This article describes the construction of optical solitons and single traveling wave solutions of Biswas-Arshed equation with the beta time derivative. By using the polynomial complete discriminant system method, a series of traveling wave solutions are constructed, including the rational function solutions, Jacobian elliptic function solutions, hyperbolic function solutions, trigonometric function solutions and inverse trigonometric function solutions. The conclusions of this paper comprise some new and different solutions that cannot be found in existing literature. Using the mathematic software Maple, the 3D and 2D graphs of the obtained traveling wave solutions were also developed. It is worth noting that these traveling wave solutions may motivate us to explore new phenomena which may be appear in optical fiber propagation theory.
Citation: Tianyong Han, Zhao Li, Jun Yuan. Optical solitons and single traveling wave solutions of Biswas-Arshed equation in birefringent fibers with the beta-time derivative[J]. AIMS Mathematics, 2022, 7(8): 15282-15297. doi: 10.3934/math.2022837
[1] | Ahmad Mohammed Alghamdi, Sadek Gala, Maria Alessandra Ragusa . A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics, 2017, 2(3): 451-457. doi: 10.3934/Math.2017.2.451 |
[2] | Wei Zhang . A priori estimates for the free boundary problem of incompressible inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion. AIMS Mathematics, 2023, 8(3): 6074-6094. doi: 10.3934/math.2023307 |
[3] | Zhaoyang Shang . Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3(1): 1-11. doi: 10.3934/Math.2018.1.1 |
[4] | Sadek Gala, Maria Alessandra Ragusa . A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2017, 2(1): 16-23. doi: 10.3934/Math.2017.1.16 |
[5] | Xinli Wang, Haiyang Yu, Tianfeng Wu . Global well-posedness and optimal decay rates for the n-D incompressible Boussinesq equations with fractional dissipation and thermal diffusion. AIMS Mathematics, 2024, 9(12): 34863-34885. doi: 10.3934/math.20241660 |
[6] | Feng Cheng . On the dissipative solutions for the inviscid Boussinesq equations. AIMS Mathematics, 2020, 5(4): 2869-2876. doi: 10.3934/math.2020184 |
[7] | Ahmad Mohammad Alghamdi, Sadek Gala, Jae-Myoung Kim, Maria Alessandra Ragusa . The anisotropic integrability logarithmic regularity criterion to the 3D micropolar fluid equations. AIMS Mathematics, 2020, 5(1): 359-375. doi: 10.3934/math.2020024 |
[8] | Xuemin Xue, Xiangtuan Xiong, Yuanxiang Zhang . Two fractional regularization methods for identifying the radiogenic source of the Helium production-diffusion equation. AIMS Mathematics, 2021, 6(10): 11425-11448. doi: 10.3934/math.2021662 |
[9] | Oussama Melkemi, Mohammed S. Abdo, Wafa Shammakh, Hadeel Z. Alzumi . Yudovich type solution for the two dimensional Euler-Boussinesq system with critical dissipation and general source term. AIMS Mathematics, 2023, 8(8): 18566-18580. doi: 10.3934/math.2023944 |
[10] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
This article describes the construction of optical solitons and single traveling wave solutions of Biswas-Arshed equation with the beta time derivative. By using the polynomial complete discriminant system method, a series of traveling wave solutions are constructed, including the rational function solutions, Jacobian elliptic function solutions, hyperbolic function solutions, trigonometric function solutions and inverse trigonometric function solutions. The conclusions of this paper comprise some new and different solutions that cannot be found in existing literature. Using the mathematic software Maple, the 3D and 2D graphs of the obtained traveling wave solutions were also developed. It is worth noting that these traveling wave solutions may motivate us to explore new phenomena which may be appear in optical fiber propagation theory.
This paper is concerned with the regularity criterion of the 3D Boussinesq equations with the incompressibility condition :
{∂tu+u⋅∇u−Δu+∇π=θe3,∂tθ+u⋅∇θ−Δθ=0,∇⋅u=0,(u,θ)(x,0)=(u0,θ0)(x),x∈R3, | (1.1) |
where u=u(x,t) and θ=θ(x,t) denote the unknown velocity vector field and the scalar function temperature, while u0, θ0 with ∇⋅u0=0 in the sense of distribution are given initial data. e3=(0,0,1)T. π=π(x,t) the pressure of fluid at the point (x,t)∈R3×(0,∞). The Boussinesq equation is one of important subjects for researches in nonlinear sciences [14]. There are a huge literatures on the incompressible Boussinesq equations such as [1,2,3,4,6,8,9,10,17,19,20,21,22] and the references therein.
When θ=0, (1.1) reduces to the well-known incompressible Navier-Stokes equations and many results are available. Besides their physical applications, the Navier-Stokes equations are also mathematically significant. From that time on, much effort has been devoted to establish the global existence and uniqueness of smooth solutions to the Navier-Stokes equations.
However, similar to the classic Navier-Stokes equations, the question of global regularity of the weak solutions of the 3D Boussinesq equations still remains a big open problem and the system (1.1) has received many studies. Based on some analysis technique, some regularity criteria via the velocity of weak solutions in the Lebesgue spaces, multiplier spaces and Besov spaces have been obtained in [5,17,19,20,22,23].
More recently, the authors of the present paper [7] showed that the weak solution becomes regular if
∫T0‖u(⋅,t)‖21−r.B−r∞,∞+‖θ(⋅,t)‖21−r.B−r∞,∞1+log(e+‖u(⋅,t)‖Hs+‖θ(⋅,t)‖Hs)dt<∞ for some 0≤r<1 and s≥12, | (1.2) |
where .B−r∞,∞ denotes the homogeneous Besov space. Definitions and basic properties of the Sobolev spaces and the Besov spaces can be find in [18]. For concision, we omit them here.
The purpose of this paper is to improve the regularity criterion (1.2) in the following form.
Theorem 1.1. Let (u,θ) be a smooth solution to (1.1) in [0,T) with the initial data (u0,θ0)∈H3(R3)×H3(R3) with divu0=0 in R3. Suppose that the solution (u,θ) satisfies
∫T0‖u(⋅,t)‖21−r.B−r∞,∞log(e+‖u(⋅,t)‖.B−r∞,∞)dt<∞ for some r with 0≤r<1. | (1.3) |
Then it holds
sup0≤t≤T(‖u(⋅,t)‖2H3+‖θ(⋅,t)‖2H3)<∞. |
That is, the solution (u,θ) can be smoothly extended after time t=T. In other word, if T∗ is the maximal time existence of the solution, then
∫T∗0‖u(⋅,t)‖21−r.B−r∞,∞log(e+‖u(⋅,t)‖.B−r∞,∞)dt<∞. |
Then the solution can be smoothly extended after t=T.
Remark 1.1. The condition (1.3) can be regarded as a logarithmically improved version of the assumption
∫T0‖u(⋅,t)‖21−r.B−r∞,∞dt<∞ for some r with 0≤r<1. |
For the case r=1, we have the following result.
Theorem 1.2. Let (u,θ) be a smooth solution to (1.1) in [0,T) with the initial data (u0,θ0)∈H3(R3)×H3(R3) with divu0=0 in R3. Suppose that there exists a small positive constant η such that
‖u(⋅,t)‖L∞(0,T;.B−1∞,∞(R3))≤η, | (1.4) |
then solution (u,θ) can be smoothly extended after time t=T.
Remark 1.2. Theorem 1.2 can be regarded as improvements and limiting cases of those in [7]. It is worth to point out all conditions are valid for the usual Navier-Stokes equations. We refer to a recent work [7] and references therein.
Remark 1.3. For the case r=0, see [23].
In this section, we will prove Theorem 1.1 by the standard energy method.
Let T>0 be a given fixed time. The existence and uniqueness of local smooth solutions can be obtained as in the case of the Navier-Stokes equations. Hence, for all T>0 we assume that (u,θ) is a smooth solution to (1.1) on [0,T) and we will establish a priori bounds that will allow us to extend (u,θ) beyond time T under the condition (1.3).
Owing to (1.3) holds, one can deduce that for any small ϵ>0, there exists T0=T0(ϵ)<T such that
∫TT0‖u(⋅,t)‖21−r.B−r∞,∞log(e+‖u(⋅,t)‖.B−r∞,∞) dt≤ϵ<<1. | (2.1) |
Thanks to the divergence-free condition ∇⋅u=0, from (1.1)2, we get immediately the global a priori bound for θ in any Lebesgue space
‖θ(⋅,t)‖Lq≤C‖θ0‖Lq for all q∈[2,∞] and all t∈[0,T]. |
Now, multiplying (1.1)2 by θ and using integration by parts, we get
12ddt‖θ‖2L2+‖∇θ‖2L2=0. |
Hence, we obtain
θ∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)). | (2.2) |
Next, multiplying (1.1)1 by u, we have after integration by part,
12ddt‖u‖2L2+‖∇u‖2L2=∫R3(θe3)⋅udx≤‖θ‖L2‖u‖L2≤C‖u‖L2, |
which yields
u∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)), | (2.3) |
where we used (2.2) and
∫R3(u⋅∇u)⋅udx=12∫R3(u⋅∇)u2dx=−12∫R3(∇⋅u)u2dx=0 |
by incompressibility of u, that is, ∇⋅u=0.
Now, apply ∇ operator to the equation of (1.1)1 and (1.1)2, then taking the inner product with ∇u and ∇θ, respectively and using integration by parts, we get
12ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖Δu‖2L2+‖Δθ‖2L2=−∫R3∇(u⋅∇)u⋅∇udx+∫R3∇(θe3)⋅∇udx−∫R3∇(u⋅∇)θ⋅∇θdx=I1+I2+I3. | (2.4) |
Employing the Hölder and Young inequalities, we derive the estimation of the first term I1 as
I1=∫R3(u⋅∇)u⋅Δudx≤‖∇⋅(u⊗u)‖L2‖Δu‖L2≤C‖u‖.B−r∞,∞‖∇u‖⋅Hr‖Δu‖L2≤C‖u‖.B−r∞,∞‖∇u‖1−rL2‖Δu‖1+rL2≤12‖Δu‖2L2+C‖u‖21−r.B−r∞,∞‖∇u‖2L2≤12‖Δu‖2L2+C‖u‖21−r.B−r∞,∞(‖∇u‖2L2+‖∇θ‖2L2), |
where we have used the inequality due to [16] :
‖u⊗u‖⋅H1≤C‖u‖.B−r∞,∞‖∇u‖⋅Hr |
and the interpolation inequality
‖w‖.Hs=‖|ξ|sˆw‖L2≤‖w‖1−sL2‖∇w‖sL2 for all 0≤s≤1. |
The term I3 can be estimated as
I3≤C‖∇u‖L2‖∇θ‖2L4≤C‖∇u‖L2‖∇θ‖.B−1∞,∞‖Δθ‖L2≤C‖∇u‖L2‖θ‖.B0∞,∞‖Δθ‖L2≤12‖Δθ‖2L2+C‖θ‖2L∞‖∇u‖2L2≤12‖Δθ‖2L2+C‖θ‖2L∞(‖∇u‖2L2+‖∇θ‖2L2), |
where we have used
‖∇θ‖.B−1∞,∞≤C‖θ‖.B0∞,∞≤C‖θ‖L∞. |
The term I2 can be estimated as
I2≤‖∇u‖L2‖∇θ‖L2≤12(‖∇u‖2L2+‖∇θ‖2L2). |
Plugging all the estimates into (2.4) yields that
ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖Δu‖2L2+‖Δθ‖2L2≤C(12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞)(‖∇u‖2L2+‖∇θ‖2L2). |
Hence, we obtain
ddt(‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2)+‖Δu‖2L2+‖Δθ‖2L2≤C[12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞log(e+‖u‖.B−r∞,∞)](‖∇u‖2L2+‖∇θ‖2L2)log(e+‖u‖.B−r∞,∞)≤C[12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞log(e+‖u‖.B−r∞,∞)](‖∇u‖2L2+‖∇θ‖2L2)log(e+‖u‖H3+‖θ‖H3)≤C[12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞log(e+‖u‖.B−r∞,∞)](‖∇u‖2L2+‖∇θ‖2L2)log(e+κ(t)) |
where κ(t) is defined by
κ(t)=supT0≤τ≤t(‖u(⋅,τ)‖H3+‖θ(⋅,τ)‖H3)forallT0<t<T. |
It should be noted that the function κ(t) is nondecreasing. Moreover, we have used the following fact :
‖u‖.B−r∞,∞≤C‖u‖H3. |
Integrating the above inequality over [T0,t] and applying Gronwall's inequality, we have
‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2+∫tT∗‖Δu(⋅,τ)‖2L2+‖Δθ(⋅,τ)‖2L2dτ≤(‖∇u(⋅,T0)‖2L2+‖∇θ(⋅,T0)‖2L2)×exp(C∫tT0‖u‖21−r.B−r∞,∞log(e+‖u(⋅,τ)‖.B−r∞,∞)log(e+κ(τ))dτ)≤(‖∇u(⋅,T0)‖2L2+‖∇θ(⋅,T0)‖2L2)×exp(Clog(e+κ(t))∫tT0‖u‖21−r.B−r∞,∞log(e+‖u(⋅,τ)‖.B−r∞,∞)dτ)≤˜Cexp(Cϵlog(e+κ(t)))=˜C(e+κ(t))Cϵ | (2.5) |
where ˜C is a positive constant depending on ‖∇u(⋅,T0)‖2L2, ‖∇θ(⋅,T0)‖2L2, T0, T and θ0.
H3−norm. Next, we start to obtain the H3−estimates under the above estimate (2.5). Applying Λ3=(−Δ)32 to (1.1)1, then taking L2 inner product of the resulting equation with Λ3u, and using integration by parts, we obtain
12ddt‖Λ3u(⋅,t)‖2L2+‖Λ4u(⋅,t)‖2L2=−∫R3Λ3(u⋅∇u)⋅Λ3udx+∫R3Λ3(θe3)⋅Λ3udx | (2.6) |
Similarly, applying Λ3=(−Δ)32 to (1.1)2, then taking L2 inner product of the resulting equation with Λ3θ, and using integration by parts, we obtain
12ddt‖Λ3θ(⋅,t)‖2L2+‖Λ4θ(⋅,t)‖2L2=−∫R3Λ3(u⋅∇θ)⋅Λ3θdx, | (2.7) |
Using ∇⋅u=0, we deduce that
12ddt(‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2)+‖Λ4u(⋅,t)‖2L2+‖Λ4θ(⋅,t)‖2L2=−∫R3[Λ3(u⋅∇u)−u⋅Λ3∇u]⋅Λ3udx+∫R3Λ3(θe3)⋅Λ3udx−∫3R3[Λ3(u⋅∇θ)−u⋅Λ3∇θ]⋅Λ3θdx=Π1+Π2+Π3. | (2.8) |
To bound Π1, we recall the following commutator estimate due to [12]:
‖Λα(fg)−fΛαg‖Lp≤C(‖Λα−1g‖Lq1‖∇f‖Lp1+‖Λαf‖Lp2‖g‖Lq2), | (2.9) |
for α>1, and 1p=1p1+1q1=1p2+1q2. Hence Π1 can be estimated as
Π1≤C‖∇u‖L3‖Λ3u‖2L3≤C‖∇u‖34L2‖Λ3u‖14L2‖∇u‖13L2‖Λ4u‖53L2≤16‖Λ4u‖2L2+C‖∇u‖132L2‖Λ3u‖32L2, | (2.10) |
where we used (2.9) with α=3,p=32, p1=q1=p2=q2=3, and the following Gagliardo-Nirenberg inequalities
{‖∇u‖L3≤C‖∇u‖34L2‖Λ3u‖14L2,‖Λ3u‖L3≤C‖∇u‖16L2‖Λ4u‖56L2. | (2.11) |
If we use the existing estimate (2.1) for T0≤t<T, (2.10) reduces to
Π1≤12‖Λ4u‖2L2+˜C(e+κ(t))32+132Cϵ. | (2.12) |
Using (2.11) again, we get
Π3≤C(‖∇u‖L3‖Λ3θ‖L3+‖∇θ‖L3‖Λ3u‖L3)‖Λ3θ‖L3≤C(‖∇u‖L3+‖∇θ‖L3)(‖Λ3u‖2L3+‖Λ3θ‖2L3)≤16(‖Λ4u‖2L2+‖Λ4θ‖2L2)+˜C(e+κ(t))32+132Cϵ. |
For Π2, we have
Π2≤12(‖Λ3u‖2L2+‖Λ3θ‖2L2)≤˜C(e+κ(t))2. |
Inserting all the inequalities into (2.8) and absorbing the dissipative terms, one finds
ddt(‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2)≤˜C(e+κ(t))32+132Cϵ+˜C(e+κ(t))2, | (2.13) |
with together with the basic energy (2.2)-([2.3]) yields
ddt(‖u(⋅,t)‖2H3+‖θ(⋅,t)‖2H3)≤˜C(e+κ(t))32+132Cϵ+˜C(e+κ(t))2, | (2.14) |
Choosing ϵ sufficiently small provided that 132Cϵ<12 and applying the Gronwall inequality to (2.14), we derive that
supT0≤τ≤t(‖u(⋅,τ)‖2H3+‖θ(⋅,τ)‖2H3)≤˜C<∞, | (2.15) |
where ˜C depends on ‖∇u(⋅,T0)‖2L2 and ‖∇θ(⋅,T0)‖2L2.
Noting that the right-hand side of (2.15) is independent of t for , we know that (u(⋅,T),θ(⋅,T))∈H3(R3)×H3(R3). Consequently, (u,θ) can be extended smoothly beyond t=T. This completes the proof of Theorem 1.1.
In order to prove Theorem 1.2, we first recall the following local existence theorem of the three-dimensional Boussinesq equations.
Lemma 3.1. Suppose (u,θ)∈Lα(R3), for some α≥3 and ∇⋅u=0. Then, there exists T0>0 and a unique solution of (1.1) on [0,T0) such that
(u,θ)∈BC([0,T0);Lα(R3))∩Ls([0,T0);Lr(R3)),t1su∈BC([0,T0);Lα(R3)) | (3.1) |
Moreover, let (0,T∗) be the maximal interval such that (u,θ) solves (1.1) in C((0,T∗);Lα(R3)), α>3. Then for any t∈(0,T∗)
‖u(⋅,t)‖Lα≥C(T∗−t)α−32α and ‖θ(⋅,t)‖Lα≥C(T∗−t)α−32α, |
with the constant C independent of T∗ and α.
Let (u,θ) be a strong solution satisfying
(u,θ)∈Lα((0,T);Lβ(R3)) for 2α+3β=1 and β>3. |
Then (u,θ) belongs to C∞(R3×(0,T)).
Proof. For all T>0, we assume that (u,θ) is a smooth solution to (1.1) on [0,T) and we will establish a priori bounds that will allow us to extend (u,θ) beyond time T under the condition (1.4).
Similar to the proof of Theorem 1.1, we can show that
(u,θ)∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)). | (3.2) |
The proof of Theorem 1.2 is divided into steps.
Step Ⅰ. H1−estimation. In order to get the H1−estimates, we apply ∇ operator to the equation of (1.1)1 and (1.1)2, multiply by ∇u and ∇θ, respectively to obtain
12ddt(‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2)+‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2=−∫R3∇(u⋅∇)u⋅∇udx+∫R3∇(θe3)⋅∇udx−∫R3∇(u⋅∇)θ⋅∇θdx=I1+I2+I3. | (3.3) |
Next we estimate I1,I2 and I3 in another way. Hence,
I1≤‖∇u‖3L3≤C‖∇u‖.B−2∞,∞‖Δu‖2L2≤C‖u‖.B−1∞,∞‖Δu‖2L2, |
where we have used the following interpolation inequality due to [16] :
‖w‖L3≤C‖∇w‖23L2‖w‖13.B−2∞,∞. |
By means of the Hölder and Young inequalities, the term I3 can be estimated as
I3≤C‖∇u‖L2‖∇θ‖2L4≤C‖∇u‖L2‖∇θ‖.B−1∞,∞‖Δθ‖L2≤C‖θ‖2.B0∞,∞‖Δθ‖2L2+C‖∇u‖2L2≤C‖θ‖2L∞‖Δθ‖2L2+C‖∇u‖2L2, |
where we have used the following interpolation inequality due to [16] :
‖∇θ‖2L4≤C‖∇θ‖.B−1∞,∞‖Δθ‖L2. |
The term I2 can be estimated as
I2≤‖∇u‖L2‖∇θ‖L2≤12(‖∇u‖2L2+‖∇θ‖2L2). |
Plugging all the estimates into (3.3) yields that
12ddt(‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2)+‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2≤C‖u‖.B−1∞,∞‖Δu‖2L2+C‖θ‖2L∞‖Δθ‖2L2+C(‖∇u‖2L2+‖∇θ‖2L2). |
Under the assumption (1.4), we choose η small enough so that
C‖u‖.B−1∞,∞≤12 . |
Hence, we find that
ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖Δu‖2L2+‖Δθ‖2L2≤C(‖∇u‖2L2+‖∇θ‖2L2). |
Integrating in time and applying the Gronwall inequality, we infer that
‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2+∫T0(‖Δu(⋅,τ)‖2L2+‖Δθ(⋅,τ)‖2L2)dτ≤C. | (3.4) |
Step Ⅱ. H2−estimation. Next, we start to obtain the H2−estimates under the above estimate (3.4). Applying Δ to (1.1)1, then taking L2 inner product of the resulting equation with Δu, and using integration by parts, we obtain
12ddt‖Δu(⋅,t)‖2L2+‖Λ3u(⋅,t)‖2L2=−∫R3Δ(u⋅∇u)⋅Δudx+∫R3Δ(θe3)⋅Δudx | (3.5) |
Similarly, applying Δ to (1.1)2, then taking L2 inner product of the resulting equation with Δθ, and using integration by parts, we obtain
12ddt‖Δθ(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2=−∫R3Δ(u⋅∇θ)⋅Δθdx. | (3.6) |
Adding (3.5) and (3.6), we deduce that
12ddt(‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2)+‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2=−∫R3Δ(u⋅∇u)⋅Δudx+∫R3Δ(θe3)⋅Δudx−∫R3Δ(u⋅∇θ)⋅Δθdx=K1+K2+K3. | (3.7) |
Using Hölder's inequality and Young's inequality, K1 can be estimated as
K1=∫R3Δ(u⊗u)⋅Δ∇udx≤‖Δ(u⊗u)‖L2‖Δ∇u‖L2≤C‖u‖L∞‖Δu‖L2‖Λ3u‖L2≤12‖Λ3u‖2L2+C‖u‖2L∞‖Δu‖2L2. |
Here we have used the bilinear estimates due to Kato-Ponce [12] and Kenig-Ponce-Vega [13]:
‖Λα(fg)‖Lp≤C(‖Λαg‖Lq1‖f‖Lp1+‖Λαf‖Lp2‖g‖Lq2), |
for α>0, and 1p=1p1+1q1=1+1q2.
From the incompressibility condition, Hölder's inequality and Young's inequality, one has
K3=∫R3Δ(uθ)⋅Δ∇θdx≤‖Δ(uθ)‖L2‖Δ∇θ‖L2≤C(‖u‖L∞‖Δθ‖L2+‖θ‖L∞‖Δu‖L2)‖Λ3θ‖L2≤12‖Λ3θ‖2L2+C(‖u‖2L∞+‖θ‖2L∞)(‖Δu‖2L2+‖Δθ‖2L2). |
For K2, we have
K2≤12(‖Δu‖2L2+‖Δθ‖2L2) |
Inserting all the inequalities into (3.7) and absorbing the dissipative terms, one finds
ddt(‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2)+‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2≤C(‖u‖2L∞+‖θ‖2L∞)(‖Δu‖2L2+‖Δθ‖2L2). | (3.8) |
Using the following interpolation inequality
‖f‖L∞≤C‖f‖14L2‖Δf‖34L2, |
together with the key estimate (3.4) yield that
∫T0(‖u(⋅,τ)‖2L∞+‖θ(⋅,τ)‖2L∞)dτ≤C<∞. |
Applying the Gronwall inequality to (3.8), we derive that
‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2+∫T0(‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2)dt≤C. | (3.9) |
By estimates (3.4) and (3.9) as well as the following Gagliardo-Nirenberg's inequality
‖f‖L6≤C‖f‖12L2‖Δf‖12L2, |
it is easy to see that
(u,θ)∈L4(0,T;L6(R3)), |
from which and Lemma 3.1 the smoothness of (u,θ) follows immediately. This completes the proof of Theorem 1.2.
Part of the work was carried out while the first author was long term visitor at University of Catania. The hospitality and support of Catania University are graciously acknowledged.
All authors would like to thank Professor Bo-Qing Dong for helpful discussion and constant encouragement. They also would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.
All authors declare no conflicts of interest in this paper.
[1] |
Y. Chalco-Cano, J. J. Nieto, A. Ouahab, H. Romn-Flores, Solution set for fractional differential equations with Riemann-Liouville derivative, Fract. Calc. Appl. Anal., 16(2013), 682–694. http://dx.doi.org/10.2478/s13540-013-0043-6 doi: 10.2478/s13540-013-0043-6
![]() |
[2] |
Y. G. Yan, Z. Z. Sun, J. W. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme, Commun. Comput. Phys., 22 (2017), 1028–1048. https://doi.org/10.4208/cicp.OA-2017-0019 doi: 10.4208/cicp.OA-2017-0019
![]() |
[3] |
R. Khalil, M. Al-Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264(2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[4] |
A. Korkmaz, K. Hosseini, Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods, Opt. Quant. Electron., 49 (2017), Article number 278. https://doi.org/10.1007/s11082-017-1116-2 doi: 10.1007/s11082-017-1116-2
![]() |
[5] |
K. U. Tariq, M. Younis, H. Rezazadeh, et al, Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution, Mod. Phys. Lett. B, 32 (2018), Article number 1850317. https://doi.org/10.1142/S0217984918503177 doi: 10.1142/S0217984918503177
![]() |
[6] |
Z. Li, T. Y. Han, Bifurcation and exact solutions for the (2+1)-dimensional conformable time-fractional Zoomeron equation, Adv. Differ. Equ-Ny., 2020 (2020), Article number 656. https://doi.org/10.1186/s13662-020-03119-5 doi: 10.1186/s13662-020-03119-5
![]() |
[7] |
T. Y. Han, Z. Li, X. Zhang, Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrodinger equation, Phys. Lett. A, 395 (2021), Article number 127217. https://doi.org/10.1016/j.physleta.2021.127217 doi: 10.1016/j.physleta.2021.127217
![]() |
[8] |
K. Hosseini, P. Mayeli, A. Bekir, O. Guner, D. O. Mathematics, R. Branch, Density-dependent conformable space-time fractional diffusion-reaction equation and its exact solutions, Commun. Theor. Phys., 69 (2018), 1–4. https://doi.org/10.1088/0253-6102/69/1/1 doi: 10.1088/0253-6102/69/1/1
![]() |
[9] |
T. Lu, S. P. Chen, The classication of single traveling wave solutions for the fractional coupled nonlinear Schrodinger equation, Opt. Quant. Electron., 54 (2022), Article number 105. https://doi.org/10.1007/s11082-021-03496-5 doi: 10.1007/s11082-021-03496-5
![]() |
[10] |
C. Huang, Z. Li, New Exact Solutions of the Fractional Complex Ginzburg-Landau Equation, Math. Probl. Eng., 2021 (2021), Article ID 1283083. https://doi.org/10.1155/2021/6640086 doi: 10.1155/2021/6640086
![]() |
[11] |
A. Biswas, M. O. Al-Amr, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, et al., Resonant optical solitons with dualpower law nonlinearity and fractional temporal evolution, Optik, 165 (2018), 233–239. https://doi.org/10.1016/j.ijleo.2018.03.123 doi: 10.1016/j.ijleo.2018.03.123
![]() |
[12] |
B. Ghanbari, J. F. Gómez-Aguilar, The generalized exponential rational function method for Radhakrishnan-Kundu-Lakshmanan equation with β-conformable time derivative, Revista Mexicana de Fsica, 65 (2019), 503–518. https://doi.org/10.31349/RevMexFis.65.503 doi: 10.31349/RevMexFis.65.503
![]() |
[13] |
A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu, Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers, Front. Phys., 7 (2019), Article number 34. https://doi.org/10.3389/fphy.2019.00034 doi: 10.3389/fphy.2019.00034
![]() |
[14] |
M. Fa. Uddin, M. G. Hafez, Z. Hammouch, D. Baleanu, Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness, Waves Random Complex, 31 (2020), 2135–2149. https://doi.org/10.1080/17455030.2020.1722331 doi: 10.1080/17455030.2020.1722331
![]() |
[15] |
K. Hosseini, L. Kaur, M. Mirzazadeh, H. M. Baskonus, 1-Soliton solutions of the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative, Opt. Quant. Electron., 53 (2021), Article number 125. https://doi.org/10.1007/s11082-021-02739-9 doi: 10.1007/s11082-021-02739-9
![]() |
[16] |
A. Zafar, A. Bekir, M. Raheel, K. Sooppy Nisar, S. Mustafa, Dynamics of new optical solitons for the Triki-Biswas model using beta-time derivative, Mod. Phys. Lett. B, 35 (2021), Article number 2150511. https://doi.org/10.1142/S0217984921505114 doi: 10.1142/S0217984921505114
![]() |
[17] |
S. T. Demiray, New Solutions of Biswas-Arshed Equation with Beta Time Derivative, Optik, 222 (2020), Article number 165405. https://doi.org/10.1016/j.ijleo.2020.165405 doi: 10.1016/j.ijleo.2020.165405
![]() |
[18] |
K. Hosseini, M. Mirzazadeh, M. Ilie, J. F. Gómez-Aguilar, Biswas-Arshed equation with the beta time derivative: Optical solitons and other solutions, Optik, 217 (2020), Article number 164801. https://doi.org/10.1016/j.ijleo.2020.164801 doi: 10.1016/j.ijleo.2020.164801
![]() |
[19] |
K. Khan, M. A. Akbar, Solitary and periodic wave solutions of nonlinear wave equations via the functional variable method, J. Interdiscip. Math., 21 (2018), 43–57. https://doi.org/10.1080/09720502.2014.962839 doi: 10.1080/09720502.2014.962839
![]() |
[20] |
K. Khan, M. A. Akbar, Solving unsteady Korteweg-de Vries equation and its two alternatives, Math. Method. Appl. Sci., 39 (2016), 2752–2760. https://doi.org/10.1002/mma.3727 doi: 10.1002/mma.3727
![]() |
[21] |
T. Y. Han, J. J. Wen, Z. Li, J. Yuan, New Traveling Wave Solutions for the (2+1)-Dimensional Heisenberg Ferromagnetic Spin Chain Equation, Math. Probl. Eng., 2022 (2022), Article ID 1312181, 9 pages. https://doi.org/10.1155/2022/1312181 doi: 10.1155/2022/1312181
![]() |
[22] |
T. Y. Han, J. J. Wen, Z. Li, Bifurcation Analysis and Single Traveling Wave Solutions of the Variable-Coefficient Davey-Stewartson System, Discrete Dyn. Nat. Soc., 2022 (2022), 1–6. https://doi.org/10.1155/2022/9230723 doi: 10.1155/2022/9230723
![]() |
[23] |
A. Biswas, S. Arshed, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, Optik, 174 (2018), 452–459. https://doi.org/10.1016/j.ijleo.2018.08.037 doi: 10.1016/j.ijleo.2018.08.037
![]() |
[24] |
W. R. Xu, L. F. Guo, C. Y. Wang, Optical solutions of Biswas-Arshed equation in optical fibers, Mod. Phys. Lett. B, 35 (2021), Article number 2150051. https://doi.org/10.1142/S0217984921500512 doi: 10.1142/S0217984921500512
![]() |
[25] |
H. U. Rehman, S. Jafar, A. Javed, S. Hussain, M. Tahir, New optical solitons of Biswas-Arshed equation using different techniques, Optik, 206 (2019), Article number 163670. https://doi.org/10.1016/j.ijleo.2019.163670 doi: 10.1016/j.ijleo.2019.163670
![]() |
[26] |
N. Sajid, G. Akram, Novel solutions of Biswas-Arshed equation by newly Φ6 model expansion method, Optik, 211 (2020), Article number 164564. https://doi.org/10.1016/j.ijleo.2020.164564 doi: 10.1016/j.ijleo.2020.164564
![]() |
[27] |
Y. Yıldırım, Optical solitons with Biswas-Arshed equation by sine-Gordon equation method, Optik, 223 (2020), Article number 165622. https://doi.org/10.1016/j.ijleo.2020.165622 doi: 10.1016/j.ijleo.2020.165622
![]() |
[28] |
M. Tahir, A. U. Awan, Optical singular and dark solitons with Biswas-Arshed model by modified simple equation method, Optik, 202 (2020), Article number 163523. https://doi.org/10.1016/j.ijleo.2019.163523 doi: 10.1016/j.ijleo.2019.163523
![]() |
[29] |
A. Zafar, A. Bekir, M. Raheel, W. Razzaq, Optical soliton solutions to Biswas-Arshed model with truncated M-fractional derivative, Optik, 222 (2020), Article number 165355. https://doi.org/10.1016/j.ijleo.2020.165355 doi: 10.1016/j.ijleo.2020.165355
![]() |
[30] |
Y. Yıldırım, Optical solitons of Biswas-Arshed equation in birefringent fibers by trial equation technique, Optik, 182 (2019), 810–820. https://doi.org/10.1016/j.ijleo.2019.01.084 doi: 10.1016/j.ijleo.2019.01.084
![]() |
[31] |
M.M.A. El-Sheikh, H. M. Ahmed, A. H. Arnous, et al, Optical solitons and other solutions in birefringent fibers with Biswas-Arshed equation by Jacobi's elliptic function approach. Optik, 202 (2019), Article number 163546. https://doi.org/10.1016/j.ijleo.2019.163546 doi: 10.1016/j.ijleo.2019.163546
![]() |
[32] |
E. M. E. Zayed, R. M. A. Shohib, Optical solitons and other solutions to Biswas-Arshed equation using the extended simplest equation method, Optik, 185 (2019), 626–635. https://doi.org/10.1016/j.ijleo.2019.03.112 doi: 10.1016/j.ijleo.2019.03.112
![]() |
[33] |
A. Darwish, H. M. Ahmed, Ahmed H. Arnous, M. F. Shehab, Optical solitons of Biswas-Arshed equation in birefringent fibers using improved modified extended tanh-function method, Optik, 227 (2021), Article number 165385. https://doi.org/10.1016/j.ijleo.2020.165385 doi: 10.1016/j.ijleo.2020.165385
![]() |
[34] |
Z. Korpinar, M. Inc, M. Bayram, M. S. Hashemi, New optical solitons for Biswas-Arshed equation with higher order dispersions and full nonlinearity, Optik, 206 (2020), Article number 163332. https://doi.org/10.1016/j.ijleo.2019.163332 doi: 10.1016/j.ijleo.2019.163332
![]() |
[35] |
P. K. Das, Chirped and chirp-free optical exact solutions of the Biswas-Arshed equation with full nonlinearity by the rapidly convergent approximation method, Optik, 223(2020), Article number 165293. https://doi.org/10.1016/j.ijleo.2020.165293 doi: 10.1016/j.ijleo.2020.165293
![]() |
[36] |
H. U. Rehman, M. S. Saleem, M.Zubair, S. Jafar, I. Latif, Optical solitons with Biswas-Arshed model using mapping method, Optik, 194 (2019), Article number 163091. https://doi.org/10.1016/j.ijleo.2019.163091 doi: 10.1016/j.ijleo.2019.163091
![]() |
[37] |
N. A. Kudryashov, Periodic and solitary waves of the Biswas-Arshed equation, Optik, 200 (2020), Article number 163442. https://doi.org/10.1016/j.ijleo.2019.163442 doi: 10.1016/j.ijleo.2019.163442
![]() |
[38] |
H. U. Rehman, M. Tahir, M. Bibi, Z. Ishfaq, Optical solitons to the Biswas-Arshed model in birefringent fibers using couple of integration techniques, Optik, 218 (2020), Article number 164894. https://doi.org/10.1016/j.ijleo.2020.164894 doi: 10.1016/j.ijleo.2020.164894
![]() |
[39] |
M. Munawar, A. Jhangeer, A. Pervaiz, F. Ibraheem, New general extended direct algebraic approach for optical solitons of Biswas-Arshed equation through birefringent fibers, Optik, 228 (2021), Article number 165790. https://doi.org/10.1016/j.ijleo.2020.165790 doi: 10.1016/j.ijleo.2020.165790
![]() |
[40] |
N. A. Kudryashov, Solitary wave solutions of the generalized Biswas-Arshed equation, Optik, 219(2020), Article number 165002. https://doi.org/10.1016/j.ijleo.2020.165002 doi: 10.1016/j.ijleo.2020.165002
![]() |
[41] |
L. Tang, Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities. Results Phys., 18 (2020), Article number 103289. https://doi.org/10.1016/j.rinp.2020.103289 doi: 10.1016/j.rinp.2020.103289
![]() |
[42] |
A. Atangana, R. T. Alqahtani, Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative, Entropy, 18 (2016), Article number 40. https://doi.org/10.3390/e18020040 doi: 10.3390/e18020040
![]() |
1. | Sadek Gala, Maria Alessandra Ragusa, A Regularity Criterion of Weak Solutions to the 3D Boussinesq Equations, 2020, 51, 1678-7544, 513, 10.1007/s00574-019-00162-z | |
2. | Zhouyu Li, Wenjuan Liu, Qi Zhou, Conditional Regularity for the 3D Damped Boussinesq Equations with Zero Thermal Diffusion, 2024, 55, 1678-7544, 10.1007/s00574-024-00411-w |