Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel

  • Received: 21 April 2022 Revised: 29 May 2022 Accepted: 09 June 2022 Published: 14 June 2022
  • MSC : 26A51, 26A33, 26D10

  • The aim of this research is to combine the concept of inequalities with fractional integral operators, which are the focus of attention due to their properties and frequency of usage. By using a novel fractional integral operator that has an exponential function in its kernel, we establish a new Hermite-Hadamard type integral inequality for an LR-convex interval-valued function. We also prove new fractional-order variants of the Fejér type inequalities and the Pachpatte type inequalities in the setting of pseudo-order relations. By showing several numerical examples, we further validate the accuracy of the results that we have derived in this study. We believe that the results, presented in this article are novel and that they will be beneficial in encouraging future research in this field.

    Citation: Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja. Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel[J]. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824

    Related Papers:

    [1] Ziqiang Wang, Qin Liu, Junying Cao . A higher-order numerical scheme for system of two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy. AIMS Mathematics, 2023, 8(6): 13096-13122. doi: 10.3934/math.2023661
    [2] Junying Cao, Qing Tan, Zhongqing Wang, Ziqiang Wang . An efficient high order numerical scheme for the time-fractional diffusion equation with uniform accuracy. AIMS Mathematics, 2023, 8(7): 16031-16061. doi: 10.3934/math.2023818
    [3] Ziqiang Wang, Jiaojiao Ma, Junying Cao . A higher-order uniform accuracy scheme for nonlinear ψ-Volterra integral equations in two dimension with weakly singular kernel. AIMS Mathematics, 2024, 9(6): 14325-14357. doi: 10.3934/math.2024697
    [4] M. Chandru, T. Prabha, V. Shanthi, H. Ramos . An almost second order uniformly convergent method for a two-parameter singularly perturbed problem with a discontinuous convection coefficient and source term. AIMS Mathematics, 2024, 9(9): 24998-25027. doi: 10.3934/math.20241219
    [5] Junying Cao, Zhongqing Wang, Ziqiang Wang . Stability and convergence analysis for a uniform temporal high accuracy of the time-fractional diffusion equation with 1D and 2D spatial compact finite difference method. AIMS Mathematics, 2024, 9(6): 14697-14730. doi: 10.3934/math.2024715
    [6] Xumei Zhang, Junying Cao . A high order numerical method for solving Caputo nonlinear fractional ordinary differential equations. AIMS Mathematics, 2021, 6(12): 13187-13209. doi: 10.3934/math.2021762
    [7] A. K. Omran, V. G. Pimenov . High-order numerical algorithm for fractional-order nonlinear diffusion equations with a time delay effect. AIMS Mathematics, 2023, 8(4): 7672-7694. doi: 10.3934/math.2023385
    [8] Şuayip Toprakseven, Seza Dinibutun . A high-order stabilizer-free weak Galerkin finite element method on nonuniform time meshes for subdiffusion problems. AIMS Mathematics, 2023, 8(12): 31022-31049. doi: 10.3934/math.20231588
    [9] Zhongdi Cen, Jian Huang, Aimin Xu . A posteriori mesh method for a system of singularly perturbed initial value problems. AIMS Mathematics, 2022, 7(9): 16719-16732. doi: 10.3934/math.2022917
    [10] Xiaopeng Yi, Chongyang Liu, Huey Tyng Cheong, Kok Lay Teo, Song Wang . A third-order numerical method for solving fractional ordinary differential equations. AIMS Mathematics, 2024, 9(8): 21125-21143. doi: 10.3934/math.20241026
  • The aim of this research is to combine the concept of inequalities with fractional integral operators, which are the focus of attention due to their properties and frequency of usage. By using a novel fractional integral operator that has an exponential function in its kernel, we establish a new Hermite-Hadamard type integral inequality for an LR-convex interval-valued function. We also prove new fractional-order variants of the Fejér type inequalities and the Pachpatte type inequalities in the setting of pseudo-order relations. By showing several numerical examples, we further validate the accuracy of the results that we have derived in this study. We believe that the results, presented in this article are novel and that they will be beneficial in encouraging future research in this field.



    In the last few decades, fractional differential equations have become an active research topic due to their applications in many fields, such as computer science, biology, mechanics and nonlinear fractional-order Lorenz system[1]. To date, many researchers have conducted in-depth research on several fractional order derivatives and integrals, such as Caputo, Riemann-Liouville, Riesz and so on. In [2], they develop an extension of a quadrature method for solving a class of ψ-fractional differential equations by converting them to an equivalent linear Volterra integral equation as follows:

    y(t)=g(t)+tay(τ)(ψ(t)ψ(τ))α1Γ(α)ψ(τ)dτ,  0<α<1. (1.1)

    The Caputo-Hadamard fractional integrals are the special forms for ψ(t)=log(t) in (1.1). However, the Caputo-Hadamard fractional integrals are also very important for simulating different physical problems [3,4]. Recently, Caputo-Hadamard fractional differential integral equations have made a breakthrough in [5]. Therefore, in practice, the Caputo-Hadamard fractional integral equation is also worth further research. The purpose of this project was to construct an in-depth theory and application of the high-precision algorithm for Caputo-Hadamard fractional integral system on a uniform grid. To this end, we will study the following 2D nonlinear Caputo-Hadamard integral equation:

    f(s,t)=g(s,t)+satcK(s,t,τ,ω,f(τ,ω))(logslogτ)γ(logtlogω)λdωωdττ,  (s,t)Θ,0<γ,λ<1, (1.2)

    where K(s,t,τ,ω,f(τ,ω)), g(s,t) are known functions and f(s,t) is an unknown function in Θ=[a,b]×[c,d], Ω=Θ×Θ×R. We assume that the solution of (1.2) is smooth and K(s,t,τ,ω,f(τ,ω) satisfies the Lipschitz condition about the fifth variable.

    |K(s,t,τ,ω,f1(τ,ω))K(s,t,τ,ω,f2(τ,ω))|L|f1(τ,ω)f2(τ,ω)|,L>0. (1.3)

    In [6], a solution of the Caputo-Hadamard fractional differential equation based on a hierarchical grid is presented. In [7], the solution's existence and uniqueness of fractional Caputo-Hadamard type equations are given. In an existing reference [8], we consider the logarithmic decay and regularity of solutions of Caputo-Hadamard fractional diffusion equations. In [9], a new stable and high order uniform accuracy solution method is given for 2D nonlinear integral equations. In [10], the fractional stochastic differential equations solution's existence and uniqueness was proved by the fixed point method in the Caputo-Hadamard sense. In [11], they present three types of variable fractional orders in the Caputo-Hadamard sense. In [12], numerical methods for the initial singularity fractional equations were investigated by using the modified Laplace transform and FFT in the Caputo-Hadamard sense. In [13], they used the incomplete Gamma function to construct the time discretization scheme for Caputo-Hadamard fractional differential equations. In [14], a local discontinuous Galerkin algorithm based on the Gronwall inequality is proposed for fractional differential equations in the sense of Caputo-Hadamard. In [15], a kind of graded grid algorithm in the sense of Caputo-Hadamard is studied. In [16], they established a method for solving Caputo-Hadamard integrals and a class of fractional derivatives by using the logarithmic transformation of Jacobian polynomials. The calculation methods for three fractional differentials in the sense of Caputo-Hadamard have been given in [17]. In [18], they use uncertain fractional derivatives to discuss the price of European options. The research of Caputo-Hadamard equation can be found in [19], the applicant uses the spectrum method to give an algorithm for sets of Caputo-Hadamard fractional PDE. In [20], a numerical method for time-space fractional discrete systems in the sense of Caputo-Hadamard is given. For more information, please refer to [21,22,23].

    In this paper, we will use a uniform mesh to solve 2D nonlinear fractional Hadamard integral equations based on the idea of [9], achieving uniform accuracy by using piecewise biquadratic logarithmic interpolations. For 0<γ,λ<1, we obtain an optimal convergence order of O(Δ4γs+Δ4λt) for a sufficiently smooth solution and a generalized nonlinear kernel function by using the Gronwall inequality based on the convergence analysis of a new technique.

    The framework of this article is as follows. In Section 2, we give a high precision numerical method. The truncation error of the high order numerical method is mainly discussed in Section 3. In Section 4, the convergence of the high order numerical scheme is analyzed. In Section 5, two numerical experiments are presented to support our theory and demonstrate the efficiency of higher-order numerical methods. The final section summarizes the main contribution of the work and the future research work.

    Now, we can obtain an approximate evaluation of the Caputo Hadamard integral equations in two dimensions. In order to construct a numerical scheme for (1.2), we partition the domain Θ into 2Y×2X subdomains of equal size Δs=ba2Y and Δt=dc2X, where Y and X are positive integers. Assuming sn=a+nΔs and tm=c+mΔt, n=0,1,2,,2Y, m=0,1,2,,2X with a,c1, where a=s0<s1<<s2Y=b and c=t0<t1<<t2X=d are respective partitions of [a,b] and [c,d]. And we use fmn to represent a numerical scheme for (1.2) at a point (sn,tm), and we let Kmn(τ,ω,f(τ,ω))=K(sn,tm,τ,ω,f(τ,ω)) and gmn=g(sn,tm).

    In this work, we present a high-order method for solving nonlinear fractional Hadamard integral equations. The basis functions of our approach are determined by the quadratic logarithmic interpolations of polynomials at points sn,sn+1,sn+2 and tm,tm+1,tm+2, and they are assumed to be φnk(τ),k=0,1,2;nN and ϕmk(ω),k=0,1,2;mN, respectively, and they are defined as follows:

    φn0(τ)=(logτlogsn+1)(logτlogsn+2)(logsnlogsn+1)(logsnlogsn+2),φn1(τ)=(logτlogsn)(logτlogsn+2)(logsn+1logsn)(logsn+1logsn+2),φn2(τ)=(logτlogsn)(logτlogsn+1)(logsn+2logsn)(logsn+2logsn+1);ϕm0(ω)=(logωlogtm+1)(logωlogtm+2)(logtmlogtm+1)(logtmlogtm+2),ϕm1(ω)=(logωlogtm)(logωlogtm+2)(logtm+1logtm)(logtm+1logtm+2),ϕm2(ω)=(logωlogtm)(logωlogtm+1)(logtm+2logtm)(logtm+2logtm+1).

    In what follows, we construct the numerical scheme approximation to f(s,t) at a point (s1,t1):

    f(s1,t1)=g11+s1at1cK11(τ,ω,f(τ,ω))(logs1logτ)γ(logt1logω)λdωωdττg11+s1at1c1(logs1logτ)γ(logt1logω)λ2n=02m=0φ0n(τ)ϕ0m(ω)K11(sn,tm,fmn)dωωdττ=g11+2n=02m=0Tn,01ˆTm,01K11(sn,tm,fmn), (2.1)

    with

    Tn,01=s1aφ0n(τ)(logs1logτ)γdττ,n=0,1,2;ˆTm,01=t1cϕ0m(ω)(logt1logω)λdωω,m=0,1,2. (2.2)

    Similarly, we compute f(s2,t1),f(s1,t2) and f(s2,t2) to obtain the following approximate values:

    f(s2,t1)=g12+s2at1cK12(τ,ω,f(τ,ω))(logs2logτ)γ(logt1logω)λdωωdττg12+2n=02m=0Tn,02ˆTm,01K12(sn,tm,fmn), (2.3)
    f(s1,t2)=g21+s1at2cK21(τ,ω,f(τ,ω))(logs1logτ)γ(logt2logω)λdωωdττg21+2n=02m=0Tn,01ˆTm,02K21(sn,tm,fmn), (2.4)
    f(s2,t2)=g22+s2at2cK22(τ,ω,f(τ,ω))(logs2logτ)γ(logt2logω)λdωωdττg22+2n=02m=0Tn,02ˆTm,02K22(sn,tm,fmn), (2.5)

    where

    Tn,02=s2aφ0n(τ)(logs2logτ)γdττ,n=0,1,2;ˆTm,02=t2cϕ0m(ω)(logt2logω)λdωω,m=0,1,2. (2.6)

    We need to compute f11 through the use of (2.1) by using the values of K at s1,s2 and t1,t2. Particularly the dependence of f11 on K12,K21 and K22 means that (2.1) and (2.3)–(2.5) must be couple solved with the scheme.

    Next, we estimate f(s2y+l,tr),y=1,,Y1 and f(sl,t2x+r),l,r=1,2,x=1,,X1. Assuming that frn,n=0,1,,2y and fml,m=0,1,,2x are known, we have f(s2y+1,t1):

    f(s2y+1,t1)=g12y+1+s1at1cK12y+1(τ,ω,f(τ,ω))(logs2y+1logs)γ(logt1logω)λdωωdττ+yn=1s2n+1s2n1t1cK12y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt1logω)λdωωdττg12y+1+2k=02q=0s1at1c(logs2y+1logτ)γ(logt1logω)λ×φ0k(τ)ϕ0q(ω)K12y+1(sk,tq,fqk)dωωdττ+yn=12k=02q=0s2n+1s2n1t1c(logs2y+1logτ)γ(logt1logω)λ×φ2n1k(τ)ϕ0q(ω)K12y+1(s2n1+k,tq,fq2n1+k)dωωdττ=g12y+1+2k=02q=0Tk,02y+1ˆTq,01K12y+1(sk,tq,fqk)+yn=12k=02q=0Tk,n2y+1ˆTq,01K12y+1(s2n1+k,tq,fq2n1+k), (2.7)

    where ˆTq,01 is given by (2.2) and

    Tk,02y+1=s1aφ0k(τ)(logs2y+1logτ)γdττ,k=0,1,2, (2.8)
    Tk,n2y+1=s2n+1s2n1φ2n1k(τ)(logs2y+1logτ)γdττ,k=0,1,2;n=1,2,,Y. (2.9)

    For f(s2y+2,t1) and f(s2y+l,t2),l=1,2, we use the following approximate estimates:

    f(s2y+2,t1)=g12y+2+yn=0s2n+2s2nt1cK12y+2(τ,ω,f(τ,ω))(logs2y+2logτ)γ(logt1logω)λdωωdττg12y+2+yn=02k=02q=0s2n+2s2nt1c(logs2y+2logτ)γ(logt1logω)λ×φ2nk(τ)ϕ0q(ω)K12y+2(s2n+k,tq,fq2n+k)dωωdττ=g12y+2+yn=02k=02q=0Tk,n2y+2ˆTq,01K12y+2(s2n+k,tq,fq2n+k), (2.10)
    f(s2y+1,t2)=g22y+1+s1at2cK22y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt2logω)λdωωdττ+yn=1s2n+1s2n1t2cK22y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt2logω)λdωωdττg22y+1+2k=02q=0s1at2c(logs2y+1logτ)γ(logt2logω)λ×φ0k(τ)ϕ0q(ω)K22y+1(sk,tq,fqk)dωωdττ+yn=12k=02q=0s2n+1s2n1t2c(logs2y+1logτ)γ(logt2logω)λ×φ2n1k(τ)ϕ0q(ω)K22y+1(s2n1+k,tq,fq2n1+k)dωωdττ=g22y+1+2k=02q=0Tk,02y+1ˆTq,02K22y+1(sk,tq,fqk)+yn=12k=02q=0Tk,n2y+1ˆTq,02K22y+1(s2n1+k,tq,fq2n1+k), (2.11)
    f(s2y+2,t2)=g22y+2+yn=0s2n+2s2nt2cK22y+2(τ,ω,f(τ,ω))(logs2y+2logτ)γ(logt2logω)λdωωdττg22y+2+yn=02k=02q=0s2n+2s2nt2c(logs2y+2logτ)γ(logt2logω)λ×φ2nk(τ)ϕ0q(ω)K22y+2(s2n+k,tq,fq2n+k)dωωdττ=g22y+2+yn=02k=02q=0Tk,n2y+2ˆTq,02K22y+2(s2n+k,tq,fq2n+k), (2.12)

    where ˆTq,01,ˆTq,02,Tk,02y+1,Tk,n2y+1 are defined by (2.2), (2.6), (2.8) and (2.9), respectively, and Tk,n2y+2 is defined as follows:

    Tk,n2y+2=s2n+2s2n(logs2y+2logτ)γφ2nk(τ)dττ,k=0,1,2;n=0,1,,y. (2.13)

    In the same way, we estimate f(sl,t2x+r) for l,r=1,2 as follows:

    f(s1,t2x+1)=g2x+11+s1at1cK2x+11(τ,ω,f(τ,ω))(logs1logτ)γ(logt2x+1logω)λdωωdττ+xm=1s1at2m+1t2m1K2x+11(τ,ω,f(τ,ω))(logs1logτ)γ(logt2x+1logω)λdωωdττg2x+11+2k=02q=0Tk,01ˆTq,02x+1K2x+11(sk,tq,fqk)+xm=12k=02q=0Tk,01ˆTq,m2x+1K2x+11(sk,t2m1+q,f2m1+qk), (2.14)
    f(s2,t2x+1)=g2x+12+s2at1cK2x+12(τ,ω,f(τ,ω))(logs2logτ)γ(logt2x+1logω)λdωωdττ+xm=1s2at2m+1t2m1K2x+12(τ,ω,f(τ,ω))(logs2logτ)γ(logt2x+1logω)λdωωdττg2x+12+2k=02q=0Tk,02ˆTq,02x+1K2x+12(sk,tq,fqk)+xm=12k=02q=0Tk,02ˆTq,m2x+1K2x+12(sk,t2m1+q,f2m1+qk), (2.15)
    f(s1,t2x+2)=g2x+21+xm=0s1at2m+2t2mK2x+21(τ,ω,f(τ,ω))(logs1logτ)γ(logt2x+2logω)λdωωdττg2x+21+xm=02k=02q=0Tk,01ˆTq,m2x+2K2x+21(sk,t2m+q,f2m+qk), (2.16)
    f(s2,t2x+2)=g2x+22+xm=0s2at2m+2t2mK2x+22(τ,ω,f(τ,ω))(logs2logτ)γ(logt2x+2logω)λdωωdττg2x+22+xm=02k=02q=0Tk,02ˆTq,m2x+2K2x+22(sk,t2m+q,f2m+qk), (2.17)

    where Tk,02 and Tk,01 are given by (2.6) and (2.2), respectively, and

    ˆTq,02x+1=t1c(logt2x+1logω)λϕ0q(ω)dωω,q=0,1,2, (2.18)
    ˆTq,m2x+1=t2m+1t2m1(logt2x+1logω)λϕ2m1q(ω)dωω,q=0,1,2;m=1,2,,x, (2.19)
    ˆTq,m2x+2=t2m+2t2m(logt2x+2logω)λϕ2mq(ω)dωω,q=0,1,2;m=0,1,,x. (2.20)

    Similarly, when fmn,f2x+1n,f2x+2n, fm2y+1 and fm2y+2,n=0,1,,2y;m=0,1,,2x;y=1,, Y1;x=1,,X1 are already known, we will construct the high order scheme for f(s2y+p,t2x+q),p,q=1,2 as follows.

    For f(s2y+1,t2x+1), we have

    f(s2y+1,t2x+1)=g2x+12y+1+s1at1cK2x+12y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ+xm=1s1at2m+1t2m1K2x+12y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ+yn=1s2n+1s2n1t1cK2x+12y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ+yn=1xm=1s2n+1s2n1t2m+1t2m1K2x+12y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt2x+1logω)λdωωdττg2x+12y+1+F1+F2+F3+F4. (2.21)

    For F1, by using biquadratic interpolation one can obtain

    F1=s1at1cK2x+12y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ   s1at1c(logs2y+1logτ)γ(logt2x+1logω)λ2k=02q=0φ0k(τ)ϕ0q(ω)K2x+12y+1(sk,tq,fqk)dωωdττ   =2k=02q=0Tk,02y+1ˆTq,02x+1K2x+12y+1(sk,tq,fqk), (2.22)

    where Tk,02y+1 and ˆTq,02x+1 are defined by (2.8) and (2.18), respectively.

    For F2, through direct calculation, it can be concluded that

    F2=xm=1s1at2m+1t2m1K2x+12y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt2x+1logω)λdωωdττxm=1s1at2m+1t2m1(logs2y+1logτ)γ(logt2x+1logω)λ2k=02q=0φ0k(τ)ϕ2m1q(ω)K2x+12y+1(sk,t2m1+q,f2m1+qk)dωωdττ=xm=12k=02q=0Tk,02y+1ˆTq,m2x+1K2x+12y+1(sk,t2m1+q,f2m1+qk), (2.23)

    where Tk,02y+1 and ˆTq,m2x+1 are given by (2.8) and (2.19), respectively.

    For F3, one can obtain that

    F3=yn=1s2n+1s2n1t1cK2x+12y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt2x+1logω)λdωωdττyn=12k=02q=0s2n+1s2n1t1c(logs2y+1logτ)γ(logt2x+1logω)λ    ×φ2n1k(τ)ϕ0q(ω)K2x+12y+1(s2n1+k,tq,fq2n1+k)dωωdττ=yn=12k=02q=0Tk,n2y+1ˆTq,02x+1K2x+12y+1(s2n1+k,tq,fq2n1+k), (2.24)

    where Tk,n2y+1 and ˆTq,02x+1 are given by (2.9) and (2.18), respectively.

    Similarly, for F4, we have

    F4=yn=1xm=1s2n+1s2n1t2m+1t2m1K2x+12y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ   yn=1xm=12k=02q=0s2n+1s2n1t2m+1t2m1(logs2y+1logτ)γ(logt2x+1logω)λ             ×φ2n1k(τ)ϕ2m1q(ω)K2x+12y+1(s2n1+k,t2m1+q,f2m1+q2n1+k)dωωdττ   =yn=1xm=12k=02q=0Tk,n2y+1ˆTq,m2x+1K2x+12y+1(s2n1+k,t2m1+q,f2m1+q2n1+k), (2.25)

    where Tk,n2y+1 and ˆTq,m2x+1 are given by (2.9) and (2.19), respectively.

    Bringing (2.22)–(2.25) into (2.21), one can obtain

    f2x+12y+1=g2x+12y+1+2k=02q=0Tk,02y+1ˆTq,02x+1K2x+12y+1(sk,tq,fqk)+xm=12k=02q=0Tk,02y+1ˆTq,m2x+1K2x+12y+1(sk,t2m1+q,f2m1+qk)+yn=12k=02q=0Tk,n2y+1ˆTq,02x+1K2x+12y+1(s2n1+k,tq,fq2n1+k)+yn=1xm=12k=02q=0Tk,n2y+1ˆTq,m2x+1K2x+12y+1(s2n1+k,t2m1+q,f2m1+q2n1+k). (2.26)

    Furthermore, we will construct a high order numerical scheme for f(s2y+2,t2x+1). By dividing the integral domain into subdomains and using the piecewise biquadratic interpolation method, we calculate f(s2y+2,t2x+1) as follows

    f(s2y+2,t2x+1)=g2x+12y+2+yn=0s2n+2s2nt1cK2x+12y+2(τ,ω,f(τ,ω))(logs2y+2logτ)γ(logt2x+1logω)λdωωdττ+yn=0xm=1s2n+2s2nt2m+1t2m1K2x+12y+2(τ,ω,f(τ,ω))(logs2y+2logτ)γ(logt2x+1logω)λdωωdττg2x+12y+2+yn=02k=02q=0Tk,n2y+2ˆTq,02x+1K2x+12y+2(s2n+k,tq,fq2n+k)+yn=0xm=12k=02q=0Tk,n2y+2ˆTq,m2x+1K2x+12y+2(s2n+k,t2m1+q,f2m1+q2n+k), (2.27)

    where Tk,n2y+2 is defined by (2.13) and ˆTq,02x+1 and ˆTq,m2x+1 are given by (2.18) and (2.19), respectively.

    Therefore, we can obtain an approximation of f(s2y+1,t2x+2) and f(s2y+2,t2x+2) as follows

    f(s2y+1,t2x+2)=g2x+22y+1+xm=0s1at2m+2t2mK2x+22y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt2x+2logω)λdωωdττ+yn=1xm=0s2n+1s2n1t2m+2t2mK2x+22y+1(τ,ω,f(τ,ω))(logs2y+1logτ)γ(logt2x+2logω)λdωωdττg2x+22y+1+xm=02k=02q=0Tk,02y+1ˆTq,m2x+2K2x+22y+1(sk,t2m+q,f2m+qk) (2.28)
    +yn=1xm=02k=02q=0Tk,n2y+1ˆTq,m2x+2K2x+22y+1(s2n1+k,t2m+q,f2m+q2n1+k),f(s2y+2,t2x+2)=g2x+22y+2+yn=0xm=0s2n+2s2nt2m+2t2mK2x+22y+2(τ,ω,f(τ,ω))(logs2y+2logτ)γ(logt2x+2logω)λdωωdττg2x+22y+2+yn=0xm=02k=02q=0Tk,n2y+2ˆTq,m2x+2K2x+22y+2(s2n+k,t2m+q,f2m+q2n+k), (2.29)

    where Tk,02y+1, Tk,n2y+1, Tk,n2y+2 and ˆTq,m2x+2 are given by (2.8), (2.9), (2.13) and (2.20), respectively.

    In summary, we combine (2.1), (2.3)–(2.5), (2.7), (2.10)–(2.12), (2.14)-(2.17) and (2.26)–(2.29) to obtain the high-order numerical scheme of (1.2) as follows

    fˉmˉn=gˉmˉn+2n=02m=0Tn,0ˉnˆTm,0ˉmKˉmˉn(sn,tm,fmn),ˉn,ˉm=1,2,fˉm2y+1=gˉm2y+1+2k=02q=0Tk,02y+1ˆTq,0ˉmKˉm2y+1(sk,tq,fqk)+yn=12k=02q=0Tk,n2y+1ˆTq,0ˉmKˉm2y+1(s2n1+k,tq,fq2n1+k),ˉm=1,2,fˉm2y+2=gˉm2y+2+yn=02k=02q=0Tk,n2y+2ˆTq,0ˉmKˉm2y+2(s2n+k,tq,fq2n+k),ˉm=1,2,f2x+1ˉn=g2x+1ˉn+2k=02q=0Tk,0ˉnˆTq,02x+1K2x+1ˉn(sk,tq,fqk)+xm=12k=02q=0Tk,0ˉnˆTq,m2x+1K2x+1ˉn(sk,t2m1+q,f2m1+qk),ˉn=1,2,f2x+2ˉn=g2x+2ˉn+xm=02k=02q=0Tk,0ˉnˆTq,m2x+2K2x+2ˉn(sk,t2m+q,f2m+qk),ˉn=1,2,f2x+12y+1=g2x+12y+1+2k=02q=0Tk,02y+1ˆTq,02x+1K2x+12y+1(sk,tq,fqk)+xm=12k=02q=0Tk,02y+1ˆTq,m2x+1K2x+12y+1(sk,t2m1+q,f2m1+qk)+yn=12k=02q=0Tk,n2y+1ˆTq,02x+1K2x+12y+1(s2n1+k,tq,fq2n1+k)+yn=1xm=12k=02q=0Tk,n2y+1ˆTq,m2x+1K2x+12y+1(s2n1+k,t2m1+q,f2m1+q2n1+k),f2x+12y+2=g2x+12y+2+yn=02k=02q=0Tk,n2y+2ˆTq,02x+1K2x+12y+2(s2n+k,tq,fq2n+k)+yn=0xm=12k=02q=0Tk,n2y+2ˆTq,m2x+1K2x+12y+2(s2n+k,t2m1+q,f2m1+q2n+k),f2x+22y+1=g2x+22y+1+xm=02k=02q=0Tk,02y+1ˆTq,m2x+2K2x+22y+1(sk,t2m+q,f2m+qk)+yn=1xm=02k=02q=0Tk,n2y+1ˆTq,m2x+2K2x+22y+1(s2n1+k,t2m+q,f2m+q2n1+k),f2x+22y+2=g2x+22y+2+yn=0xm=02k=02q=0Tk,n2y+2ˆTq,m2x+2K2x+22y+2(s2n+k,t2m+q,f2m+q2n+k). (2.30)

    We will introduce several lemmas that will be used in convergence analysis. In the this paper, we assume that C is a constant; the value of C may vary at different positions and it is independent of the discrete step size.

    Lemma 1. (Discrete Gronwall Inequality [24]) Assume that 0<γ<1 and b>a>0, and

    an,y={(logsyalogsna)γlogsn+1sn,n=1,2,,y1,0,ny.

    Let yn=pan,y|en|=0 for p>y1. If

    |ey|Ay1n=1an,y|en|+|η0|,y=1,2,,k,

    then

    |ek|C|η0|,k=1,2,,

    where A and C are positive constants.

    Lemma 2. [25] For g>f>0, the following holds

    gf(loggs)γ1(logsf)λ1dss=Γ(γ)Γ(λ)Γ(γ+λ)(loggf)γ+λ1,

    where γ>0,λ>0.

    Based on the idea of [25], we can prove the following Lemma 3–Lemma 5.

    Lemma 3. It holds that

    srsn(logbs)γdss(logbsr)γlogsrsn,

    where r>n and b is a positive constant.

    Lemma 4. Let n>m and p>q; then,

    (logsnlogsm)(nmpq+1)(logsplogsq).

    Lemma 5. Assuming that p and q are positive integers and p,q=0,1,2,,2y+1, when p>q is satisfied, the following conclusion holds:

    logsplogsq(pq)Δs,p,q=0,1,2,,2y+1. (3.1)

    In order to estimate the truncation error for (2.30), we introduce the definition of truncation error at a point (sn,tm):

    rmn:=f(sn,tm)ˉfmn, (3.2)

    where ˉfmn is used as an approximation of f(sn,tm) in order to obtain a precise solution when substituted into (2.30). Specifically, ˉf2x+12y+1 is defined by

    ˉf2x+12y+1=g2x+12y+1+2k=02q=0Tk,02y+1ˆTq,02x+1K2x+12y+1(sk,tq,f(sk,tq))+xm=12k=02q=0Tk,02y+1ˆTq,m2x+1K2x+12y+1(sk,t2m1+q,f(sk,t2m1+q))+yn=12k=02q=0Tk,n2y+1ˆTq,02x+1K2x+12y+1(s2n1+k,tq,f(s2n1+k,tq))+yn=1xm=12k=02q=0Tk,n2y+1ˆTq,m2x+1K2x+12y+1(s2n1+k,t2m1+q,f(s2n1+k,t2m1+q)). (3.3)

    Lemma 6. Let rmn represent the definition of truncation error in (3.2). If K(,,,,f(,))C4([a,b]×[c,d]), then we have

    |rmn|C(Δ4γs+Δ4λt),

    where C is only related to γ,λ,G1,G2, and the respective definitions of G1,G2 are as follows:

    G1=maxs,τ[a,b]t,ω[c,d](|3τK(s,t,τ,ω,f(τ,ω))|,|3ωK(s,t,τ,ω,f(τ,ω))|), (3.4)
    G2=maxs,τ[a,b]t,ω[c,d](|4τK(s,t,τ,ω,f(τ,ω))|,|4ωK(s,t,τ,ω,f(τ,ω))|). (3.5)

    Proof. Let us first estimate the truncation error r2x+12y+1. From (3.2), it can be seen that the truncation error has already been defined at the point (s2y+1,t2x+1). By combining (2.26), (3.2) and (3.3), it can be obtained that

    r2x+12y+1=f(s2y+1,t2x+1)ˉf2x+12y+1=s1at1c(logs2y+1logτ)γ(logt2x+1logω)λ[K2x+12y+1(τ,ω,f(τ,ω))2k=02q=0φ0k(τ)ϕ0q(ω)K2x+12y+1(sk,tq,f(sk,tq))]dωωdττ+xm=1s1at2m+1t2m1(logs2y+1logτ)γ(logt2x+1logω)λ[K2x+12y+1(τ,ω,f(τ,ω))2k=02q=0φ0k(τ)ϕ2m1q(ω)K2x+12y+1(sk,t2m1+q,f(sk,t2m1+q))]dωωdττ+yn=1s2n+1s2n1t1c(logs2y+1logτ)γ(logt2x+1logω)λ[K2x+12y+1(τ,ω,f(τ,ω))2k=02q=0φ2n1k(τ)ϕ0q(ω)K2x+12y+1(s2n1+k,tq,f(s2n1+k,tq))]dωωdττ+yn=1xm=1s2n+1s2n1t2m+1t2m1(logs2y+1logτ)γ(logt2x+1logω)λ[K2x+12y+1(τ,ω,f(τ,ω))2k=02q=0φ2n1k(τ)ϕ2m1q(ω)K2x+12y+1(s2n1+k,t2m1+q,f(s2n1+k,t2m1+q))]dωωdττ=s1at1c(logs2y+1logτ)γ(logt2x+1logω)λR1dωωdττ+xm=1s1at2m+1t2m1(logs2y+1logτ)γ(logt2x+1logω)λR2dωωdττ+yn=1s2n+1s2n1t1c(logs2y+1logτ)γ(logt2x+1logω)λR3dωωdττ+yn=1xm=1s2n+1s2n1t2m+1t2m1(logs2y+1logτ)γ(logt2x+1logω)λR4dωωdττr2x+1,(1)2y+1+r2x+1,(2)2y+1+r2x+1,(3)2y+1+r2x+1,(4)2y+1. (3.6)

    We can obtain the following from Taylor's theorem for all (τ,ω)[a,s1]×[c,t1]:

    R1=13!3τK2x+12y+1(ξ1(τ),ω,f(ξ1(τ),ω))2k=0(logτlogsk)+2k=0φ0k(τ)3!3ωK2x+12y+1(sk,η1(ω),f(sk,η1(ω)))2q=0(logωlogtq),

    where (ξ1(τ),η1(ω))[a,s1]×[c,t1]. For all (τ,ω)[a,s1]×[t2m1,t2m+1] with (ξ2(τ),ηm(ω))[a,s1]×[t2m1,t2m+1], then

    R2=13!3τK2x+12y+1(ξ2(τ),ω,f(ξ2(τ),ω))2k=0(logτlogsk)+2k=0φ0k(τ)3!3ωK2x+12y+1(sk,ηm(ω),f(sk,ηm(ω)))2q=0(logωlogt2m1+q),

    and for all (τ,ω)[s2n1,s2n+1]×[c,t1], there exists (ξn(τ),η2(ω))[s2n1,s2n+1]×[c,t1], such that

    R3=13!3τK2x+12y+1(ξn(τ),ω,f(ξn(τ),ω))2k=0(logτlogs2n1+k)+2k=0φ2n1k(τ)3!3ωK2x+12y+1(s2n1+k,η2(ω),f(s2n1+k,η2(ω)))2q=0(logωlogtq).

    In the same way, for all (τ,ω)[s2n1,s2n+1]×[t2m1,t2m+1], there exists (ξn1(τ),ηm2(ω))[s2n1,s2n+1]×[t2m1,t2m+1], such that

    R4=13!3τK2x+12y+1(ξn1(τ),ω,f(ξn1(τ),ω))2k=0(logτlogs2n1+k)+2k=0φ2n1k(τ)3!3ωK2x+12y+1(s2n1+k,ηm2(ω),f(s2n1+k,ηm2(ω)))2q=0(logωlogt2m1+q).

    So, we can obtain the value of r2x+1,(1)2y+1 as follows

    |r2x+1,(1)2y+1||s1at1c3τK2x+12y+1(ξ1(τ),ω,f(ξ1(τ),ω))2k=0(logτlogsk)3!(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ|+|s1at1c2k=0φ0k(τ)3ωK2x+12y+1(sk,η1(ω),f(sk,η1(ω)))3!(logs2y+1logτ)γ(logt2x+1logω)λ2q=0(logωlogtq)dωωdττ|R(1)1+R(2)1. (3.7)

    For the convenience of estimating of each item on the right side of (3.7), according to Lemma 3 and Lemma 5, let us first estimate the following:

    s1a(logs2y+1logτ)γdττ=s1a(logs2y+1τ)γdττ(logs2y+1s1)γlogs1s0,(logs2y+1logs1)γΔs(logs2logs1)γΔs(logs2s1)γΔs=(log(1+Δss1))γΔs(Δss112(Δss1)2)γΔs(12Δss1)γΔs=2γsγ1ΔγsΔs2bΔ1γs. (3.8)

    Similarly, we have

    t1c(logt2x+1logω)λdωω2dΔ1λt. (3.9)

    Then we have

     R(1)1s1at1c|3τK2x+12y+1(ξ1(τ),ω,f(ξ1(τ),ω))2k=0(logτlogsk)3!(logs2y+1logτ)γ(logt2x+1logω)λ|dωωdττG1|logδs0logδs1logδs2|s1at1c(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ4bdG1Δ3sΔ1γsΔ1λt=4bdG1Δ4γsΔ1λt, (3.10)
    R(2)1G1|logρt0logρt1logρt2|s1at1c(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ4bdG1Δ1γsΔ4λt, (3.11)

    where a<δ<s1 and c<ρ<t1; G1 is defined by (3.4).

    By combining (3.10) and (3.11), it is easy to conclude that

    |r2x+1,(1)2y+1|4bdG1(Δ4γsΔ1λt+Δ1γsΔ4λt). (3.12)

    Similarly, for r2x+1,(2)2y+1, we use the same technique to obtain

    |r2x+1,(2)2y+1|xm=1|s1at2m+1t2m13τK2x+12y+1(ξ2(τ),ω,f(ξ2(τ),ω))3!(logs2y+1logτ)γ(logt2x+1logω)λ2k=0(logτlogsk)dωωdττ|+xm=1|s1at2m+1t2m12k=0φ0k(τ)3ωK2x+12y+1(sk,ηm(ω),f(sk,ηm(ω)))2q=0(logωlogt2m1+q)3!(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ|˙=R(1)2+R(2)2. (3.13)

    For R(1)2 of (3.13), based on (3.8) and Lemma 5 we can see that

    R(1)2G1xm=1s1at2m+1t2m1|(logs2y+1logτ)γ(logt2x+1logω)λlogτs0logτs1logτs2|dωωdττG1|logδs0logδs1logδs2|xm=1s1at2m+1t2m1(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ2bG1Δ3sΔ1γst2x+1t1(logt2x+1logω)λdωω=2bG1Δ4γs(logt2x+1logω)1λ1λ|t2x+1t12bG1Δ4γs(2xΔt)1λ1λ2bG1d1λ1λΔ4γs. (3.14)

    For R(2)2, we decompose it into the following estimates

    R(2)2xm=1|s1at2m+1t2m12k=0φ0k(τ)3ωK2x+12y+1(sk,ηm(˜ωm),f(sk,ηm(˜ωm)))2q=0(logωlogt2m1+q)3!(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ|          +xm=1|s1at2m+1t2m1(logs2y+1logτ)γ(logt2x+1logω)λ2k=0φk,0(τ)[13!3ωK2x+12y+1(sk,ηm(ω),f(sk,ηm(ω)))          13!3ωK2x+12y+1(sk,ηm(˜ωm),f(sk,ηm(˜ωm)))]2q=0(logωlogt2m1+q)dωωdττ|       ˙=D1+D2, (3.15)

    where ˜ωm=t2m. Based on φnk(τ),τ(sn,sn+2),k=0,1,2;nN, we derive |φnk(τ)|1 by using (3.8); so, we have the following inequality

    D1G1xm=1|s1at2m+1t2m1(logs2y+1logτ)γ(logt2x+1logω)λ2k=0φ0k(τ)2q=0(logωlogt2m1+q)|dωωdττ=G1s1a|2k=0φ0k(τ)(logs2y+1logτ)γ|dττ×xm=1t2m+1t2m1|2q=0(logωlogt2m1+q)(logt2x+1logω)λ|dωω2b3G1Δ1γsxm=1[t2mt2m1|2q=0(logωlogt2m1+q)(logt2x+1logω)λ|dωω+t2m+1t2m|2q=0(logωlogt2m1+q)(logt2x+1logω)λ|dωω]6bG1Δ1γsx2m=1[t2mt2m1|2q=0(logωlogt2m1+q)(logt2x+1logω)λ|dωω+t2m+1t2m|2q=0(logωlogt2m1+q)(logt2x+1logω)λ|dωω]+6bG1Δ1γs(t2x1t2x3|2q=0(logωlogt2x3+q)(logt2x+1logω)λ|dωω+|t2x+1t2x12q=0(logωlogt2x1+q)(logt2x+1logω)λ|dωω)6bG1Δ1γsD11+6bG1Δ1γsD12. (3.16)

    For D11, we can obtain that

    D11=x2m=1|(logt2x+1logˆωm)λt2mt2m12q=0(logωlogt2m1+q)dωω+(logt2x+1logˉωm)λt2m+1t2m2q=0(logωlogt2m1+q)dωω|=x2m=1|14(logt2x+1logˆωm)λΔ4t14(logt2x+1logˉωm)λΔ4t|=14Δ4tx2m=1|(logt2x+1logˆωm)λ(logt2x+1logˉωm)λ|=14Δ4tx2m=1|λ(logt2x+1logωm)λ1(log¯ωmlog^ωm)|λ4Δ4tx2m=1|2(logt2x+1logt2m+1)λ1Δt|λ4Δ4tt2x1t3(logt2x+1logω)λ1dωω=14Δ4t[(logt2x+1logt2x1)λ(logt2x+1logt3)λ]14Δ4t[(logt2x+1logt2x1)λ+(logt2x+1logt3)λ]12Δ4t(logt2x+1logt2x1)λ=12Δ4t[log(1+2Δtt2x1)]λ12Δ4t(2Δtt2x+112(2Δtt2x1)2)λ=12Δ4t(2Δtt2x1(1Δtt2x1))λ12Δ4t(43Δtt2x1)λ=12Δ4t34tλ2x1Δλt38dΔ4λt, (3.17)

    where logˆωmlogωmlogˉωm, logt2m1logˆωmlogt2mlogˉωmlogt2m+1. Furthermore, 2x13; then, x satisfies that x2, so we know that t2x1t3=c+3Δt; then, Δtt2x113, 1Δtt2x123, and we have that 2Δtt2x1(1Δtt2x1)43Δtt2x1.

    For D12, one can similarly obtain that

    D12Δ3t(t2x1t2x3(logt2x+1logω)λdωω+t2x+1t2x1(logt2x+1logω)λdωω),=Δ3tt2x+1t2x3(logt2x+1logω)λdωω=41λ1λΔ4λt. (3.18)

    We substitute (3.17) and (3.18) into (3.16) to obtain D1:

    D16b(38d+41λ1λ)G1Δ1γsΔ4λt. (3.19)

    So, we get D2:

    D2G2Δts1a|2k=0φ0k(τ)|3!(logs2y+1logτ)γdττ×xm=1t2m+1t2m1|2q=0(logωlogt2m1+q)|(logt2x+1logω)λdωω    G2Δ1γsΔ4txm=1t2m+1t2m1(logt2x+1logω)λdωωG2d1λ1λΔ1γsΔ4t, (3.20)

    where G2 is defined by (3.5).

    According to (3.19) and (3.20), (3.15) becomes

    R(2)26b(38d+41λ1λ)G1Δ1γsΔ4λt+G2d1λ1λΔ1γsΔ4t. (3.21)

    By combining (3.14) and (3.21) with (3.13) we can obtain the result of r2x+1,(2)2y+1 as follows:

    |r2x+1,(2)2y+1|2bG1d1λ1λΔ4γs+6b(38d+41λ1λ)G1Δ1γsΔ4λt+G2d1λ1λΔ1γsΔ4t. (3.22)

    Next, we estimate r2x+1,(3)2y+1 and obtain

    |r2x+1,(3)2y+1||yn=1s2n+1s2n1t1c3τK2x+12y+1(ξn(τ),ω,f(ξn(τ),ω))3!(logs2y+1logτ)γ(logt2x+1logω)λ2k=0(logτlogs2n1+k)dωωdττ|+|yn=1s2n+1s2n1t1c2k=0φ2n1k(τ)3ωK2x+12y+1(s2n1+k,η2(ω),f(s2n1+k,η2(ω)))3!(logs2y+1logτ)γ(logt2x+1logω)λ2q=0(logωlogtq)dωωdττ|          ˙=R(1)3+R(2)3.

    For R(1)3, one can obtain that

    R(1)3yn=1s2n+1s2n1t1c|3τK2x+12y+1(ξn(˜τn),ω,f(ξn(˜τn),ω))3!(logs2y+1logτ)γ(logt2x+1logω)λ2k=0(logτlogs2n1+k)|dωωdττ           +yn=1s2n+1s2n1t1c|(logs2y+1logτ)γ3!(logt2x+1logω)λ2k=0(logτlogs2n1+k)               ×(3τK2x+12y+1(ξn(τ),ω,f(ξn(τ),ω))3τK2x+12y+1(ξn(˜τn),ω,f(ξn(˜τn),ω)))|dωωdττ          ˙=B1+B2,

    where ˜τn=s2n.

    For B1, we obtain

    B12dG1Δ1λtmn=1|s2ns2n12k=0(logτlogs2n1+k)(logs2y+1logτ)γdττ+s2n+1s2n2k=0(logτlogs2n1+k)(logs2y+1logτ)γdττ|2dG1Δ1λty2n=1|s2ns2n12k=0(logτlogs2n1+k)(logs2y+1logτ)γdττ+s2n+1s2n2k=0(logτlogs2n1+k)(logs2y+1logτ)γdττ|+2dG1Δ1λt(|s2y1s2y32k=0(logτlogs2y3+k)(logs2y+1logτ)γdττ|+|s2y+1s2y12k=0(logτlogs2y1+k)(logs2y+1logτ)γdττ|)2dG1Δ1λtB11+2dG1Δ1λtB12.

    According to (3.17) and (3.18), we can use the same method to obtain the forms of B11 and B12 as follows

    B1138bΔ4γs,   B1241γ1γΔ4γs.

    So, B1 can be directly obtained

    B12d(38b+41γ1γ)G1Δ4γsΔ1λt. (3.23)

    For B2, similar to D2, we can also directly obtain

    B2G2Δ4syn=1s2n+1s2n1t1c(logs2y+1logτ)γ(logt2x+1logω)λdωωdττG2b1γ1γΔ4sΔ1γt. (3.24)

    According to (3.23) and (3.24), we have

    R(1)32d(38b+41γ1γ)G1Δ4γsΔ1λt+G2b1γ1γΔ4sΔ1γt. (3.25)

    Next, let us estimate R(2)3 as follows

    R(2)3G1yn=1s2n+1s2n1|2k=0φ2n1k(τ)3!(logs2y+1logτ)γdττ|t1c|2q=0(logωlogtq)(logt2x+1logω)λdωω|3G1Δ3tyn=1s2n+1s2n1t1c(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ3G1Δ3t2dΔt1λs2y+1s1(logs2y+1logτ)γdττ=3G1Δ3t2dΔt1λ11γ(logs2y+1logs1)1γ3G1Δ3t2dΔt1λ11γ(2yΔs)1γ6dG1b1γ1γΔ4λt. (3.26)

    So according to (3.25) and (3.26), we can obtain r2x+1,(3)2y+1 as follows

    |r2x+1,(3)2y+1|2d(38b+41γ1γ)G1Δ4γsΔ1λt+G2b1γ1γΔ4sΔ1γt+6dG1b1γ1γΔ4λt. (3.27)

    We estimate r2x+1,(4)2y+1 and obtain the following form

    |r2x+1,(4)2y+1|yn=1xm=1|s2n+1s2n1t2m+1t2m13τK2x+12y+1(ξn1(τ),ω,f(ξn1(τ),ω))3!(logs2y+1logτ)γ(logt2x+1logω)λ2k=0(logτlogs2n1+k)dωωdττ|   +yn=1xm=1|s2n+1s2n1t2m+1t2m1(logs2y+1logτ)γ3!(logt2x+1logω)λ2k=0φ2n1k(τ)  ×3ωK2x+12y+1(s2n1+k,ηm2(ω),f(s2n1+k,ηm2(ω)))2q=0(logωlogt2m1+q)dωωdττ|   ˙=R(1)4+R(2)4.

    We conducted detailed estimates for R(1)4 and R(2)4 respectively, and obtained R(1)4

    R(1)4yn=1xm=1|s2n+1s2n1t2m+1t2m13τK2x+12y+1(ξn1(˜τn),ω,f(ξn1(˜τn),ω))2k=0(logτlogs2n1+k)3!(logs2y+1logτ)γ(logt2x+1logω)λdωωdττ|+yn=1xm=1|s2n+1s2n1t2m+1t2m1(logs2y+1logτ)γ3!(logt2x+1logω)λ2k=0(logτlogs2n1+k)×(3τK2x+12y+1(ξn1(τ),ω,f(ξn1(τ),ω))3τK2n+12y+1(ξn1(˜τn),ω,f(ξn1(˜τn),ω)))dωωdττ|N1+N2,

    where ˜τn=s2n; using the same processing method as B1, we can obtain N1 as follows:

    N1G1yn=1xm=1|s2n+1s2n1t2m+1t2m1(logs2y+1logτ)γ(logt2x+1logω)λ2k=0(logτlogs2n1+k)dωωdττ|=G1xm=1t2m+1t2m1(logt2n+1logω)λdωωyn=1|s2n+1s2n1(logs2y+1logτ)γ2k=0(logτlogs2n1+k)dττ|d1λG11λyn=1|s2ns2n12k=0(logτlogs2n1+k)(logs2y+1logτ)γdττ+s2n+1s2n2k=0(logτlogs2n1+k)(logs2y+1logτ)γdττ|d1λ1λ(38b+41γ1γ)G1Δ4γs.

    Therefore, for N2, it can be obtained that

    N2G2Δ4syn=1xm=1s2n+1s2n1t2m+1t2m1(logs2y+1logτ)γ(logt2x+1logω)λdωωdττb1γd1λ(1γ)(1λ)G2Δ4s.

    Finally, Let us estimate R(2)4 again

    R(2)4yn=1xm=1|s2n+1s2n1t2m+1t2m1(logs2y+1logτ)γ3!(logt2x+1logω)λ2k=0φ2n1k(τ)     ×3ωK2x+12y+1(s2n1+k,ηm2(˜ωm)),f(s2n1+k,ηm2(˜ωm))2q=0(logωlogt2m1+q)dωωdττ|+yn=1xm=1|s2n+1s2n1t2m+1t2m12k=0φk,2n1(τ)[3ωK2x+12y+1(s2n1+k,ηm2(ω)),f(s2n1+k,ηm2(ω))3!(logs2y+1logτ)γ(logt2x+1logω)λ       3ωK2x+12y+1(s2n1+k,ηm2(˜ωm)),f(s2n1+k,ηm2(˜ωm))3!(logs2y+1logτ)γ(logt2x+1logω)λ]2q=0(logωlogt2m1+q)dωωdττ|,

    where ˜ωm=t2m. V1 and V2 are denoted as the two terms at the right end of the above formula. Refer to D1 and use the same method to obtain V1:

    V1G1yn=1|s2n+1s2n12k=0φ2n1k(τ)3!(logs2y+1logτ)γdττ|×xm=1|t2m+1t2m12q=0(logωlogt2m1+q)(logt2x+1logω)λdωω|G1b1γ1γxm=1|t2mt2m12q=0(logωlogt2m1+q)(logt2x+1logω)λdωω+t2m+1t2m2q=0(logωlogt2m1+q)(logt2x+1logω)λdωω|G1b1γ1γ(38d+41λ1λ)Δ4λt,V2G2Δ4tyn=1|s2n+1s2n12k=0φ2n1k(τ)3!(logs2y+1logτ)γdττ|×xm=1t2m+1t2m1(logt2x+1logω)λdωωG2b1γd1λ(1γ)(1λ)Δ4t.

    So, r2x+1,(4)2y+1 is obtained as follows

    |r2x+1,(4)2y+1|G1[(38b+41γ1γ)d1λ1λΔ4γs+(38d+41λ1λ)b1γ1γΔ4λt]+b1γd1λG2(1γ)(1λ)(Δ4s+Δ4t). (3.28)

    We then substitute (3.12) and (3.22)–(3.28) into (3.6) and calculate the form of r2x+12y+1 as follows

    |r2x+12y+1|C(Δ4γs+Δ4λt).

    The constant C only relies on G1,G2,γ and λ.

    Similar to r2x+12y+1, we can prove that

    |r2x+m2y+l|C(Δ4γs+Δ4λt),l=1,2;m=1,2.

    Therefore, we conclude that the truncation error rmn satisfies the following conditions:

    |rmn|C(Δ4γs+Δ4λt),n=1,2, ,2Y;m=1,2, ,2X. (3.29)

    The proof is thus completed.

    In this section, to simplify the symbols for convergence analysis, we introduce the following coefficients to rewrite the numerical scheme; carefully observing (2.9), (2.13), (2.19) and (2.20), it is obvious that Tk,n2y+1=Tk,n2y+2,k=0,1,2,n=1,2,,y and ˆTq,m2x+1=ˆTq,m2x+2,q=0,1,2,m=1,2,,x. Therefore, we can use the following equivalent form to recalculate the numerical scheme (2.30):

    f11=g11+2n=02m=0ˆQnˆWmK11(sn,tm,fmn),  f12=g12+2n=02m=0˜QnˆWmK12(sn,tm,fmn),f21=g21+2n=02m=0ˆQn˜WmK21(sn,tm,fmn),  f22=g22+2n=02m=0˜Qn˜WmK22(sn,tm,fmn),f12y+1=g12y+1+2n=02m=0ˉQynˆWmK12y+1(sn,tm,fmn)+2y+1n=32m=0Qyn+1ˆWmK12y+1(sn,tm,fmn),f12y+2=g12y+2+2y+2n=02m=0QynˆWmK12y+2(sn,tm,fmn),f22y+1=g22y+1+2n=02m=0ˉQyn˜WmK22y+1(sn,tm,fmn)+2y+1n=32m=0Qyn+1˜WmK22y+1(sn,tm,fmn),f22y+2=g22y+2+2y+2n=02m=0Qyn˜WmK22y+2(sn,tm,fmn),f2x+11=g2x+11+2n=02m=0ˆQnˉWxmK2x+11(sn,tm,fmn)+2n=02x+1m=3ˆQnWxm+1K2x+11(sn,tm,fmn),f2x+12=g2x+12+2n=02m=0˜QnˉWxmK2x+12(sn,tm,fmn)+2n=02x+1m=3˜QnWxm+1K2x+12(sn,tm,fmn),f2x+21=g2x+21+2n=02x+2m=0ˆQnWxmK2x+21(sn,tm,fmn),f2x+22=g2x+22+2n=02x+2m=0˜QnWxmK2x+22(sn,tm,fmn),f2x+12y+1=g2x+12y+1+2n=02m=0ˉQynˉWxmK2x+12y+1(sn,tm,fmn)  +2y+1n=32m=0Qyn+1ˉWxmK2x+12y+1(sn,tm,fmn)+2n=02x+1m=3ˉQynWxm+1K2x+12y+1(sn,tm,fmn)   +2y+1n=32x+1m=3Qyn+1Wxm+1K2x+12y+1(sn,tm,fmn),f2x+12y+2=g2x+12y+2+2y+2n=02m=0QynˉWxmK2x+12y+2(sn,tm,fmn)+2y+2n=02x+1m=3QynWxm+1K2x+12y+2(sn,tm,fmn),f2x+22y+1=g2x+22y+1+2n=02x+2m=0ˉQynWxmK2x+22y+1(sn,tm,fmn)+2y+1n=32x+2m=0Qyn+1WxmK2x+22y+1(sn,tm,fmn),f2x+22y+2=g2x+22y+2+2y+2n=02x+2m=0QynWxmK2x+22y+2(sn,tm,fmn), (4.1)

    where y=1, 2, , Y1; x=1, 2, , X1, and

    ˆQn=Tn,01;˜Qn=Tn,02, n=0,1,2;ˉQy0=T0,02y+1,ˉQy1=T1,02y+1+T0,12y+1,ˉQy2=T2,02y+1+T1,12y+1,ˉQy2r+1=T2,r2y+1+T0,r+12y+1,r=1,,y1;ˉQy2y+1=T2,y2y+1,ˉQy2r=T1,r2y+1,r=2,,y;Qy0=T0,02y+2,Qy2n+1=T1,n2y+2,n=0,1,,y;Qy2n=T2,n12y+2+T0,n2y+2,n=1,2,,y;Qy2y+2=T2,y2y+2;ˆWm=ˆTm,01,˜Wm=ˆTm,02, m=0,1,2;ˉWx0=ˆT0,02x+1,ˉWx1=ˆT1,02x+1+ˆT0,12x+1,ˉWx2=ˆT2,02x+1+ˆT1,12x+1;Wx0=ˆT0,02x+2,Wx2m+1=ˆT1,m2x+2,m=0,1,,x;Wx2m=ˆT2,m12x+2+ˆT0,m2x+2,m=1,2,,x;Wx2x+2=ˆT2,x2x+2.ˉWxm=ˆT0,02x+1,m=0,ˉWxm=ˆT1,02x+1+ˆT0,12x+1,m=1,ˉWxm=ˆT2,02x+1+ˆT1,12x+1,m=2,ˉWxm=ˆT2,k2x+1+ˆT0,k+12x+1,m=2k+1,k=1,,x1;ˉWxm=ˆT2,x2x+1,m=2x+1,ˉWxm=ˆT1,k2x+1,m=2k,k=2,,x. (4.2)

    Next, we propose Lemma 7.

    Lemma 7. The coefficients of ˉQyn,n=0,1,,2y+1, and ˉWxm,m=0,1,,2x+1, are shown in (4.2), and they satisfy

    |ˉQyn|C(logs2y+1sn)γlogsn+1sn,n=0,1,,2y, (4.3)
    |ˉQy2y+1|21γ(122γ)Γ(1γ)Γ(4γ)a1γΔ1γs, (4.4)
    |ˉWxm|C(logt2x+1tm)λlogtm+1tm,m=0,1,,2x, (4.5)
    |ˉWx2x+1|21λ(122λ)Γ(1λ)Γ(4λ)c1λΔ1λt. (4.6)

    Proof. This proves the estimate of (4.3) for n=0; using Lemma 3, we have

    |ˉQy0|=|T0,02y+1|=|s1a(logs2y+1τ)γφ00(τ)dττ|s1a(logs2y+1τ)γ|φ00(τ)|dττs1a(logs2y+1τ)γdττ(logs2y+1s1)γlogs1a=(logs2y+1a)γ(logs2y+1s1)γ(logs2y+1a)γlogs1a=(1ξ1(s2y+1a)1ξ2(s2y+1s1))γ(logs2y+1a)γlogs1a=(ξ2ξ1)γ(2y+12y)γ(logs2y+1a)γlogs1a2γ(ba)γ(logs2y+1a)γlogs1aC(logs2y+1a)γlogs1a, (4.7)

    where a<ξ1<s2y+1<b,a<s1<ξ2<s2y+1<b and C is independent on Δt.

    For n=1, using Lemma 3 and Lemma 7, we have

    |ˉQy1|=|T1,02y+1+T0,12y+1||T1,02y+1|+|T0,12y+1|=|s1a(logs2y+1τ)γφ01(τ)dττ|+|s3s1(logs2y+1τ)γφ10(τ)dττ|s1a(logs2y+1τ)γdττ+s3s1(logs2y+1τ)γdττ(logs2y+1s1)γlogs1a+(logs2y+1s3)γlogs3s1=(logs2y+1s1)γlogs2s1logs1alogs2s1+(logs2y+1s1logs2y+1s3)γ(logs2y+1s1)γlogs2s1logs3s1logs2s12(logs2y+1s1)γlogs2s1+3(2y2y2+1)γ(logs2y+1s1)γlogs2s1C(logs2y+1s1)γlogs2s1. (4.8)

    Next, for n=2, we obtain

    |ˉQy2|=|T2,02y+1+T1,12y+1|.

    On one side, using Lemma 3, we have

    |T2,02y+1|=|s1a(logs2y+1τ)γφ02(τ)dττ|s1a(logs2y+1τ)γ|logτalogτs1logs2alogs2s1|dττ2s1a(logs2y+1τ)γdττ2(logs2y+1s1)γlogs1a=2(logs2y+1s2logs2y+1s1)γ(logs2y+1s2)γlogs3s2logs1alogs3s24(2y12y+1)γ(logs2y+1s2)γlogs3s2.

    On the other side,

    |T1,12y+1|=|s3s1(logs2y+1τ)γφ11(τ)dττ|s3s1(logs2y+1τ)γ|logτs1logτs3logs2s1logs2s3|dττ(logs3s1)24logs2s1logs3s2s3s1(logs2y+1τ)γdττ94(logs2y+1s3)γlogs3s1=94(logs2y+1s2logs2y+1s3)γ(logs2y+1s2)γlogs3s2logs3s1logs3s2274(2y12y2+1)γ(logs2y+1s2)γlogs3s2.

    So, we have

    |ˉQy2|4(2y12y+1)γ(logs2y+1s2)γlogs3s2+274(2y12y2+1)γ(logs2y+1s2)γlogs3s2C(logs2y+1s2)γlogs3s2. (4.9)

    Next, we will estimate |ˉQyn|,n=3,,2y. For n=2r+1,r=1,2,,y1, we obtain

    |ˉQy2r+1|=|T2,r2y+1+T0,r+12y+1|=|s2r+1s2r1(logs2y+1τ)γφ2r12(τ)dττ+s2r+3s2r+1(logs2y+1τ)γφ2r+10(τ)dττ|=s2r+1s2r1(logs2y+1τ)γ|logτs2r1logτs2rlogs2r+1s2r1logs2r+1s2r|dττ+s2r+3s2r+1(logs2y+1τ)γ|logτs2r+2logτs2r+3logs2r+1s2r+2logs2r+1s2r+3|dττ3s2r+1s2r1(logs2y+1τ)γdττ+3s2r+3s2r+1(logs2y+1τ)γdττ3(logs2y+1s2r+1)γlogs2r+1s2r1+3(logs2y+1s2r+3)γlogs2r+3s2r+1=3(logs2y+1s2r+1)γlogs2r+2s2r+1logs2r+1s2r1logs2r+2s2r+1+3(logs2y+1s2r+1logs2y+1s2r+3)γ(logs2y+1s2r+1)γlogs2r+2s2r+1logs2r+3s2r+1logs2r+2s2r+19(logs2y+1s2r+1)γlogs2r+2s2r+1+9(2y2r2y2r2+1)γ(logs2y+1s2r+1)γlogs2r+2s2r+1C(logs2y+1s2r+1)γlogs2r+2s2r+1

    For n=2r,r=2,,y, we have

    |ˉQy2r|=|T1,r2y+1|=|s2r+1s2r1(logs2y+1τ)γφ2r11(τ)dττ|=s2r+1s2r1(logs2y+1τ)γ|logτs2r1logτs2r+1logs2rs2r1logs2rs2r+1|dττ(logs2r+1s2r1)2logs2rs2r1logs2r+1s2r(logs2y+1s2r+1)γlogs2r+1s2r15(logs2y+1s2rlogs2y+1s2r+1)γ(logs2y+1s2r)γlogs2r+1s2rlogs2r+1s2r1logs2r+1s2rC(logs2y+1s2r)γlogs2r+1s2r.

    Next, let us prove (4.4). According to Lemma 2, we proceed as follows:

    ˉQy2y+1=T2,y2y+1=s2y+1s2y1(logs2y+1τ)γφ2y12(τ)dττ=s2y+1s2y1(logs2y+1τ)γlogτs2y1logτs2ylogs2y+1s2y1logs2y+1s2ydττ=s2y+1s2y1(logs2y+1τ)γlogτs2y1(logτs2y1+logs2y1s2y)logs2y+1s2y1logs2y+1s2ydττ=1logs2y+1s2y1logs2y+1s2ys2y+1s2y1(logs2y+1τ)γ(log2τs2y1+logτs2y1logs2y1s2y)dττ=1logs2y+1s2y1logs2y+1s2y(Γ(1γ)Γ(3)Γ(4γ)(logs2y+1s2y1)3γ+logs2y1s2yΓ(1γ)Γ(2)Γ(3γ)(logs2y+1s2y1)2γ)=(logs2y+1s2y1)1γ(2Γ(1γ)logs2y+1s2y1Γ(4γ)logs2y+1s2y+Γ(1γ)logs2y1s2yΓ(3γ)logs2y+1s2y).

    So we can get

    |ˉQy2y+1|(logs2y+1s2y1)1γ(2Γ(1γ)logs2y+1s2y1Γ(4γ)logs2y+1s2y+Γ(1γ)logs2ys2y1Γ(3γ)logs2y+1s2y)(2Δsa)1γ(6Γ(1γ)Γ(4γ)+2Γ(1γ)Γ(3γ))=21γ(122γ)Γ(1γ)Γ(4γ)a1γΔ1γs,

    where (logs2y+1s2y1)1γ=(log(1+2Δss2y1))1γ(2Δss2y1)1γ(2Δsa)1γ. Taking all of the results together, we can obtain the estimates (4.3) and (4.4).

    Since the proof process for ˉQyn is the same as that for ˉWym, we will omit it without further proof.

    Lemma 8. The coefficients of Qyn,n=0,1,,2y+2, and Wxm,m=0,1,,2x+2, satisfy

    |Qyn|C(logs2y+2sn)γlogsn+1sn,n=0,1,,2y, (4.10)
    |Qy2y+2|21γ(122γ)Γ(1γ)Γ(4γ)a1γΔ1γs, (4.11)
    |Wxm|C(logt2x+2tm)λlogtm+1tm,m=0,1,,2x, (4.12)
    |Wx2x+2|21λ(122λ)Γ(1λ)Γ(4λ)c1λΔ1λt. (4.13)

    Proof. The proof process for Lemma 8 can be achieved by referring to the method used in Lemma 7.

    Next, we analyze the convergence by using the scheme (4.1), as in the following Theorem 1.

    Theorem 1. Let u be the solution of (1.2) and fmn (n=0,1,,2Y, m=0,1,,2X) be the numerical solution of (1.2) by using scheme (4.1). Assume that K(,,,,f(,))C4([a,b]×[c,d]×R) satisfies (1.3) and Δs, Δt satisfy

    21γ(122γ)Γ(1γ)Γ(4γ)a1γΔ1γsL<1,    21λ(122λ)Γ(1λ)Γ(4λ)c1λΔ1λtL<1. (4.14)

    Then the error is that

    |f(sn,tm)fmn|C(Δ4γs+Δ4λt),n=1,2,,2Y;m=1,2,,2X, (4.15)

    where C is constant and only dependent on L,K,b,d,γ and λ.

    Proof. Assume that emi=f(sn,tm)fmn,n=0,1,,2Y;m=0,1,,2X. e0n=em0=0 can be readily observed. First, emn,n,m=1,2, it can be known that

    e11=2n=02m=0ˆQnˆWm[K11(sn,tm,f(sn,tm))K11(sn,tm,fmn)]+r11,e21=2n=02m=0ˆQn˜Wm[K21(sn,tm,f(sn,tm))K21(sn,tm,fmn)]+r21,e12=2n=02m=0˜QnˆWm[K12(sn,tm,f(sn,tm))K12(sn,tm,fmn)]+r12,e22=2n=02m=0˜Qn˜Wm[K22(sn,tm,f(sn,tm))K22(sn,tm,fmn)]+r22.

    The calculation can prove that ˆQn,˜Qn,n=0,1,2, and (1.3) are satisfied by K, and that ˆWm,˜Wm,m=0,1,2, are bounded. So, we come to the following conclusion:

    |e11|CL2n=02m=0|emn|+|r11|,  |e21|CL2n=02m=0|emn|+|r21|,|e12|CL2n=02m=0|emn|+|r12|,  |e22|CL2n=02m=0|emn|+|r22|.

    We combine these four inequalities and obtain

    |emn|CL(|r11|+|r21|+|r12|+|r22|),n,m=1,2.

    Second, emn,n3;m=1,2, satisfies

    e12y+1=2n=02m=0ˉQynˆWm[K12y+1(sn,tm,f(sn,tm))K12y+1(sn,tm,fmn)]+2y+1n=32m=0Qyn+1ˆWm[K12y+1(sn,tm,f(sn,tm))K12y+1(sn,tm,fmn)]+r12y+1, (4.16)
    e12y+2=2y+2n=02m=0QynˆWm[K12y+2(sn,tm,f(sn,tm))K12y+2(sn,tm,fmn)]+r12y+2, (4.17)
    e22y+1=2n=02m=0ˉQyn˜Wm[K22y+1(sn,tm,f(sn,tm))K22y+1(sn,tm,fmn)]+2y+1n=32m=0Qyn+1˜Wm[K22y+1(sn,tm,f(sn,tm))K22y+1(sn,tm,fmn)]+r22y+1, (4.18)
    e22y+2=2y+2n=02m=0Qyn˜Wm[K22y+2(sn,tm,f(sn,tm))K22y+2(sn,tm,fmn)]+r22y+2. (4.19)

    It can be seen that the above four equations are coupled, so they need to be solved simultaneously. For convenience, we assume that ||ˆen and \left||\hat r_n\right\| = \max\{|r_{y}^{1}|, |r_{y}^{2}| , y = 0, 1, \cdots, 2Y\} . According to (1.3), (4.3) in Lemma 7, (4.10) and (4.11) in Lemma 8, (4.16) and (4.18) becomes

    \begin{eqnarray} \left\|\hat e_{2y+1}\right\|&\leq& LC\sum\limits_{n = 0}^{2}\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}\left\|\hat e_{n}\right\| +LC\sum\limits_{n = 3}^{2y}\left(\log \frac{s_{2 y+2}}{s_{n+1}}\right)^{-\gamma} \log \frac{s_{n+2}}{s_{n+1}}\left\|\hat e_{n}\right\|\\ &&+\frac{2^{1-\gamma}(12-2 \gamma) \Gamma(1-\gamma)}{\Gamma(4-\gamma) a^{1-\gamma}} \Delta_s^{1-\gamma} L\left\|\hat e_{2y+1}\right\| +|\hat r_{2y+1}|. \end{eqnarray} (4.20)

    By Lemma 4, and through careful calculation, we have

    \begin{eqnarray*} \frac{\left(\log \frac{s_{2 y+2}}{s_{n+1}}\right)^{-\gamma} \log \frac{s_{n+2}}{s_{n+1}}}{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}} = \frac{\left(\log \frac{s_{2 y+2}}{s_{n+1}}\right)^{\gamma}\log \frac{s_{n+1}}{s_n}}{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{\gamma}\log \frac{s_{n+2}}{s_{n+1}}} \leq2^\gamma\cdot2\leq4. \end{eqnarray*}

    Therefore, (4.20) becomes

    \begin{eqnarray*} \left\|\hat e_{2y+1}\right\|\leq 4LC\sum\limits_{n = 0}^{2y}\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}\left\|\hat e_{n}\right\| +\frac{2^{1-\gamma}(12-2 \gamma) \Gamma(1-\gamma)}{\Gamma(4-\gamma) a^{1-\gamma}} \Delta_s^{1-\gamma} L\left\|\hat e_{2y+1}\right\| +|\hat r_{2y+1}|. \end{eqnarray*}

    Using the above same method, the estimates (4.17) and (4.19) are as shown below

    \begin{eqnarray*} \left\|\hat e_{2y+2}\right\|\le{ } L C \sum\limits_{n = 0}^{2 y+1}\left(\log \frac{s_{2 y+2}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}\left\|\hat e_n\right\|+\frac{2^{1-\gamma}(12-2 \gamma) \Gamma(1-\gamma)}{\Gamma(4-\gamma) a^{1-\gamma}} \Delta_s^{1-\gamma}L\left\|\hat e_{2y+2}\right\|+\left\|\hat r_{2y+2}\right\|. \end{eqnarray*}

    For \left\|\hat e_{2y+1}\right\| , it is easy to verify that \|\hat e_0\| = 0 ; then we have

    \left(1-\frac{2^{1-\gamma}(12-2 \gamma) \Gamma(1-\gamma)}{\Gamma(4-\gamma) a^{1-\gamma}} \Delta_s^{1-\gamma} L\right)\left\|\hat e_{2y+1}\right\| \leq 4L C \sum\limits_{n = 1}^{2 y}\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}\left\|\hat e_n\right\|+\left\|\hat r_{2y+1}\right\|.

    For enough small \Delta_s , we obtain

    \begin{eqnarray} \left\|\hat e_{2y+1}\right\| \leq L C \sum\limits_{n = 1}^{2 y}\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}\left\|\hat e_n\right\|+C\left\|\hat r_{2y+1}\right\|. \end{eqnarray} (4.21)

    Applying Lemma 1 to (4.21) leads to

    \left\|\hat e_{2y+1}\right\| \leq C \left\|\hat r_{2y+1}\right\|.

    Using the same argument for \left\|\hat e_{2y+2}\right\| , we can directly conclude that there are some C that

    \left\|\hat e_{2y+2}\right\| \leq C\left\|\hat r_{2y+2}\right\|.

    Now, based on the above results and Lemma 6, we can reach the following conclusion.

    \begin{align} &|e_{n}^{m}|\le C(\Delta_{s}^{4-\gamma}+\Delta_{t}^{4-\lambda}), n\ge 1;m = 1, 2, \end{align} (4.22)
    \begin{align} &|e_{n}^{m}|\le C(\Delta_{s}^{4-\gamma}+\Delta_{t}^{4-\lambda}), n = 1, 2;m\ge 3. \end{align} (4.23)

    Next, satisfy {{e}_{n}^{m}}, n, m\geq3 to obtain

    \begin{eqnarray*} {{e}_{2y+1}^{2x+1}}& = &\sum\limits_{n = 0}^{2}{\sum\limits_{m = 0}^{2}{{{{\bar{Q}}}_{n}^{y}}{{{\bar{W}}}_{m}^{x}} [K_{2y+1}^{2x+1}(s_n, t_m, f(s_n, t_m))}}-K_{2y+1}^{2x+1}(s_n, t_m, f_{n}^{m})]\\ && +\sum\limits_{n = 3}^{2y+1}{\sum\limits_{m = 0}^{2}{{{Q}_{n{+}1}^{y}}{{{\bar{W}}}_{m}^{x}} [K_{2y+1}^{2x+1}(s_n, t_m, f(s_n, t_m))}}-K_{2y+1}^{2x+1}(s_n, t_m, f_{n}^{m})]\\ && +\sum\limits_{n = 0}^{2}{\sum\limits_{m = 3}^{2x+1}{{{{\bar{Q}}}_{n}^{y}}{{W}_{m+1}^{x}} [K_{2y+1}^{2x+1}(s_n, t_m, f(s_n, t_m))}}-K_{2y+1}^{2x+1}(s_n, t_m, f_{n}^{m})]\\ && +\sum\limits_{n = 3}^{2y+1}{\sum\limits_{m = 3}^{2x+1}{{{Q}_{n+1}^{y}}{{W}_{m+1}^{x}} [K_{2y+1}^{2x+1}(s_n, t_m, f(s_n, t_m))}}-K_{2y+1}^{2x+1}(s_n, t_m, f_{n}^{m})] +r_{2y+1}^{2x+1}, \\ {{e}_{2y+2}^{2x+1}}& = &\sum\limits_{n = 0}^{2y+2}{\sum\limits_{m = 0}^{2}{{{Q}_{n}^{y}}{{{\bar{W}}}_{m}^{x}} [K_{2y+2}^{2x+1}(s_n, t_m, f(s_n, t_m))}}-K_{2y+2}^{2x+1}(s_n, t_m, f_{n}^{m})] \\ && +\sum\limits_{n = 0}^{2y+2}{\sum\limits_{m = 3}^{2x+1}{{{Q}_{n}^{y}}{{W}_{m+1}^{x}} [K_{2y+2}^{2x+1}(s_n, t_m, f(s_n, t_m))}} -K_{2y+2}^{2x+1}(s_n, t_m, f_{n}^{m})]+{{r}_{2y+2}^{2x+1}}, \\ {{e}_{2y+1}^{2x+2}}& = &\sum\limits_{n = 0}^{2}{\sum\limits_{m = 0}^{2x+2}{{{{\bar{Q}}}_{n}^{y}}{{W}_{m}^{x}} [K_{2y+1}^{2x+2}(s_n, t_m, f(s_n, t_m))}}-K_{2y+1}^{2x+2}(s_n, t_m, f_{n}^{m})] \\ &&+\sum\limits_{n = 3}^{2y+1}{\sum\limits_{m = 0}^{2x+2}{{{Q}_{n+1}^{y}}{{W}_{m}^{x}} [K_{2y+1}^{2x+2}(s_n, t_m, f(s_n, t_m))}}-K_{2y+1}^{2x+2}(s_n, t_m, f_{n}^{m})] +{{r}_{2y+1}^{2x+2}}, \\ {{e}_{2y+2}^{2x+2}}& = &\sum\limits_{n = 0}^{2y+2}{\sum\limits_{m = 0}^{2x+2}{{{Q}_{n}^{y}}{{W}_{m}^{x}} [K_{2y+2}^{2x+2}(s_n, t_m, f(s_n}, {t_m))}} -K_{2y+2}^{2x+2}(s_n, t_m, f_{n}^{m})] +{{r}_{2y+2}^{2x+2}}, \end{eqnarray*}

    where {{\bar{Q}}_{n}^{y}}, {{Q}_{n}^{y}}, {{\bar{W}}_{m}^{x}} and {{W}_{m}^{x}} satisfy Lemma 6 and Lemma 7.

    For {e}_{2y+1}^{2x+1} , we can obtain that

    \begin{align} &\left| {{e}_{2y+1}^{2x+1}} \right|\le CL\sum\limits_{n = 0}^{2y}{\sum\limits_{m = 0}^{2x}{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left(\log \frac{t_{2 x+1}}{t_m}\right)^{-\lambda} \log \frac{t_{m+1}}{t_m} |{{e}_{n}^{m}}|} \\ & +CL\left|{{Q}_{2y+2}^{y}}\right|\sum\limits_{m = 0}^{2x}{\left(\log \frac{t_{2 x+1}}{t_m}\right)^{-\lambda} \log \frac{t_{m+1}}{t_m}|{{e}_{2y+1}^{m}}|} +CL\left|{{W}_{2x+2}^{x}}\right|\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}|{{e}_{n}^{2 x+1}}|} \\ & +L\left|{{Q}_{2y+2}^{y}}\right|\left|{{W}_{2x+2}^{x}}\right|\left|{{e}_{2y+1}^{2x+1}}\right| +\left|{{r}_{2y+1}^{2x+1}}\right|. \end{align} (4.24)

    We rearrange it into the following form

    \begin{eqnarray*} \left| {{e}_{2y+1}^{2x+1}} \right|&\le& CL\sum\limits_{n = 0}^{2y}{\sum\limits_{m = 0}^{2x}{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n} {\left(\log \frac{t_{2 x+1}}{t_m}\right)^{-\lambda} \log \frac{t_{m+1}}{t_m}}\left| {{e}_{n}^{m}} \right|}} \\ && +CL\left|{{Q}_{2y+2}^{y}}\right|\sum\limits_{m = 0}^{2x}{{\left(\log \frac{t_{2 x+1}}{t_m}\right)^{-\lambda} \log \frac{t_{m+1}}{t_m}}\left| {{e}_{2y+1}^{m}} \right|}\\ && +CL\left|{{W}_{2x+2}^{x}}\right|\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left| {{e}_{n}^{2x+1}} \right|} +C\left| {{r}_{2y+1}^{2x+1}} \right|. \end{eqnarray*}

    If we let \left\|{{{e}}_{n}}\right\| = \underset{0\le m\le 2X}{\mathop{\max }}\, |{{e}_{n}^{m}}| and \left\|{{{r}}_{n}}\right\| = \underset{0\le m\le 2X}{\mathop{\max }}\, |{{r}_{n}^{m}}| , we can conclude that

    \begin{eqnarray*} \left| {{e}_{2y+1}^{2x+1}} \right| &\le& CL\sum\limits_{n = 0}^{2y}{\sum\limits_{m = 0}^{2x}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}{\left(\log \frac{t_{2 x+1}}{t_m}\right)^{-\lambda} \log \frac{t_{m+1}}{t_m}}\left\| {{e}_{n}} \right\|}} \\ && +CL\left|{{Q}_{2y+2}^{y}}\right|\sum\limits_{m = 0}^{2x}{{\left(\log \frac{t_{2 x+1}}{t_m}\right)^{-\lambda} \log \frac{t_{m+1}}{t_m}}\left\| {{e}_{2y+1}} \right\|}\\ &&+CL\left|{{W}_{2x+2}^{x}}\right|\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|} +C\left\| {{r}_{2y+1}} \right\|\\ & = & CL\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|}\sum\limits_{m = 0}^{2x}{\Big( {{\big( {\log \frac{t_{2x+1}}{t_m}} \big)}^{-\lambda }}{\log \frac{t_{m+1}}{t_m}} \Big)} \\ && +CL\left|{{Q}_{2y+2}^{y}}\right|\left\| {{e}_{2y+1}} \right\|\sum\limits_{m = 0}^{2x}{\Big( {{( {\log \frac{t_{2x+1}}{t_m}} )}^{-\lambda }}{\log \frac{t_{m+1}}{t_m}} \Big)}\\ && +CL\left|{{W}_{2x+2}^{x}}\right|\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|} +C\left\| {{r}_{2y+1}} \right\| \\ & \le& CL\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|}\int_{{{t}_{0}}}^{{{t}_{2x+1}}}{{{\left( {\log t_{2x+1}}-\log \omega \right)}^{-\lambda }}}\frac{d\omega}{\omega}\\ && +CL\left|{{Q}_{2y+2}^{y}}\right|\left\|{{e}_{2y+1}} \right\|\int_{{{t}_{0}}}^{{{t}_{2x+1}}}{{{\left( {\log t_{2x+1}}-\log \omega \right)}^{-\lambda }}}\frac{d\omega}{\omega} \\ && +CL\left|{{W}_{2x+2}^{x}}\right|\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|}+C\left\| {{r}_{2y+1}} \right\| \\ & = &CL\frac{t_{2x+1}^{1-\lambda }}{1-\lambda}\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|} +CL\left|{{Q}_{2y+2}^{y}}\right|\frac{t_{2x+1}^{1-\lambda }}{1-\lambda}\left\| {{e}_{2y+1}} \right\| \\ &&+CL\left|{{W}_{2x+2}^{x}}\right|\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|}+C\left\| {{r}_{2y+1}} \right\| \\ & \le& CL\frac{d^{1-\lambda }}{1-\lambda}\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|} +CL\left|{{Q}_{2y+2}^{y}}\right|\frac{{d}^{1-\lambda }}{1-\lambda}\left\| {{e}_{2y+1}} \right\| \\ &&+CL\left|{{W}_{2x+2}^{x}}\right|\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|}+C\left\| {{r}_{2y+1}} \right\|. \end{eqnarray*}

    Then we have

    \begin{eqnarray*} \left\|{{e}_{2y+1}} \right\|&\le& CL\frac{{d}^{1-\lambda }}{1-\lambda}\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|} +CL\left|{{Q}_{2y+2}^{y}}\right|\frac{{d}^{1-\lambda }}{1-\lambda}\left\| {{e}_{2y+1}} \right\| \\ && +CL\left|{{W}_{2x+2}^{x}}\right|\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|}+C\left\| {{r}_{2y+1}} \right\|. \end{eqnarray*}

    According to (4.11) in Lemma 8, for enough small \Delta_s , we obtain,

    \begin{eqnarray*} \left\|{{e}_{2y+1}} \right\|&\le& CL\frac{{d}^{1-\lambda }}{1-\lambda}\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|}\\ && +CL\left|{{W}_{2x+2}^{x}}\right|\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|}+C\left\| {{r}_{2y+1}} \right\|. \end{eqnarray*}

    According to (4.13) in Lemma 8, for enough small \Delta_t , let \Delta_t < d , so we have

    \begin{eqnarray} \label{4.10} \left\| {{e}_{2y+1}} \right\|\le \Big(CL\frac{{d}^{1-\lambda }}{1-\lambda} +CL\frac{2^{1-\lambda}(12-2 \lambda) \Gamma(1-\lambda)}{\Gamma(4-\lambda) c^{1-\lambda}} d^{1-\lambda} \Big)\sum\limits_{n = 0}^{2y}{{\left(\log \frac{s_{2 y+1}}{s_n}\right)^{-\gamma} \log \frac{s_{n+1}}{s_n}}\left\| {{e}_{n}} \right\|}+C\left\| {{r}_{2y+1}} \right\|. \end{eqnarray}

    Then, it follows from the Gronwall inequality introduced in Lemma 1 that

    \begin{eqnarray*} \left\| {{{{e}}}_{2y+1}} \right\|\le C\left\| {{r}_{2y+1}} \right\|. \end{eqnarray*}

    From Lemma 6, we can conclude that

    \begin{eqnarray} \left| {{e}_{2y+1}^{2x+1}} \right|\le C({\Delta_{s}^{4-\gamma }}+{\Delta_{t}^{4-\lambda }}). \end{eqnarray} (4.25)

    Similarly, we can also obtain

    \begin{eqnarray} \left| {{e}_{2y+2}^{2x+1}} \right|\le C({\Delta_{s}^{4-\gamma }}+{\Delta_{t}^{4-\lambda }}), \left| {{e}_{2y+p}^{2x+2}} \right|\le C({\Delta_{s}^{4-\gamma }}+{\Delta_{t}^{4-\lambda }} ), p = 1, 2. \end{eqnarray} (4.26)

    We jointly establish (4.22), (4.23), (4.25) and (4.26); with this, we complete the proof of Theorem 1.

    Now, this section applies the numerical scheme to solve the 2D fractional Caputo-Hadamard integral equation. We present two calculation examples to demonstrate its effectiveness.

    Example 5.1 Take into account the subsequent equation, which is linear 2D fractional Caputo-Hadamard integral equations:

    \begin{align} & f(s, t) = g(s, t)+\int_{1}^{s}{\int_{1}^{t}{\frac{(st^2+\log \tau+\log \omega)f(\tau, \omega)}{{{(\log s-\log \tau)}^{\gamma }}{{(\log t-\log \omega)}^{\lambda }}}\frac{d\omega}{\omega}\frac{d\tau}{\tau}}}, \ \ (s, t)\in [1, 2]\times [1, 2], \end{align}

    where a = 1 , c = 1 , b = 2 and d = 2 , and

    \begin{eqnarray*} g(s, t)& = &({\log s})^{4}({\log t})^{4}-{576st^2({{\log s})^{5-\gamma }}({{\log t})^{5-\lambda }}}{\prod\limits_{n = 1}^5 {\frac{1}{{(n - \gamma )}}}}\prod\limits_{m = 1}^5 {\frac{1}{{(m - \lambda )}}}\\ && -{2880({{\log s})^{6-\gamma }}({{\log t})^{5-\lambda }}}{\prod\limits_{n = 1}^6 {\frac{1}{{(n - \gamma )}}}}\prod\limits_{m = 1}^5 {\frac{1}{{(m - \lambda )}}}\\ && -{2880({{\log s})^{5-\gamma }}({{\log t})^{6-\lambda }}}{\prod\limits_{n = 1}^5 {\frac{1}{{(n - \gamma )}}}}\prod\limits_{m = 1}^6 {\frac{1}{{(m - \lambda )}}}, \end{eqnarray*}

    where f(s, t) = ({\log s})^{4}({\log t})^{4} is the exact solution.

    We choose separately \gamma = 0.3, \lambda = 0.6 and \gamma = 0.4, \lambda = 0.5 to conduct experiments. \Delta_{s} = \frac{ b- a}{2Y} is the size of the step taken in the direction of s , while \Delta_{t} = \frac{ d- c}{2X} is the width of the step taken in the direction of t . For errors, we define them as follows

    \begin{align*} {{e}_{h}^f} = \underset{\begin{smallmatrix} n = 1, \cdots , 2Y \\ m = 1, \cdots , 2X \end{smallmatrix}}{\mathop{\max }}\, \left| f({{s}_{n}}, {{t}_{m}})-{{f}_{n}^{m}} \right|. \end{align*}

    In this example, we test the convergence order for different values of \gamma and \lambda where the convergence order is determined as \log_{2}(e_{2h}^f/e_{h}^f) . The application of Theorem 1 allows us to determine the theoretical convergence order of the numerical scheme as O({\Delta_{s}^{4-\gamma}}+{\Delta_{t}^{4-\lambda}}) . By considering \Delta_{s} to be significantly smaller than \Delta_{t} , we can deduce that O({\Delta_{s}^{4-\gamma }}+{\Delta_{t}^{4-\lambda}}) = O({\Delta_{t}^{4-\lambda}}) . Tables 1 presents the values of \gamma = 0.3, \lambda = 0.6 , \gamma = 0.4, \lambda = 0.5 and Y = 2X with the theoretical order 4-\lambda . When \gamma = 0.3 and \lambda = 0.6 , the theoretical convergence order is 3.4. Similarly, the theoretical convergence order is 3.5 for \gamma = 0.4 and \lambda = 0.5 .

    Table 1.  The maximum number of errors and the rate of decay with Y = 2X for Example 5.1.
    {\mathit{\boldsymbol{X}} } {\mathit{\boldsymbol{\gamma}}}{\bf{=0.3, }}{\mathit{\boldsymbol{\lambda}}}{\bf =0.6} Order {\mathit{\boldsymbol{\gamma}}}{\bf{=0.4, }}{\mathit{\boldsymbol{\lambda}}}{\bf=0.5 } Order
    8 6.8989589227 \times 10^{-3} - 3.7877332874 \times 10^{-3} -
    16 7.8140473872 \times 10^{-4} 3.1422367608 4.3496713026 \times 10^{-4} 3.1223564591
    32 7.9156289920 \times 10^{-5} 3.3032941051 4.3449207934 \times 10^{-5} 3.3235046005
    64 7.6518039345 \times 10^{-6} 3.3708321819 4.0890764577 \times 10^{-6} 3.4094829336
    128 7.2494161456 \times 10^{-7} 3.3998631944 3.7407272951 \times 10^{-7} 3.4503843386

     | Show Table
    DownLoad: CSV

    Similarly, we use the proposed numerical scheme in another way to verify the convergence order of the test. We take X = [Y^{\frac{4-\gamma}{4-\lambda}}] , where [\cdot] represents rounding, and the theoretical order O({\Delta_{s}^{4-\gamma }}+{\Delta_{t}^{4-\lambda }}) = O({\Delta_{t}^{4-\gamma }}) of the numerical scheme. In Table 2, when \gamma = 0.3 and \lambda = 0.6 , it is easy to see that the numerical results of the test are close to 3.7, and the test results indicate that when \gamma = 0.4 and \lambda = 0.5 , the numerical values are approximately 3.6. By referring to Tables 1 and 2, it is easy to see that the high-order numerical scheme results in a convergence order of O({\Delta_{s}^{4-\gamma }}+{\Delta_{t}^{4-\lambda }}) .

    Table 2.  The maximum number of errors and the rate of decay with X = [Y^{(4-\gamma)/(4-\lambda)}] for Example 5.1.
    \mathit{\boldsymbol{Y }} {\mathit{\boldsymbol{\alpha}}}{\bf{=0.3, }}{\mathit{\boldsymbol{\beta}}}{\bf =0.6 } Order {\mathit{\boldsymbol{\alpha}}}{\bf{=0.4, }}{\mathit{\boldsymbol{\beta}}}{\bf =0.5 } Order
    8 1.8639874340 \times 10^{-3} - 9.2944718555 \times 10^{-4} -
    16 2.0141512357 \times 10^{-4} 3.2101482146 9.6463652018 \times 10^{-5} 3.2683155532
    32 1.8416998390 \times 10^{-5} 3.4510621597 8.9446371042 \times 10^{-6} 3.4308905736
    64 1.5670179200 \times 10^{-6} 3.5549443663 7.9219275691 \times 10^{-7} 3.4970995357
    128 1.2872757561 \times 10^{-7} 3.6056286369 6.8539526533 \times 10^{-8} 3.5308433796

     | Show Table
    DownLoad: CSV

    Next, let us draw an error distribution map with Y = 2X, X = 128 . As shown in Figure 1, the error distribution of \alpha = 0.3, \beta = 0.6 is on the left, while the error distribution of \alpha = 0.4, \beta = 0.5 is on the right. In addition, we can easily see that the error can be as small as 10^{-7} , indicating that the approximate value is very close to the exact value.

    Figure 1.  Error distribution of \alpha = 0.3, \beta = 0.6 (left) and \alpha = 0.4, \beta = 0.5 (right) for X = 128 .

    Example 5.2 Take into account the 2D nonlinear fractional Caputo-Hadamard integral equation as follows:

    \begin{align} & f(s, t) = g(s, t)+\int_{1}^{s}{\int_{1}^{t}{\frac{(st^2+\log \tau+\log \omega){f^{2}(\tau, \omega)}}{{{(\log s-\log \tau)}^{\gamma }}{{(\log t-\log \omega)}^{\lambda }}}\frac{d\omega}{\omega}\frac{d\tau}{\tau}}}, (s, t)\in [1, 2]\times [1, 2], \ \end{align}

    where a = 1 , c = 1 , b = 2 and d = 2 , and

    \begin{eqnarray*} g(s, t)& = &({\log s})^{3}({\log t})^{2}-{17280st^2({\log s})^{7-\gamma }({{\log t})^{5-\lambda }}}{\prod\limits_{n = 1}^7 {\frac{1}{{(n - \gamma )}}}}\prod\limits_{m = 1}^5 {\frac{1}{{(m - \lambda )}}}\\ && -{120960{({\log s})^{8-\gamma }}{({\log t})^{5-\lambda }}}{\prod\limits_{n = 1}^8 {\frac{1}{{(n - \gamma )}}}}\prod\limits_{m = 1}^5 {\frac{1}{{(m - \lambda )}}} \\ && -{86400{({\log s})^{7-\gamma }}{({\log t})^{6-\lambda }}}{\prod\limits_{n = 1}^7 {\frac{1}{{(n - \gamma )}}}}\prod\limits_{m = 1}^6 {\frac{1}{{(m - \lambda )}}}, \end{eqnarray*}

    where f(s, t) = ({\log s})^{3}({\log t})^{2} is the exact solution.

    In Table 3, given \gamma = 0.3, \lambda = 0.6 and \gamma = 0.4, \lambda = 0.5 , our experimental results closely match the expected values of 3.4 and 3.5, respectively. In Table 4, when \gamma = 0.3 and \lambda = 0.6 , the experimental results closely mirror the theoretical value of 3.7, and when \gamma = 0.4 and \lambda = 0.5 , the experimental results align closely with the projected value of 3.6. It is easy to see that the high-order numerical scheme results in a convergence order of O({\Delta_{s}^{4-\gamma }}+{\Delta_{t}^{4-\lambda }}) .

    Table 3.  The maximum number of errors and the rate of decay with Y = 2X for Example 5.2.
    \mathit{\boldsymbol{X }} \mathit{\boldsymbol{\gamma }}{\bf{ = 0}}{\bf{.3, }}\mathit{\boldsymbol{\lambda }}{\bf{ = 0}}{\bf{.6}} Order \mathit{\boldsymbol{\gamma }}{\bf{ = 0}}{\bf{.4, }}\mathit{\boldsymbol{\lambda }}{\bf{ = 0}}{\bf{.5}} Order
    8 5.0197780760 \times 10^{-6} - 4.4096514739 \times 10^{-6} -
    16 4.9528160060 \times 10^{-7} 3.3413026523 4.2636169692 \times 10^{-7} 3.3705148922
    32 4.7538570025 \times 10^{-8} 3.3810786144 3.9488986998 \times 10^{-8} 3.4325555722
    64 4.5029294460 \times 10^{-9} 3.4001627291 3.5760421846 \times 10^{-9} 3.4650146987
    128 4.2379935672 \times 10^{-10} 3.4094105701 3.1969468739 \times 10^{-10} 3.4835970802

     | Show Table
    DownLoad: CSV
    Table 4.  The maximum number of errors and the rate of decay with X = [Y^{(4-\gamma)/(4-\lambda)}] for Example 5.2.
    {\mathit{\boldsymbol{Y}}} \mathit{\boldsymbol{\gamma }}{\bf{ = 0}}{\bf{.3, }}\mathit{\boldsymbol{\lambda }}{\bf{ = 0}}{\bf{.6}} Order \mathit{\boldsymbol{\gamma }}{\bf{ = 0}}{\bf{.4, }}\mathit{\boldsymbol{\lambda }}{\bf{ = 0}}{\bf{.5}} Order
    8 1.1512351119 \times 10^{-6} - 1.3725247072 \times 10^{-6} -
    16 9.9372553575 \times 10^{-8} 3.4625604385 1.2830582435 \times 10^{-7} 3.4191735526
    32 8.1408764174 \times 10^{-9} 3.5341912504 1.1267508093 \times 10^{-8} 3.5093462706
    64 6.5234456725 \times 10^{-10} 3.6095914151 9.7534660903 \times 10^{-10} 3.5301096754
    128 5.2919446603 \times 10^{-11} 3.6237643174 8.3465706568 \times 10^{-11} 3.5466595342

     | Show Table
    DownLoad: CSV

    Finally, let us draw an error distribution map with Y = 2X, X = 128 . As shown in Figure 2, the error distribution of \alpha = 0.3, \beta = 0.6 is on the left, while the error distribution of \alpha = 0.4, \beta = 0.5 is on the right. In addition, we can easily see that the error can be as small as 10^{-10} .

    Figure 2.  Error distribution of \alpha = 0.3, \beta = 0.6 (left) and \alpha = 0.4, \beta = 0.5 (right) for X = 128 .

    Based on the idea of the modified block-by-block method of[6], we have proposed a uniform accuracy high-order scheme (2.30) to approximate the 2D nonlinear Hadamard Volterra integral equation. A high-order numerical scheme was constructed by using the piecewise biquadratic interpolation. The uniform accuracy high-order scheme in the present article is an explicit and high efficiency scheme except for two boundary layers which are solved by implicit and coupled. Based on the test results of the above example, one can see that the convergence order is O({\Delta_{s}^{4-\gamma }}+{\Delta_{t}^{4-\lambda }}) . We conducted a detailed error analysis of the high-order numerical scheme and confirmed the accuracy of the theoretical analysis through numerical examples and experiments. Through extensive analysis of this work, it can be seen that the numerical scheme (2.30) has the advantages of high accuracy, easy calculation and implementation, and it does not require coupled solutions. In future work, we intend to use a Fourier spectral method to solve such problems. Based on the ideas in [5,26], we found that high-order numerical non-uniform grids can be used to solve fractional order integral differential equation problems as follows

    \begin{eqnarray*} f(s, t) = g(s, t)+\int_s^b\int_t^d\frac{K(s, t, \tau, \omega, f(\tau, \omega))}{({\log s}-\log \tau)^\gamma ({\log t}-\log \omega)^\lambda}\frac{d\omega}{\omega}\frac{d\tau}{\tau}, \ \ (s, t)\in \Theta, 0 < \gamma, \lambda < 1. \end{eqnarray*}

    In addition, deep learning can also provide solutions for such problems, so research on this topic is very challenging.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11961009, 12361083), the Natural Science Research Project of the Department of Education of Guizhou Province (Grant Nos. QJJ2023012, QJJ2023061, QJJ2023062) and the Natural Science Foundation of Fujian Province of China (Grant No. 2022J01338).

    The authors declare that they have no competing interests.



    [1] M. A. El Shaed, Fractional Calculus Model of Semilunar Heart Valve Vibrations, International Mathematica Symposium, London, UK, 2003.
    [2] A. Atangana, Application of fractional calculus to epidemiology, Fractional Dynamics, 2015 (2015), 174–190.
    [3] V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Engrg., 124 (2002), 803–806. https://doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062
    [4] D. Baleanu, Z. B. Güvenç, J. A. T. Machado, Eds., New Trends in Nanotechnology and Fractional Calculus Applications, New York: Springer, 2010.
    [5] M. Caputo, Modeling social and economic cycles, In: Alternative Public Economics, F. Forte, P. Navarra, R. Mudambi, Eds., Elgar, Cheltenham, UK, 2014.
    [6] R. L. Magin, Fractional Calculus in Bio-Engineering, Begell House Inc. Publishers, Danbury, USA, 2006.
    [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
    [8] H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Engrg. Comput., 5 (2021), 135–166.
    [9] H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520.
    [10] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [11] I. Işcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Studia Univ. Babeş-Bolyai Sect. A Math., 60 (2015), 355–366.
    [12] F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals, Ital. J. Pure Appl. Math., 33 (2014), 299–306.
    [13] A. Guessab, Generalized barycentric coordinates and approximations of convex functions on arbitrary convex polytopes, Comput. Math. Appl., 66 (2013), 1120–1136. https://doi.org/10.1016/j.camwa.2013.07.014 doi: 10.1016/j.camwa.2013.07.014
    [14] A. Guessab, G. Schmeisser, Two Korovkin-type theorems in multivariate approximation, Banach J. Math. Anal., 2 (2008), 121–128. https://doi.org/10.15352/bjma/1240336298 doi: 10.15352/bjma/1240336298
    [15] O. Alabdali, A. Guessab, G. Schmeisser, Characterizations of uniform convexity for differentiable functions, Appl. Anal. Discret. Math., 13 (2019), 721–732. https://doi.org/10.2298/AADM190322029A doi: 10.2298/AADM190322029A
    [16] A. Guessab, O. Nouisser, G. Schmeisser, Enhancement of the algebraic precision of a linear operator and consequences under positivity, Positivity, 13 (2009), 693–707. https://doi.org/10.1007/s11117-008-2253-4 doi: 10.1007/s11117-008-2253-4
    [17] A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., 44 (2021), 8414–8431.
    [18] H. Ogulmus, M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Filomat, 35 (2021), 2425–2436. https://doi.org/10.2298/FIL2107425O doi: 10.2298/FIL2107425O
    [19] M. Andrić, J. Pečarič, I. Perić, A multiple Opial type inequality for the Riemann-Liouville fractional derivatives, J. Math. Inequal., 7 (2013), 139–150.
    [20] H. Ahmad, M. Tariq, S.K. Sahoo, J. Baili, C. Cesarano, New estimations of Hermite-Hadamard type integral inequalities for special functions. Fractal Fract. 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
    [21] S. K. Sahoo, M. Tariq, H. Ahmad, B. Kodamasingh, A. A. Shaikh, T. Botmart, et al., Some novel fractional integral inequalities over a new class of generalized convex function, Fractal Fract., 6 (2022), article ID 42, 1–22. https://doi.org/10.3390/fractalfract6010042
    [22] S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator, Fractal Fract., 6 (2022), 171. https://doi.org/10.3390/fractalfract6030171 doi: 10.3390/fractalfract6030171
    [23] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for (h_1, h_2) -convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), Article ID 149, 1–21.
    [24] R. E. Moore, Interval Analysis, Prentice Hall: Englewood Cliffs, NJ, USA, 1966.
    [25] H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741
    [26] B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comput. Appl. Math., 353 (2019), 120–129.
    [27] D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003
    [28] T. M. Costa, H. Román-Flores, Y. Chalco-Cano, Opial-type inequalities for interval-valued functions, Fuzzy Set. Syst., 358 (2019), 48–63. https://doi.org/10.1016/j.fss.2018.04.012 doi: 10.1016/j.fss.2018.04.012
    [29] Y. Chalco-Cano, W. Lodwick, W. Condori-Equice, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 475–472.
    [30] H. Román-Flores, Y. Chalco-Cano, W. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2016), 1306–1318. https://doi.org/10.1007/s40314-016-0396-7 doi: 10.1007/s40314-016-0396-7
    [31] D. Zhao, M. A. Ali, G. Murtaza, Z. Zhang, On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions, Adv. Differ. Equ., 2020 (2020), Article ID 570, 1–14.
    [32] E. R. Nwaeze, M. A. Khan, Y. M. Chu, Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1–17.
    [33] H. Kara, H. Budak, M. A. Ali, M. Z. Sarikaya, Y. M. Chu, Weighted Hermite-Hadamard type inclusions for products of co-ordinated convex interval-valued functions, Adv. Differ. Equ., 2021 (2021), 1–16.
    [34] H. Budak, H. Kara, M. A. Ali, S. Khan, Y. M. Chu, Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions, Open Math., 19 (2021), 1081–1097.
    [35] H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, D. Baleanu, B. Kodamasingh, Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators, Int. J. Comput. Intel. Syst., 15 (2022), Article ID 8, 1–12. https://doi.org/10.1007/s44196-021-00061-6
    [36] N. Sharma, S. K. Singh, S. K. Mishra, A. Hamdi, Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals, J. Inequal. Appl., 98 (2021).
    [37] H. Zhou, M. S. Saleem, W. Nazeer, A. F. Shah, Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals, AIMS Math., 7 (2022), 2602–2617. https://doi.org/10.3934/math.2022146 doi: 10.3934/math.2022146
    [38] K. Lai, S. K. Mishra, J. Bisht, M. Hassan, Hermite-Hadamard type inclusions for interval-valued coordinated preinvex functions, Symmetry, 14 (2022), 771. https://doi.org/10.3390/sym14040771 doi: 10.3390/sym14040771
    [39] H. Kalsoom, M. A. Latif, Z. A. Khan, M. Vivas-Cortez, Some new Hermite-Hadamard-Fejér fractional type inequalities for h-Convex and Harmonically h-Convex interval-valued functions, Mathematics, 10 (2022), 74. https://doi.org/10.3390/math10010074 doi: 10.3390/math10010074
    [40] F. Shi, G. Ye, D. Zhao, W. Liu, Some integral inequalities for coordinated log-h-convex interval-valued functions, AIMS Math., 7 (2022), 156–170. https://doi.org/10.3934/math.2022009 doi: 10.3934/math.2022009
    [41] M. B. Khan, M. A. Noor, M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo-order relation, Math. Meth. App. Sci., 2022 (2022).
    [42] M. B. Khan, H. G. Zaini, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, Riemann-Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon pseudo order relation, Mathematics, 10 (2022), Article ID 204, 1–17.
    [43] M. B. Khan, M. A. Noor, K. I. Noor, K. S. Nisar, K. A. Ismail, A. Elfasakhany, Some inequalities for LR-\left(h_{1}, h_{2} \right) convex interval-valued functions by means of pseudo order relation, Int. J. Comput. Intel. Syst., 14 (2021), Article ID 180, 1–15.
    [44] M. B. Khan, H. M. Srivastava, P. O. Mohammed, J. E. Macías-Diaz, Y. S. Hamed, Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation, Alexandria Engrg. J., 61 (2022), 7089–7101. https://doi.org/10.1016/j.aej.2021.12.052 doi: 10.1016/j.aej.2021.12.052
    [45] M. B. Khan, H. M. Srivastava, P. O. Mohammed, L. L. G. Guirao, T. M. Jawa, Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions, Math. Biosci. Engrg., 19 (2022), 812–835. http://doi.org/10.3934/mbe.2022037 doi: 10.3934/mbe.2022037
    [46] M. B. Khan, P. O. Mohammed, K. Nonlaopon, Y. S. Hamed, Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions, AIMS Math., 7 (2022), 4338–4358. https://doi.org/10.3934/math.2022241 doi: 10.3934/math.2022241
    [47] M. B. Khan, S. Treanţǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard-Fejér type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), Article ID 6, 1–16. https://doi.org/10.3390/fractalfract6010006
  • This article has been cited by:

    1. Ziqiang Wang, Jiaojiao Ma, Junying Cao, A higher-order uniform accuracy scheme for nonlinear \psi -Volterra integral equations in two dimension with weakly singular kernel, 2024, 9, 2473-6988, 14325, 10.3934/math.2024697
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2031) PDF downloads(87) Cited by(16)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog