_{i,j})]dx\\ &-2\int_\Omega w_{i,j}[-\pi_{,ij}+g_j\theta_{,i}+h_j\Sigma_{,i}+\sigma B_0^2(\overline{k}_jv^*_{3,i}-v^*_{j,i})+\sigma_1 B_0^2(\overline{k}_jw_{3,j}-w_{j,i})]dx\\ = &2\int_\Omega[g_i\theta_{,j}-g_j\theta_{,i}]w_{i,j}dx+2\int_\Omega[g_j\Sigma_{,i}-g_i\Sigma_{,j}]w_{i,j}dx \\ &+2\sigma B_0^2\int_\Omega[\overline{k}_iv^*_{3,j}-\overline{k}_jv^*_{3,i}]w_{i,j}dx-2\sigma B_0^2\int_\Omega[v^*_{i,j}-v^*_{j,i}]w_{i,j}dx\\ &+2\sigma_1 B_0^2\int_\Omega[\overline{k}_iw_{3,j}-\overline{k}_jw_{3,i}]w_{i,j}dx -2\sigma_1B_0^2\int_\Omega[w_{i,j}-w_{j,i}]w_{i,j}dx. \end{split} \end{equation} | (3.18) |
Using the Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality, we have
\begin{equation} \begin{split} 2\int_\Omega[g_i\theta_{,j}-g_j\theta_{,i}]w_{i,j}dx& = \int_\Omega[g_i\theta_{,j}-g_j\theta_{,i}][w_{i,j}-w_{j,i}]dx = 2\int_\Omega g_i\theta_{,j}[w_{i,j}-w_{j,i}]dx\\ &\leq8g^2\int_\Omega\theta_{,j}\theta_{,j}dx+\frac{1}{8}\int_\Omega(w_{i,j}-w_{j,i})(w_{i,j}-w_{j,i})dx\\ &\leq8g^2\int_\Omega\theta_{,j}\theta_{,j}dx+\frac{1}{4}\int_\Omega(w_{i,j}-w_{j,i})w_{i,j}dx, \end{split} \end{equation} | (3.19) |
and
\begin{equation} \begin{split} 2\int_\Omega[h_i\Sigma_{,j}-h_j\Sigma_{,i}]w_{i,j}dx\leq8h^2\int_\Omega\Sigma_{,j}\Sigma_{,j}dx+\frac{1}{4}\int_\Omega(w_{i,j}-w_{j,i})w_{i,j}dx. \end{split} \end{equation} | (3.20) |
Using the Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality, we have
\begin{equation} \begin{split} &2\sigma B_0^2\int_\Omega[\overline{k}_iv^*_{3,j}-\overline{k}_jv^*_{3,i}]w_{i,j}dx -2\sigma B_0^2\int_\Omega[v^*_{i,j}-v^*_{j,i}]w_{i,j}dx\\ = &2\sigma B_0^2\int_\Omega\overline{k}_iv^*_{3,j}[w_{i,j}-w_{j,i}]dx-2\sigma B_0^2\int_\Omega v^*_{i,j}[w_{i,j}-w_{j,i}]dx\\ \leq&8\sigma^2B_0^4\int_\Omega v^*_{3,j}v^*_{3,j}dx+8\sigma^2B_0^4\int_\Omega v^*_{i,j}v^*_{i,j}dx+\frac{1}{2}\int_\Omega(w_{i,j}-w_{j,i})w_{i,j}dx. \end{split} \end{equation} | (3.21) |
Since \overline {\underline {\textbf{k}} } = (0, 0, 1) , we have
\begin{equation} \begin{split} &2\sigma_1 B_0^2\int_\Omega[\overline{k}_iw_{3,j}-\overline{k}_jw_{3,i}]w_{i,j}dx\\ = &\; 2\sigma_1 B_0^2\int_\Omega\overline{k}_iw_{3,j}(w_{i,j}-w_{j,i})dx\\ = &\; 2\sigma_1 B_0^2\int_\Omega w_{3,j}(w_{3,j}-w_{j,3})dx\\ \leq&\; 2\sigma_1 B_0^2\int_\Omega w_{i,j}(w_{i,j}-w_{j,i})dx. \end{split} \end{equation} | (3.22) |
Inserting (3.19)–(3.21) and (3.22) into (3.18), we obtain
\begin{equation*} \begin{split} \int_\Omega w_{i,j}(w_{i,j}-w_{j,i})dx\leq8g^2\int_\Omega\theta_{,j}\theta_{,j}dx+8h^2\int_\Omega\Sigma_{,j}\Sigma_{,j}dx+8\sigma^2B_0^4\int_\Omega v^*_{3,j}v^*_{3,j}dx+8\sigma^2B_0^4\int_\Omega v^*_{i,j}v^*_{i,j}dx. \end{split} \end{equation*} |
It follows from (3.17) that
\begin{equation} \begin{split} \int_\Omega w_{i,j}w_{i,j}dx\leq&16g^2\int_\Omega\theta_{,j}\theta_{,j}dx+16h^2\int_\Omega\Sigma_{,j}\Sigma_{,j}dx\\ &+16\sigma^2B_0^4\int_\Omega v^*_{3,j}v^*_{3,j}dx+16\sigma^2B_0^4\int_\Omega v^*_{i,j}v^*_{i,j}dx+\frac{2k_0m_3}{f_0}\int_\Omega w_{i}w_{i}dx. \end{split} \end{equation} | (3.23) |
Combining (3.15), (3.16) and (3.23), we conclude
\begin{equation} \begin{split} \frac{d}{dt}\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)\leq&-M_1\int_\Omega\theta_{,i}\theta_{,i}dx-M_2\int_\Omega\Sigma_{,i}\Sigma_{,i}dx-M_3\int_{\partial\Omega}\theta^2dA\\ &-M_4\int_{\partial\Omega}\Sigma^2dA+M_5\int_\Omega w_iw_idx[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)]\\ &+M_6\sigma^2\Big[\int_\Omega v^*_{3,j}v^*_{3,j}dx+\int_\Omega v^*_{i,j}v^*_{i,j}dx\Big]\Big[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)\Big], \end{split} \end{equation} | (3.24) |
where
\begin{equation*} \begin{split} M_1& = \beta-\frac{\gamma}{\beta_1}-12g^2M\delta^{-\frac{1}{3}}[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)], \\ M_2& = 1-\gamma\beta_1-12h^2M\delta^{-\frac{1}{3}}[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)],\\ M_3& = k(2\beta-\frac{\gamma}{\beta_2}),\ M_4 = 2\tau-k\gamma\beta_2,\\ M_5& = M(1+\frac{1}{4}\delta+\frac{3}{4}\delta^{-\frac{1}{3}}),\ M_6 = 12M\delta^{-\frac{1}{3}}B^4_0. \end{split} \end{equation*} |
Choosing \beta_1 = \frac{1}{2\gamma} , \beta_2 = \frac{2\tau}{k\gamma} and \beta = \max\{\frac{k\gamma^2}{4\tau}, 2\gamma^2 \}, we note that M_3 > 0 , M_4 = 0 , \beta-\frac{\gamma}{\beta_1} > 0 and 1-\gamma\beta_1 > 0 . Since the constant \delta is at our disposal then provided A_3(t) and A_4(t) are bounded, we may choose \delta so large that M_1\geq0 and M_2\geq0 . Dropping the non-positive terms in (3.24) and using Lemma 2.5 and (3.11), we have
\begin{equation} \begin{split} \frac{d}{dt}\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)&\leq \mathcal{F}_1(t)\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)+\sigma^2\mathcal{F}_2(t), \end{split} \end{equation} | (3.25) |
where
\begin{equation*} \begin{split} \mathcal{F}_1(t)& = 4M_5(\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t))\max\{\frac{g^2}{\beta},h^2\},\\ \mathcal{F}_2(t)& = 8M_5(\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t))B_0^4A_5(t)+2M_6(\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t))B_0^4A_6(t). \end{split} \end{equation*} |
From (3.25), we have
\begin{equation*} \begin{split} \frac{d}{dt}\Big\{\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)\exp\Big(-\int_0^t\mathcal{F}_1(\eta)d\eta\Big)\Big\}\leq \sigma^2\mathcal{F}_2(t)\exp\Big(-\int_0^t\mathcal{F}_1(\eta)d\eta\Big), \end{split} \end{equation*} |
which follows that
\begin{equation} \begin{split} \beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\leq\sigma^2\int_0^t\mathcal{F}_2(t)\exp\Big(-\int_\eta^t\mathcal{F}_1(\zeta)d\zeta\Big)d\eta. \end{split} \end{equation} | (3.26) |
This is the continuous dependence result we want to prove. By (3.11), we may obtain the continuous dependence for {\textbf{v}} ,
\begin{equation} \begin{split} \int_\Omega w_iw_idx\leq\sigma^2\Big[\int_0^t\mathcal{F}_2(t)\exp\Big(-\int_\eta^t\mathcal{F}_1(\zeta)d\zeta\Big)d\eta+8B_0^4A_5(t)\Big]. \end{split} \end{equation} | (3.27) |
In this section, we derive the continuous dependence on the cooling coefficients and we let (u_i, p, T, C) and (u^*_i, p^*, T^*, C^*) be the solutions to the problem (1.1)–(1.3) for the same initial-boundary data and the same F and G , but for different the cooling coefficients k_1 , k_2 , \tau_1 and \tau_2 , respectively. As in Section 3, we still set
\begin{equation*} \begin{split} w_i = v_i-v^*_i,\quad \theta = T-T^*,\quad \Sigma = C-C^*,\quad \pi = p-p^*,\quad k = k_1-k_2, \quad \tau = \tau_1-\tau_2. \end{split} \end{equation*} |
Then (w_i, \theta, \Sigma, \pi) satisfy
\begin{align} & w_i = -\pi_{,i}+g_i\theta+h_i\Sigma+\sigma[({\textbf{w}}\times{\textbf{B}}_0)\times{\textbf{B}}_0]_i, \end{align} | (4.1) |
\begin{align} &\theta_{,t}+v^*_i\theta_{,i}+w_iT_{,i} = \Delta \theta, \end{align} | (4.2) |
\begin{align} &\Sigma_{,t}+v^*_i\Sigma_{,i}+w_iC_{,i} = \Delta\Sigma+\gamma\Delta\theta, \end{align} | (4.3) |
\begin{align} &w_{i,i} = 0, \end{align} | (4.4) |
with the initial-boundary conditions
\begin{equation} \begin{split} w_in_i = 0,\quad \frac{\partial\theta}{\partial n}+k_1\theta = -kT^*,\quad \frac{\partial\Sigma}{\partial n}+\tau_1\Sigma = -\tau C^*, \quad on \ \ \partial\Omega \times\{t > 0\}, \end{split} \end{equation} | (4.5) |
\begin{equation} \begin{split} \theta(x,0) = \Sigma(x,0) = 0,\ x\in\Omega. \end{split} \end{equation} | (4.6) |
We now prove the following theorem.
Theorem 4.1. If T_0, C_0\in L^\infty(\Omega) , F, G\in C^4({\partial\Omega\times\{t > 0\}}) , then the solution of Eq (1.1)–(1.3) withinitial-boundary conditions (1.5) and (1.6) dependscontinuously on the boundary parameters k and \tau in thesense that
\begin{equation*} \begin{split} \beta\int_\Omega \theta^2dx+\int_\Omega\Sigma^2dx\leq L_3k^2+L_4\tau^2. \end{split} \end{equation*} |
Further, {\boldsymbol{v}} depends continuously on k and \tau inthe manner
\begin{equation*} \begin{split} \int_\Omega w_iw_idx\leq L_5k^2+L_6\tau^2, \end{split} \end{equation*} |
where L_3 – L_6 are a priori constants.
Proof. Employing a similar methods of the last section, we have
\begin{equation} \begin{split} \int_\Omega w_iw_idx\leq4g^2\int_\Omega \theta^2dx+4h^2\int_\Omega\Sigma^2dx, \end{split} \end{equation} | (4.7) |
and
\begin{equation} \begin{split} \int_\Omega w_{i,j}w_{i,j}dx\leq16g^2\int_\Omega\theta_{,j}\theta_{,j}dx+16h^2\int_\Omega\Sigma_{,j}\Sigma_{,j}dx+\frac{8k_0m_3}{f_0}\Big(g^2\int_\Omega \theta^2dx+h^2\int_\Omega\Sigma^2dx\Big). \end{split} \end{equation} | (4.8) |
By using (4.2) , (4.3) and the divergence theorem, as the calculation in (3.12), we get
\begin{equation} \begin{split} &\frac{d}{dt}\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big) \\ = &-2\beta\int_\Omega\theta_{,i}\theta_{,i}dx-2\int_\Omega\Sigma_{,i}\Sigma_{,i}dx-2\beta k_1\int_{\partial\Omega}\theta^2dA\\ &-2\beta k\int_{\partial\Omega}\theta T^*dA-2\tau_1\int_{\partial\Omega}\Sigma^2dA-2\tau\int_{\partial\Omega}\Sigma C^*dA +2\beta\int_\Omega\theta_{,i}w_iTdx\\ &+2\int_\Omega\Sigma_{,i}w_iCdx-2\gamma\int_\Omega\theta_{,i}\Sigma_{,i}dx-2k_1\gamma\int_{\partial\Omega}\theta\Sigma dA-2k\gamma\int_{\partial\Omega}T^*\Sigma dA. \end{split} \end{equation} | (4.9) |
We note that (3.13) and (3.14) are still valid in this section. We inserting them into (4.9) and use Cauchy-Schwarz inequality in the other terms on the right of (4.9) to have
\begin{equation} \begin{split} &\frac{d}{dt}(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx)\\ \leq&-(\beta-\frac{\gamma}{\beta_1})\int_\Omega\theta_{,i}\theta_{,i}dx-(1-\gamma\beta_1)\int_\Omega\Sigma_{,i}\Sigma_{,i}dx\\ &-(2\beta k_1-\beta\beta_3-\frac{k_1\gamma}{\beta_2})\int_{\partial\Omega}\theta^2dA-(2\tau_1-\beta_4-k_1\gamma\beta_2-\gamma\beta_5)\int_{\partial\Omega}\Sigma^2dA\\ &+\Big(\int_\Omega(w_iw_i)^2dx\Big)^\frac{1}{2}[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)]+k^2(\frac{\beta}{\beta_3}+\frac{\gamma}{\beta_5})\int_{\partial\Omega}(T^*)^2dA+\frac{\tau^2}{\beta_4}\int_{\partial\Omega}(C^*)^2dA. \end{split} \end{equation} | (4.10) |
We use the inequality (3.16) again and use (4.8) to have
\begin{equation} \begin{split} \int_\Omega(w_iw_i)^2dx\leq M\Big\{\int_\Omega w_iw_idx+\delta^{-\frac{1}{3}}\Big[\int_\Omega\theta_{,i}\theta_{,i}dx+\int_\Omega\Sigma_{,i}\Sigma_{,i}dx\Big]\Big\}, \end{split} \end{equation} | (4.11) |
where M is a positive computable constant. Inserting (4.11) into (4.10) and letting
\beta_1 = \frac{1}{\gamma},\ \beta_2 = \frac{\tau_1}{2k_1\gamma},\ \beta_3 = k_1,\ \beta_4 = \tau_1,\ \beta_5 = \frac{\tau_1}{2\gamma}, |
and then choosing \beta and \delta large enough such that the coefficients of the first four terms of (4.10) are non-positive, we have
\begin{equation} \begin{split} &\frac{d}{dt}\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)\\ \leq& M\int_\Omega w_iw_idx\Big[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)\Big] +k^2\Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\int_{\partial\Omega}(T^*)^2dA+\frac{\tau^2}{\beta_4}\int_{\partial\Omega}(C^*)^2dA, \end{split} \end{equation} | (4.12) |
where we have dropped the non-positive terms. Now, we derive bounds for the integrals on \partial\Omega . Using Lemma 2.1, we find
\begin{equation} \begin{split} \int_{\partial\Omega}(T^*)^2dA\leq\frac{m_3}{f_0}\int_{\Omega}(T^*)^2dx+\int_{\Omega}T^*_{,i}T^*_{,i}dx, \end{split} \end{equation} | (4.13) |
and
\begin{equation} \begin{split} \int_{\partial\Omega}(C^*)^2dA\leq\frac{m_3}{f_0}\int_{\Omega}(C^*)^2dx+\int_{\Omega}C^*_{,i}C^*_{,i}dx, \end{split} \end{equation} | (4.14) |
where we have chosen \alpha = 1 . Inserting (4.13) and (4.14) into (4.12) and recalling (2.8) and (4.7), we have
\begin{equation} \begin{split} \frac{d}{dt}\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)\leq& \widetilde{\mathcal{F}}_1(t)\Big[\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big]+k^2\Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\frac{m_3}{f_0}A_1(t)\\ &+k^2\Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\int_{\Omega}T^*_{,i}T^*_{,i}dx+\frac{\tau^2m_3}{f_0\beta_4}A_2(t)+\frac{\tau^2}{\beta_4}\int_{\Omega}C^*_{,i}C^*_{,i}dx, \end{split} \end{equation} | (4.15) |
where
\begin{equation*} \begin{split} \widetilde{\mathcal{F}}_1(t) = 4M\max\{\frac{g^2}{\beta},h^2\}\Big[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)\Big]. \end{split} \end{equation*} |
It is obvious that (4.15) yields that
\begin{equation} \begin{split} &\frac{d}{dt}\Big[\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)\cdot\exp\Big(-\int_0^t\widetilde{\mathcal{F}}_1(\eta)d\eta\Big)\Big]\\ \leq& \Big\{k^2\Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\frac{m_3}{f_0}A_1(t)+k^2\Big(\frac{\beta}{\beta_3}+\frac{\gamma}{\beta_5}\Big)\int_{\Omega}T^*_{,i}T^*_{,i}dx\\ &+\frac{\tau^2m_3}{f_0\beta_4}A_2(t) +\frac{\tau^2}{\beta_4}\int_{\Omega}C^*_{,i}C^*_{,i}dx\}\cdot\exp\Big(-\int_0^t\widetilde{\mathcal{F}}_1(\eta)d\Big)\\ \leq& k^2\Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\frac{m_3}{f_0}A_1(t)+k^2\Big(\frac{\beta}{\beta_3}+\frac{\gamma}{\beta_5}\Big) \int_{\Omega}T^*_{,i}T^*_{,i}dx+\frac{\tau^2m_3}{f_0\beta_4}A_2(t) +\frac{\tau^2}{\beta_4}\int_{\Omega}C^*_{,i}C^*_{,i}dx, \end{split} \end{equation} | (4.16) |
where we have used the fact \exp\Big(-\int_0^t\widetilde{\mathcal{F}}_1(\eta)d\eta\Big)\leq1 for t > 0 .
Integrating (4.16) from 0 to t leads to
\begin{equation} \begin{split} &\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)\cdot\exp\Big(-\int_0^t\widetilde{\mathcal{F}}_1(\eta)d\eta\Big)\\ \leq& k^2\Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\frac{m_3}{f_0}\int_0^tA_1(\eta)d\eta +k^2\Big(\frac{\beta}{\beta_3}+\frac{\gamma}{\beta_5}\Big)\int_0^t\int_{\Omega}T^*_{,i}T^*_{,i}dxd\eta\\ &+\frac{\tau^2m_3}{f_0\beta_4}\int_0^tA_2(\eta)d\eta +\frac{\tau^2}{\beta_4}\int_0^t\int_{\Omega}C^*_{,i}C^*_{,i}dxd\eta. \end{split} \end{equation} | (4.17) |
Using (2.11) and (2.17) in (4.17) and setting
\begin{equation} \begin{split} \widetilde{\mathcal{F}}_2(t)& = \Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\Big[\frac{m_3}{f_0}\int_0^tA_1(\eta)d\eta+\frac{1}{2}A_1(t)\Big],\quad \widetilde{\mathcal{F}}_3(t) = \frac{1}{\beta_4}\Big[\frac{m_3}{f_0A_2(t)}+\int_0^tA_2(\eta)d\eta\Big], \end{split} \end{equation} | (4.18) |
we obtain
\begin{equation} \begin{split} \beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\leq k^2\widetilde{\mathcal{F}}_2(t)\cdot\exp\Big(\int_0^t\widetilde{\mathcal{F}}_1(\eta)d\eta\Big) +\tau^2\widetilde{\mathcal{F}}_3(t)\cdot\exp\Big(\int_0^t\widetilde{\mathcal{F}}_1(\eta)d\eta\Big). \end{split} \end{equation} | (4.19) |
This is the continuous dependence result for T and C . The continuous dependence for v_i follows directly from (4.7).
In this paper, the continuous dependence of the solution is obtained by using the methods of energy estimate and a priori estimates. The main innovation is to deal with the influence of boundary conditions and magnetic field. The structural stability of boundary parameters and magnetic field coefficients is proved.
The work was supported national natural Science Foundation of China (Grant No. 11371175), the science foundation of Guangzhou Huashang College (Grant No. 2019HSDS28).
The authors declare that they have no competing interests.
[1] | R. Bellman, I. Glicksberg, O. Gross, Some aspects of the mathematical theory of control processes, Technical Report R-313, The Rand Corporation, 1958. |
[2] |
R. Boel, P. Varaiya, Optimal control of jump processes, SIAM J. Control Optim., 15 (1977), 92–119. http://dx.doi.org/10.1137/0315008 doi: 10.1137/0315008
![]() |
[3] |
G. Guatteri, G. Tessitore, On the backward stochastic Riccati equation in infinite dimensions, SIAM J. Control Optim., 44 (2005), 159–194. http://dx.doi.org/10.1137/S0363012903425507 doi: 10.1137/S0363012903425507
![]() |
[4] |
G. Guatteri, G. Tessitore, Backward stochastic Riccati equations and infinite horizon L-Q optimal control problems with stochastic coefficients, Appl. Math. Optim., 57 (2008), 207–235. http://dx.doi.org/10.1007/s00245-007-9020-y doi: 10.1007/s00245-007-9020-y
![]() |
[5] |
G. Guatteri, F. Masiero, Infinite horizon and ergodic optimal quadratic control problems for an affine equation with stochastic coefficients, SIAM J. Control Optim., 48 (2009), 1600–1631. http://dx.doi.org/10.1137/070696234 doi: 10.1137/070696234
![]() |
[6] |
H. Halkin, Necessary conditions for optimal control problems with infinite horizons, Economet. Soc., 1974,267–272. http://dx.doi.org/10.2307/1911976 doi: 10.2307/1911976
![]() |
[7] | S. Hu, Infinite horizontal optimal quadratic control for an affine equation driven by L\acute{e}vy processes, Chinese Ann. Math., 34A (2013), 179–204. |
[8] |
Y. Hu, B. Oksendal, Partial information linear quadratic control for jump diffusions, SIAM J. Control Optim., 47 (2008), 1744–1761. http://dx.doi.org/10.1137/060667566 doi: 10.1137/060667566
![]() |
[9] |
J. Huang, X. Li, J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon, Math. Optim. Control, 5 (2015), 97–139. http://dx.doi.org/10.48550/arXiv.1208.5308 doi: 10.48550/arXiv.1208.5308
![]() |
[10] | R. Kalman, Contributions to the theory of optimal control, Bol. Soc. Math., 5 (1960), 102–119. |
[11] | H. Kushner, Optimal stochastic control, IRE Trans. Autom. Control, 7 (1962), 120–122. |
[12] |
A. Lim, X. Zhou, Linear-quadratic control of backward stochastic differential equations, SIAM J. Control Optim., 40 (2001), 450–474. http://dx.doi.org/10.1137/S0363012900374737 doi: 10.1137/S0363012900374737
![]() |
[13] |
Q. Meng, General linear quadratic optimal stochastic control problem driven by a Brownian motion and a Poisson random martingale measure with random coefficients, Stoch. Anal. Appl., 32 (2014), 88–109. http://dx.doi.org/10.1080/07362994.2013.845106 doi: 10.1080/07362994.2013.845106
![]() |
[14] |
B. Øksendal, A. Sulem, Maximum principles for optimal control of forward-backward stochastic differential equations with jumps, SIAM J. Control Optim, 48 (2009), 2945–2976. http://dx.doi.org/10.1137/080739781 doi: 10.1137/080739781
![]() |
[15] |
M. Rami, X. Zhou, J. Moore, Well-posedness and attainability of indefnite stochastic linear quadratic control in infinite time horizon, Syst. Control Lett., 41 (2000), 123–133. http://dx.doi.org/10.1016/S0167-6911(00)00046-3 doi: 10.1016/S0167-6911(00)00046-3
![]() |
[16] |
R. Situ, On solution of backward stochastic differential equations with jumps and applications, Stoch. Proc. Appl., 66 (1997), 209–236. http://dx.doi.org/10.1016/S0304-4149(96)00120-2 doi: 10.1016/S0304-4149(96)00120-2
![]() |
[17] |
J. Sun, X. Li, J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems, SIAM J. Control Optim., 54 (2016), 2274–2308. http://dx.doi.org/10.1137/15M103532X doi: 10.1137/15M103532X
![]() |
[18] |
J. Sun, J. Yong, Stochastic linear quadratic optimal control problems in infinite horizon, Appl. Math. Optim., 2018,145–183. http://dx.doi.org/10.1007/s00245-017-9402-8 doi: 10.1007/s00245-017-9402-8
![]() |
[19] | J. Sun, J. Yong, Stochastic linear-quadratic optimal control theory: Open-loop and closed-loop solutions, Switzerland: Springer, 2020. http://dx.doi.org/10.1007/978-3-030-20922-3 |
[20] |
S. Tang, X. Li, Necessary conditions for optimal control of stochastic systems with random jumps, SIAM J. Control Optim., 32 (1994), 1447–1475. http://dx.doi.org/10.1137/S0363012992233858 doi: 10.1137/S0363012992233858
![]() |
[21] |
W. Wonham, On a matrix riccati equation of stochastic control, SIAM J. Control, 6 (1968), 681–697. http://dx.doi.org/10.1137/0306043 doi: 10.1137/0306043
![]() |
[22] | W. Wonham, Random differential equation in control theory, Matematika, 2 (1970), 131–212. |
[23] |
H. Wu, X. Li, An infinite horizon linear quadratic problem with unbounded controls in Hilbert space, Acta Math. Sin., 17 (2001), 527–540. http://dx.doi.org/10.1007/s101140100123 doi: 10.1007/s101140100123
![]() |
[24] | Z. Wu, X. Wang, FBSDE with Poisson process and its application to linear quadratic stochastic optimal control problem with random jumps, Acta Autom. Sin., 29 (2003), 821–826. |
[25] |
Y. Yang, M. Tang, Q. Meng, A mean-field stochastic linear-quadratic optimal control problem with jumps under partial information, ESAIM-Control Optim. Ca., 28 (2022). http://dx.doi.org/10.1051/cocv/2022039 doi: 10.1051/cocv/2022039
![]() |
[26] | J. Yong, X. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, Springer Science Business Media, 2012. http://dx.doi.org/10.1016/s0005-1098(02)00057-2 |
[27] | M. H. A. Davis, Linear estimation and stochastic control, Chapman and Hall, 1977. |
[28] |
A. Bensoussan, Lectures on stochastic control, part Ⅰ. In nonlinear filtering and stochastic control, Lect. Notes Math., 972 (1982), 1–39. http://dx.doi.org/10.1007/bfb0064859 doi: 10.1007/bfb0064859
![]() |
[29] |
M. Kohlmann, X. Zhou, Relationship between backward stochastic differential equations and stochastic controls: A linear-quadratic approach, SIAM J. Control Optim., 38 (2000), 1392–1407. http://dx.doi.org/10.1137/S036301299834973X doi: 10.1137/S036301299834973X
![]() |
[30] |
N. Li, Z. Wu, Z. Yu, Indefinite stochastic linear-quadratic optimal control problems with random jumps and related stochastic Riccati equations, Sci. China Math., 61 (2018), 563–576. http://dx.doi.org/10.1007/s11425-015-0776-6 doi: 10.1007/s11425-015-0776-6
![]() |
[31] | B. Øksendal, S. Agnes, Applied stochastic control of jump diffusions, Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26441-8-3 |
1. | Abdul Ghaffar, Ayyaz Ali, Sarfaraz Ahmed, Saima Akram, Moin-ud-Din Junjua, Dumitru Baleanu, Kottakkaran Sooppy Nisar, A novel analytical technique to obtain the solitary solutions for nonlinear evolution equation of fractional order, 2020, 2020, 1687-1847, 10.1186/s13662-020-02751-5 | |
2. | Haci Mehmet Baskonus, Muzaffer Ercan, Extraction Complex Properties of the Nonlinear Modified Alpha Equation, 2021, 5, 2504-3110, 6, 10.3390/fractalfract5010006 | |
3. | Thilagarajah Mathanaranjan, Solitary wave solutions of the Camassa–Holm-Nonlinear Schrödinger Equation, 2020, 19, 22113797, 103549, 10.1016/j.rinp.2020.103549 | |
4. | Onur Alp Ilhan, M. Nurul Islam, M. Ali Akbar, Construction of Functional Closed Form Wave Solutions to the ZKBBM Equation and the Schrödinger Equation, 2020, 2228-6187, 10.1007/s40997-020-00358-5 | |
5. | Abdulla - Al - Mamun, Samsun Nahar Ananna, Tianqing An, Nur Hasan Mahmud Shahen, , Periodic and solitary wave solutions to a family of new 3D fractional WBBM equations using the two-variable method, 2021, 3, 26668181, 100033, 10.1016/j.padiff.2021.100033 | |
6. | M. Al-Amin, M. Nurul Islam, M. Ali Akbar, Adequate wide-ranging closed-form wave solutions to a nonlinear biological model, 2021, 4, 26668181, 100042, 10.1016/j.padiff.2021.100042 | |
7. | Jiahua Fang, Muhammad Nadeem, Hanan A. Wahash, Arzu Akbulut, A Semianalytical Approach for the Solution of Nonlinear Modified Camassa–Holm Equation with Fractional Order, 2022, 2022, 2314-4785, 1, 10.1155/2022/5665766 | |
8. | Md. Tarikul Islam, Mst. Armina Akter, J. F. Gómez-Aguilar, Md. Ali Akbar, Novel and diverse soliton constructions for nonlinear space–time fractional modified Camassa–Holm equation and Schrodinger equation, 2022, 54, 0306-8919, 10.1007/s11082-022-03602-1 | |
9. | S M Rayhanul Islam, S M Yiasir Arafat, Hanfeng Wang, Abundant closed-form wave solutions to the simplified modified Camassa-Holm equation, 2022, 24680133, 10.1016/j.joes.2022.01.012 | |
10. | Aniqa Zulfiqar, Jamshad Ahmad, Exact solitary wave solutions of fractional modified Camassa-Holm equation using an efficient method, 2020, 59, 11100168, 3565, 10.1016/j.aej.2020.06.002 | |
11. | Ismail Onder, Melih Cinar, Aydin Secer, Mustafa Bayram, Analytical solutions of simplified modified Camassa-Holm equation with conformable and M-truncated derivatives: A comparative study, 2022, 24680133, 10.1016/j.joes.2022.06.012 | |
12. | Mounirah Areshi, Aly R. Seadawy, Asghar Ali, Abdulrahman F. AlJohani, Weam Alharbi, Amal F. Alharbi, Construction of Solitary Wave Solutions to the (3 + 1)-Dimensional Nonlinear Extended and Modified Quantum Zakharov–Kuznetsov Equations Arising in Quantum Plasma Physics, 2023, 15, 2073-8994, 248, 10.3390/sym15010248 | |
13. | M. Al-Amin, M. Nurul Islam, M. Ali Akbar, The closed-form soliton solutions of the time-fraction Phi-four and (2+1)-dimensional Calogero–Bogoyavlenskii–Schiff model using the recent approach, 2022, 5, 26668181, 100374, 10.1016/j.padiff.2022.100374 | |
14. | M. Ayesha Khatun, Mohammad Asif Arefin, M. Hafiz Uddin, Mustafa Inc, Luigi Rodino, Abundant Explicit Solutions to Fractional Order Nonlinear Evolution Equations, 2021, 2021, 1563-5147, 1, 10.1155/2021/5529443 | |
15. | M. Nurul Islam, Onur Alp İlhan, M. Ali Akbar, Fatma Berna Benli, Danyal Soybaş, Wave propagation behavior in nonlinear media and resonant nonlinear interactions, 2022, 108, 10075704, 106242, 10.1016/j.cnsns.2021.106242 | |
16. | Noha M. Rasheed, Mohammed O. Al-Amr, Emad A. Az-Zo’bi, Mohammad A. Tashtoush, Lanre Akinyemi, Stable Optical Solitons for the Higher-Order Non-Kerr NLSE via the Modified Simple Equation Method, 2021, 9, 2227-7390, 1986, 10.3390/math9161986 | |
17. | M. Ayesha Khatun, Mohammad Asif Arefin, M. Ali Akbar, M. Hafiz Uddin, Numerous explicit soliton solutions to the fractional simplified Camassa-Holm equation through two reliable techniques, 2023, 20904479, 102214, 10.1016/j.asej.2023.102214 | |
18. | M. Al-Amin, M. Nurul Islam, Onur Alp İlhan, M. Ali Akbar, Danyal Soybaş, Firdous A. Shah, Solitary Wave Solutions to the Modified Zakharov–Kuznetsov and the (2 + 1)-Dimensional Calogero–Bogoyavlenskii–Schiff Models in Mathematical Physics, 2022, 2022, 2314-4785, 1, 10.1155/2022/5224289 | |
19. | Minzhi Wei, Liping He, Existence of periodic wave for a perturbed MEW equation, 2023, 8, 2473-6988, 11557, 10.3934/math.2023585 | |
20. | Thitthita Iatkliang, Supaporn Kaewta, Nguyen Minh Tuan, Sekson Sirisubtawee, Novel Exact Traveling Wave Solutions for Nonlinear Wave Equations with Beta-Derivatives via the sine-Gordon Expansion Method, 2023, 22, 2224-2880, 432, 10.37394/23206.2023.22.50 | |
21. | Melike Kaplan, Rubayyi T. Alqahtani, Nadiyah Hussain Alharthi, Wave Propagation and Stability Analysis for Ostrovsky and Symmetric Regularized Long-Wave Equations, 2023, 11, 2227-7390, 4030, 10.3390/math11194030 | |
22. | Sujoy Devnath, Shahansha Khan, M. Ali Akbar, Exploring solitary wave solutions to the simplified modified camassa-holm equation through a couple sophisticated analytical approaches, 2024, 59, 22113797, 107580, 10.1016/j.rinp.2024.107580 | |
23. | YANZHI MA, ZENGGUI WANG, BIFURCATION AND EXACT SOLUTIONS OF SPACE-TIME FRACTIONAL SIMPLIFIED MODIFIED CAMASSA–HOLM EQUATION, 2023, 31, 0218-348X, 10.1142/S0218348X23500858 | |
24. | Md. Abde Mannaf, Rajandra Chadra Bhowmik, Mst. Tania Khatun, Md. Ekramul Islam, Udoy S. Basak, M. Ali Akbar, Optical solitons of SMCH model in mathematical physics: impact of wind and friction on wave, 2024, 56, 0306-8919, 10.1007/s11082-023-05641-8 | |
25. | Mrutyunjaya Sahoo, S. Chakraverty, 2024, 9780443154041, 227, 10.1016/B978-0-44-315404-1.00019-9 | |
26. | Ghazala Akram, Maasoomah Sadaf, Saima Arshed, Muhammad Abdaal Bin Iqbal, Simulations of exact explicit solutions of simplified modified form of Camassa–Holm equation, 2024, 56, 1572-817X, 10.1007/s11082-024-06940-4 | |
27. | Md. Tarikul Islam, Shahariar Ryehan, Farah Aini Abdullah, J.F. Gómez-Aguilar, The effect of Brownian motion and noise strength on solutions of stochastic Bogoyavlenskii model alongside conformable fractional derivative, 2023, 287, 00304026, 171140, 10.1016/j.ijleo.2023.171140 | |
28. | Aly R. Seadway, Asghar Ali, Ahmet Bekir, Adem C. Cevikel, Analysis of the(3+1)-Dimensional Fractional Kadomtsev–Petviashvili–Boussinesq Equation: Solitary, Bright, Singular, and Dark Solitons, 2024, 8, 2504-3110, 515, 10.3390/fractalfract8090515 | |
29. | Faisal Yasin, Muhammad Arshad, Ghulam Farid, Mohammad Ali Hoseinzadeh, Hadi Rezazadeh, W-shape and abundant of other solitary wave solutions of the positive Gardner Kadomtsov–Petviashivilli dynamical model with applications, 2024, 56, 1572-817X, 10.1007/s11082-024-06922-6 | |
30. | Aly R. Seadawy, Asghar Ali, Ahmet Bekir, Novel solitary waves solutions of the extended cubic(3+1)-dimensional Schr\ddot{o}dinger equation via applications of three mathematical methods, 2024, 56, 1572-817X, 10.1007/s11082-024-06528-y | |
31. | Jamilu Sabi’u, Mayssam Tarighi Shaayesteh, Ali Taheri, Hadi Rezazadeh, Mustafa Inc, Ali Akgül, New exact solitary wave solutions of the generalized (3 + 1)-dimensional nonlinear wave equation in liquid with gas bubbles via extended auxiliary equation method, 2023, 55, 0306-8919, 10.1007/s11082-023-04870-1 | |
32. | M. Ashikur Rahman, M. Al-Amin, Mst. Kamrunnaher, M. Abul Kawser, Rajaul Haque, M. Ali Akbar, M. Nurul Islam, Mathematical analysis of some new adequate broad-ranging soliton solutions of nonlinear models through the recent technique, 2024, 9, 26668181, 100634, 10.1016/j.padiff.2024.100634 | |
33. | Hassan Almusawa, Musawa Yahya Almusawa, Adil Jhangeer, Zamir Hussain, A Comprehensive Study of Dynamical Behavior and Nonlinear Structures of the Modified α Equation, 2024, 12, 2227-7390, 3809, 10.3390/math12233809 | |
34. | Md. Asaduzzaman, Farhana Jesmin, Construction of the Closed Form Wave Solutions for TFSMCH and (1 1) Dimensional TFDMBBM Equations via the EMSE Technique+, 2025, 9, 2504-3110, 72, 10.3390/fractalfract9020072 | |
35. | Yimin Liu, Xiaoshan Zhao, Application of homotopy analysis method to solve a class of time-fractional order mCH equations, 2025, 2964, 1742-6588, 012043, 10.1088/1742-6596/2964/1/012043 | |
36. | Kang-Jia Wang, Guo-Dong Wang, Feng Shi, Xiao-Lian Liu, Hong-Wei Zhu, Variational principle, Hamiltonian, bifurcation analysis, chaotic behaviors and the diverse solitary wave solutions of the simplified modified Camassa–Holm equation, 2025, 22, 0219-8878, 10.1142/S0219887825500136 | |
37. | H. A. Ashi, Noufe H. Aljahdaly, Investigation of the damped geophysical KdV equation using the explicit exponential time differencing method, 2025, 81, 1573-0484, 10.1007/s11227-025-07289-5 |