Processing math: 67%
Research article Special Issues

Cluster synchronization of coupled complex-valued neural networks with leakage and time-varying delays in finite-time

  • In cluster synchronization (CS), the constituents (i.e., multiple agents) are grouped into a number of clusters in accordance with a function of nodes pertaining to a network structure. By designing an appropriate algorithm, the cluster can be manipulated to attain synchronization with respect to a certain value or an isolated node. Moreover, the synchronization values among various clusters vary. The main aim of this study is to investigate the asymptotic and CS problem of coupled delayed complex-valued neural network (CCVNN) models along with leakage delay in finite-time (FT). In this paper, we describe several sufficient conditions for asymptotic synchronization by utilizing the Lyapunov theory for differential systems and the Filippov regularization framework for the realization of finite-time synchronization of CCVNNs with leakage delay. We also propose sufficient conditions for CS of the system under scrutiny. A synchronization algorithm is developed to indicate the usefulness of the theoretical results in case studies.

    Citation: N. Jayanthi, R. Santhakumari, Grienggrai Rajchakit, Nattakan Boonsatit, Anuwat Jirawattanapanit. Cluster synchronization of coupled complex-valued neural networks with leakage and time-varying delays in finite-time[J]. AIMS Mathematics, 2023, 8(1): 2018-2043. doi: 10.3934/math.2023104

    Related Papers:

    [1] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [2] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [3] Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704
    [4] Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486
    [5] Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784
    [6] M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid . Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666
    [7] M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045
    [8] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [9] Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013
    [10] Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018
  • In cluster synchronization (CS), the constituents (i.e., multiple agents) are grouped into a number of clusters in accordance with a function of nodes pertaining to a network structure. By designing an appropriate algorithm, the cluster can be manipulated to attain synchronization with respect to a certain value or an isolated node. Moreover, the synchronization values among various clusters vary. The main aim of this study is to investigate the asymptotic and CS problem of coupled delayed complex-valued neural network (CCVNN) models along with leakage delay in finite-time (FT). In this paper, we describe several sufficient conditions for asymptotic synchronization by utilizing the Lyapunov theory for differential systems and the Filippov regularization framework for the realization of finite-time synchronization of CCVNNs with leakage delay. We also propose sufficient conditions for CS of the system under scrutiny. A synchronization algorithm is developed to indicate the usefulness of the theoretical results in case studies.



    Fractional differential equations (FDEs) provide many mathematical models in physics, biology, economics, and chemistry, etc [1,2,3,4]. In fact, it consists of many integrals and derivative operators of non-integer orders, which generalize the theory of ordinary differentiation and integration. Hence, a more general approach is allowed to calculus and one can say that the aim of the FDEs is to consider various phenomena by studying derivatives and integrals of arbitrary orders. For intercalary specifics about the theory of FDEs, the readers are referred to the books of Kilbas et al.[2] and Podlubny [4]. In the literature, several concepts of fractional derivatives have been represented, consisting of Riemann-Liouville, Liouville-Caputo, generalized Caputo, Hadamard, Katugampola, and Hilfer derivatives. The Hilfer fractional derivative [5] extends both Riemann-Liouville and Caputo fractional derivatives. For applications of Hilfer fractional derivatives in mathematics and physics, etc see [6,7,8,9,10,11]. For recent results on boundary value problems for fractional differential equations and inclusions with the Hilfer fractional derivative see the survey paper by Ntouyas [12]. The ψ-Riemann-Liouville fractional integral and derivative operators are discussed in [1], while the ψ-Hilfer fractional derivative is discussed in [13]. Recently, the notion of a generalized proportional fractional derivative was introduced by Jarad et al. [14,15,16]. For some recent results on fractional differential equations with generalized proportional derivatives, see [17,18].

    In [19], an existence result was proved via Krasnosel'ski˘i's fixed-point theorem for the following sequential boundary value problem of the form

    {HDα,ς,ψ[HDβ,ς,ψp(w)ϕ(w,p(w))ni=1Iνi;ψhi(w,p(w))]=Υ(w,p(w)),w[a,b],p(a)=0,HDb,ς,ψp(a)=0,p(b)=τp(ζ), (1.1)

    where HDω,ς,ψ indicates the ψ-Hilfer fractional derivative of order ω{α,β}, with 0<α1, 1<β2, 0ς<1, Iνi;ψ is the ψ-Riemann–Liouville fractional integral of order νi>0, for i=1,2,,n, hiC([0,1]×R,R), for i=1,2,,n, ϕC([0,1]×R,R{0}), ΥC([0,1]×R,R), τR and ζ(a,b). In [16], the consideration of Hilfer-type generalized proportional fractional derivative operators was initiated.

    Coupled systems of fractional order are also significant, as such systems appear in the mathematical models in science and engineering, such as bio-engineering [20], fractional dynamics [21], financial economics [22], etc. Coupled systems of FDEs with diverse boundary conditions have been the focus of many researches. In [23], the authors studied existence and Ulam-Hyers stability results of a coupled system of ψ-Hilfer sequential fractional differential equations. Existence and uniqueness results are derived in [24] for a coupled system of Hilfer-Hadamard fractional differential equations with fractional integral boundary conditions. Recently, in [25] a coupled system of nonlinear fractional differential equations involving the (k,ψ)-Hilfer fractional derivative operators complemented with multi-point nonlocal boundary conditions were discussed. Moreover, Samadi et al. [26] have considered a coupled system of Hilfer-type generalized proportional fractional differential equations.

    In this article, motivated by the above works, we study a coupled system of ψ-Hilfer sequential generalized proportional FDEs with boundary conditions generated by the problem (1.1). More precisely, we consider the following coupled system of nonlinear proportional ψ-Hilfer sequential fractional differential equations with multi-point nonlocal boundary conditions of the form

    {HDν1,ϑ1;ς;ψ[HDν2,ϑ2;ς;ψp1(w)Φ1(w,p1(w),p2(w))ni=1pIηi,ς,ψHi(w,p1(w),p2(w))]=Υ1(w,p1(w),p2(w)),w[t1,t2],HDν3,ϑ3;ς;ψ[HDν4,ϑ4;ς;ψp1(w)Φ2(w,p1(w),p2(w))mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))]=Υ2(w,p1(w),p2(w)),w[t1,t2],p1(t1)=HDν2,ϑ2;ς;ψp1(t1)=0,p1(t2)=θ1p2(ξ1),p2(t1)=HDν4,ϑ4;ς;ψp2(t1)=0,p2(t2)=θ2p1(ξ2), (1.2)

    where HDν,ϑ1;ς;ψ denotes the ψ-Hilfer generalized proportional derivatives of order ν{ν1,ν2,ν3,ν4}, with parameters ϑl, 0ϑl1, l{1,2,3,4}, ψ is a continuous function on [t1,t2], with ψ(w)>0, pIη,ς,ψ is the generalized proportional integral of order η>0, η{ηi,ηj}, θ1,θ2R, ξ1,ξ2[t1,t2], Φ1,Φ2C([t1,t2]×R×R,R{0}) and Hi,Gj,Υ1,Υ2C([t1,t2]×R×R,R), for i=1,2,,n and j=1,2,,m.

    We emphasize that:

    ● We study a general system involving ψ-Hilfer proportional fractional derivatives.

    ● Our equations contain fractional derivatives of different orders as well as sums of fractional integrals of different orders.

    ● Our system contains nonlocal coupled boundary conditions.

    ● Our system covers many special cases by fixing the parameters involved in the problem. For example, taking ψ(w)=w, it will reduce to a coupled system of Hilfer sequential generalized proportional FDEs with boundary conditions, while if ς=1, it reduces to a coupled system of ψ-Hilfer sequential FDEs. Besides, by taking Φ1,Φ2=1 in the problem (1.2), then we obtain the following new coupled system of the form:

    {HDν1,ϑ1;ς;ψ[HDν2,ϑ2;ς;ψp1(w)ni=1pIηi,ς,ψHi(w,p1(w),p2(w))]=Υ1(w,p1(w),p2(w)),w[t1,t2],HDν3,ϑ3;ς;ψ[HDν4,ϑ4;ς;ψp1(w)mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))]=Υ2(w,p1(w),p2(w)),w[t1,t2],p1(t1)=HDν2,ϑ2;ς;ψp1(t1)=0,p1(t2)=θ1p2(ξ1),p2(t1)=HDν4,ϑ4;ς;ψp2(t1)=0,p2(t2)=θ2p1(ξ2).

    In obtaining the existence result of the problem (1.2), first the problem (1.2) is converted into a fixed-point problem and then a generalization of Krasnosel'ski˘i's fixed-point theorem due to Burton is applied.

    The structure of this article has been organized as follows: In Section 2, some necessary concepts and basic results concerning our problem are presented. The main result for the problem (1.2) is proved in Section 3, while Section 4 contains an example illustrating the obtained result.

    In this section, we summarize some known definitions and lemmas needed in our results.

    Definition 2.1. [17,18] Let ς(0,1] and ν>0. The fractional proportional integral of order ν of the continuous function F is defined by

    pIν,ς,ψF(w)=1ςνΓ(ν)wt1eς1ς(ψ(w)ψ(s))(ψ(w)ψ(s))ν1F(s)ψ(s)ds,t1>w.

    Definition 2.2. [17,18] Let ς(0,1], ν>0, and ψ(w) is a continuous function on [t1,t2], ψ(w)>0. The generalized proportional fractional derivative of order ν of the continuous function F is defined by

    (pDν,ς,ψF)(w)=(pDn,ς,ψ)ςnνΓ(nν)wt1eς1ς(ψ(w)ψ(s))(ψ(w)ψ(s))nν1F(s)ψ(s)ds,

    where n=[ρ]+1 and [ν] denotes the integer part of the real number ν, where Dn,ς,ψ=Dς,ψDς,ψntimes.

    Now the generalized Hilfer proportional fractional derivative of order ν of function F with respect to another function ψ is introduced.

    Definition 2.3. [27] Let ς(0,1], F,ψCm([t1,t2],R) in which ψ is positive and strictly increasing with ψ(w)0 for all w[t1,t2]. The ψ-Hilfer generalized proportional fractional derivative of order ν and type ϑ for F with respect to another function ψ is defined by

    (HDν,ϑ,ς,ψF)(w)=pIϑ(nν),ς,ψ[pDn,ς,ψ(pI(1ϑ)(nν),ς,ψF)](w),

    where n1<ν<n and 0ϑ1.

    Lemma 2.4. [27] Let m1<ν<m,nN, 0<ς1, 0ϑ1 and m1<γ<m such that γ=ν+mϑνϑ. If FC([t1,t2],R) and pI(mγ,ς,ψ)FCm([t1,t2],R), then

    (pIν,ς,ψHDν,ϑ,ς,ψF)(w)=F(w)nj=1eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γjςγjΓ(γj+1)(pIjγ,ς,ψF)(t1).

    To prove the main result we need the following lemma, which concerns a linear variant of the ψ-Hilfer sequential proportional coupled system (1.2). This lemma plays a pivotal role in converting the nonlinear problem in system (1.2) into a fixed-point problem.

    Lemma 2.5. Let 0<ν1,ν31, 1<ν2,ν42, 0ϑi1, γi=νi+ϑi(1νi), i=1,3 and γj=νj+ϑj(2νj), j=2,4, Θ=M1N2M2N10, ψ is a continuous function on [t1,t2], with ψ(w)>0, and Q1,Q2C([t1,t2],R), Φ1,Φ2C([t1,t2]×R×R,R{0}) and Hi,Gj,Q1,Q2C([t1,t2]×R×R,R), for i=1,2,,n and j=1,2,,m, and pI(1γi,ς,ψ)QjCm([t1,t2],R),i=1,2,3,4,j=1,2. Then the pair (p1,p2) is a solution of the system

    {HDν1,ϑ1;ς;ψ[HDν2,ϑ2;ς;ψp1(w)Φ1(w,p1(w),p2(w))ni=1pIηi,ς,ψHi(w,p1(w),p2(w))]=Q1(w),w[t1,t2],HDν3,ϑ3;ς;ψ[HDν4,ϑ4;ς;ψp1(w)Φ2(w,p1(w),p2(w))mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))]=Q2(w),w[t1,t2],p1(t1)=HDν2,ϑ2;ς;ψp1(t1)=0,p1(t2)=θ1p2(ξ1),p2(t1)=HDν4,ϑ4;ς;ψp2(t1)=0,p2(t2)=θ2p1(ξ2),

    if and only if

    p1(w)=pIν2,ς,ψΦ1(w,p1(w),p2(w))(ni=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1,ς,ψQ1(w))+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21Θςγ21Γ(γ2){N2[θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))
    ×(mj=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψQ2(ξ1)))pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))×(ni=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψQ1(t2))]+M2[θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))×(ni=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψQ1(ξ2)))pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))×(mj=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψQ2(t2))]} (2.1)

    and

    p2(w)=pIν4,ς,ψΦ2(w,p1(w),p2(w))(mj=1pIˉηj,ς,ψGj(w,p1(w),p2(w))+pIν3,ς,ψQ2(w))
    +eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ41Θςγ41Γ(γ4){N1[θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))×(mj=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψQ2(ξ1)))pIν2,ς,ψΦ2(t2,p1(t2),p2(t2))×(ni=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψQ1(t2))]+M1[θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))×(ni=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψQ1(ξ2)))pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))×(mj=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψQ2(t2))]}, (2.2)

    where

    M1=eς1ς(ψ(t2)ψ(t1))(ψ(t2)ψ(t1))γ21ςγ21Γ(γ2),M2=θ1eς1ς(ψ(ξ1)ψ(t1))(ψ(ξ1)ψ(t1))γ41ςγ41Γ(γ4),N1=θ2eς1ς(ψ(ξ2)ψ(t1))(ψ(ξ2)ψ(t1))γ21ςγ21Γ(γ2),N2=eς1ς(ψ(t2)ψ(t1))(ψ(t2)ψ(t1))γ41ςγ41Γ(γ4). (2.3)

    Proof. Due to Lemma 2.4 with m=1, we get

    HDν2,ϑ2;ς;ψp1(w)Φ1(w,p1(w),p2(w))ni=1pIηi,ς,ψHi(w,p1(w),p2(w))=pIν1;ς;ψQ1(w)+c0eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ11ςγ11Γ(γ1),HDν4,ϑ4;ς;ψp2(w)Φ2(w,p1(w),p2(w))mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))=pIν3;ς;ψQ2(w)+d0eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ31ςγ31Γ(γ3), (2.4)

    where c0,d0R. Now applying the boundary conditions

    HDν2,ϑ2;ς;ψp1(t1)=HDν4,ϑ4;ς;ψp1(t1)=0,

    we get c0=d0=0. Hence

    HDν2,ϑ2;ς;ψp1(w)=Φ1(w,p1(w),p2(w))(ni=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1;ς;ψQ1(w)),HDν4,ϑ4;ς;ψp2(w)=Φ2(w,p1(w),p2(w))(mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))+pIν3;ς;ψQ2(w)). (2.5)

    Now, by taking the operators pIν2,ς,ψ and pIν4,ς,ψ into both sides of (2.5) and using Lemma 2.4, we get

    p1(w)=pIν2;ς;ψΦ1(w,p1(w),p2(w))(ni=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1;ς;ψQ1(w))+c1eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21ςγ21Γ(γ2)+c2eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ22ςγ22Γ(γ21),p2(w)=pIν4;ς;ψΦ2(w,p1(w),p2(w))(mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))+pIν3;ς;ψQ2(w))+d1eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ41ςγ41Γ(γ4)+d2eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ42ςγ42Γ(γ41). (2.6)

    Applying the conditions p1(t1)=p2(t1)=0 in (2.6), we get c2=d2=0 since γ2[ν2,2] and γ4[ν4,2]. Thus we have

    p1(w)=pIν2;ς;ψ(Φ1(w,p1(w),p2(w))(ni=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1;ς;ψQ1(w)))+c1eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21ςγ21Γ(γ2),p2(w)=pIν4;ς;ψ(Φ2(w,p1(w),p2(w))(mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))+pIν3;ς;ψQ2(w)))+d1eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ41ςγ41Γ(γ4). (2.7)

    In view of (2.7) and the conditions p1(t2)=θ1p2(ξ1) and p2(t2)=θ2p1(ξ2), we get

    pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))(ni=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψQ1(t2))+c1eς1ς(ψ(t2)ψ(t1))(ψ(t2)ψ(t1))γ21ςγ21Γ(γ2)=θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))(mj=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψQ2(ξ1)))+d1θ1eς1ς(ψ(ξ1)ψ(t1))(ψ(ξ1)ψ(t1))γ41ςγ41Γ(γ4), (2.8)

    and

    pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))(mj=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+Iν3,ς,ψQ2(t2))+d1eς1ς(ψ(t2)ψ(t1))(ψ(t2)ψ(t1))γ41ςγ21Γ(γ2)=θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))(ni=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψQ1(ξ2)))+c1θ2eς1ς(ψ(ξ2)ψ(t1))(ψ(ξ2)ψ(t1))γ21ςγ21Γ(γ2). (2.9)

    Due to (2.3), (2.8), and (2.9), we have

    c1M1d1M2=M,c1N1+d1N2=N, (2.10)

    where

    M=θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))(mj=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψQ2(ξ1)))pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))(ni=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψQ1(t2)),N=θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))(ni=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψQ1(ξ2)))pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))(mj=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψQ2(t2)).

    By solving the above system, we conclude that

    c1=1Θ[N2M+M2N],d1=1Θ[M1N+N1M].

    Replacing the values c1 and d1 in Eq (2.7), we obtain the solutions (2.1) and (2.2). The converse is obtained by direct computation. The proof is complete.

    Let Y=C([t1,t2],R)={p:[t1,t2]Ris continuous}. The space Y is a Banach space with the norm p=supw[t1,t2]|p(w)|. Obviously, the space (Y×Y,(p1,p2)) is also a Banach space with the norm (p1,p2)=p1+p2.

    Due to Lemma 2.5, we define an operator V:Y×YY×Y by

    V(p1,p2)(w)=(V1(p1,p2)(w)V2(p1,p2)(w)), (3.1)

    where

    V1(p1,p2)(w)=pIν2,ς,ψΦ1(w,p1(w),p2(w))(ni=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1,ς,ψΥ1(w,p1(w),p2(w)))+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21Θςγ21Γ(γ2){N2[θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))×(mj=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψΥ2(ξ1,p1(ξ1),p2(ξ1)))pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))(ni=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψΥ1(t2,p1(t2),p2(t2)))]+M2[θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))×(ni=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψΥ1(ξ2,p1(ξ1),p2(ξ2)))pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))(mj=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψΥ2(t2,p1(t2),p2(t2)))]},w[t1,t2],

    and

    V2(p1,p2)(w)=pIν4,ς,ψΦ2(w,p1(w),p2(w))(mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))+pIν3,ς,ψΥ2(w,p1(w),p2(w)))+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ41Θςγ41Γ(γ4){N1[θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))×(mj=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψΥ2(ξ1,p1(ξ1),p2(ξ1))))pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))(ni=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψΥ1(t2,p1(t2),p2(t2)))]+M1[θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))×(ni=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψΥ1(ξ2,p1(ξ2),p2(ξ2))))pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))(mj=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψΥ2(t2,p1(t2),p2(t2)))]},w[t1,t2].

    To prove our main result we will use the following Burton's version of Krasnosel'ski˘i's fixed-point theorem.

    Lemma 3.1. [28] Let S be a nonempty, convex, closed, and bounded set of a Banach space (X,) and let A:XX and B:SX be two operators which satisfy the following:

    (i) A is a contraction,

    (ii) B is completely continuous, and

    (iii) x=Ax+By,ySxS.

    Then there exists a solution of the operator equation x=Ax+Bx.

    Theorem 3.2. Assume that:

    (H1) The functions Φk:[t1,t2]×R2R{0}, Υk:[t1,t2]×R2R for k=1,2 and hi,gj:[t1,t2]×R2R for i=1,2,,n,j=1,2,,m, are continuous and there exist positive continuous functions ϕk, ωk:[t1,t2]R, k=1,2, hi:[t1,t2]R, gj:[t1,t2]R i=1,2,,nj=1,2,,m, with bounds ϕk, ωk, k=1,2, and hi, i=1,2,,m, gj,j=1,2,,m, respectively, such that

    |Φ1(w,u1,u2)Φ1(w,¯u1,¯u2)|ϕ1(w)(|u1¯u1|+|u2¯u2|),|Φ2(w,u1,u2)Φ2(w,¯u1,¯u2)|ϕ2(w)(|u1¯u1|+|u2¯u2|),|Υ1(w,u1,u2)Υ1(w,¯u1,¯u2|ω1(w)(|u1¯u1|+|u2¯u2|),|Υ2(w,u1,u2)Υ2(w,¯u1,¯u2|ω2(w)(|u1¯u1|+|u2¯u2|),|Hi(w,u1,u2)Hi(w,¯u1,¯u2)|hi(w)(|u1¯u1|+|u2¯u2|),|Gj(w,u1,u2)Gj(w,¯u1,¯u2)|gj(w)(|u1¯u1|+|u2¯u2|), (3.2)

    for all w[t1,t2] and ui,¯uiR, i=1,2.

    (H2) There exist continuous functions Fk,Lk,k=1,2, λi,μj,i=1,2,,n,j=1,2,,m such that

    |Φ1(w,u1,u2)|F1(w),|Φ2(w,u1,u2)|F2(w),|Hi(w,u1,u2)|λi(w),|Gj(w,u1,u2)|μj(w),|Υ1(w,u1,u2)|L1(w),|Υ2(w,u1,u2)|L2(w), (3.3)

    for all w[t1,t2] and u1,u2R.

    (H3) Assume that

    K:={(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)]+(N1+M1|θ2|)(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)(ψ(t2)ψ(t1))γ41Θςγ41Γ(γ4)}×[F1ni=1hi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)ϕ1]+{(N2|θ1|+M2)(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)+(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)[1+(N1|θ1|+M1)(ψ(t2)ψ(t1))γ41Θςγ41Γ(γ4)]}×[F2mj=1gj(ψ(t2)ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)+mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)ϕ2]<1,

    where Fk=supt[t1,t2]|Fk(t)|, Lk=supt[t1,t2],k=1,2, λi=supt[t1,t2], i=1,2,,n, and μj=supt[t1,t2], j=1,2,,m.

    Then the ψ-Hilfer sequential proportional coupled system (1.2) has at least one solution on [t1,t2].

    Proof. First, we consider a subset S of Y×Y defined by S={(p1,p2)Y×Y:(p1,p2)r}, where r is given by

    r=R1+R2 (3.4)

    where

    R1=[1+(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)(N2+M2|θ2|)]F1(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)×(ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+ni=1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1))+[N2|θ1|+M2](ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)F2(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)×(mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηΓ(¯η+1)+mj=1L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1))

    and

    R2=[1+(ψ(t2)ψ(t1))γ41Θςγ41Γ(γ4)(N1|θ1|+M1)]F2(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)×(mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηΓ(¯η+1)+mj=1L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1))+[N1+M1|θ2|](ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)F1(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)×(ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+ni=1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)).

    Let us define the operators:

    Hi(p1,p2)(w)=ni=1pIηi,ς,ψHi(w,p1(w),p2(w)),w[t1,t2],
    Gj(p1,p2)(w)=mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w)),w[t1,t2],
    Y1(p1,p2)(w)=pIν1,ς,ψΥ1(w,p1(w),p2(w)),w[t1,t2],
    Y2(p1,p2)(w)=pIν3,ς,ψΥ2(w,p1(w),p2(w)),w[t1,t2],

    and

    F1(p1,p2)(w)=Φ1(w,p1(w),p2(w)),w[t1,t2],
    F2(p1,p2)(w)=Φ2(w,p1(w),p2(w)),w[t1,t2].

    Then we have

    |Hi(¯p1,¯p2)(w)Hi(p1,p2)(w)|ni=1pIηi,ς,ψ|Hi(w,¯p1(w),¯p2(w))Hi(w,p1(w),p2(w))|ni=1hi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)(¯p1p1+¯p2p2)

    and

    |Hi(p1,p2)(w)|ni=1pIηi,ς,ψ|Hi(w,p1(w),p2(w))|ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1).

    Also, we obtain

    |Gj(¯p1,¯p2)(w)Gj(p1,p2)(w)|mj=1pI¯ηj,ς,ψ|Gj(w,¯p1(w),¯p2(w))Gj(w,p1(w),p2(w))|mj=1gj(ψ(t2)ψ(t1))¯ηjςηiΓ(¯ηj+1)(¯p1p1+¯p2p2)

    and

    |Gj(p1,p2)(w)|mj=1pI¯ηi,ς,ψ|Hi(w,p1(w),p2(w))|mj=1μj(ψ(t2)ψ(t1))¯ηiς¯ηiΓ(¯ηi+1).

    Moreover, we have

    |Y1(¯p1,¯p2)(w)Y1(p1,p2)(w)|pIν1,ς,ψ|Υ1(w,¯p1(w),¯p2(w))Υ1(w,p1(w),p2(w))|ω1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)(¯p1p1+¯p2p2),
    |Y1(p1,p2)(w)|pIν1,ς,ψ|Υ1(w,p1(w),p2(w))|L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1),

    and

    |Y2(¯p1,¯p2)(w)Y2(p1,p2)(w)|pIν3,ς,ψ|Υ2(w,¯p1(w),¯p2(w))Υ2(w,p1(w),p2(w))|ω2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1)(¯p1p1+¯p2p2),
    |Y2(p1,p2)(w)|pIν1,ς,ψ|Υ2(w,p1(w),p2(w))|L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1).

    Finally, we get

    |F1(¯p1,¯p2)(w)F1(p1,p2)(w)||Φ1(w,¯p1(w),¯p2(w))Φ1(w,p1(w),p2(w))|ϕ1(¯p1p1+¯p2p2),
    |F1(p1,p2)(w)||Φ1(w,p1(w),p2(w))|F1,

    and

    |F2(¯p1,¯p2)(w)F2(p1,p2)(w)||Φ2(w,¯p1(w),¯p2(w))Φ2(w,p1(w),p2(w))|ϕ2(¯p1p1+¯p2p2),
    |F2(p1,p2)(w)||Φ2(w,p1(w),p2(w))|F2.

    Now we split the operator V as

    V1(p1,p2)(w)=V1,1(p1,p2)(w)+V1,2(p1,p2)(w),V2(p1,p2)(w)=V2,1(p1,p2)(w)+V2,2(p1,p2)(w),

    with

    V1,1(p1,p2)(w)=pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21Θςγ21Γ(γ2)×{N2[θ1pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)]+M2[θ2pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)]},V1,2(p1,p2)(w)=pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21Θςγ21Γ(γ2)×{N2[θ1pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)]+M2[θ2pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)]},V2,1(p1,p2)(w)=pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ41Θςγ41Γ(γ4)×{N1[θ1pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)]+M1[θ2pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)]},

    and

    V2,2(p1,p2)(w)=pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ41Θςγ41Γ(γ4)×{N1[θ1pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)]+M1[θ2pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)]}.

    In the following, we will show that the operators V1 and V2 fulfill the assumptions of Lemma 3.1. We divide the proof into three steps:

    Step 1. The operators V1,1 and V2,1 are contraction mappings. For all (p1,p2),(¯p1,¯p2)Y×Y we have

    |V1,1(¯p1,¯p2)(w)V1,1(p1,p2)(w)|(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)|F1(¯p1,¯p2)(w)Hi(¯p1,¯p2)(w)F1(p1,p2)(w)Hi(p1,p2)(w)|
    +(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2){N1|θ1|(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)|F2(¯p1,¯p2)(w)Gj(¯p1,¯p2)(w)
    F2(p1,p2)(w)Gj(p1,p2)(w)|+(N2+M2|θ2|)(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)|F1(¯p1,¯p2)(w)Hi(¯p1,¯p2)(w)F1(p1,p2)(w)Hi(p1,p2)(w)|
    +M2(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)|F2(¯p1,¯p2)(w)Gj(¯p1,¯p2)(w)F2(p1,p2)(w)Gj(p1,p2)(w)|}(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)]
    ×|F1(¯p1,¯p2)(w)Hi(¯p1,¯p2)(w)F1(p1,p2)(w)Hi(p1,p2)(w)|+(N2|θ1|+M2)(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)ψ(t1))γ21Θςγ21×|F2(¯p1,¯p2)(w)Gj(¯p1,¯p2)(w)F2(p1,p2)(w)Gj(p1,p2)(w)|
    (ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)]×[|F1(¯p1,¯p2)(w)||Hi(¯p1,¯p2)(w)Hi(p1,p2)(w)|+|Hi(p1,p2)(w)||F1(¯p1,¯p2)(w)F1(p1,p2)(w)]+(N2|θ1|+M2)(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)ψ(t1))γ21Θςγ21×[|F2(¯p1,¯p2)(w)||Gj(¯p1,¯p2)(w)Gj(p1,p2)(w)|
    +|Gj(p1,p2)(w)||F2(¯p1,¯p2)(w)F2(p1,p2)(w)|](ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)]×[F1ni=1hi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)(¯p1p1+¯p2p2)+ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)ϕ1(¯p1p1+¯p2p2)]
    +(N2|θ1|+M2)(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)ψ(t1))γ21Θςγ21×[F2mj=1gj(ψ(t2)ψ(t1))¯ηjςηiΓ(¯ηj+1)(¯p1p1+¯p2p2)+mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)ϕ2(¯p1p1+¯p2p2)]
    ={(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)]×[F1ni=1hi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)ϕ1]+(N2|θ1|+M2)(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)×[F2mj=1gj(ψ(t2)ψ(t1))¯ηjς¯ηiΓ(¯ηj+1)+mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)ϕ2]}×(¯p1p1+¯p2p2).

    Similarly we can find

    |V2,1(¯p1,¯p2)(w)V2,1(p1,p2)(w)|{(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)[1+(N1|θ1|+M1)(ψ(t2)ψ(t1))γ41Θςγ41Γ(γ4)]×[F2mj=1gj(ψ(t2)ψ(t1))¯ηjςηiΓ(¯ηj+1)+nj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)ϕ2]+(N1+M1|θ2|)(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)(ψ(t2)ψ(t1))γ41Θςγ41Γ(γ4)×[F1ni=1hi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)ϕ1]}×(¯p1p1+¯p2p2).

    Consequently, we get

    \begin{eqnarray*} \|(\mathbb{V}_{1, 1} , \mathbb{V}_{2, 1})(\overline{p}_{1} , \overline{p}_{2})-(\mathbb{V}_{1, 1} , \mathbb{V}_{2, 1})(p_{1} , p_{2}) \|\le K (\| \overline{p}_{1}-p_{1}\|+ \| \overline{p}_{2}-p_{2}\|), \end{eqnarray*}

    which means that (\mathbb{V}_{1, 1}, \mathbb{V}_{2, 1}) is a contraction.

    Step 2. The operator \mathbb{V}_{2} = (\mathbb{V}_{1, 2}, \mathbb{V}_{2, 2}) is completely continuous on S. For continuity of \mathbb{V}_{1, 2} , take any sequence of points (p_n, q_n) in S converging to a point (p, q) \in S. Then, by the Lebesgue dominated convergence theorem, we have

    \begin{eqnarray*} \lim\limits_{n\to \infty}\mathbb{V}_{1, 2}(p_n, q_n)(w) & = & {}^{p}I^{\nu_{2}, \varsigma, \psi} \lim\limits_{n\to \infty}\mathcal{F}_1(p_n, q_n) (w) \lim\limits_{n\to \infty}\mathcal{Y}_1(p_n, q_n)(w) \\ &&+ \frac{e^{\frac{\varsigma-1}{\varsigma}(\psi(w)-\psi(t_{1}))}(\psi(w)-\psi(t_{1}))^{\gamma_{2}-1}} {\Theta\varsigma^{\gamma_{2}-1}\Gamma(\gamma_{2})} \\ &&\times \Bigg\{N_{2}\bigg[\theta_{1} {}^{p}I^{\nu_{4}, \varsigma, \psi}\lim\limits_{n\to \infty}\mathcal{F}_2(p_n, q_n)(w) \lim\limits_{n\to \infty}\mathcal{Y}_2(p_n, q_n)(w) \\ &&- {}^{p}I^{\nu_{2}, \varsigma, \psi} \lim\limits_{n\to \infty}\mathcal{F}_1(p_n, q_n) (w) \lim\limits_{n\to \infty}\mathcal{Y}_1(p_n, q_n)(w)\bigg]\\ &&+ M_{2}\bigg[\theta_{2} {}^{p}I^{\nu_{2}, \varsigma, \psi} \lim\limits_{n\to \infty}\mathcal{F}_1(p_n, q_n) (w) \lim\limits_{n\to \infty}\mathcal{Y}_1(p_n, q_n)(w) \\ &&- {}^{p}I^{\nu_{4}, \varsigma, \psi}\lim\limits_{n\to \infty}\mathcal{F}_2(p_n, q_n)(w) \lim\limits_{n\to \infty}\mathcal{Y}_2(p_n, q_n)(w) \bigg]\Bigg\} \\ & = & {}^{p}I^{\nu_{2}, \varsigma, \psi} \mathcal{F}_1(p, q) (w) \mathcal{Y}_1(p, q)(w) \\ &&+ \frac{e^{\frac{\varsigma-1}{\varsigma}(\psi(w)-\psi(t_{1}))}(\psi(w)-\psi(t_{1}))^{\gamma_{2}-1}} {\Theta\varsigma^{\gamma_{2}-1}\Gamma(\gamma_{2})} \\ &&\times \Bigg\{N_{2}\bigg[\theta_{1} {}^{p}I^{\nu_{4}, \varsigma, \psi}\mathcal{F}_2(p, q)(w) \mathcal{Y}_2(p, q)(w) \\ &&- {}^{p}I^{\nu_{2}, \varsigma, \psi} \mathcal{F}_1(p, q) (w) \mathcal{Y}_1(p, q)(w)\bigg]\\ &&+ M_{2}\bigg[\theta_{2} {}^{p}I^{\nu_{2}, \varsigma, \psi} \mathcal{F}_1(p, q) (w) \mathcal{Y}_1(p, q)(w) \\ &&- {}^{p}I^{\nu_{4}, \varsigma, \psi}\mathcal{F}_2(p, q)(w) \mathcal{Y}_2(p, q)(w) \bigg]\Bigg\}\\ & = &\mathbb{V}_{1, 2}(p, q)(w), \end{eqnarray*}

    for all w\in [t_1, t_2]. Similarly, we prove \lim_{n\to \infty}\mathbb{V}_{2, 2}(p_n, q_n)(w) = \mathbb{V}_{2, 2}(p, q)(w) for all w\in [t_1, t_2]. Thus \mathbb{V}_{2}(p_n, q_n) = (\mathbb{V}_{1, 2}(p_n, q_n), \mathbb{V}_{2, 2}(p_n, q_n)) converges to \mathbb{V}_{2}(p, q) on [t_1, t_2], which shows that \mathbb{V}_{2} is continuous.

    Next, we show that the operator (\mathbb{V}_{1, 2}, \mathbb{V}_{2, 2}) is uniformly bounded on S. For any (p_1, p_2)\in S we have

    \begin{eqnarray*} |\mathbb{V}_{1, 2}(p_1, p_2)(w)| &\le& {}^{p}I^{\nu_{2}, \varsigma, \psi}|\mathcal{F}_1(p_1, p_2)(w) \mathcal{Y}_1(p_1, p_2)(w)| \\ &&+\frac{(\psi(w)-\psi(t_{1}))^{\gamma_{2}-1}} {\Theta\varsigma^{\gamma_{2}-1}\Gamma(\gamma_{2})} \Bigg\{N_{2}\bigg[|\theta_{1}| {}^{p}I^{\nu_{4}, \varsigma, \psi}|\mathcal{F}_2(p_1, p_2)(w) \mathcal{Y}_2(p_1, p_2)(w)|\\ &&+ {}^{p}I^{\nu_{2}, \varsigma, \psi}|\mathcal{F}_1(p_1, p_2) (w) \mathcal{Y}_1 (p_1, p_2)(w)| \bigg]\\ &&+ M_{2}\bigg[|\theta_{2}| {}^{p}I^{\nu_{2}, \varsigma, \psi}|\mathcal{F}_1(p_1, p_2) (w) \mathcal{Y}_1 (p_1, p_2)(w)| \\ &&+ {}^{p}I^{\nu_{4}, \varsigma, \psi}|\mathcal{F}_2(p_1, p_2)(w) \mathcal{Y}_2(p_1, p_2)(w)| \bigg]\Bigg\}\\ &\le&\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{2}}} {\varsigma^{\nu_{2}}\Gamma(\nu_{2}+1)}\|F_1\| \|L_1\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_1}} {\varsigma^{\nu_1}\Gamma(\nu_1+1)}+\frac{(\psi(t_{2})-\psi(t_{1}))^{\gamma_{2}-1}} {\Theta\varsigma^{\gamma_{2}-1}\Gamma(\gamma_{2})}\\ &&\times\Bigg\{N_2|\theta_1|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4} +1)}\|F_2\| \|L_2 \|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_3}} {\varsigma^{\nu_3}\Gamma(\nu_3+1)}\\ &&+N_2\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{2}}} {\varsigma^{\nu_{2}}\Gamma(\nu_{2}+1)}\|F_1\| \|L_1\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_1}} {\varsigma^{\nu_1}\Gamma(\nu_1+1)}\\ &&+M_2|\theta_2|\|F_1\| \|L_1\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_1}} {\varsigma^{\nu_1}\Gamma(\nu_1+1)}\\ &&+M_2\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4} +1)}\| F_2 \| \|L_2\|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_3}} {\varsigma^{\nu_3}\Gamma(\nu_3+1)}\Bigg\}: = \Lambda_1. \end{eqnarray*}

    Similarly we can prove that

    \begin{eqnarray*} |\mathbb{V}_{2, 2}(p_1, p_2)(w)|&\le&\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4}+1)}\|F_2\| \|L_2\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_3}} {\varsigma^{\nu_3}\Gamma(\nu_3+1)}+\frac{(\psi(t_{2})-\psi(t_{1}))^{\gamma_{4}-1}} {\Theta\varsigma^{\gamma_{2}-1}\Gamma(\gamma_{2})}\\ &&\times\Bigg\{N_1|\theta_1|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4} +1)}\|F_2\| \|L_2 \|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_3}} {\varsigma^{\nu_3}\Gamma(\nu_3+1)}\\ &&+N_1\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{2}}} {\varsigma^{\nu_{2}}\Gamma(\nu_{2}+1)}\|F_1\| \|L_1\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_1}} {\varsigma^{\nu_1}\Gamma(\nu_1+1)}\\ &&+M_1|\theta_2|\|F_1\|\sum\limits_{i = 1}^{n} \|L_1\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_1}} {\varsigma^{\nu_1}\Gamma(\nu_1+1)}\\ &&+M_1\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4} +1)}\| F_2 \| \|L_2\|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_3}} {\varsigma^{\nu_3}\Gamma(\nu_3+1)}\Bigg\}: = \Lambda_2. \end{eqnarray*}

    Therefore \|\mathbb{V}_{1, 2}\|+\|\mathbb{V}_{2, 2}\|\le \Lambda_1+\Lambda_2, (p_1, p_2)\in S, which shows that the operator (\mathbb{V}_{1, 2}, \mathbb{V}_{2, 2}) is uniformly bounded on S. Finally we show that the operator (\mathbb{V}_{1, 2}, \mathbb{V}_{2, 2}) is equicontinuous. Let \tau_1 < \tau_2 and (p_1, p_2)\in S. Then, we have

    \begin{eqnarray*} && |\mathbb{V}_{1, 2}(p_1, p_2)(\tau_2)-\mathbb{V}_{1, 2}(p_1, p_2)(\tau_1)|\\ &\le& \Bigg|\frac{1}{\varsigma^{\nu_{2}}\Gamma (\nu_2)}\int_{t_1}^{\tau_1}{\psi}'(s) \left[\left(\psi(\tau_2) - \psi(s)\right)^{\nu_2 -1} - \left(\psi(\tau_1) - \psi(s)\right)^{\nu_2 -1}\right]\\ &&\times |\mathcal{F}_1(p_1, p_2) (s) \mathcal{Y}_1 (p_1, p_2)(s) |ds\\ && + \frac{1}{\varsigma^{\nu_{2}}\Gamma (\nu_2 )}\int_{\tau_1}^{\tau_2}{{\psi }'(s) \left(\psi(\tau_2) - \psi(s)\right)^{\nu_2 -1}} |\mathcal{F}_1(p_1, p_2) (s) \mathcal{Y}_1 (p_1, p_2)(s) |ds\Bigg|\\ && + \frac{\left\vert\left(\psi(\tau_2)-\psi(t_1)\right)^{\gamma_2-1} - \left(\psi(\tau_1)-\psi(t_1)\right)^{\gamma_2-1}\right\vert}{\Theta\varsigma^{\gamma_{2}-1}\Gamma (\gamma_2)}\mathbb{W} \\ &\le& \frac{1}{\varsigma^{\nu_{2}}\Gamma (\nu_2+1 )}\sum\limits_{i = 1}^{n} \|\lambda_i\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\eta_{i}}} {\varsigma^{\eta_{i}}\Gamma(\eta_{i}+1)}\Big[\left|\left(\psi(\tau_2) - \psi(t_1)\right)^{\nu_2} - \left(\psi(\tau_1) - \psi(t_1)\right)^{\nu_2 }\right|\\ &&+2(\psi(\tau_2) - \psi(\tau_1))^{\nu_2}\Big] + \frac{\left\vert\left(\psi(\tau_2)-\psi(t_1)\right)^{\gamma_2-1} - \left(\psi(\tau_1)-\psi(t_1)\right)^{\gamma_2-1}\right\vert}{\Theta\varsigma^{\gamma_{2}-1}\Gamma (\gamma_2)}\mathbb{W}, \end{eqnarray*}

    where

    \begin{eqnarray*} \mathbb{W}& = & N_2|\theta_1|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4} +1)}\|F_2\| \|L_2 \|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_3}} {\varsigma^{\nu_3}\Gamma(\nu_3+1)}\\ &&+N_2\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{2}}} {\varsigma^{\nu_{2}}\Gamma(\nu_{2}+1)}\|F_1\| \|L_1\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_1}} {\varsigma^{\nu_1}\Gamma(\nu_1+1)}\\ &&+M_2|\theta_2|\|F_1\| \|L_1\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_1}} {\varsigma^{\nu_1}\Gamma(\nu_1+1)}\\ &&+M_2\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4} +1)}\| F_2 \| \|L_2\|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_3}} {\varsigma^{\nu_3}\Gamma(\nu_3+1)}. \end{eqnarray*}

    As \tau_2-\tau_1\to 0 , the right-hand side of the above inequality tends to zero, independently of (p_1, p_2) . Similarly we have |\mathbb{V}_{2, 2}(p_1, p_2)(\tau_2)-\mathbb{V}_{2, 2}(p_1, p_2)(\tau_1)|\to 0 as \tau_2-\tau_1\to 0. Thus (\mathbb{V}_{1, 2}, \mathbb{V}_{2, 2}) is equicontinuous. Therefore, it follows by the Arzelá-Ascoli theorem that (\mathbb{V}_{1, 2}, \mathbb{V}_{2, 2}) is a completely continuous operator on S.

    Step 3. We show that the third condition (iii) of Lemma 3.1 is fulfilled. Let (p_1, p_2)\in \mathbb{Y}\times \mathbb{Y} be such that, for all (\overline{p}_1, \overline{p}_2)\in S

    (p_1, p_2) = (\mathbb{V}_{1, 1}(p_1, p_2), \mathbb{V}_{2, 1}(p_1, p_2))+(\mathbb{V}_{1, 2}(\overline{p}_1, \overline{p}_2, \mathbb{V}_{2, 2}(\overline{p}_1, \overline{p}_2)).

    Then, we have

    \begin{eqnarray*} |p_1(w)|&\le&|\mathbb{V}_{1, 1}(p_1, p_2)(w)|+|\mathbb{V}_{1, 2}(\overline{p}_1, \overline{p}_2)(w)|\\ &\le& {}^{p}I^{\nu_{2}, \varsigma, \psi}|\mathcal{F}_1(p_1, p_2) (w) \mathcal{H}_i (p_1, p_2)(w)| \\ &&+ \frac{(\psi(t_2)-\psi(t_{1}))^{\gamma_{2}-1}} {\Theta\varsigma^{\gamma_{2}-1}\Gamma(\gamma_{2})} \Bigg\{N_{2}\bigg[|\theta_{1}| {}^{p}I^{\nu_{4}, \varsigma, \psi}|\mathcal{F}_2(p_1, p_2)(w) \mathcal{G}_j(p_1, p_2)(w)|\\ &&+ {}^{p}I^{\nu_{2}, \varsigma, \psi}|\mathcal{F}_1(p_1, p_2) (w) \mathcal{H}_i (p_1, p_2)(w)| \bigg]\\ &&+ M_{2}\bigg[|\theta_{2}| {}^{p}I^{\nu_{2}, \varsigma, \psi}|\mathcal{F}_1(p_1, p_2) (w) \mathcal{H}_i (p_1, p_2)(w)| \\ &&+ {}^{p}I^{\nu_{4}, \varsigma, \psi}|\mathcal{F}_2(p_1, p_2)(w) \mathcal{G}_j(p_1, p_2)(w)| \bigg]\Bigg\} \\ &&+ {}^{p}I^{\nu_{2}, \varsigma, \psi} |\mathcal{F}_1(\overline{p}_1, \overline{p}_2) (w) \mathcal{Y}_1(\overline{p}_1, \overline{p}_2)(w)| \\ &&+ \frac{(\psi(t_2)-\psi(t_{1}))^{\gamma_{2}-1}} {\Theta\varsigma^{\gamma_{2}-1}\Gamma(\gamma_{2})} \Bigg\{N_{2}\bigg[|\theta_{1}| {}^{p}I^{\nu_{4}, \varsigma, \psi}|\mathcal{F}_2(\overline{p}_1, \overline{p}_2)(w) \mathcal{Y}_2(\overline{p}_1, \overline{p}_2)(w)| \\ &&+ {}^{p}I^{\nu_{2}, \varsigma, \psi} |\mathcal{F}_1(\overline{p}_1, \overline{p}_2) (w) \mathcal{Y}_1(\overline{p}_1, \overline{p}_2)(w)|\bigg]\\ &&+ M_{2}\bigg[|\theta_{2}| {}^{p}I^{\nu_{2}, \varsigma, \psi} |\mathcal{F}_1(\overline{p}_1, \overline{p}_2) (w) \mathcal{Y}_1(\overline{p}_1, \overline{p}_2)(w)| \\ &&+ {}^{p}I^{\nu_{4}, \varsigma, \psi}|\mathcal{F}_2(\overline{p}_1, \overline{p}_2)(w) \mathcal{Y}_2(\overline{p}_1, \overline{p}_2)(w)| \bigg]\Bigg\}\\ &\le&\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{2}}} {\varsigma^{\nu_{2}}\Gamma(\nu_{2}+1)}\|F_1\|\sum\limits_{i = 1}^{n} \|\lambda_i\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\eta_{i}}} {\varsigma^{\eta_{i}}\Gamma(\eta_{i}+1)}+\frac{(\psi(t_{2})-\psi(t_{1}))^{\gamma_{2}-1}} {\Theta\varsigma^{\gamma_{2}-1}\Gamma(\gamma_{2})}\\ &&\times\Bigg\{N_2|\theta_1|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4} +1)}\sum\limits_{j = 1}^{m} \| \mu_{j} \|\frac{(\psi(t_{2})-\psi(t_{1}))^{\overline{\eta}_{j}}} {\varsigma^{\overline{\eta}}\Gamma(\overline{\eta}+1)}\|F_2\|\\ &&+N_2\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{2}}} {\varsigma^{\nu_{2}}\Gamma(\nu_{2}+1)}\|F_1\|\sum\limits_{i = 1}^{n} \|\lambda_i\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\eta_{i}}} {\varsigma^{\eta_{i}}\Gamma(\eta_{i}+1)}\\ &&+M_2|\theta_2|\|F_1\|\sum\limits_{i = 1}^{n} \|\lambda_i\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\eta_{i}}} {\varsigma^{\eta_{i}}\Gamma(\eta_{i}+1)}\\ &&+M_2\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4} +1)}\|F_2\|\sum\limits_{j = 1}^{m} \| \mu_{j} \|\frac{(\psi(t_{2})-\psi(t_{1}))^{\overline{\eta}_{j}}} {\varsigma^{\overline{\eta}}\Gamma(\overline{\eta}+1)}\Bigg\}\\ &&+\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{2}}} {\varsigma^{\nu_{2}}\Gamma(\nu_{2}+1)}\|F_1\|\sum\limits_{i = 1}^{n} \|L_1\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_1}} {\varsigma^{\nu_1}\Gamma(\nu_1+1)}+\frac{(\psi(t_{2})-\psi(t_{1}))^{\gamma_{2}-1}} {\Theta\varsigma^{\gamma_{2}-1}\Gamma(\gamma_{2})}\\ &&\times\Bigg\{N_2|\theta_1|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4} +1)}\|F_2\|\sum\limits_{j = 1}^{m} \|L_2 \|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_3}} {\varsigma^{\nu_3}\Gamma(\nu_3+1)}\\ &&+N_2\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{2}}} {\varsigma^{\nu_{2}}\Gamma(\nu_{2}+1)}\|F_1\|\sum\limits_{i = 1}^{n} \|L_1\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_1}} {\varsigma^{\nu_1}\Gamma(\nu_1+1)}\\ &&+M_2|\theta_2|\|F_1\|\sum\limits_{i = 1}^{n} \|L_1\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_1}} {\varsigma^{\nu_1}\Gamma(\nu_1+1)}\\ &&+M_2\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4} +1)}\| F_2 \|\sum\limits_{j = 1}^{m} \|L_2\|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_3}} {\varsigma^{\nu_3}\Gamma(\nu_3+1)}\Bigg\}\\ & = &\Bigg[1+\frac{(\psi(t_{2})-\psi(t_{1}))^{\gamma_{2}-1}} {\Theta\varsigma^{\gamma_{2}-1}\Gamma(\gamma_{2})}(N_2+M_2|\theta_2|)\Bigg]\|F_1\|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_2}} {\varsigma^{\nu_2}\Gamma(\nu_2+1)}\\ &&\times\Bigg(\sum\limits_{i = 1}^{n} \|\lambda_i\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\eta_{i}}} {\varsigma^{\eta_{i}}\Gamma(\eta_{i}+1)}+\sum\limits_{i = 1}^{n} \|L_1\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_1}} {\varsigma^{\nu_1}\Gamma(\nu_1+1)}\Bigg)\\ &&+ [N_2|\theta_1|+M_2]\frac{(\psi(t_{2})-\psi(t_{1}))^{\gamma_{2}-1}} {\Theta\varsigma^{\gamma_{2}-1}\Gamma(\gamma_{2})}\|F_2\|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4} +1)}\\ &&\times\Bigg(\sum\limits_{j = 1}^{m} \| \mu_{j} \|\frac{(\psi(t_{2})-\psi(t_{1}))^{\overline{\eta}_{j}}} {\varsigma^{\overline{\eta}}\Gamma(\overline{\eta}+1)}+\sum\limits_{j = 1}^{m} \|L_2 \|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_3}} {\varsigma^{\nu_3}\Gamma(\nu_3+1)}\Bigg) = R_1. \end{eqnarray*}

    In a similar way, we find

    \begin{eqnarray*} |p_2(w)|&\le&|\mathbb{V}_{2, 1}(p_1, p_2)(w)|+|\mathbb{V}_{2, 2}(\overline{p}_1, \overline{p}_2)(w)|\\ &\le&\Bigg[1+\frac{(\psi(t_2)-\psi(t_{1}))^{\gamma_{4}-1}} {\Theta\varsigma^{\gamma_{4}-1}\Gamma(\gamma_{4})}(N_1|\theta_1|+M_1)\Bigg]\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{4}}} {\varsigma^{\nu_{4}}\Gamma(\nu_{4} +1)}\|F_2\|\\ &&\times\Bigg(\sum\limits_{j = 1}^{m} \| \mu_{j} \|\frac{(\psi(t_{2})-\psi(t_{1}))^{\overline{\eta}_{j}}} {\varsigma^{\overline{\eta}}\Gamma(\overline{\eta}+1)}+\sum\limits_{j = 1}^{m} \|L_2 \|\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_3}} {\varsigma^{\nu_3}\Gamma(\nu_3+1)}\Bigg)\\ &&+[N_1+M_1|\theta_2|]\frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_{2}}} {\varsigma^{\nu_{2}}\Gamma(\nu_{2}+1)}\|F_1\|\frac{(\psi(t_{2})-\psi(t_{1}))^{\gamma_{4}-1}} {\varsigma^{\gamma_{4}-1}\Gamma(\gamma_{4})}\\ &&\times\Bigg(\sum\limits_{i = 1}^{n} \|\lambda_i\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\eta_{i}}} {\varsigma^{\eta_{i}}\Gamma(\eta_{i}+1)}+\sum\limits_{i = 1}^{n} \|L_1\| \frac{(\psi(t_{2})-\psi(t_{1}))^{\nu_1}} {\varsigma^{\nu_1}\Gamma(\nu_1+1)}\Bigg) = R_2. \end{eqnarray*}

    Adding the previous inequalities, we obtain

    \|p_1\|+\|p_2\| \le R_1+R_2 = r.

    As \|(p_1, p_2)\| = \|p_1\|+\|p_2\|, we have that \|(p_1, p_2)\|\le r and so condition (iii) of Lemma 3.1 holds.

    By Lemma 3.1, the \psi -Hilfer sequential proportional coupled system (1.2) has at least one solution on [t_1, t_2]. The proof is finished.

    Let us consider the following coupled system of nonlinear sequential proportional Hilfer fractional differential equations with multi-point boundary conditions:

    \begin{equation} \begin{cases} {}^{H}D^{\frac{1}{3}, \frac{1}{5}; \frac{3}{7}; \log w} \bigg[\frac{ {}^{H}D^{\frac{5}{4}, \frac{2}{5}; \frac{3}{7}; \log w}p_{1}(w)}{\Phi_{1}(w, p_{1}(w), p_{2}(w))} -\sum\limits_{i = 1}^{2}{} {}^{p}I^{\eta_{i}, \varsigma, \psi}H_{i}(w, p_{1}(w), p_{2}(w))\bigg] = \Upsilon_{1}(w, p_{1}(w), p_{2}(w)), \; w\in \left[\frac{1}{2}, \frac{7}{2}\right], \\ {}^{H}D^{\frac{2}{3}, \frac{3}{5}; \frac{3}{7}; \log w} \bigg[\frac{ {}^{H}D^{\frac{7}{4}, \frac{4}{5}; \frac{3}{7}; \log w}p_{1}(w)}{\Phi_{2}(w, p_{1}(w), p_{2}(w))} -\sum\limits_{j = 1}^{2}{} {}^{p}I^{\overline{\eta}_{j}, \varsigma, \psi}G_{j}(w, p_{1}(w), p_{2}(w))\bigg] = \Upsilon_{2}(w, p_{1}(w), p_{2}(w)), \; w\in \left[\frac{1}{2}, \frac{7}{2}\right], \\[0.4cm] p_{1}\left(\frac{1}{2}\right) = {}^{H}D^{\frac{5}{4}, \frac{2}{5}; \frac{3}{7}; \log w}p_{1}\left(\frac{1}{2}\right) = 0, \; \; p_{1}\left(\frac{7}{2}\right) = \frac{2}{5}p_{2}\left(\frac{3}{2}\right), \\[0.4cm] p_{2}\left(\frac{1}{2}\right) = {}^{H}D^{\frac{7}{4}, \frac{4}{5}; \frac{3}{7}; \log w}p_{2}\left(\frac{1}{2}\right) = 0, \; \; p_{2}\left(\frac{7}{2}\right) = \frac{2}{3}p_{1}\left(\frac{5}{2}\right), \end{cases} \end{equation} (4.1)

    where

    \begin{eqnarray*} \sum\limits_{i = 1}^{2}{^p}I^{\eta_{i}, \varsigma, \psi}H_{i}(w, p_{1}, p_{2})& = & \sum\limits_{i = 1}^{2}{^p}I^{\frac{2(i+1)}{5}, \frac{3}{7}, \log w}\left(\frac{|p_1|}{(w+i^2)(i+|p_1|)}+\frac{|p_2|}{(w+i^3)(i+|p_2|)}\right), \\ \sum\limits_{j = 1}^{2} {^p}I^{\overline{\eta}_{j}, \varsigma, \psi}G_{j}(w, p_{1}, p_{2})& = &\sum\limits_{j = 1}^{2}{^p}I^{\frac{2(j+1)}{7}, \frac{3}{7}, \log w}\left(\frac{|p_1|}{(w^2+j^2)(j+|p_1|)}+\frac{|p_2|}{(w^2+j^3)(j+|p_2|)}\right), \\ \Phi_{1}(w, p_{1}, p_{2})& = & \frac{1}{100(10w+255)}\left(\frac{|p_1|}{1+|p_1|}+\frac{|p_2|}{1+|p_2|}+\frac{1}{2}\right), \\ \Phi_{2}(w, p_{1}, p_{2})& = & \frac{2}{5(2w+99)^2}\left(\frac{|p_1|}{1+|p_1|}+\frac{|p_2|}{1+|p_2|}+\frac{1}{4}\right), \\ \Upsilon_{1}(w, p_{1}, p_{2})& = &\frac{1}{\sqrt{w}+2}\left(\frac{|p_1|}{3+|p_1|}\right)+\frac{1}{2(\sqrt{w}+1)}\sin|p_2|+\frac{1}{3}, \\ \Upsilon_{2}(w, p_{1}, p_{2})& = &\frac{1}{w^2+4}\left(\frac{1}{2}\tan^{-1}|p_1|+\frac{|p_2|}{2+|p_2|}\right)+\frac{1}{5}. \end{eqnarray*}

    Next, we can choose \nu_{1} = 1/3 , \nu_{2} = 5/4 , \nu_{3} = 2/3 , \nu_{4} = 7/4 , \vartheta_{1} = 1/5 , \vartheta_{2} = 2/5 , \vartheta_{3} = 3/5 , \vartheta_{4} = 4/5 , \varsigma = 3/7 , \psi(w): = \log w = \log_e w , t_1 = 1/2 , t_2 = 7/2 , \theta_{1} = 2/5 , and \theta_{2} = 2/3 . Then, we have \gamma_1 = 7/15 , \gamma_{2} = 31/20 , \gamma_{3} = 13/15 , \gamma_{4} = 39/20 , M_1\approx0.1930945138 , M_2\approx0.2307306625 , N_1\approx0.1816223751 , N_2\approx0.3208292984 , and \Theta\approx0.02004452646 . Now, we analyse the nonlinear functions in the fractional integral terms. We have

    \begin{equation*} | H_{i}(w, p_{1}, p_{2})-H_{i}(w, \overline{p}_{1}, \overline{p}_{2})| \leq \frac{1}{i(w+i^2)} \big(| p_{1}- \overline{p}_{1}| + | p_{2} - \overline{p}_{2}|\big) \end{equation*}

    and

    \begin{equation*} | G_{j}(w, p_{1}, p_{2})-G_{j}(w, \overline{p}_{1}, \overline{p}_{2})| \leq \frac{1}{j(w^2+j^2)} \big(| p_{1}- \overline{p}_{1}| + | p_{2} - \overline{p}_{2}|\big), \end{equation*}

    from which h_i(w) = 1/(i(w+i^2)) and g_j(w) = 1/(j(w^2+j^2)) , respectively. Both of them are bounded as

    \begin{equation*} |H_{i}(w, p_{1}, p_{2})|\leq \frac{2}{w+i^2}\quad\text{and}\quad|G_{j}(w, p_{1}, p_{2})|\leq \frac{2}{w^2+j^2}. \end{equation*}

    Therefore \lambda_i(w) = 2/(w+i^2) and \mu_{j} = 2/(w^2+j^2) . Moreover, we have

    \sum\limits_{i = 1}^{n}\|h_i\|\frac{(\psi(t_2)-\psi(t_1))^{\eta_{i}}}{\varsigma^{\eta_{i}}\Gamma(\eta_{i}+1)}\approx 3.021061781,
    \sum\limits_{i = 1}^{n}\|\lambda_i\|\frac{(\psi(t_2)-\psi(t_1))^{\eta_{i}}}{\varsigma^{\eta_{i}}\Gamma(\eta_{i}+1)}\approx 7.281499952,
    \sum\limits_{j = 1}^{m}\|g_j\|\frac{(\psi(t_2)-\psi(t_1))^{\overline{\eta}_{j}}}{\varsigma^{\overline{\eta}_{j}}\Gamma(\overline{\eta}_{i}+1)}\approx 2.776491121

    and

    \sum\limits_{j = 1}^{m}\|\mu_j\|\frac{(\psi(t_2)-\psi(t_1))^{\overline{\eta}_{j}}}{\varsigma^{\overline{\eta}_{j}}\Gamma(\overline{\eta}_{i}+1)}\approx 7.220966978.

    For the two non-zero functions \Phi_1 and \Phi_2 we have

    \begin{eqnarray*} | \Phi_{1}(w, p_{1}, p_{2})-\Phi_{1}(w, \overline{p}_{1}, \overline{p}_{2})|&\leq& \frac{1}{100(10w+255)}\left(|p_1-\overline{p}_{1}|+|p_2-\overline{p}_{2}|\right), \\ | \Phi_{2}(w, p_{1}, p_{2})-\Phi_{2}(w, \overline{p}_{1}, \overline{p}_{2})|&\leq& \frac{2}{5(2w+99)^2}\left(|p_1-\overline{p}_{1}|+|p_2-\overline{p}_{2}|\right), \end{eqnarray*}
    \begin{equation*} |\Phi_{1}(w, p_{1}, p_{2})|\leq \frac{1}{40(10w+255)}, \quad\text{and}\quad |\Phi_{2}(w, p_{1}, p_{2})|\leq \frac{9}{10(2w+99)^2}, \end{equation*}

    from which we get \|\phi_1\| = 1/26000 , \|\phi_{2}\| = 1/25000 , \|F_1\| = 1/10400 , \|F_2\| = 9/100000, by setting \phi_{1}(w) = 1/(100(10w+255)) , \phi_{2}(w) = 2/(5(2w+99)^2) , F_1(w) = 1/(40(10w+255)), and F_2(w) = 9/(10(2w+99)^2) , respectively.

    Finally, for the nonlinear functions of the right sides in problem (4.1) we have

    \begin{eqnarray*} |\Upsilon_{1}(w, p_{1}, p_{2})-\Upsilon_{1}(w, \overline{p}_{1}, \overline{p}_{2})|&\leq&\frac{1}{2(\sqrt{w}+1)}\left(|p_1-\overline{p}_1|+|p_2-\overline{p}_2|\right), \\ |\Upsilon_{2}(w, p_{1}, p_{2})-\Upsilon_{2}(w, \overline{p}_{1}, \overline{p}_{2})|&\leq&\frac{1}{2(w^2+4)}\left(|p_1-\overline{p}_1|+|p_2-\overline{p}_2|\right), \end{eqnarray*}

    which give \omega_1(w) = 1/(2(\sqrt{w}+1)) , \omega_2(w) = 1/(2(w^2+4)) and

    \begin{equation*} |\Upsilon_{1}(w, p_{1}, p_{2})|\leq \frac{1}{\sqrt{w}+2}+\frac{1}{2(\sqrt{w}+1)}+\frac{1}{3}: = L_1(w), \end{equation*}

    and

    \begin{equation*} |\Upsilon_{2}(w, p_{1}, p_{2})|\leq \frac{1}{w^2+4}\left(\frac{\pi}{4}+1\right)+\frac{1}{5}: = L_2(w). \end{equation*}

    Therefore, using all of the information to compute a constant K in assumption (H_3) of Theorem 3.2, we obtain

    \begin{equation*} K\approx 0.9229566975 < 1. \end{equation*}

    Hence, the given coupled system of nonlinear proportional Hilfer-type fractional differential equations with multi-point boundary conditions (4.1), satisfies all assumptions in Theorem 3.2. Then, by its conclusion, there exists at least one solution (p_1, p_2)(w) to the problem (4.1) where w\in[1/2, 7/2] .

    In this paper, we have presented the existence result for a new class of coupled systems of \psi -Hilfer proportional sequential fractional differential equations with multi-point boundary conditions. The proof of the existence result was based on a generalization of Krasnosel'ski\breve{{\rm{i}}}'s fixed-point theorem due to Burton. An example was presented to illustrate our main result. Some special cases were also discussed. In future work, we can implement these techniques on different boundary value problems equipped with complicated integral multi-point boundary conditions.

    The authors declare that they have not used artificial intelligence (AI) tools in the creation of this article.

    This research was funded by the National Science, Research and Innovation Fund (NSRF) and King Mongkut's University of Technology North Bangkok with contract no. KMUTNB-FF-66-11.

    Professor Sotiris K. Ntouyas is an editorial board member for AIMS Mathematics and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.



    [1] R. Manivannan, S. Panda, K. T. Chong, J. Cao, An Arcak-type state estimation design for time-delayed static neural networks with leakage term based on unified criteria, Neural Networks, 106 (2018), 110–126. https://doi.org/10.1016/j.neunet.2018.06.015 doi: 10.1016/j.neunet.2018.06.015
    [2] X. Zhang, C. Li, Z. He, Cluster synchronization of delayed coupled neural networks: Delay-dependent distributed impulsive control, Neural Networks, 142 (2021), 34–43. https://doi.org/10.1016/j.neunet.2021.04.026 doi: 10.1016/j.neunet.2021.04.026
    [3] W. Zhou, Y. Sun, X. Zhang, P. Shi, Cluster synchronization of coupled neural networks with Lévy noise via event-triggered pinning control, IEEE Transl. Neural Networks Learn. Syst., 106 (2021), 1–14. https://doi.org/10.1109/TNNLS.2021.3072475 doi: 10.1109/TNNLS.2021.3072475
    [4] X. Qi, H. Bao, J. Cao, Synchronization criteria for quaternion-valued coupled neural networks with impulses, Neural Networks, 128 (2020), 150–157. https://doi.org/10.1016/j.neunet.2020.04.027 doi: 10.1016/j.neunet.2020.04.027
    [5] A. Pratap, R. Raja, R. Agarwal, J. Cao, O. Bagdasar, Multi-weighted complex structure on fractional order coupled neural networks with linear coupling delay: A robust synchronization problem, Neural Process. Lett., 51 (2020), 2453–2479. https://doi.org/10.1007/s11063-019-10188-5 doi: 10.1007/s11063-019-10188-5
    [6] H. E. Elzain, S. Y. Chung, V. Senapathi, S. Sekar, N. Park, A. A. Mahmoud, Modeling of aquifer vulnerability index using deep learning neural networks coupling with optimization algorithms, Environ. Sci. Pollut. Res., 28 (2021), 57030–57045. https://doi.org/10.1007/s11356-021-14522-0 doi: 10.1007/s11356-021-14522-0
    [7] J. Xia, Y. Lu, L. Tan, Research of multimodal medical image fusion based on parameter-adaptive pulse-coupled neural network and convolutional sparse representation, Comput. Math. Methods Med., 2020 (2020), 3290136. https://doi.org/10.1155/2020/3290136 doi: 10.1155/2020/3290136
    [8] P. Chanthorn, G. Rajchakit, J. Thipcha, C. Emharuethai, R. Sriraman, C. P. Lim, R. Ramachandran, Robust stability of complex-valued stochastic neural networks with time-varying delays and parameter uncertainties, Mathematics, 8 (2020), 742. https://doi.org/10.3390/math8050742 doi: 10.3390/math8050742
    [9] G. Rajchakit, R. Sriraman, Robust passivity and stability analysis of uncertain complex-valued impulsive neural networks with time-varying delays, Neural Process. Lett., 53 (2021), 581–606. https://doi.org/10.1007/s11063-020-10401-w doi: 10.1007/s11063-020-10401-w
    [10] P. Chanthorn, G. Rajchakit, U. Humphries, P. Kaewmesri, R. Sriraman, C. P. Lim, A delay-dividing approach to robust stability of uncertain stochastic complex-valued hopfield delayed neural networks, Symmetry, 12 (2020), 683. https://doi.org/10.3390/sym12050683 doi: 10.3390/sym12050683
    [11] P. Chanthorn, G. Rajchakit, S. Ramalingam, C. P. Lim, R. Ramachandran, Robust dissipativity analysis of hopfield-type complex-valued neural networks with time-varying delays and linear fractional uncertainties, Mathematics, 8 (2020), 595. https://doi.org/10.3390/math8040595 doi: 10.3390/math8040595
    [12] L. Li, X. Shi, J. Liang, Synchronization of impulsive coupled complex-valued neural networks with delay: the matrix measure method, Neural Networks, 117 (2019), 285–294. https://doi.org/10.1016/j.neunet.2019.05.024 doi: 10.1016/j.neunet.2019.05.024
    [13] M. Hymavathi, G. Muhiuddin, M. Syed Ali, J. F. Al-Amri, N. Gunasekaran, R. Vadivel, Global exponential stability of fractional order complex-valued neural networks with leakage delay and mixed time varying delays, Fractal Fract., 6 (2022), 140. https://doi.org/10.3390/fractalfract6030140 doi: 10.3390/fractalfract6030140
    [14] N. Gunasekaran, G. Zhai, Sampled-data state-estimation of delayed complex-valued neural networks, Int. J. Syst. Sci., 51 (2020), 303–312. https://doi.org/10.1080/00207721.2019.1704095 doi: 10.1080/00207721.2019.1704095
    [15] R. Samidurai, R. Sriraman, J. Cao, Z. Tu, Effects of leakage delay on global asymptotic stability of complex‐valued neural networks with interval time‐varying delays via new complex‐valued Jensen's inequality, Int. J. Adapt. Control Signal Process., 32 (2018), 1294–312. https://doi.org/10.1002/acs.2914 doi: 10.1002/acs.2914
    [16] N. Gunasekaran, G. Zhai, Stability analysis for uncertain switched delayed complex-valued neural networks, Neurocomputing, 367 (2019), 198-206. https://doi.org/10.1016/j.neucom.2019.08.030 doi: 10.1016/j.neucom.2019.08.030
    [17] Y. Huang, J. Hou, E. Yang, Passivity and synchronization of coupled reaction-diffusion complex-valued memristive neural networks, Appl. Math. Comput., 379 (2020), 125271. https://doi.org/10.1016/j.amc.2020.125271 doi: 10.1016/j.amc.2020.125271
    [18] L. Feng, C. Hu, J. Yu, H. Jiang, S. Wen, Fixed-time synchronization of coupled memristive complex-valued neural networks, Chaos Solitons Fract., 148 (2021), 110993. https://doi.org/10.1016/j.chaos.2021.110993 doi: 10.1016/j.chaos.2021.110993
    [19] W. Rudin, Real and complex analysis, McGraw-Hill, 1987.
    [20] N. Benvenuto, F. Piazza, On the complex backpropagation algorithm, IEEE Trans. Signal Process., 40 (1992), 967–969. https://doi.org/10.1109/78.127967 doi: 10.1109/78.127967
    [21] T. Nitta, Solving the XOR problem and the detection of symmetry using a single complex-valued neuron, Neural Networks, 16 (2003), 1101–1105. https://doi.org/10.1016/S0893-6080(03)00168-0 doi: 10.1016/S0893-6080(03)00168-0
    [22] M. Takeda, T. Kishigami, Complex neural fields with a hopfield-like energy function and an analogy to optical fields generated in phase-conjugate resonators, J. Opt. Soc. Am., 9 (1992), 2182–2191. https://doi.org/10.1364/JOSAA.9.002182 doi: 10.1364/JOSAA.9.002182
    [23] A. Pratap, R. Raja, J. Alzabut, J. Dianavinnarasi, J. Cao, G. Rajchakit, Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses, Neural Process. Lett., 51 (2020), 1485–1526. https://doi.org/10.1007/s11063-019-10154-1 doi: 10.1007/s11063-019-10154-1
    [24] G. Rajchakit, P. Chanthorn, P. Kaewmesri, R. Sriraman, C.P. Lim, Global Mittag-Leffler stability and stabilization analysis of fractional-order quaternion-valued memristive neural networks, Mathematics, 8 (2020), 422. https://doi.org/10.3390/math8030422 doi: 10.3390/math8030422
    [25] N. Gunasekaran, N. M. Thoiyab, P. Muruganantham, G. Rajchakit, B. Unyong, Novel results on global robust stability analysis for dynamical delayed neural networks under parameter uncertainties, IEEE Access, 8 (2020), 178108–178116. https://doi.org/10.1109/ACCESS.2020.3016743 doi: 10.1109/ACCESS.2020.3016743
    [26] U. Humphries, G. Rajchakit, P. Kaewmesri, P. Chanthorn, R. Sriraman, R. Samidurai, et al., Global stability analysis of fractional-order quaternion-valued bidirectional associative memory neural networks, Mathematics, 8 (2020), 801. https://doi.org/10.3390/math8050801 doi: 10.3390/math8050801
    [27] U. Humphries, G. Rajchakit, P. Kaewmesri, P. Chanthorn, R. Sriraman, R. Samidurai et al., Stochastic memristive quaternion-valued neural networks with time delays: An analysis on mean square exponential input-to-state stability, Mathematics, 8 (2020) 815. https://doi.org/10.3390/math8050815
    [28] W. W. Zhang, H. Zhang, J. D. Cao, H. M. Zhang, D. Y. Chen, Synchronization of delayed fractional-order complex-valued neural networks with leakage delay, Phys. A Stat. Mech. Appl., 556 (2020), 124710. https://doi.org/10.1016/j.physa.2020.124710 doi: 10.1016/j.physa.2020.124710
    [29] P. Anbalagan, R. Ramachandran, J. Cao, G. Rajchakit, C. P. Lim, Global robust synchronization of fractional order complex valued neural networks with mixed time varying delays and impulses, Int. J. Control Autom. Syst., 17 (2019), 509–520. https://doi.org/10.1007/s12555-017-0563-7 doi: 10.1007/s12555-017-0563-7
    [30] N. Gunasekaran, G. Zhai, Q. Yu, Sampled-data synchronization of delayed multi-agent networks and its application to coupled circuit, Neurocomputing, 413 (2020), 499–511. https://doi.org/10.1016/j.neucom.2020.05.060 doi: 10.1016/j.neucom.2020.05.060
    [31] R. Vadivel, P. Hammachukiattikul, N. Gunasekaran, R. Saravanakumar, H. Dutta, Strict dissipativity synchronization for delayed static neural networks: An event-triggered scheme, Chaos Solitons Fract., 150 (2021), 111212. https://doi.org/10.1016/j.chaos.2021.111212 doi: 10.1016/j.chaos.2021.111212
    [32] M. Syed Ali, N. Gunasekaran, R. Agalya, Y. H. Joo, Non-fragile synchronisation of mixed delayed neural networks with randomly occurring controller gain fluctuations, Int. J. Syst. Sci., 49 (2018), 3354–3364. https://doi.org/10.1080/00207721.2018.1540730 doi: 10.1080/00207721.2018.1540730
    [33] R. Guo, S. Xu, J. Guo, Sliding-mode synchronization control of complex-valued inertial neural networks with leakage delay and time-varying delays, IEEE Trans. Syst. Man Cybern. Syst., 2022, 1–9. https://doi.org/10.1109/TSMC.2022.3193306 doi: 10.1109/TSMC.2022.3193306
    [34] N. Jayanthi, R. Santhakumari, Synchronization of time-varying time delayed neutral-type neural networks for finite-time in complex field, Math. Model. Comput., 8 (2021), 486–498. https://doi.org/10.23939/mmc2021.03.486 doi: 10.23939/mmc2021.03.486
    [35] N. Jayanthi, R. Santhakumari, Synchronization of time invariant uncertain delayed neural networks in finite time via improved sliding mode control, Math. Model. Comput., 8 (2021), 228–240. https://doi.org/10.23939/mmc2021.02.228 doi: 10.23939/mmc2021.02.228
    [36] R. Anbuvithya, S. Dheepika Sri, R. Vadivel, P. Hammachukiattikul, C. Park, G. Nallappan, Extended dissipativity synchronization for Markovian jump recurrent neural networks via memory sampled-data control and its application to circuit theory, Int. J. Nonlinear Anal. Appl., 13 (2022), 2801–2820. https://doi.org/10.22075/IJNAA.2021.25114.2919 doi: 10.22075/IJNAA.2021.25114.2919
    [37] J. Bai, H. Wu, J. Cao, Secure synchronization and identification for fractional complex networks with multiple weight couplings under DoS attacks, Comput. Appl. Math., 41 (2022), 187. https://doi.org/10.1007/s40314-022-01895-2 doi: 10.1007/s40314-022-01895-2
    [38] Z. Ruan, Y. Li, J. Hu, J. Mei, D. Xia, Finite-time synchronization of the drive-response networks by event-triggered aperiodic intermittent control, Neurocomputing, 485 (2022), 89–102 https://doi.org/10.1016/j.neucom.2022.02.037 doi: 10.1016/j.neucom.2022.02.037
    [39] N. Gunasekaran, R. Saravanakumar, Y. H. Joo, H. S. Kim, Finite-time synchronization of sampled-data T–S fuzzy complex dynamical networks subject to average dwell-time approach, Fuzzy Sets Syst., 374 (2019), 40–59. https://doi.org/10.1016/j.fss.2019.01.007 doi: 10.1016/j.fss.2019.01.007
    [40] C. Wang, H. Zhang, I. Stamova, J. Cao, Global synchronization for BAM delayed reaction-diffusion neural networks with fractional partial differential operator, J. Franklin Inst., 2022. https://doi.org/10.1016/j.jfranklin.2022.08.038 doi: 10.1016/j.jfranklin.2022.08.038
    [41] H. Zhang, Y. Cheng, H. Zhang, W. Zhang, J. Cao, Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects, Math. Comput. Simul., 197 (2022), 341–357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022
    [42] X. Li, H. Wu, J. Cao, Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simul., 203 (2023), 647-668. https://doi.org/10.1016/j.matcom.2022.07.010 doi: 10.1016/j.matcom.2022.07.010
    [43] M. Syed Ali, M. Hymavathi, G. Rajchakit, S. Saroha, L. Palanisamy, P. Hammachukiattikul, Synchronization of fractional order fuzzy BAM neural networks with time varying delays and reaction diffusion terms, IEEE Access, 8 (2020), 186551–186571. https://doi.org/10.1109/ACCESS.2020.3029145 doi: 10.1109/ACCESS.2020.3029145
    [44] D. Liu, S. Zhu, K. Sun, Global anti-synchronization of complex-valued memristive neural networks with time delays, IEEE Trans. Cybern., 49 (2019), 1735–1747. https://doi.org/10.1109/TCYB.2018.2812708 doi: 10.1109/TCYB.2018.2812708
    [45] B. Hu, Z. Guan, N. Xiong, H. Chao, Intelligent impulsive synchronization of nonlinear interconnected neural networks for image protection, IEEE Trans. Ind. Inf., 14 (2018), 3775–3787. https://doi.org/10.1109/TII.2018.2808966 doi: 10.1109/TII.2018.2808966
    [46] L. V. Gambuzza, M. Frasca, A criterion for stability of cluster synchronization in networks with external equitable partitions, Automatica, 100 (2019), 212–218. https://doi.org/10.1016/j.automatica.2018.11.026 doi: 10.1016/j.automatica.2018.11.026
    [47] J. Qin, W. Fu, Y. Shi, H. Gao, Y. Kang, Leader-following practical cluster synchronization for networks of generic linear systems: An event-based approach, IEEE Trans. Neural Networks Learn. Syst., 30 (2018), 215–224. https://doi.org/10.1109/TNNLS.2018.2817627 doi: 10.1109/TNNLS.2018.2817627
    [48] N. A. Lai, W. Xiang, Y. Zhou, Global instability of multi-dimensional plane shocks for isothermal flow, Acta Math. Sci., 42 (2022), 887–902. https://doi.org/10.1007/s10473-022-0305-7 doi: 10.1007/s10473-022-0305-7
    [49] Z. Zhang, H. Wu, Cluster synchronization in finite/fixed time for semi-Markovian switching TS fuzzy complex dynamical networks with discontinuous dynamic nodes, AIMS Math., 7 (2022), 11942–11971. https://doi.org/10.3934/math.2022666 doi: 10.3934/math.2022666
    [50] P. Liu, Z. Zeng, J. Wang, Asymptotic and finite-time cluster synchronization of coupled fractional order neural networks with time delay, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 4956–4967. https://doi.org/10.1109/TNNLS.2019.2962006 doi: 10.1109/TNNLS.2019.2962006
    [51] X. Zhang, C. Li, Z. He, Cluster synchronization of delayed coupled neural networks: Delay-dependent distributed impulsive control, Neural Networks, 142 (2021), 34–43. https://doi.org/10.1016/j.neunet.2021.04.026 doi: 10.1016/j.neunet.2021.04.026
    [52] S. Yang, C. Hu, J. Yu, H. Jiang, Finite-time cluster synchronization in complex-variable networks with fractional-order and nonlinear coupling, Neural Networks, 135 (2021), 212–224. https://doi.org/10.1016/j.neunet.2020.12.015 doi: 10.1016/j.neunet.2020.12.015
    [53] T. Yu, J. Cao, C. Huang, Finite-time cluster synchronization of coupled dynamical systems with impulsive effects, Discrete Contin. Dyn. Syst. B, 26 (2021), 3595–3620. https://doi.org/10.3934/dcdsb.2020248 doi: 10.3934/dcdsb.2020248
    [54] J. J. He, Y. Q. Lin, M. F. Ge, C. D. Liang, T. F. Ding, L. Wang, Adaptive finite-time cluster synchronization of neutral-type coupled neural networks with mixed delays, Neurocomputing, 384 (2020), 11–20. https://doi.org/10.1016/j.neucom.2019.11.046 doi: 10.1016/j.neucom.2019.11.046
    [55] R. Tang, X. Yang, X. Wan, Finite-time cluster synchronization for a class of fuzzy cellular neural networks via non-chattering quantized controllers, Neural Networks, 113 (2019), 79–90. https://doi.org/10.1016/j.neunet.2018.11.010 doi: 10.1016/j.neunet.2018.11.010
    [56] D. Liu, Y. Du, New results of stability analysis for a class of neutral-type neural network with mixed time delays, Int. J. Mach. Learn. Cybern., 6 (2015), 555–566. https://doi.org/10.1007/s13042-014-0302-9 doi: 10.1007/s13042-014-0302-9
    [57] Y. Cao, R. Samidurai, R. Sriraman, Robust passivity analysis for uncertain neural networks with leakage delay and additive time-varying delays by using general activation function, Math. Comput. Simul., 155 (2019), 57–77. https://doi.org/10.1016/j.matcom.2017.10.016 doi: 10.1016/j.matcom.2017.10.016
    [58] H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos Solitons Fract., 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432
    [59] X. Wei, Z. Zhang, M. Liu, Z. Wang, J. Chen, Anti-synchronization for complex-valued neural networks with leakage delay and time-varying delays, Neurocomputing, 412 (2020), 312–319. https://doi.org/10.1016/j.neucom.2020.06.080 doi: 10.1016/j.neucom.2020.06.080
    [60] L. Wang, Q. Song, Z. Zhao, Y. Liu, F. E. Alsaadi, Synchronization of two nonidentical complex-valued neural networks with leakage delay and time-varying delays, Neurocomputing, 356 (2019), 52–59. https://doi.org/10.1016/j.neucom.2019.04.068 doi: 10.1016/j.neucom.2019.04.068
    [61] M. S. Ali, N. Gunasekaran, C. K. Ahn, P. Shi, Sampled-data stabilization for fuzzy genetic regulatory networks with leakage delays, IEEE/ACM Trans. Comput. Biol. Bioinf., 15 (2016), 271–285. https://doi.org/10.1109/TCBB.2016.2606477 doi: 10.1109/TCBB.2016.2606477
    [62] A. Pratap, R. Raja, J. Cao, G. Rajchakit, F. E. Alsaadi, Further synchronization in finite time analysis for time-varying delayed fractional order memristive competitive neural networks with leakage delay, Neurocomputing, 317 (2018), 110–126. https://doi.org/10.1016/j.neucom.2018.08.016 doi: 10.1016/j.neucom.2018.08.016
    [63] Q. Song, Z. Zhao, Stability criterion of complex-valued neural networks with both leakage delay and time-varying delays on time scales, Neurocomputing, 171 (2016), 179–184. https://doi.org/10.1016/j.neucom.2015.06.032 doi: 10.1016/j.neucom.2015.06.032
    [64] R. Samidurai, R. Sriraman, S. Zhu, Leakage delay-dependent stability analysis for complex-valued neural networks with discrete and distributed time-varying delays, Neurocomputing, 338 (2016), 262–273. https://doi.org/10.1016/j.neucom.2019.02.027 doi: 10.1016/j.neucom.2019.02.027
    [65] N. F. Rulkov, Images of synchronized chaos: Experiments with circuits, Chaos, 6 (1996), 262–279. https://doi.org/10.1063/1.166174 doi: 10.1063/1.166174
    [66] J. Zhou, Y. Zhao, Z. Wu, Cluster synchronization of fractional-order directed networks via intermittent pinning control, Physica A Stat. Mech. Appl., 519 (2019), 22–33. https://doi.org/10.1016/j.physa.2018.12.032 doi: 10.1016/j.physa.2018.12.032
    [67] S. Lakshmanan, J. H. Park, H. Y. Jung, P. Balasubramaniam, Design of state estimator for neural networks with leakage, discrete and distributed delays, Appl. Math. Comput., 218 (2012), 11297–11310. https://doi.org/10.1016/j.amc.2012.05.022 doi: 10.1016/j.amc.2012.05.022
    [68] T. Li, W. X. Zheng, C. Lin, Delay-slope-dependent stability results of recurrent neural networks, IEEE Trans. Neural Networks, 22 (2011), 2138–2143. https://doi.org/10.1109/TNN.2011.2169425 doi: 10.1109/TNN.2011.2169425
    [69] L. Wen, Y. Yu, W. Wang, Generalized Halanay inequalities for dissipativity of Volterra functional differential equations, J. Math. Anal. Appl., 347 (2008), 169–178. https://doi.org/10.1016/j.jmaa.2008.05.007 doi: 10.1016/j.jmaa.2008.05.007
    [70] X. Li, X. Fu, Effect of leakage time-varying delay on stability of nonlinear differential systems, J. Franklin Inst., 350 (2013), 1335–1344. https://doi.org/10.1016/j.jfranklin.2012.04.007 doi: 10.1016/j.jfranklin.2012.04.007
    [71] K. Kaneko, Relevance of dynamic clustering to biological networks, Phys. D Nonlinear Phenom., 75 (1994), 55–73. https://doi.org/10.1016/0167-2789(94)90274-7 doi: 10.1016/0167-2789(94)90274-7
    [72] W. Yu, J. Cao, J. Lü, Global synchronization of linearly hybrid coupled networks with time-varying delay, SIAM J. Appl. Dyn. Syst., 7 (2008), 108–133. https://doi.org/10.1137/070679090 doi: 10.1137/070679090
    [73] J. Cao, G. Chen, P. Li, Global synchronization in an array of delayed neural networks with hybrid coupling, IEEE Trans. Syst. Man Cybern., 38 (2008), 488–498. https://doi.org/10.1109/TSMCB.2007.914705 doi: 10.1109/TSMCB.2007.914705
    [74] J. Cao, W. Yu, Y. Qu, A new complex network model and convergence dynamics for reputation computation in virtual organizations, Phys. lett. A, 356 (2006), 414–425 https://doi.org/10.1016/j.physleta.2006.04.005 doi: 10.1016/j.physleta.2006.04.005
    [75] L. Hu, H. Gao, W. Zheng, Novel stability of cellular neural networks with interval time-varying delay, Neural Networks, 21 (2008), 1458–1463. https://doi.org/10.1016/j.neunet.2008.09.002 doi: 10.1016/j.neunet.2008.09.002
    [76] S. Mou, H. Gao, W. Qiang, K. Chen, New delay-dependent exponential stability for neural networks with time delay, IEEE Trans. Syst. Man Cybern., 38 (2008), 571–576. https://doi.org/10.1109/TSMCB.2007.913124 doi: 10.1109/TSMCB.2007.913124
    [77] X. Peng, H. Wu, K. Song, J. Shi, Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays, Neural Networks, 94 (2017), 46–54. https://doi.org/10.1016/j.neunet.2017.06.011 doi: 10.1016/j.neunet.2017.06.011
    [78] Z. Ding, Z. Zeng, L. Wang, Robust finite-time stabilization of fractional-order neural networks with discontinuous and continuous activation functions under uncertainty, IEEE Trans. Neural Networks Learn. Syst., 29 (2017), 1477–1490. https://doi.org/10.1109/TNNLS.2017.2675442 doi: 10.1109/TNNLS.2017.2675442
    [79] X. Yang, Can neural networks with arbitrary delays be finite-timely synchronized, Neurocomputing, 143 (2014), 275–281. https://doi.org/10.1016/j.neucom.2014.05.064 doi: 10.1016/j.neucom.2014.05.064
  • This article has been cited by:

    1. Saleh S Redhwan, Mohammed A Almalahi, Ali Hasan Ali, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, Nonlinear dynamics of the complex periodic coupled system via a proportional generalized fractional derivative, 2024, 99, 0031-8949, 125270, 10.1088/1402-4896/ad9088
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2801) PDF downloads(196) Cited by(3)

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog