Many works have been done on Brownian motion or fractional Brownian motion, but few of them have considered the simpler type, Riemann-Liouville fractional Brownian motion. In this paper, we investigate the semilinear stochastic evolution equations driven by Riemann-Liouville fractional Brownian motion with Hurst parameter H<1/2. First, we prove the pth moment exponential stability of mild solution. Then, based on the maximal inequality from Lemma 10 in [
Citation: Xueqi Wen, Zhi Li. pth moment exponential stability and convergence analysis of semilinear stochastic evolution equations driven by Riemann-Liouville fractional Brownian motion[J]. AIMS Mathematics, 2022, 7(8): 14652-14671. doi: 10.3934/math.2022806
[1] | Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172 |
[2] | Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071 |
[3] | Abdelkader Moumen, Hamid Boulares, Tariq Alraqad, Hicham Saber, Ekram E. Ali . Newly existence of solutions for pantograph a semipositone in Ψ-Caputo sense. AIMS Mathematics, 2023, 8(6): 12830-12840. doi: 10.3934/math.2023646 |
[4] | Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574 |
[5] | Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055 |
[6] | Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015 |
[7] | Mohamed Houas, Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence and stability results of pantograph equation with three sequential fractional derivatives. AIMS Mathematics, 2023, 8(3): 5216-5232. doi: 10.3934/math.2023262 |
[8] | Ahmed M. A. El-Sayed, Wagdy G. El-Sayed, Kheria M. O. Msaik, Hanaa R. Ebead . Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral equations. AIMS Mathematics, 2025, 10(3): 4970-4991. doi: 10.3934/math.2025228 |
[9] | Isra Al-Shbeil, Abdelkader Benali, Houari Bouzid, Najla Aloraini . Existence of solutions for multi-point nonlinear differential system equations of fractional orders with integral boundary conditions. AIMS Mathematics, 2022, 7(10): 18142-18157. doi: 10.3934/math.2022998 |
[10] | Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176 |
Many works have been done on Brownian motion or fractional Brownian motion, but few of them have considered the simpler type, Riemann-Liouville fractional Brownian motion. In this paper, we investigate the semilinear stochastic evolution equations driven by Riemann-Liouville fractional Brownian motion with Hurst parameter H<1/2. First, we prove the pth moment exponential stability of mild solution. Then, based on the maximal inequality from Lemma 10 in [
The key to solving the general quadratic congruence equation is to solve the equation of the form x2≡amodp, where a and p are integers, p>0 and p is not divisible by a. For relatively large p, it is impractical to use the Euler criterion to distinguish whether the integer a with (a,p)=1 is quadratic residue of modulo p. In order to study this issue, Legendre has proposed a new tool-Legendre's symbol.
Let p be an odd prime, the quadratic character modulo p is called the Legendre's symbol, which is defined as follows:
(ap)={1, if a is a quadratic residue modulo p;−1, if a is a quadratic non-residue modulo p;0, if p∣a. |
The Legendre's symbol makes it easy for us to calculate the level of quadratic residues. The basic properties of Legendre's symbol can be found in any book on elementary number theory, such as [1,2,3].
The properties of Legendre's symbol and quadratic residues play an important role in number theory. Many scholars have studied them and achieved some important results. For examples, see the [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21].
One of the most representative properties of the Legendre's symbol is the quadratic reciprocal law:
Let p and q be two distinct odd primes. Then, (see Theorem 9.8 in [1] or Theorems 4–6 in [3])
(pq)⋅(qp)=(−1)(p−1)(q−1)4. |
For any odd prime p with p≡1mod4 there exist two non-zero integers α(p) and β(p) such that
p=α2(p)+β2(p). | (1) |
In fact, the integers α(p) and β(p) in the (1) can be expressed in terms of Legendre's symbol modulo p (see Theorems 4–11 in [3])
α(p)=12p−1∑a=1(a3+ap)andβ(p)=12p−1∑a=1(a3+rap), |
where r is any integer, and (r,p)=1, (rp)=−1, (∗p)=χ2 denote the Legendre's symbol modulo p.
Noting that Legendre's symbol is a special kind of character. For research on character, Han [7] studied the sum of a special character χ(ma+ˉa), for any integer m with (m,p)=1, then
|p−1∑a=1χ(ma+ˉa)|2=2p+(mp)p−1∑a=1χ(a)p−1∑b=1(b(b−1)(a2b−1)p), |
which is a special case of a general polynomial character sums ∑N+Ma=N+1χ(f(a)), where M and N are any positive integers, and f(x) is a polynomial.
In [8], Du and Li introduced a special character sums C(χ,m,n,c;p) in the following form:
C(χ,m,n,c;p)=p−1∑a=0p−1∑b=0χ(a2+na−b2−nb+c)⋅e(mb2−ma2p), |
and studied the asymptotic properties of it. They obtained
p−1∑c=1|C(χ,m,n,c;p)|2k={p2k+1+k2−3k−22⋅p2k+O(p2k−1),ifχ is the Legendre symbol modulo p;p2k+1+k2−3k−22⋅p2k+O(p2k−1/2),ifχ is a complex character modulo p. |
Recently, Yuan and Zhang [12] researched the question about the estimation of the mean value of high-powers for a special character sum modulo a prime, let p be an odd prime with p≡1mod6, then for any integer k≥0, they have the identity
Sk(p)=13⋅[dk+(−d+9b2)k+(−d−9b2)k], |
where
Sk(p)=1p−1p−1∑r=1Ak(r), |
A(r)=1+p−1∑a=1(a2+rˉap), |
and for any integer r with (r,p)=1.
More relevant research on special character sums will not be repeated. Inspired by these papers, we have the question: If we replace the special character sums with Legendre's symbol, can we get good results on p≡1mod4?
We will convert β(p) to another form based on the properties of complete residues
β(p)=12p−1∑a=1(a+nˉap), |
where ˉa is the inverse of a modulo p. That is, ˉa satisfy the equation x⋅a≡1modp for any integer a with (a,p)=1.
For any integer k≥0, G(n) and Kk(p) are defined as follows:
G(n)=1+p−1∑a=1(a2+nˉa2p)andKk(p)=1p−1p−1∑n=1Gk(n). |
In this paper, we will use the analytic methods and properties of the classical Gauss sums and Dirichlet character sums to study the computational problem of Kk(p) for any positive integer k, and give a linear recurrence formulas for Kk(p). That is, we will prove the following result.
Theorem 1. Let p be an odd prime with p≡1mod4, then we have
Kk(p)=(4p+2)⋅Kk−2(p)−8(2α2−p)⋅Kk−3(p)+(16α4−16pα2+4p−1)⋅Kk−4(p), |
for all integer k≥4 with
K0(p)=1,K1(p)=0,K2(p)=2p+1,K3(p)=−3(4α2−2p), |
where
α=α(p)=p−12∑a=1(a+ˉap). |
Applying the properties of the linear recurrence sequence, we may immediately deduce the following corollaries.
Corollary 1. Let p be an odd prime with p≡1mod4. Then we have
1p−1p−1∑n=111+∑p−1a=1(a2+nˉa2p)=16α2p−28α2−8p2+14p16α4−16α2p+4p−1. |
Corollary 2. Let p be an odd prime with p≡1mod4. Then we have
1p−1p−1∑n=1p−1∑m=0(1+p−1∑a=1(a2+nˉa2p))⋅e(nm2p)=−√p. |
Corollary 3. Let p be an odd prime with p≡1mod4. Then we have
1p−1p−1∑n=1p−1∑m=0[1+p−1∑a=1(a2+nˉa2p)]2⋅e(nm2p)=(4α2−2p)⋅√p. |
Corollary 4. Let p be an odd prime with p≡1mod8. Then we have
p−1∑n=1(1+p−1∑a=1(a2+nˉa2p))⋅p−1∑m=0e(nm4p)=√p(−1+B(1))−p, |
where
B(1)=p−1∑m=0e(m4p). |
If we consider such a sequence Fk(p) as follows: Let p be a prime with p≡1mod8, χ4 be any fourth-order character modulo p. For any integer k≥0, we define the Fk(p) as
Fk(p)=p−1∑n=11Gk(n), |
we have
Fk(p)=116α4−16α2p+4p−1Fk−4(p)−(4p+2)16α4−16α2p+4p−1Fk−2(p)+4(4α2−2p)16α4−16α2p+4p−1Fk−1(p). |
Lemma 1. Let p be an odd prime with p≡1mod4. Then for any fourth-order character χ4modp, we have the identity
τ2(χ4)+τ2(¯χ4)=2√p⋅α, |
where
τ(χ4)=p−1∑a=1χ4(a)e(ap) |
denotes the classical Gauss sums, e(y)=e2πiy,i2=−1, and α is the same as in the Theorem 1.
Proof. See Lemma 2.2 in [9].
Lemma 2. Let p be an odd prime. Then for any non-principal character ψ modulo p, we have the identity
τ(ψ2)=ψ2(2)τ(χ2)⋅τ(ψ)⋅τ(ψχ2), |
where χ2=(∗p) denotes the Legendre's symbol modulo p.
Proof. See Lemma 2 in [12].
Lemma 3. Let p be a prime with p≡1mod4, then for any integer n with (n,p)=1 and fourth-order character χ4modp, we have the identity
p−1∑a=1(a2+nˉa2p)=−1−χ2(n)+1√p⋅(χ4(n)⋅τ2(¯χ4)+¯χ4(n)⋅τ2(χ4)). |
Proof. For any integer a with (a,p)=1, we have the identity
1+χ4(a)+χ2(a)+¯χ4(a)=4, |
if a satisfies a≡b4modp for some integer b with (b,p)=1 and
1+χ4(a)+χ2(a)+¯χ4(a)=0, |
otherwise. So from these and the properties of Gauss sums we have
p−1∑a=1(a2+nˉa2p)=p−1∑a=1(a2p)(a4+np)=p−1∑a=1χ2(a4)χ2(a4+n)=p−1∑a=1(1+χ4(a)+χ2(a)+¯χ4(a))⋅χ2(a)⋅χ2(a+n)=p−1∑a=1(1+χ4(na)+χ2(na)+¯χ4(na))⋅χ2(na)⋅χ2(na+n)=p−1∑a=1χ2(a)χ2(a+1)+p−1∑a=1χ4(na)χ2(a)χ2(a+1) | (2) |
+p−1∑a=1χ2(na)χ2(a)χ2(a+1)+p−1∑a=1¯χ4(na)χ2(a)χ2(a+1)=p−1∑a=1χ2(1+ˉa)+p−1∑a=1χ4(na)χ2(a)χ2(a+1)+p−1∑a=1χ2(n)χ2(a+1)+p−1∑a=1¯χ4(na)χ2(a)χ2(a+1). |
Noting that for any non-principal character χ,
p−1∑a=1χ(a)=0 |
and
p−1∑a=1χ(a)χ(a+1)=1τ(ˉχ)p−1∑b=1p−1∑a=1ˉχ(b)χ(a)e(b(a+1)p). |
Then we have
p−1∑a=1χ2(1+ˉa)=−1,p−1∑a=1χ2(a+1)=−1, |
p−1∑a=1χ4(a)χ2(a)χ2(a+1)=1τ(χ2)p−1∑b=1p−1∑a=1χ2(b)χ4(a)χ2(a)e(b(a+1)p)=1τ(χ2)p−1∑b=1¯χ4(b)e(bp)p−1∑a=1χ4(ab)χ2(ab)e(abp) | (3) |
=1τ(χ2)⋅τ(¯χ4)⋅τ(χ4χ2). |
For any non-principal character ψ, from Lemma 2 we have
τ(ψ2)=ψ2(2)τ(χ2)⋅τ(ψ)⋅τ(ψχ2). | (4) |
Taking ψ=χ4, note that
τ(χ2)=√p, τ(χ4)⋅τ(¯χ4)=χ4(−1)⋅p, |
from (3) and (4), we have
p−1∑a=1χ4(a)χ2(a)χ2(a+1)=¯χ42(2)⋅τ(χ24)⋅τ(χ2)⋅τ(¯χ4)τ(χ2)⋅τ(χ4)=χ2(2)⋅τ(χ2)⋅τ2(¯χ4)τ(χ4)⋅τ(¯χ4)=χ2(2)⋅√p⋅τ2(¯χ4)χ4(−1)⋅p | (5) |
=χ2(2)⋅τ2(¯χ4)χ4(−1)⋅√p. |
Similarly, we also have
p−1∑a=1¯χ4(a)χ2(a)χ2(a+1)=χ2(2)⋅τ2(χ4)χ4(−1)⋅√p. | (6) |
Consider the quadratic character modulo p, we have
(2p)=χ2(2)={1,if p≡±1mod8;−1,if p≡±3mod8. | (7) |
And when p≡1mod8, we have χ4(−1)=1; when p≡5mod8, we have χ4(−1)=−1. Combining (2) and (5)–(7) we can deduce that
p−1∑a=1(a2+nˉa2p)=−1−χ2(n)+1√p⋅(χ4(n)⋅τ2(¯χ4)+¯χ4(n)⋅τ2(χ4)). |
This prove Lemma 3.
Lemma 4. Let p be an odd prime with p≡1mod4. Then for any integer k≥4 and n with (n,p)=1, we have the fourth-order linear recurrence formula
Gk(n)=(4p+2)⋅Gk−2(n)+8(p−2α2)⋅Gk−3(n)+[(4α2−2p)2−(2p−1)2]⋅Gk−4(n), |
where
α=α(p)=12p−1∑a=1(a3+ap)=p−12∑a=1(a+ˉap), |
(∗p)=χ2 denotes the Legendre's symbol.
Proof. For p≡1mod4, any integer n with (n,p)=1, and fourth-order character χ4 modulo p, we have the identity
χ44(n)=¯χ44(n)=χ0(n), χ24(n)=χ2(n), |
where χ0 denotes the principal character modulo p.
According to Lemma 3,
p−1∑a=1(a2+nˉa2p)=−1−χ2(n)+1√p⋅(χ4(n)⋅τ2(¯χ4)+¯χ4(n)⋅τ2(χ4)), |
G(n)=1+p−1∑a=1(a2+nˉa2p). |
We have
G(n)=−χ2(n)+1√p⋅(χ4(n)⋅τ2(¯χ4)+¯χ4(n)⋅τ2(χ4)), | (8) |
G2(n)=[−χ2(n)+1√p⋅(χ4(n)⋅τ2(¯χ4)+¯χ4(n)⋅τ2(χ4))]2=1−2χ2(n)⋅1√p⋅(χ4(n)⋅τ2(¯χ4)+¯χ4(n)⋅τ2(χ4))+1p⋅(χ2(n)⋅τ4(¯χ4)+χ2(n)⋅τ4(χ4)+2p2)=1−2χ2(n)⋅1√p⋅(χ4(n)⋅τ2(¯χ4)+¯χ4(n)⋅τ2(χ4))+1p⋅(χ2(n)⋅(τ4(¯χ4)+τ4(χ4))+2p2). |
According to Lemma 1, we have
(τ2(χ4)+τ2(¯χ4))2=τ4(¯χ4)+τ4(χ4)+2p2=4pα2. |
Therefore, we may immediately deduce
G2(n)=1−2(χ2(n)⋅(G(n)+χ2(n))+1p(χ2(n)⋅(τ4(¯χ4)+τ4(χ4))+2p2)=1−2χ2(n)⋅(G(n)+χ2(n)) | (9) |
+1p⋅[χ2(n)((τ2(¯χ4)+τ2(χ4))2−2p2)+2p2]=2p−1−2χ2(n)⋅G(n)+(4α2−2p)⋅χ2(n), |
G3(n)=[−χ2(n)+1√p⋅(χ4(n)⋅τ2(¯χ4)+¯χ4(n)⋅τ2(χ4))]3=(2p−1−2χ2(n)⋅G(n)+(4α2−2p)⋅χ2(n))⋅G(n) | (10) |
=(4α2−2p)χ2(n)⋅G(n)+(2p+3)G(n)−(4p−2)χ2(n)−2(4α2−2p) |
and
[G2(n)−(2p−1)]2=[χ2(n)⋅(4α2−2p)−2χ2(n)⋅G(n)]2, |
which implies that
G4(n)=(4p+2)⋅G2(n)+8(p−2α2)⋅G(n)+[(4α2−2p)2−(2p−1)2]. | (11) |
So for any integer k≥4, from (8)–(11), we have the fourth-order linear recurrence formula
Gk(n)=Gk−4(n)⋅G4(n)=(4p+2)⋅Gk−2(n)+8(p−2α2)⋅Gk−3(n)+[(4α2−2p)2−(2p−1)2]⋅Gk−4(n). |
This proves Lemma 4.
In this section, we will complete the proof of our theorem.
Let p be any prime with p≡1mod4, then we have
K0(p)=1p−1p−1∑n=1G0(n)=p−1p−1=1. | (12) |
K1(p)=1p−1p−1∑n=1G1(n)=1p−1p−1∑n=1(−χ2(n)+1√p⋅(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))=0, | (13) |
K2(p)=1p−1p−1∑n=1G2(n)=1p−1p−1∑n=1(−χ2(n)+1√p⋅(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))2=2p+1, | (14) |
K3(p)=1p−1p−1∑n=1G3(n)=1p−1p−1∑n=1(−χ2(n)+1√p⋅(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))3=−3(4α2−2p). | (15) |
It is clear that from Lemma 4, if k≥4, we have
Kk(p)=1p−1p−1∑n=1Gk(n)=(4p+2)⋅Kk−2(p)−8(2α2−p)⋅Kk−3(p)+(16α4−16pα2+4p−1)⋅Kk−4(p). | (16) |
Now Theorem 1 follows (12)–(16). Obviously, using Theorem 1 to all negative integers, and that lead to Corollary 1.
This completes the proofs of our all results.
Some notes:
Note 1: In our theorem, know n is an integer, and (n,p)=1. According to the properties of quadratic residual, χ2(n)=±1, χ4(n)=±1.
Note 2: In our theorem, we only discussed the case p≡1mod8. If p≡3mod4, then the result is trivial. In fact, in this case, for any integer n with (n,p)=1, we have the identity
G(n)=1+p−1∑a=1(a2+nˉa2p)=1+p−1∑a=1(a4p)⋅(a4+np)=1+p−1∑a=1(ap)⋅(a+np)=1+p−1∑a=1(a2+nap)=1+p−1∑a=1(1+nˉap)=p−1∑a=0(1+nap)=0. |
Thus, for all prime p with p≡3mod4 and k≥1, we have Kk(p)=0.
The main result of this paper is Theorem 1. It gives an interesting computational formula for Kk(p) with p≡1mod4. That is, for any integer k, we have the identity
Kk(p)=(4p+2)⋅Kk−2(p)−8(2α2−p)⋅Kk−3(p)+(16α4−16pα2+4p−1)⋅Kk−4(p). |
Thus, the problems of calculating a linear recurrence formula of one kind special character sums modulo a prime are given.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors are grateful to the anonymous referee for very helpful and detailed comments.
This work is supported by the N.S.F. (11971381, 12371007) of China and Shaanxi Fundamental Science Research Project for Mathematics and Physics (22JSY007).
The authors declare no conflicts of interest.
[1] |
E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2, Stoch. Proc. Appl., 86 (2000), 121–139. https://doi.org/10.1016/S0304-4149(99)00089-7 doi: 10.1016/S0304-4149(99)00089-7
![]() |
[2] | A. N. Kolmogorov, The Wiener spiral and some other interesting curves in Hilbert space, Dokl. Akad. Nauk SSSR, 26 (1940), 115–118. |
[3] |
B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437. https://doi.org/10.1137/1010093 doi: 10.1137/1010093
![]() |
[4] |
S. Rostek, R. Schöbel, A note on the use of fractional Brownian motion for financial modeling, Econ. Model., 30 (2013), 30–35. https://doi.org/10.1016/j.econmod.2012.09.003 doi: 10.1016/j.econmod.2012.09.003
![]() |
[5] |
A. Gupta, S. D. Joshi, P. Singh, On the approximate discrete KLT of fractional Brownian motion and applications, J. Franklin I., 355 (2018), 8989–9016. https://doi.org/10.1016/j.jfranklin.2018.09.023 doi: 10.1016/j.jfranklin.2018.09.023
![]() |
[6] |
P. Guasoni, Z. Nika, M. Rásonyi, Trading fractional Brownian motion, SIAM J. Financ. Math., 10 (2019), 769–789. https://doi.org/10.1137/17M113592X doi: 10.1137/17M113592X
![]() |
[7] |
S. N. I. Ibrahim, M. Misiran, M. F. Laham, Geometric fractional Brownian motion model for commodity market simulation, Alex. Eng. J., 60 (2021), 955–962. https://doi.org/10.1016/j.aej.2020.10.023 doi: 10.1016/j.aej.2020.10.023
![]() |
[8] |
P. Allegrini, M. Buiatti, P. Grigolini, B. J. West, Fractional Brownian motion as a nonstationary process: An alternative paradigm for DNA sequences, Phys. Rev. E, 57 (1998), 4558. https://doi.org/10.1103/PhysRevE.57.4558 doi: 10.1103/PhysRevE.57.4558
![]() |
[9] |
K. Burnecki, E. Kepten, J. Janczura, I. Bronshtein, Y. Garini, A. Weron, Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion, Biophys. J., 103 (2012), 1839–1847. https://doi.org/10.1016/j.bpj.2012.09.040 doi: 10.1016/j.bpj.2012.09.040
![]() |
[10] | A. Pashko, Simulation of telecommunication traffic using statistical models of fractional Brownian motion, IEEE 2017 4th Int. Sci.-Pract. Conf. Prob. Infocommun., 2017,414–418. https://doi.org/10.1109/INFOCOMMST.2017.8246429 |
[11] | A. O. Pashko, I. V. Rozora, Accuracy of simulation for the network traffic in the form of fractional Brownian motion, IEEE 2018 14th Int. Conf. Adv. Trends Radioelecrtron. Telecommun. Comput. Eng., 2018,840–845. https://doi.org/10.1109/TCSET.2018.8336328 |
[12] |
X. Song, X. Li, S. Song, Y. Zhang, Z. Ning, Quasi-synchronization of coupled neural networks with reaction-diffusion terms driven by fractional Brownian motion, J. Franklin I., 358 (2021), 2482–2499. https://doi.org/10.1016/j.jfranklin.2021.01.023 doi: 10.1016/j.jfranklin.2021.01.023
![]() |
[13] |
S. Kumar, A. Kumar, Z. M. Odibat, A nonlinear fractional model to describe the population dynamics of two interacting species, Math. Method. Appl. Sci., 40 (2017), 4134–4148. https://doi.org/10.1002/mma.4293 doi: 10.1002/mma.4293
![]() |
[14] | Q. M. Zhang, X. N. Li, Existence and uniqueness for stochastic age-dependent population with fractional Brownian motion, Math. Prob. Eng., 2012 (2012). https://doi.org/10.1155/2012/813535 |
[15] |
J. H. Jeon, A. V. Chechkin, R. Metzler, Scaled Brownian motion: A paradoxical process with a time dependent diffusivity for the description of anomalous diffusion, Phys. Chem. Chem. Phys., 16 (2014), 15811–15817. https://doi.org/10.1039/C4CP02019G doi: 10.1039/C4CP02019G
![]() |
[16] |
D. Blömker, W. W. Mohammed, C. Nolde, F. Wöhrl, Numerical study of amplitude equations for spdes with degenerate forcing, Int. J. Comput. Math., 89 (2012), 2499–2516. https://doi.org/10.1080/00207160.2012.662591 doi: 10.1080/00207160.2012.662591
![]() |
[17] |
J. Beran, N. Terrin, Testing for a change of the long-memory parameter, Biometrika, 83 (1996), 627–638. https://doi.org/10.1093/biomet/83.3.627 doi: 10.1093/biomet/83.3.627
![]() |
[18] |
S. Lin, Stochastic analysis of fractional Brownian motions, Stochastics, 55 (1995), 121–140. https://doi.org/10.1080/17442509508834021 doi: 10.1080/17442509508834021
![]() |
[19] |
W. Dai, C. Heyde, Itô's formula with respect to fractional Brownian motion and its application, Int. J. Stoch. Anal., 9 (1996), 439–448. https://doi.org/10.1155/S104895339600038X doi: 10.1155/S104895339600038X
![]() |
[20] |
T. E. Duncan, Y. Hu, B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion I. Theory, SIAM J. Control Optim., 38 (2000), 582–612. https://doi.org/10.1137/S036301299834171X doi: 10.1137/S036301299834171X
![]() |
[21] |
M. Zähle, Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Rel., 111 (1998), 333–374. https://doi.org/10.1007/s004400050171 doi: 10.1007/s004400050171
![]() |
[22] |
E. Alos, J. A. León, D. Nualart, Stochastic Stratonovich calculus fbm for fractional Brownian motion with Hurst parameter less than 1/2, Taiwanese J. Math., 5 (2001), 609–632. https://doi.org/10.11650/twjm/1500574954 doi: 10.11650/twjm/1500574954
![]() |
[23] |
E. Alòs, D. Nualart, Stochastic integration with respect to the fractional Brownian motion, Stoch. Stoch. Rep., 75 (2003), 129–152. https://doi.org/10.1080/1045112031000078917 doi: 10.1080/1045112031000078917
![]() |
[24] |
P. Cheridito, D. Nualart, Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter h∈(0,1), Ann. I. H. Poincare, 41 (2005), 1049–1081. https://doi.org/10.1016/j.anihpb.2004.09.004 doi: 10.1016/j.anihpb.2004.09.004
![]() |
[25] |
S. Lim, V. Sithi, Asymptotic properties of the fractional Brownian motion of Riemann-Liouville type, Phys. Lett. A, 206 (1995), 311–317. https://doi.org/10.1016/0375-9601(95)00627-F doi: 10.1016/0375-9601(95)00627-F
![]() |
[26] | F. Biagini, Y. Hu, B. Øksendal, T. Zhang, Stochastic calculus for fractional Brownian motion and applications, Springer Science and Business Media, London, 2008. https://doi.org/10.1007/978-1-84628-797-8 |
[27] |
W. W. Mohammed, D. Blömker, Fast-diffusion limit with large noise for systems of stochastic reaction-diffusion equations, Stoch. Anal. Appl., 34 (2016), 961–978. https://doi.org/10.1080/07362994.2016.1197131 doi: 10.1080/07362994.2016.1197131
![]() |
[28] |
M. Hochbruck, A. Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43 (2005), 1069–1090. https://doi.org/10.1137/040611434 doi: 10.1137/040611434
![]() |
[29] |
M. Narayanamurthi, A. Sandu, Efficient implementation of partitioned stiff exponential Runge-Kutta methods, Appl. Numer. Math., 152 (2020), 141–158. https://doi.org/10.1016/j.apnum.2020.01.010 doi: 10.1016/j.apnum.2020.01.010
![]() |
[30] |
A. Koskela, A. Ostermann, Exponential Taylor methods: Analysis and implementation, Comput. Math. Appl., 65 (2013), 487–499. https://doi.org/10.1016/j.camwa.2012.06.004 doi: 10.1016/j.camwa.2012.06.004
![]() |
[31] |
A. Ostermann, M. Thalhammer, W. Wright, A class of explicit exponential general linear methods, BIT Numer. Math., 46 (2006), 409–431. https://doi.org/10.1007/s10543-006-0054-3 doi: 10.1007/s10543-006-0054-3
![]() |
[32] |
M. Hochbruck, A. Ostermann, Exponential multistep methods of Adams-type, BIT Numer. Math., 51 (2011), 889–908. https://doi.org/10.1007/s10543-011-0332-6 doi: 10.1007/s10543-011-0332-6
![]() |
[33] | C. Shi, Y. Xiao, C. Zhang, The convergence and MS stability of exponential Euler method for semilinear stochastic differential equations, Abstr. Appl. Anal., 2012 (2012). https://doi.org/10.1155/2012/350407 |
[34] |
Y. Komori, K. Burrage, A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems, BIT Numer. Math., 54 (2014), 1067–1085. https://doi.org/10.1007/s10543-014-0485-1 doi: 10.1007/s10543-014-0485-1
![]() |
[35] |
L. Li, Y. Zhang, Stability of exponential Euler method for stochastic systems under Poisson white noise excitations, Int. J. Theor. Phys., 53 (2014), 4267–4274. https://doi.org/10.1007/s10773-014-2177-7 doi: 10.1007/s10773-014-2177-7
![]() |
[36] |
P. Hu, C. Huang, Delay dependent asymptotic mean square stability analysis of the stochastic exponential Euler method, J. Comput. Appl. Math., 382 (2021), 113068. https://doi.org/10.1016/j.cam.2020.113068 doi: 10.1016/j.cam.2020.113068
![]() |
[37] |
F. Mahmoudi, M. Tahmasebi, The Convergence of exponential Euler method for weighted fractional stochastic equations, Comput. Methods Differ. Equ., 10 (2022), 538–548. https://doi.org/10.22034/CMDE.2021.41430.1795 doi: 10.22034/CMDE.2021.41430.1795
![]() |
[38] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Yverdon, 1993. |
[39] | M. Zähle, On the link between fractional and stochastic calculus, Stoch. Dynam., 1999,305–325. https://doi.org/10.1007/0-387-22655-9_13 |
[40] |
W. W. Mohammed, D. Blömker, Fast-diffusion limit for reaction-diffusion equations with multiplicative noise, J. Math. Anal. Appl., 496 (2021), 124808. https://doi.org/10.1016/j.jmaa.2020.124808 doi: 10.1016/j.jmaa.2020.124808
![]() |
[41] |
T. Caraballo, M. Garrido-Atienza, T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional brownian motion, Nonlinear Anal.-Theor., 74 (2011), 3671–3684. https://doi.org/10.1016/j.na.2011.02.047 doi: 10.1016/j.na.2011.02.047
![]() |
1. | Mounia Mouy, Hamid Boulares, Saleh Alshammari, Mohammad Alshammari, Yamina Laskri, Wael W. Mohammed, On Averaging Principle for Caputo–Hadamard Fractional Stochastic Differential Pantograph Equation, 2022, 7, 2504-3110, 31, 10.3390/fractalfract7010031 | |
2. | Sabbavarapu Nageswara Rao, Manoj Singh, Ahmed Hussein Msmali, Abdullah Ali H. Ahmadini, Existence of Positive Solutions for a Coupled System of p-Laplacian Semipositone Hadmard Fractional BVP, 2023, 7, 2504-3110, 499, 10.3390/fractalfract7070499 |