Processing math: 53%
Research article Special Issues

Solving a class of variable order nonlinear fractional integral differential equations by using reproducing kernel function

  • In this paper, reproducing kernel interpolation collocation method is explored for nonlinear fractional integral differential equations with Caputo variable order. In order to testify the feasibility of this method, several examples are studied from the different values of parameters. In addition, the influence of the parameters of the Jacobi polynomial on the numerical results is studied. Our results reveal that the present method is effective and provide highly precise numerical solutions for solving such fractional integral differential equations.

    Citation: Zhi-Yuan Li, Mei-Chun Wang, Yu-Lan Wang. Solving a class of variable order nonlinear fractional integral differential equations by using reproducing kernel function[J]. AIMS Mathematics, 2022, 7(7): 12935-12951. doi: 10.3934/math.2022716

    Related Papers:

    [1] Naeem Ud Din, Muhammad Ishaq, Zunaira Sajid . Values and bounds for depth and Stanley depth of some classes of edge ideals. AIMS Mathematics, 2021, 6(8): 8544-8566. doi: 10.3934/math.2021496
    [2] Bakhtawar Shaukat, Muhammad Ishaq, Ahtsham Ul Haq . Algebraic invariants of edge ideals of some circulant graphs. AIMS Mathematics, 2024, 9(1): 868-895. doi: 10.3934/math.2024044
    [3] Zahid Iqbal, Muhammad Ishaq . Depth and Stanley depth of edge ideals associated to some line graphs. AIMS Mathematics, 2019, 4(3): 686-698. doi: 10.3934/math.2019.3.686
    [4] Malik Muhammad Suleman Shahid, Muhammad Ishaq, Anuwat Jirawattanapanit, Khanyaluck Subkrajang . Depth and Stanley depth of the edge ideals of multi triangular snake and multi triangular ouroboros snake graphs. AIMS Mathematics, 2022, 7(9): 16449-16463. doi: 10.3934/math.2022900
    [5] Pakorn Palakawong na Ayutthaya, Bundit Pibaljommee . On n-ary ring congruences of n-ary semirings. AIMS Mathematics, 2022, 7(10): 18553-18564. doi: 10.3934/math.20221019
    [6] Dijian Wang, Dongdong Gao . Laplacian integral signed graphs with few cycles. AIMS Mathematics, 2023, 8(3): 7021-7031. doi: 10.3934/math.2023354
    [7] Shengjie He, Qiaozhi Geng, Rong-Xia Hao . The extremal unicyclic graphs with given diameter and minimum edge revised Szeged index. AIMS Mathematics, 2023, 8(11): 26301-26327. doi: 10.3934/math.20231342
    [8] Dalal Awadh Alrowaili, Uzma Ahmad, Saira Hameeed, Muhammad Javaid . Graphs with mixed metric dimension three and related algorithms. AIMS Mathematics, 2023, 8(7): 16708-16723. doi: 10.3934/math.2023854
    [9] Jinlei Dong, Fang Li, Longgang Sun . Derived equivalence, recollements under H-Galois extensions. AIMS Mathematics, 2023, 8(2): 3210-3225. doi: 10.3934/math.2023165
    [10] Bana Al Subaiei, Ahlam AlMulhim, Abolape Deborah Akwu . Vertex-edge perfect Roman domination number. AIMS Mathematics, 2023, 8(9): 21472-21483. doi: 10.3934/math.20231094
  • In this paper, reproducing kernel interpolation collocation method is explored for nonlinear fractional integral differential equations with Caputo variable order. In order to testify the feasibility of this method, several examples are studied from the different values of parameters. In addition, the influence of the parameters of the Jacobi polynomial on the numerical results is studied. Our results reveal that the present method is effective and provide highly precise numerical solutions for solving such fractional integral differential equations.



    Let K be a field and S=K[x1,x2,,xd] be the polynomial ring over K with standard grading, that is, deg(xi)=1, for all i. Let M be a finitely generated graded S-module. Suppose that M admits the following minimal free resolution:

    0jZS(j)βp,j(M)jZS(j)βp1,j(M)jZS(j)β0,j(M)M0

    Let pdim(M) denotes the projective dimension of M. Then

    pdim(M)=max{i:βi,j(M)0 for some jZ}.

    Depth is an algebraic invariant of module M denoted by depth(M) and is defined as the common length of maximal regular sequences on M in the ideal m=(x1,x2,,xd), where m is the unique graded maximal ideal of S. If M is a finitely generated Zd graded module over the Zd graded ring S, then for a homogeneous element uM and a subset W{x1,x2,,xd}, uK[W] denotes the K-subspace of M generated by all homogeneous elements of the form uv, where v is a monomial in K[W]. Such a linear K-subspace uK[W] is called a Stanley space of dimension |W| if it is a free K[W]-module, where |W| denotes the number of indeterminates in W. A Stanley decomposition of M is a presentation of the K-vector space M as a finite direct sum of Stanley spaces

    D:M=si=1aiK[Wi].

    The Stanley depth of decomposition D is  sdepth(D)=min{|Wi|:i=1,2,,s}. The Stanley depth of M is

     sdepth(M)=max{ sdepth(D):D is a Stanley decomposition of M}.

    We refer the readers to [1] for a detailed introduction to Stanley depth. In 1982 Stanley conjectured in [2] that, if M is a finitely generated Zd-graded S-module, then  sdepth(M)depth(M). Ichim et al. gave an algorithm for computing Stanley depth in [3]. Let IJ be monomial ideal of S, then Ichim et al. [4] reduced the Stanley's conjecture for the module of the type J/I to the case when I and J are square free monomial ideals. This conjecture was proved for some special classes of modules; see for instance [5,6,7]. However, this conjecture was later disproved by Duval et al. in [8]. For some other interesting results on Stanley depth we refer the readers to [9,10,11,12].

    Let G=(V(G),E(G)) be a graph with vertex set V(G)={x1,x2,,xd} and edge set E(G). All graphs considered in this paper are simple and undirected. The degree of a vertex in a graph G is the number of edges incident to that vertex. A vertex of a graph is a pendant vertex if it is of degree one. An edge ideal of a graph G is a square free monomial ideal of polynomial ring S, that is, I(G)=(xixj:{xi,xj}E(G)). Several papers have been written on depth and Stanley depth of S/I(G); see for instance [13,14,15]. A graph is known as a path if it is a sequence of vertices such that each vertex in the sequence is adjacent to the vertex next to it. A tree is a graph in which there is a unique path between any two vertices of it. A tree in which one vertex is selected as a root vertex and all other vertices are directed away from it, is known as a rooted tree. A vertex of tree is known as parent, if at least one edge is directed from it to another vertex of a tree. A vertex to which edge is directed from the parent is known as a child. A tree is called an h-ary tree if each of its vertex has at most h children. An h-ary tree is called a perfect h-ary tree of height t if each of its parent vertex has h children, and all non parent vertices are at distance t from the root vertex. B. Shaukat et al. [16] computed formulas for the values of depth, Stanley depth and projective dimension of residue class rings of the edge ideals of perfect h-ary trees.

    In this article we define a tree which we call a {perfect [h,d]-ary tree} and a unicyclic graph closely related to the perfect [h,d]-ary tree. We compute exact values of depth, Stanley depth and projective dimension for quotient rings associated to the edge ideals of perfect [h,d]-ary trees and quotient rings associated to the edge ideals of considered unicyclic graphs, except for the one special case of unicyclic graphs in which we compute tight bounds for the Stanley depth. For the values of depth see Theorem 3.4, 3.7, 4.2 and 4.5, and for the results related to Stanley depth see Theorem 3.5, 3.8, 4.3 and 4.6.

    Here we discuss some of the terminologies of Graph Theory. A graph is called simple if it is loopless and contains no multiple edges. Let n1, if Pd represents a path graph on d vertices say x1,x2,,xd, then E(Pd)=d1i=1{{xi,xi+1}} (if d=1, then E(P1)= and I(P1)=(0)). A graph denoted by Cd with edge set E(Cd)=d1i=1{{xi,xi+1}}{x1,xd} is called a cycle on d vertices. The vertices x1 and x2 in a graph G are said to be fused or merged or identified if x1 and x2 are replaced by a single new vertex x, such that, every edge that was adjacent to either x1 or x2 or both, is adjacent to x. A path with end vertices xi and xj is known as xixj-path. A graph G is connected if it has xixj-path for each xi,xjV(G). A subgraph of a graph G is maximal connected if it is connected and is not contained in any other connected subgraph of G. A maximal connected subgraph of a graph G is called its component. For vertices xi and xj of a graph G, the length of a shortest path from xi to xj is called the distance between xi and xj denoted by dG(xi,xj). If no such path exists between xi and xj, then dG(xi,xj)=. As defined earlier a tree is a graph in which there is a unique path between any two vertices of it. A forest is a graph whose all components are trees. A caterpillar is a tree in which all the vertices are at distance at most one from the central path. A lobster graph is a tree in which all the vertices are at distance at most two from the central path.

    If h=1, then a perfect h-ary tree is a path, and we designate one of its pendant vertex as a root. If h2, then there is only one vertex of degree h in a perfect h-ary tree, and we designate that unique vertex as a root. Let h2, d1 and H1,H2,,Hd be perfect (h1)-ary trees such that HiHj for all i and j. Let x1,x2,,xd be the root vertices of H1,H2,,Hd, respectively, and y1,y2,,yd be the vertices of the path Pd. Let H be a forest with d+1 components H1,H2,,Hd and Pd. If we fuse the vertex xi with yi for all i{1,2,,d} in H, then we get a tree which we call a perfect [h,d]-ary tree. If t is the common height of all perfect (h1)-ary trees in H, then we denote such a perfect [h,d]-ary tree by Ph,t,d. See Figures 1 and 2 for an example of Ph,t,d. Now let d3. If we add an edge between the vertices x1 and xd of Ph,t,d, then we get a unicyclic graph and we denote this unicyclic graph by Ch,t,d.

    Figure 1.  A forest consisting of three perfect 3-ary trees and P3.
    Figure 2.  A perfect [4,3]-ary tree.

    See Figures 3 and 4 for examples and labeling of vertices of Ph,t,d and Ch,t,d.

    Figure 3.  P2,2,7 and C2,2,4, respectively.
    Figure 4.  G(I(P3,3,3):x(0)3) and G(I(P3,3,3),x(0)3), respectively.

    Remark 2.1. Note that

    (1) If h2, t1, and d=1, then Ph,t,1 is a perfect (h1)-ary tree.

    (2) If h2, t=1 and d1, then Ph,1,d belongs to the class of caterpillar trees.

    (3) If h2, t=2 and d1, then Ph,2,d is a special class of lobster trees.

    Now we state some results that will be used frequently throughout this article.

    Lemma 2.2. Let I=I(Pd)S=K[x1,x2,,xd] be an ideal of S, then

    (1) depth(S/I)=d3 ([17,Lemma 2.8]).

    (2)  sdepth(S/I)=d3 ([18,Lemma 4]).

    Proposition 2.3. [19,Proposition 1.3 and 1.8] Let I=I(Cd)S=K[x1,x2,,xd] be an ideal of S, then depth(S/I)=d13 and  sdepth(S/I)d13.

    Lemma 2.4. [20,Theorem 2.6] Let h2, t=1 and d=1. If S=K[V(Ph,1,1)], then depth(S/I(Ph,1,1))= sdepth(S/I(Ph,1,1))=1.

    Theorem 2.5. [21,Theorem 3.5 and 3.6] Let S=K[V(Ph,2,d)], h2, t=2 and d1, then depth(S/I(Ph,2,d))= sdepth(S/I(Ph,2,d))=(h1)d.

    Theorem 2.6. [21,Theorem 4.3 and 4.4] Let S=K[V(Ch,2,d)], h2, t=2 and d3, then depth(S/I(Ch,2,d))= sdepth(S/I(Ch,2,d))=(h1)d.

    Proposition 2.7. [16,Proposition 2.2] Let h3 and t1. If S=K[V(Ph,t,1)], then

    depth(S/I(Ph,t,1))=sdepth(S/I(Ph,t,1))={(h1)2((h1)t1)(h1)31+1, if t0(mod3);(h1)+21(h1)31, if t1(mod3);(h1)+2h+1(h1)31, if t2(mod3).

    Theorem 2.8. [22,Theorem 1.3.3] (Auslander–Buchsbaum formula) Let R be a commutative Noetherian local ring and M be a non-zero finitely generated R-module. If pdim(M)<, then

    pdim(M)+depth(M)=depth(R).

    Now we give some results that play important role while proving our main results of this article.

    Lemma 2.9. [23,Lemma 2.2] Let 0R1R2R30 be a short exact sequence of finitely generated Zd-graded Smodules, then  sdepth(R2)min{ sdepth(R1), sdepth(R3)}.

    Proposition 2.10. [24,Proposition 2.7] Let JS be a monomial ideal and w be a monomial such that wJ, then  sdepth(S/(J:w)) sdepth(S/J).

    Lemma 2.11. [22,Proposition 1.2.9] (Depth Lemma) Let 0R1R2R30 be a short exact sequence of Zd-graded S-modules, then

    (1) depth(R2)min{depth(R1),depth(R3)}.

    (2) depth(R1)min{depth(R2),depth(R3)+1}.

    (3) depth(R3)min{depth(R1)1,depth(R2)}.

    Remark 2.12. Let JS be a monomial ideal. Then for xJ, the short exact sequence

    0S/(J:x)xS/JS/(J,x)0

    implies that

    (1) depth(S/J)min{depth(S/(J:x)),depth(S/(J,x))},

    (2)  sdepth(S/J)min{ sdepth(S/(J:x)), sdepth(S/(J,x))}.

    Moreover, if depth(S/(J:x))depth(S/(J,x)), then by Depth Lemma depth(S/J)=depth(S/(J:x)).

    The following results will be used frequently in our proofs and we will not be referring it again and again.

    Lemma 2.13. [25,Lemma 3.6] Let IS=K[x1,x2,,xd] be a monomial ideal. If S=SKK[xd+1]S[xd+1], then depth(S/IS)=depth(S/I)+1 and  sdepth(S/IS)= sdepth(S/I)+1.

    Lemma 2.14. [26,Lemma 2.12 and 2.13] Let J1S1=K[x1,x2,,xt] and J2S2=K[xt+1,xt+2,,xd] be monomial ideals where 1t<d. If S=S1KS2, then

    (1) depthS(S1/J1KS2/J2)=depthS(S/(J1S+J2S))=depthS1(S1/J1)+depthS2(S2/J2).

    (2)  sdepthS(S1/J1KS2/J2) sdepthS1(S1/J1)+ sdepthS2(S2/J2).

    The following lemma is proved by B. Shaukat et al. [27]. Since the paper is not yet published, we present here a short proof for the sake of completeness.

    Lemma 2.15. [27] Let h2, t=1.

    (1) If d1 and S=K[V(Ph,1,d)], then

    depth(S/I(Ph,1,d))= sdepth(S/I(Ph,1,d))=d+(h2)d12.

    (2) If d3 and S=K[V(Ch,1,d)], then

    depth(S/I(Ch,1,d))= sdepth(S/I(Ch,1,d))=d+(h2)d2.

    Proof. (1) Result is proved by induction on d. If d=1, then the result follows from Lemma 2.4. Now let d2. We have

    S/(I(Ph,1,d):x(0)d)K[V(Ph,1,d2)]/I(Ph,1,d2)kK[x(1)(d2)(h1)+1,,x(1)(d1)(h1),x(0)d]

    (if d=2, K[V(Ph,1,d2)]/I(Ph,1,d2)K) and

    S/(I(Ph,1,d),x(0)d)K[V(Ph,1,d1)]/I(Ph,1,d1)kK[x(1)(d1)(h1)+1,,x(1)(d)(h1)].

    By Lemma 2.13 we have,

    depth(S/(I(Ph,1,d):x(0)d))=depth(K[V(Ph,1,d2)]/I(Ph,1,d2))+depth(K[x(1)(d2)(h1)+1,,x(1)(d1)(h1),x(0)d])

    and

    depth(S/(I(Ph,1,d),x(0)d))=depth(K[V(Ph,1,d1)]/I(Ph,1,d1))+depth(K[x(1)(d1)(h1)+1,,x(1)(d)(h1)]).

    Then again by Lemma 2.13 and induction, we have

    depth(S/(I(Ph,1,d):x(0)d))=(d2)+(h2)d32+h=d+(h2)d12

    and

    depth(S/(I(Ph,1,d),x(0)d))=(d1)+(h2)d22+h1=d+(h2)d2.

    Hence by Remark 2.12 we have depth(S/I(Ph,1,d))=d+(h2)d12. Now we discuss the proof for Stanley depth. For lower bound we use the same arguments as used in the proof of depth and we use Lemma 2.9 instead of Lemma 2.11. And we compute the desired upper bound by using Proposition 2.10.

    (2) The proof of this result is similar to the proof given above and it involves the use of values of depth and Stanley depth of S/I(Ph,1,d) which are computed above.

    In this section we compute depth, Stanley depth and projective dimension of the quotient ring K[V(Ph,t,d)]/I(Ph,t,d). We also prove that the depth and Stanley depth are equal.

    Remark 3.1. In this remark we introduce some terms that appear in some special cases of our proofs when we use induction.

    (1) If d=0, we define K[V(Ph,t,0)]/I(Ph,t,0):=K, hence

    depth(K[V(Ph,t,0)]/I(Ph,t,0))= sdepth(K[V(Ph,t,0)]/I(Ph,t,0))=0.

    (2) If d2, we define K[V(Ph,0,d)]/I(Ph,0,d):=K[V(Pd)]/I(Pd), hence by Lemma 2.2

    depth(K[V(Ph,0,d)]/I(Ph,0,d))= sdepth(K[V(Ph,0,d)]/I(Ph,0,d))=d3.

    Remark 3.2. While doing the computations of depth and Stanley depth for the quotient ring associated to edge ideals of both perfect [h,d]-ary trees and a unicyclic graph, it was observed that the patterns of computed values were different for h=2 and h3. So our results are based on two cases of h, that is for h=2 and h3. Further, these two cases are classified on the basis of variable t.

    Remark 3.3. Let IS be a squarefree monomial ideal whose minimal generating set comprises of monomials of degree at most two. We associate a graph GI to an ideal I with vertex set and edge set defined as V(GI)=supp(I) and E(GI)={{xa,xb}:xaxbG(I)}, respectively. We know that for xiI, (I:xi) and (I,xi) are also squarefree monomial ideals minimally generated by monomials of degree at most two. The graphs G(I:xi) and G(I,xi) are subgraphs of graph GI. See Figure 4 for examples of G(I(P3,3,3):x(0)3) and G(I(P3,3,3),x(0)3)that are subgraphs of GI(P3,3,3). By using the structures of these subgraphs we have the following isomorphisms:

    S/(I(P3,3,3):x(0)3)K[V(P3,3,1)]/I(P3,3,1)K2Ki=1K[V(P3,2,1)]/I(P3,2,1)K4Ki=1K[V(P3,1,1)]/I(P3,1,1)KK[x(0)3]

    and

    S/(I(P3,3,3),x(0)3)K[V(P3,3,2)]/I(P3,3,2)K2Ki=1K[V(P3,2,1)]/I(P3,2,1).

    Theorem 3.4. Let t1 and d1. If S=K[V(P2,t,d)], then

    depth(S/I(P2,t,d))={dt3+d3,t0(mod3);t3d,t1,2(mod3).

    Proof. We will prove this result by induction on d. For d=1 and d=2, K[V(P2,t,1)]/I(P2,t,1)K[V(Pt+1)]/I(Pt+1) and K[V(P2,t,2)]/I(P2,t,2)K[V(P2(t+1))]/I(P2(t+1)), respectively. Then by Lemma 2.2, depth(S/I(P2,t,1))=t+13 and depth(S/I(P2,t,2))=2(t+1)3, as desired. Now let d3. For t=1 the result follows from Lemma 2.15 and for t=2 the result follows from Theorem 2.5. Now let t3, we have the following cases:

    (1) Let t0(mod3). We have

    S/(I(P2,t,d):x(0)d1)K[V(P2,t,d3)]/I(P2,t,d3)K2Ki=1K[V(Pt)]/I(Pt)KK[V(Pt1)]/I(Pt1)KK[x(0)d1]

    and

    S/(I(P2,t,d),x(0)d1)K[V(P2,t,d2)]/I(P2,t,d2)KK[V(Pt+1)]/I(Pt+1)KK[V(Pt)]/I(Pt).

    Then by induction, Lemma 2.14 and Lemma 2.2 we have

    depth(S/(I(P2,t,d):x(0)d1))=depth(K[V(P2,t,d3)]/I(P2,t,d3))+1+2i=1depth(K[V(Pt)]/I(Pt))+depth(K[V(Pt1)]/I(Pt1))=t3(d3)+d33+2t3+t13+1

    and

    depth(S/(I(P2,t,d),x(0)d1))=depth(K[V(P2,t,d2)]/I(P2,t,d2))+depth(K[V(Pt+1)]/I(Pt+1))+depth(K[V(Pt)]/I(Pt))=t3(d2)+d23+t+13+t3.

    Since t0(mod3) implies t13=t3=(t3) and t+13=t3+1. Thus we have depth(S/(I(P2,t,d):x(0)d1))=dt3+d3 and depth(S/(I(P2,t,d),x(0)d1))=dt3+d23+1=dt3+d+13. Hence by Remark 2.12 depth(S/I(P2,t,d))=dt3+d3.

    (2) Let t1(mod3). We have

    S/(I(P2,t,d):x(0)d)K[V(P2,t,d2)]/I(P2,t,d2)KK[V(Pt)]/I(Pt)KK[V(Pt1)]/I(Pt1)KK[x(0)d]

    and

    S/(I(P2,t,d),x(0)d)K[V(P2,t,d1)]/I(P2,t,d1)KK[V(Pt)]/I(Pt).

    By induction, Lemma 2.14 and Lemma 2.2 we have

    depth(S/(I(P2,t,d):x(0)d))=depth(K[V(P2,t,d2)]/I(P2,t,d2))+1+depth(K[V(Pt)]/I(Pt))+depth(K[V(Pt1)]/I(Pt1))=t3(d2)+t3+t13+1,

    since t1(mod3) implies t13+1=t3 so depth(S/(I(P2,t,d):x(0)d))=t3d and

    depth(S/(I(P2,t,d),x(0)d))=depth(K[V(P2,t,d1)]/I(P2,t,d1))+depth(K[V(Pt)]/I(Pt))=t3(d1)+t3=t3d.

    Hence by Remark 2.12 depth(S/I(P2,t,d))=t3d.

    (3) Let t2(mod3). We have

    S/(I(P2,t,d):x(1)d)K[V(P2,t,d1)]/I(P2,t,d1)KK[V(Pt2)]/I(Pt2)KK[x(1)d].

    Now let J=(I(P2,t,d),x(1)d). We have the following isomorphisms:

    S/(J:x(0)d)K[V(P2,t,d2)]/I(P2,t,d2)KK[V(Pt)]/I(Pt)KK[V(Pt1)]/I(Pt1)KK[x(0)d]

    and

    S/(J,x(0)d)K[V(P2,t,d1)]/I(P2,t,d1)KK[V(Pt1)]/I(Pt1).

    Then by induction, Lemma 2.14 and Lemma 2.2 we have

    depth(S/(I(P2,t,d):x(1)d))=depth(K[V(P2,t,d1)]/I(P2,t,d1))+depth(K[V(Pt2)]/I(Pt2))+1=t3(d1)+t23+1=t3dt3+t+13,
    depth(S/(J:x(0)d))=depth(K[V(P2,t,d2)]/I(P2,t,d2))+depth(K[V(Pt)]/I(Pt))+depth(K[V(Pt1)]/I(Pt1))+1=t3(d2)+t3+t13+1

    and

    depth(S/(J,x(0)d))=depth(K[V(P2,t,d1)]/I(P2,t,d1))+depth(K[V(Pt1)]/I(Pt1))=t3(d1)+t13=t3dt3+t+1323.

    Since t2(mod3) implies t+13=t3, t13+1=t3+1 and t+1323=t3. So we have depth(S/(I(P2,t,d):x(1)d))=t3d, depth(S/(J:x(0)d))=t3d+1 and depth(S/(J,x(0)d))=t3d. Thus by Remark 2.12 depth(S/J)t3d and also J=(I(P2,t,d),x(1)d) implies depth(S/(I(P2,t,d),x(1)d))t3d. Hence again by Remark 2.12 depth(S/I(P2,t,d))=t3d.

    Theorem 3.5. Let t1 and d1. If S=K[V(P2,t,d)], then

     sdepth(S/I(P2,t,d))={dt3+d3,t0(mod3);t3d,t1,2(mod3).

    Proof. For d=1,2 result holds and proof is similar to as done in Theorem 3.4 by using Lemma 2.2. Now let d3. With similar arguments as in Theorem 3.4 and using Lemma 2.14 and Remark 2.12 we get the lower bounds

     sdepth(S/I(P2,t,d)){dt3+d3,t0(mod3);t3d,t1,2(mod3).

    Now we will compute upper bound by induction on t. If t=1, by Lemma 2.15 we have  sdepth(S/I(P2,t,d))=d, as desired. For t=2, by Theorem 2.5  sdepth(S/I(P2,t,d))=d satisfies the result. Now let t3 and u be a monomial such that u:=x(t1)1x(t1)2x(t1)d. We have the following isomorphism:

    S/(I(P2,t,d):u)K[V(P2,t3,d)]/I(P2,t3,d)KK[x(t1)1,x(t1)2,,x(t1)d], then we have

     sdepth(S/(I(P2,t,d):u))= sdepth(K[V(P2,t3,d)]/I(P2,t3,d))+d. (3.1)

    By Proposition 2.10 we have  sdepth(S/I(P2,t,d)) sdepth(S/(I(P2,t,d):u)).

    (1) Let t0(mod3). Since t30(mod3), then from Eq (3.1) and by induction on t we have

     sdepth(K[V(P2,t3,d)]/I(P2,t3,d))+d=t33d+d3+d=dt3+d3.

    (2) Let t1,2(mod3). Since t31,2(mod3), then from Eq (3.1) and by induction on t we have

     sdepth(K[V(P2,t3,d)]/I(P2,t3,d))+d=t33d+d=t3d.

    Corollary 3.6. Let h=2, t1 and d1. If S=K[V(P2,t,d)], then

    pdim(S/I(P2,t,d))={(2t3+1)dd3,t0(mod3);d(t+1)t3d,t1,2(mod3).

    Proof. We have |V(P2,t,d)|=d(t+1), therefore, depth(S)=d(t+1). Hence we get the required result by using Theorem 3.4 and Theorem 2.8.

    Theorem 3.7. Let h3, t1 and d1. If S=K[V(Ph,t,d)], then

    depth(S/I(Ph,t,d))={d((h1)t+2(h1)2)(h1)31+d3,t0(mod3);d((h1)t+21)(h1)31+(h2)d12,t1(mod3);d((h1)t+2(h1))(h1)31,t2(mod3).

    Proof. We will prove this result by induction on d. If d=1, the result follows from Proposition 2.7. Now let d2. For t=1 the result follows from Lemma 2.15 and for t=2 the result follows from Theorem 2.5. Now let t3, we consider the following three cases:

    (1) Let t0(mod3). We consider two subcases

    (i) d=2.

    (ii) d3.

    If d=2, then we have the following isomorphisms:

    S/(I(Ph,t,2):x(0)1)(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)KK[x(0)1]

    and

    S/(I(Ph,t,2),x(0)1)K[V(Ph,t,1)]/I(Ph,t,1)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1).

    Now if d3, then we have

    S/(I(Ph,t,d):x(0)d1)K[V(Ph,t,d3)]/I(Ph,t,d3)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)KK[x(0)d1]

    and

    S/(I(Ph,t,d),x(0)d1)K[V(Ph,t,d2)]/I(Ph,t,d2)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)KK[V(Ph,t,1)]/I(Ph,t,1).

    First we prove the result for subcase (ii) and the proof for subcase (i) is similar and will be discussed later. Since t12(mod3) and t21(mod3), then by Lemma 2.14, Proposition 2.7 and induction we have

    depth(S/(I(Ph,t,d):x(0)d1))=depth(K[V(Ph,t,d3)]/I(Ph,t,d3))+(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+(h1)2i=1depth(K[V(Ph,t2,1)]/I(Ph,t2,1))+depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+1=(h1)t+2(h1)2(h1)31(d3)+d33+2(h1)(h1)t1+2(h1)(h1)31+(h1)2(h1)t2+21(h1)31+1=d((h1)t+2(h1)2)(h1)31+d3

    and

    depth(S/(I(Ph,t,d),x(0)d1))=depth(K[V(Ph,t,d2)]/I(Ph,t,d2))+(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+depth(K[V(Ph,t,1)]/I(Ph,t,1))=(h1)t+2(h1)2(h1)31(d2)+d23+(h1)(h1)t1+2(h1)(h1)31+(h1)t+2(h1)2(h1)31+1=d((h1)t+2(h1)2)(h1)31+d+13.

    Hence by Remark 2.12 depth(S/(I(Ph,t,d))=d((h1)t+2(h1)2)(h1)31+d3.

    For subcase (i) the proof is similar, therefore we omit the detailed proof. We have the values depth(S/(I(Ph,t,2):x(0)1))=2((h1)t+2(h1)2)(h1)31+1 and depth(S/(I(Ph,t,2),x(0)1))=2((h1)t+2(h1)2)(h1)31+1. The required result follows by using Remark 2.12.

    (2) Let t1(mod3). We again consider two subcases that is d=2 and d3.

    (i) Let d=2. We have the following isomorphims:

    S/(I(Ph,t,2):x(0)2)(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)KK[x(0)2]

    and

    S/(I(Ph,t,2),x(0)2)K[V(Ph,t,1)]/I(Ph,t,1)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1).

    Since t10(mod3) and t22(mod3), then by Lemma 2.14 and Proposition 2.7

    depth(S/(I(Ph,t,2):x(0)2))=(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+(h1)2i=1depth(K[V(Ph,t2,1)]/I(Ph,t2,1))+1=(h1){(h1)t1+2(h1)2(h1)31+1}+(h1)2(h1)t2+2(h1)(h1)31+1=2((h2)t+21)(h1)31+(h2)

    and

    depth(S/(I(Ph,t,2),x(0)2))=depth(K[V(Ph,t,1)]/I(Ph,t,1))+(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))=(h1)t+21(h1)31+(h1){(h1)t1+2(h1)2(h1)31+1}=2((h1)t+21)(h1)31+(h2).

    Hence by Remark 2.12, depth(S/(I(Ph,t,2))=2((h1)t+21)(h1)31+(h2), as desired.

    (ii) Now let d3. We have the following isomorphisms:

    S/(I(Ph,t,d):x(0)d)K[V(Ph,t,d2)]/I(Ph,t,d2)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)KK[x(0)d],
    S/(I(Ph,t,d),x(0)d)K[V(Ph,t,d1)]/I(Ph,t,d1)K(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1).

    Then similarly as done for subcase (i) by using same arguments for each terms of above isomorphisms except for first terms on which induction on d is applied and we have the values depth(S/(I(Ph,t,d):x(0)d))=d((h1)t+21)(h1)31+(h2)d12 and depth(S/(I(Ph,t,d),x(0)d))=d((h1)t+21)(h1)31+(h2)d2. Hence by Remark 2.12 we have depth(S/I(Ph,t,d))=d((h1)t+21)(h1)3+(h2)d12.

    (3) Let t2(mod3).

    (i) Let d=2. We have the following isomorphisms:

    S/(I(Ph,t,2):x(1)2(h1))K[V(Ph,t,1)]/I(Ph,t,1)K(h2)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t3,1)]/I(Ph,t3,1)K[x(1)2(h1)],

    Now let J=(I(Ph,t,2),x(1)2(h1)). We have

    S/(J:x(0)2)(h1)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)2Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1)K[x(0)2],
    S/(J,x(0)2)K[V(Ph,t,1)]/I(Ph,t,1)K(h2)Ki=1K[V(Ph,t1,1)]/I(Ph,t1,1)K(h1)Ki=1K[V(Ph,t2,1)]/I(Ph,t2,1).

    Since t11(mod3) and t32(mod3), then by Lemma 2.14 and Proposition 2.7 we have

    depth(S/(I(Ph,t,2):x(1)2(h1)))=depth(K[V(Ph,t,1)]/I(Ph,t,1))+(h2)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+(h1)2i=1depth(K[V(Ph,t3,1)]/I(Ph,t3,1))+1=(h1)t+2(h1)(h1)31+(h2)(h1)t1+21(h1)31+(h1)2(h1)t3+2(h1)(h1)31+1=2((h1)t+2(h1))(h1)31,
    depth(S/(J:x(0)2))=(h1)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+(h1)2i=1depth(K[V(Ph,t2,1)]/I(Ph,t2,1))+1=(h1)(h1)t1+21(h1)31+(h1)2{(h1)t2+2(h1)2(h1)31+1}+1=2((h1)t+2(h1))(h1)31+(h1)(h2)+1

    and

    depth(S/(J,x(0)2))=depth(K[V(Ph,t,1)]/I(Ph,t,1))+(h2)i=1depth(K[V(Ph,t1,1)]/I(Ph,t1,1))+(h1)i=1depth(K[V(Ph,t2,1)]/I(Ph,t2,1))=(h1)t+2(h1)(h1)31+(h2)(h1)t1+21(h1)31+(h1){(h1)t2+2(h1)2(h1)31+1}=2((h1)t+2(h1))(h1)31+(h2).

    Thus by Remark 2.12 we have depth(S/J)2((h1)t+2(h1))(h1)31)+(h2) and also J=(I(Ph,t,2),x(1)2(h1)) implies depth(S/(I(Ph,t,2),x(1)2(h1)))2((h1)t+2(h1))(h1)31+(h2). Hence again by Remark 2.12 we have, depth(S/I(Ph,t,2))=2((h1)t+2(h1))(h1)31.

    (ii) Now let d\geq3 .

    Let J = (I(\mathscr{P}_{h, t, d}), x^{(1)}_{(h-1)d}) . We have the following isomorphisms:

    \begin{equation*} \begin{split} S/(I(\mathscr{P}_{h, t, d}):x^{(1)}_{(h-1)d}) \cong& K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1}) \quad { \otimes _{K}} \underset{i = 1}{\overset{(h-2)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \quad { \otimes _{K}}\\& \underset{i = 1}{\overset{(h-1)^{2}}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1}) \quad { \otimes _{K}} \quad K[x^{(1)}_{(h-1)d}], \end{split} \end{equation*}
    \begin{equation*} \begin{split} S/(J:x^{(0)}_{d}) \cong &K[V(\mathscr{P}_{h, t, d-2})]/I(\mathscr{P}_{h, t, d-2}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-1)}{ \otimes _{K}}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \quad { \otimes _{K}} \\&\underset{i = 1}{\overset{(h-1)^{2}}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) ) \quad { \otimes _{K}} \quad K[x^{(0)}_{d}] \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} S/(J, x^{(0)}_{d}) \cong& K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-2)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \quad { \otimes _{K}} \\&\underset{i = 1}{\overset{(h-1)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}). \end{split} \end{equation*}

    Then similarly as done for d = 2 by using the same arguments for each terms of above isomorphisms except for the first terms on which induction on d is applied we get the values \text{depth}(S/(I(\mathscr{P}_{h, t, d}):x^{(1)}_{(h-1)d})) = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1} , \text{depth}(S/(J:x^{(0)}_{d})) = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}+(h-1)(h-2)+1 and \text{depth}(S/(J, x^{(0)}_{d})) = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}+(h-2) . And so we have \text{depth}(S/I(\mathscr{P}_{h, t, d})) = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}.

    Theorem 3.8. Let d\geq1 , t\geq1 and h\geq3 . If S = K[V(\mathscr{P}_{h, t, d})] , then

    \begin{equation*} \text{ sdepth}\left(S/I(\mathscr{P}_{h, t, d})\right) = \begin{cases} \frac{d\big((h-1)^{t+2}-(h-1)^{2}\big)}{(h-1)^{3}-1} + \lceil\frac{d}{3}\rceil, \quad t\equiv0(\mod3);\\ \frac{d\big((h-1)^{t+2}-1\big)}{(h-1)^{3}-1}+ (h-2)\lceil\frac{d-1}{2}\rceil, \quad t\equiv1(\mod3);\\ \frac{d\big((h-1)^{t+2}-(h-1)\big)}{(h-1)^{3}-1}, \quad t\equiv2(\mod3). \end{cases} \end{equation*}

    Proof. If d = 1 the result follows from Proposition 2.7. Now let d\geq2 . With similar arguments as in Theorem 3.7 and using Lemma 2.14 and Remark 2.12 we get lower bounds that is

    \begin{equation*} \text{ sdepth}\left(S/I(\mathscr{P}_{h, t, d})\right)\geq \begin{cases} \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1} + \lceil\frac{d}{3}\rceil, \quad t\equiv0(\mod3);\\ \frac{d((h-1)^{t+2}-1)}{(h-1)^{3}-1}+ (h-2)\lceil\frac{d-1}{2}\rceil, \quad t\equiv1(\mod3);\\ \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}, \quad t\equiv2(\mod3). \end{cases} \end{equation*}

    Now we will compute upper bound by induction on t . If t = 1 , by Lemma 2.15

    \text{ sdepth}(S/I(\mathscr{P}_{h, t, d})) = d+(h-2)\lceil\frac{d-1}{2}\rceil.

    If t = 2 , by Theorem 2.5 \text{ sdepth}(S/I(\mathscr{P}_{h, t, d})) = (h-1)(d) , as desired. Now let t\geq3 and u be a monomial such that u: = x_{1}^{(t-1)}x_{2}^{(t-1)}\dotso x_{d(h-1)^{t-1}}^{(t-1)} . We have the following isomorphism:

    S/(I(\mathscr{P}_{h, t, d}):u) \cong K[V(\mathscr{P}_{h, t-3, d})]/I(\mathscr{P}_{h, t-3, d}) \quad { \otimes _{K}} \quad K[x_{1}^{(t-1)}, x_{2}^{(t-1)}, \dotso, x_{d(h-1)^{t-1}}^{(t-1)}],

    then we have

    \begin{equation} \begin{split} \text{ sdepth} (S/(I(\mathscr{P}_{h, t, d}):u)) = \text{ sdepth}(K[V(\mathscr{P}_{h, t-3, d})]/I(\mathscr{P}_{h, t-3, d}))+ d(h-1)^{t-1}. \end{split} \end{equation} (3.2)

    By Proposition 2.10 we have \text{ sdepth} (S/I(\mathscr{P}_{h, t, d}))\leq \text{ sdepth} (S/(I(\mathscr{P}_{h, t, d}):u)) .

    \bf (1) Let t\equiv0(\mod3) . Since t-3\equiv0(\mod3) thus by Eq (3.2) and induction on t , \text{ sdepth}(K[V(\mathscr{P}_{h, t-3, d})]/I(\mathscr{P}_{h, t-3, d}))+d(h-1)^{t-1} = \frac{d((h-1)^{t+2-3}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d}{3}\rceil + d (h-1)^{t-1} = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d}{3}\rceil.

    \bf (2) Let t\equiv1(\mod3) . Since t-3\equiv1(\mod3) thus by Eq (3.2) and induction on t we have, \text{ sdepth}(K[V(\mathscr{P}_{h, t-3, d})]/I(\mathscr{P}_{h, t-3, d}))+d(h-1)^{t-1} = \frac{d((h-1)^{t+2-3}-1)}{(h-1)^{3}-1}+(h-2)\lceil\frac{d-1}{2}\rceil + d(h-1)^{t-1} = \frac{d((h-1)^{t+2}-1)}{(h-1)^{3}-1}+(h-2)\lceil\frac{d-1}{2}\rceil.

    \bf (3) Let t\equiv2(\mod3) . Since t-3\equiv2(\mod3) thus by Eq (3.2) and induction on t we have, \text{ sdepth}(K[V(\mathscr{P}_{h, t-3, d})]/I(\mathscr{P}_{h, t-3, d}))+d(h-1)^{t-1} = \frac{d((h-1)^{t+2-3}-(h-1))}{(h-1)^{3}-1} + d(h-1)^{t-1} = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}.

    Corollary 3.9. Let h\geq 3 , t\geq1 and d\geq 3 . If S = K[V(\mathscr{P}_{h, t, d})] , then

    \begin{equation*} \text{pdim}\left(S/I(\mathscr{P}_{h, t, d})\right) = \begin{cases} \Big(\frac{(h-1)^{t+1}-1}{(h-2)}-\frac{(h-1)^{t+2}-(h-1)^{2}}{(h-1)^{3}-1}\Big)(d) - \lceil\frac{d}{3}\rceil, \quad t\equiv0(\mod3);\\ \Big(\frac{(h-1)^{t+1}-1}{(h-2)}-\frac{(h-1)^{t+2}-1}{(h-1)^{3}-1}\Big)(d) - (h-2)\lceil\frac{d-1}{2}\rceil, \quad t\equiv1(\mod3);\\ \Big(\frac{(h-1)^{t+1}-1}{(h-2)}-\frac{(h-1)^{t+2}-(h-1)}{(h-1)^{3}-1}\Big)(d), \quad t\equiv2(\mod3). \end{cases} \end{equation*}

    Proof. We have |V(\mathscr{P}_{h, t, d})| = \Big(\frac{(h-1)^{t+1}-1}{(h-2)}\Big)(d) , therefore, \text{depth}(S) = \Big(\frac{(h-1)^{t+1}-1}{(h-2)}\Big)(d) . Hence we get the required result by using Theorem 3.7 and Theorem 2.8.

    In this section we compute depth, Stanley depth and projective dimension of quotient ring K[V(\mathscr{C}_{h, t, d})]/I(\mathscr{C}_{h, t, d}) .

    Remark 4.1. In this remark we introduce some terms that appear in special cases of our proofs.

    (1) If d = 0 we define K[V(\mathscr{C}_{h, t, 0})]/I(\mathscr{C}_{h, t, 0}): = K , hence

    \text{depth}(K[V(\mathscr{C}_{h, t, 0})]/I(\mathscr{C}_{h, t, 0})) = \text{ sdepth}(K[V(\mathscr{C}_{h, t, 0})]/I(\mathscr{C}_{h, t, 0})) = 0.

    (2) If d\geq3 we define K[V(\mathscr{C}_{h, 0, d})]/I(\mathscr{C}_{h, 0, d}): = K[V(C_d)]/I(C_d) , hence by Proposition 2.3

    \text{depth}(K[V(\mathscr{C}_{h, 0, d})]/I(\mathscr{C}_{h, 0, d})) = \lceil\frac{d-1}{3}\rceil\, \ and \, \ \text{ sdepth}(K[V(\mathscr{C}_{h, 0, d})]/I(\mathscr{C}_{h, 0, d}))\geq\lceil\frac{d-1}{3}\rceil.

    Theorem 4.2. Let t\geq1 and d\geq3 . If S = K[V(\mathscr{C}_{2, t, d})] , then

    \begin{equation*} \text{depth}\left(S/I(\mathscr{C}_{2, t, d})\right) = \begin{cases} \frac{dt}{3} + \lceil\frac{d-1}{3}\rceil, \quad t\equiv0(\mod3);\\ \lceil\frac{t}{3}\rceil\cdot d, \quad t\equiv1, 2(\mod3).\\ \end{cases} \end{equation*}

    Proof. Let d\geq3 . For t = 1 the result follows from Lemma 2.15 and for t = 2 the result follows from Theorem 2.6. Now let t\geq3 .

    \bf (1) Let t\equiv0(\mod3) . We have

    \begin{equation*} \begin{split} S/(I(\mathscr{C}_{2, t, d}):x_{d}^{(0)})\cong & K[V(\mathscr{P}_{2, t, d-3})]/I(\mathscr{P}_{2, t, d-3}) \quad { \otimes _{K}} \underset{i = 1}{\overset{2}{ \otimes _{K}}} \quad K[V(P_t)]/I(P_t) \quad \\ &{ \otimes _{K}} \quad K[V(P_{t-1})]/I(P_{t-1}) \quad { \otimes _{K}} \quad K[x_{d}^{(0)}] \end{split} \end{equation*}

    and

    S/(I(\mathscr{C}_{2, t, d}), x_{d}^{(0)})\cong K[V(\mathscr{P}_{2, t, d-1})]/I(\mathscr{P}_{2, t, d-1}) \quad \quad { \otimes _{K}} \quad K[V(P_{t})]/I(P_{t}).

    Then by Lemma 2.14, Lemma 2.2 and Theorem 3.4

    \begin{equation*} \begin{split} \text{depth}\left(S/(I(\mathscr{C}_{2, t, d}):x_{d}^{(0)})\right)& = \text{depth}(K[V(\mathscr{P}_{2, t, d-3})]/I(\mathscr{P}_{2, t, d-3}))\\&\, \, \, +\underset{i = 1}{\overset{2}{\sum}}\text{depth}(K[V(P_t)]/I(P_t)) +\text{depth}(K[V(P_{t-1})]/I(P_{t-1})) + 1\\& = \frac{dt}{3}-\frac{t}{3}\cdot 3+\lceil\frac{d-3}{3}\rceil+2\big\lceil\frac{t}{3}\big\rceil+\lceil\frac{t-1}{3}\rceil+1 \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} \text{depth}\left(S/(I(\mathscr{C}_{2, t, d}), x_{d}^{(0)})\right)& = \text{depth}(K[V(\mathscr{P}_{2, t, d-1})]/I(\mathscr{P}_{2, t, d-1})) +\text{depth}(K[V(P_{t})]/I(P_{t}))\\& = \frac{t}{3}\cdot (d-1)+\lceil\frac{d-1}{3}\rceil+\lceil\frac{t}{3}\rceil. \end{split} \end{equation*}

    Since t\equiv0(\mod3) implies \lceil\frac{t-1}{3}\rceil = \lceil\frac{t}{3}\rceil = \frac{t}{3} . Hence \text{depth}\left(S/(I(\mathscr{C}_{2, t, d}):x_{d}^{(0)})\right) = \frac{dt}{3}+\lceil\frac{d-3}{3}+1\rceil = \frac{dt}{3}+\lceil\frac{d}{3}\rceil and \text{depth}\left(S/(I(\mathscr{C}_{2, t, d}), x_{d}^{(0)})\right) = \frac{dt}{3}+\lceil\frac{d-1}{3}\rceil. Since for d\equiv0, 2(\mod3) \text{depth}\left(S/(I(\mathscr{C}_{2, t, d}):x_{d}^{(0)})\right) = \text{depth}\left(S/(I(\mathscr{C}_{2, t, d}), x_{d}^{(0)})\right) . Thus by Remark 2.12 \text{depth}\left(S/I(\mathscr{C}_{2, t, d})\right) = \frac{dt}{3}+\lceil\frac{d-1}{3}\rceil .

    Now let d\equiv1(\mod3) . We have the following isomorphism:

    \begin{equation} \frac{(I(\mathscr{C}_{2, t, d}):x_{d}^{(0)})}{I(\mathscr{C}_{2, t, d})} \cong x_{1}^{(0)}A_{0} \oplus \quad x_{d-1}^{(0)}A_{1} \quad \oplus x_{d}^{(1)}A_{2}, \end{equation} (4.1)

    where

    \begin{equation*} \begin{split} A_{0} = \Big(K&[x_{3}^{(0)}, x_{4}^{(0)}, \dotso, x_{d-1}^{(0)}, x_{2}^{(1)}, \dotso, x_{d}^{(1)}, x_{1}^{(2)}, x_{2}^{(2)}, \dotso, x_{d}^{(2)}, \dotso, \\&x_{1}^{(t)}, x_{2}^{(t)}, \dotso, x_{d}^{(t)}]/\big(G(I(\mathscr{C}_{2, t, d}))\setminus \{x_{1}^{(0)}x_{1}^{(1)}, x_{1}^{(1)}x_{1}^{(2)}, x_{1}^{(0)}x_{2}^{(0)}, x_{2}^{(0)}x_{2}^{(1)}, \\&x_{2}^{(0)}x_{3}^{(0)}, x_{d-1}^{(0)}x_{d}^{(0)}, x_{1}^{(0)}x_{d}^{(0)}, x_{d}^{(0)}x_{d}^{(1)} \}\big)\Big)[x_{1}^{(0)}], \end{split} \end{equation*}
    \begin{equation*} \begin{split} A_{1} = \Big(K&[x_{2}^{(0)}, x_{3}^{(0)}, \dotso, x_{d-3}^{(0)}, x_{1}^{(1)}, x_{2}^{(1)}, \dotso, x_{d-2}^{(1)}, x_{d}^{(1)}, x_{1}^{(2)}, x_{2}^{(2)}, \dotso, x_{d}^{(2)}, \dotso, \\&x_{1}^{(t)}, x_{2}^{(t)}, \dotso, x_{d}^{(t)}]/\big(G(I(\mathscr{C}_{2, t, d}))\setminus \{x_{1}^{(0)}x_{1}^{(1)}, x_{1}^{(0)}x_{2}^{(0)}, x_{1}^{(0)}x_{d}^{(0)}, \\&x_{d-2}^{(0)}x_{d-3}^{(0)}, x_{d-2}^{(0)}x_{d-2}^{(1)}, x_{d-2}^{(0)}x_{d-1}^{(0)}, x_{d-1}^{(0)}x_{d}^{(0)}, x_{d-1}^{(0)}x_{d-1}^{(1)}, x_{d}^{(0)}x_{d}^{(1)}, x_{d-1}^{(1)}x_{d-1}^{(2)} \}\big)\Big)[x_{d-1}^{(0)}], \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} A_{2} = \Big(K&[x_{2}^{(0)}, x_{3}^{(0)}, \dotso, x_{d-2}^{(0)}, x_{1}^{(1)}, x_{2}^{(1)}, \dotso, x_{d-1}^{(1)}, x_{1}^{(2)}, x_{2}^{(2)}, \dotso, x_{d-1}^{(2)}, x_{1}^{(3)}, x_{2}^{(3)}, \dotso, x_{d}^{(3)}, \\&\dotso x_{1}^{(t)}, x_{2}^{(t)}, \dotso, x_{d}^{(t)}]/\big(G(I(\mathscr{C}_{2, t, d}))\setminus \{x_{1}^{(0)}x_{1}^{(1)}, x_{1}^{(0)}x_{2}^{(0)}, x_{1}^{(0)}x_{d}^{(0)}, \\&x_{d-1}^{(0)}x_{d-2}^{(0)}, x_{d-1}^{(0)}x_{d}^{(0)}, x_{d-1}^{(0)}x_{d-1}^{(1)}, x_{d}^{(0)}x_{d}^{(1)}, x_{d}^{(1)}x_{d}^{(2)}, x_{d}^{(2)}x_{d}^{(3)} \}\big)\Big)[x_{d}^{(1)}]. \end{split} \end{equation*}

    Indeed, if w is a monomial such that w\in(I(\mathscr{C}_{2, t, d}):x_{d}^{(0)}) but w \notin I(\mathscr{C}_{2, t, d}) , then w is divisible by at least one variable from the set \{x_{1}^{(0)}, x_{d-1}^{(0)}, x_{d}^{(1)}\} . If w is not divisible by any variable form the set \{x_{1}^{(0)}, x_{d-1}^{(0)}, x_{d}^{(1)}\} , then w \in I(\mathscr{C}_{2, t, d}) , a contradiction. Let w be a monomial such that w\in \frac{(I(\mathscr{C}_{2, t, d}):x_{d}^{(0)})}{I(\mathscr{C}_{2, t, d})} . In order to establish the isomorphism as given in Eq (4.1) one has to consider the following cases.

    Case 1. If x_{1}^{(0)}|w , then w = (x_{1}^{(0)})^{\alpha}u , where \alpha\geq1 , u\in K[x_{3}^{(0)}, x_{4}^{(0)}, \dotso, x_{d-1}^{(0)}, x_{2}^{(1)}, x_{2}^{(1)}, \dotso, x_{d}^{(1)}, x_{1}^{(2)}, x_{2}^{(2)}, \dotso, x_{d}^{(2)}, \dotso, x_{1}^{(t)}, x_{2}^{(t)}, \dotso, x_{d}^{(t)}] and u\notin \big(G(I(\mathscr{C}_{2, t, d}))\setminus \{x_{1}^{(0)}x_{1}^{(1)}, x_{1}^{(1)}x_{1}^{(2)}, x_{1}^{(0)}x_{2}^{(0)}, x_{2}^{(0)}x_{2}^{(1)}, x_{2}^{(0)}x_{3}^{(0)}, x_{d-1}^{(0)}x_{d}^{(0)}, x_{1}^{(0)}x_{d}^{(0)}, x_{d}^{(0)}x_{d}^{(1)} \}\big) . Thus w \in x_{1}^{(0)}A_{0} and it is easy to see that

    A_{0}\cong K[V(P_{t-1})]/I(P_{t-1}) \otimes _{K} K[V(\mathscr{P}_{2, t, d-3})]/I(\mathscr{P}_{2, t, d-3}) \quad \otimes _{K} \underset{i = 1}{\overset{2} \otimes _{K}}K[V(P_{t})]/I(P_{t}) \otimes _{K}K[x_{1}^{(0)}].

    Case 2. If x_{d-1}^{(0)}|w and x_{1}^{(0)}\nmid w , then w = (x_{d-1}^{(0)})^{\beta}v , where \beta\geq1 , v\in K[x_{2}^{(0)}, x_{3}^{(0)}, \dotso, x_{d-3}^{(0)}, x_{1}^{(1)}, x_{2}^{(1)}, \dotso, x_{d-2}^{(1)}, x_{d}^{(1)}, x_{1}^{(2)}, x_{2}^{(2)}, \dotso, x_{d}^{(2)}, \dotso, x_{1}^{(t)}, x_{2}^{(t)}, \dotso, x_{d}^{(t)}] and v\notin \big(G(I(\mathscr{C}_{2, t, d}))\setminus \{x_{1}^{(0)}x_{1}^{(1)}, x_{1}^{(0)}x_{2}^{(0)}, x_{1}^{(0)}x_{d}^{(0)}, x_{d-2}^{(0)}x_{d-3}^{(0)}, x_{d-2}^{(0)}x_{d-2}^{(1)}, x_{d-2}^{(0)}x_{d-1}^{(0)}, x_{d-1}^{(0)}x_{d}^{(0)}, x_{d-1}^{(0)}x_{d-1}^{(1)}, x_{d}^{(0)}x_{d}^{(1)}, x_{d-1}^{(1)}x_{d-1}^{(2)} \}\big)\Big) . Thus w\in x_{d-1}^{(0)}A_{1} and we have

    A_{1}\cong K[V(P_{t-1})]/I(P_{t-1}) \otimes _{K} K[V(\mathscr{P}_{2, t, d-4})]/I(\mathscr{P}_{2, t, d-4}) \quad \otimes _{K} \underset{i = 1}{\overset{3} \otimes _{K}}K[V(P_{t})]/I(P_{t}) \otimes _{K}K[x_{d-1}^{(0)}].

    Case 3. If x_{d}^{(1)}|w , x_{1}^{(0)}\nmid w and x_{d-1}^{(0)}\nmid w , then w = (x_{d}^{(1)})^{\gamma}z , where \gamma\geq1 , z\in K[x_{2}^{(0)}, x_{3}^{(0)}, \dotso, x_{d-2}^{(0)}, x_{1}^{(1)}, x_{2}^{(1)}, \dotso, x_{d-1}^{(1)}, x_{1}^{(2)}, x_{2}^{(2)}, \dotso, x_{d-1}^{(2)}, x_{1}^{(3)}, x_{2}^{(3)}, \dotso, x_{d}^{(3)}, \dotso, x_{1}^{(t)}, x_{2}^{(t)}, \dotso, x_{d}^{(t)}] and z\notin \big(G(I(\mathscr{C}_{2, t, d}))\setminus \{x_{1}^{(0)}x_{1}^{(1)}, x_{1}^{(0)}x_{2}^{(0)}, x_{1}^{(0)}x_{d}^{(0)}, x_{d-1}^{(0)}x_{d-2}^{(0)}, x_{d-1}^{(0)}x_{d}^{(0)}, x_{d-1}^{(0)}x_{d-1}^{(1)}, x_{d}^{(0)}x_{d}^{(1)}, x_{d}^{(1)}x_{d}^{(2)}, x_{d}^{(2)}x_{d}^{(3)} \}\big) . Hence w\in x_{d}^{(1)}A_2 and

    A_{2}\cong K[V(P_{t-2})]/I(P_{t-2}) \otimes _{K} K[V(\mathscr{P}_{2, t, d-3})]/I(\mathscr{P}_{2, t, d-3}) \quad \otimes _{K}\underset{i = 1}{\overset{2} \otimes _{K}}K[V(P_{t})]/I(P_{t}) \otimes _{K}K[x_{d}^{(1)}].

    It is also easy to see that x_{1}^{(0)}A_{0}\cong A_0 , x_{d-1}^{(0)}A_{1}\cong A_1 and x_{d}^{(1)}A_{2}\cong A_2 . Thus by Lemma 2.2, Lemma 2.14 and Theorem 3.4

    \begin{equation*} \begin{split} \text{depth}(A_{0})& = \lceil\frac{t-1}{3}\rceil+\frac{t}{3}\cdot (d-3)+\lceil\frac{d-3}{3}\rceil+2\lceil\frac{t}{3}\rceil+1\\& = \frac{dt}{3}+\lceil\frac{d}{3}\rceil, \end{split} \end{equation*}
    \begin{equation*} \begin{split} \text{depth}(A_{1})& = \lceil\frac{t-1}{3}\rceil+\frac{t}{3}\cdot (d-4)+\lceil\frac{d-4}{3}\rceil+3\lceil\frac{t}{3}\rceil+1\\& = \frac{dt}{3}+\lceil\frac{d-1}{3}\rceil, \end{split} \end{equation*}
    \begin{equation*} \begin{split} \text{depth}(A_{2})& = \lceil\frac{t-2}{3}\rceil+\frac{t}{3}\cdot (d-3)+\lceil\frac{d-3}{3}\rceil+2\lceil\frac{t}{3}\rceil+1\\& = \frac{dt}{3}+\lceil\frac{d}{3}\rceil. \end{split} \end{equation*}

    Hence, \text{depth}\big(\frac{(I(\mathscr{C}_{2, t, d}):x_{d}^{(0)})}{I(\mathscr{C}_{2, t, d})} \big) = \min\{\text{depth}(A_0), \text{depth}(A_1), \text{depth}(A_2)\} = \frac{dt}{3}+\lceil\frac{d-1}{3}\rceil. Now by applying Depth Lemma on following short exact sequence

    0\longrightarrow \frac{(I(\mathscr{C}_{2, t, d}):x_{d}^{(0)})}{I(\mathscr{C}_{2, t, d})} \longrightarrow S/I(\mathscr{C}_{2, t, d})\longrightarrow S/(I(\mathscr{C}_{2, t, d}):x^{(0)}_{d}) \longrightarrow 0,

    we get \text{depth}(S/I(\mathscr{C}_{2, t, d})) = \frac{dt}{3}+\lceil\frac{d-1}{3}\rceil.

    \bf (2) Let t\equiv1(\mod3) . In a similar way as done in Case 1 we have

    \begin{equation*} \begin{split} \text{depth}\left(S/(I(\mathscr{C}_{2, t, d}):x_{d}^{(0)})\right)& = \text{depth}(K[V(\mathscr{P}_{2, t, d-3})]/I(\mathscr{P}_{2, t, d-3}))\\&\, \, \, +\underset{i = 1}{\overset{2}{\sum}}\text{depth}(K[V(P_t)]/I(P_t))+\text{depth}(K[V(P_{t-1})]/I(P_{t-1})) + 1\\& = \lceil\frac{t}{3}\rceil\cdot (d-3)+2\big\lceil\frac{t}{3}\big\rceil+\lceil\frac{t-1}{3}\rceil+1\\& = \lceil\frac{t}{3}\rceil\cdot d-3\lceil\frac{t}{3}\rceil+2\big\lceil\frac{t}{3}\big\rceil+\lceil\frac{t+2}{3}-1\rceil+1 \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} \text{depth}\left(S/(I(\mathscr{C}_{2, t, d}), x_{d}^{(0)})\right)& = \text{depth}(K[V(\mathscr{P}_{2, t, d-1})]/I(\mathscr{P}_{2, t, d-1})) +\text{depth}(K[V(P_{t})]/I(P_{t}))\\& = \lceil\frac{t}{3}\rceil \cdot(d-1)+\lceil\frac{t}{3}\rceil. \end{split} \end{equation*}

    Since t+2\equiv0(\mod3) implies \lceil\frac{t+2}{3}\rceil = \lceil\frac{t}{3}\rceil . Hence \text{depth}\left(S/(I(\mathscr{C}_{2, t, d}):x_{d}^{(0)})\right) = \lceil\frac{t}{3}\rceil\cdot d and \text{depth}\left(S/(I(\mathscr{C}_{2, t, d}), x_{d}^{(0)})\right) = \lceil\frac{t}{3}\rceil \cdot d . Hence by Remark 2.12 we have \text{depth}\left(S/I(\mathscr{C}_{2, t, d})\right) = \lceil\frac{t}{3}\rceil \cdot d.

    (3) Let t\equiv2(\mod3)

    We have

    S/(I(\mathscr{C}_{2, t, d}):x_{d}^{(1)})\cong K[V(\mathscr{P}_{2, t, d-1})]/I(\mathscr{P}_{2, t, d-1}) \quad { \otimes _{K}} \quad K[V(P_{t-2})]/I(P_{t-2}) \quad { \otimes _{K}} \quad K[x_{d}^{(1)}].

    Now let J = (I(\mathscr{C}_{2, t, d}), x_{d}^{(1)}) . We have the following isomorphisms:

    \begin{equation*} \begin{split} S/(J:x_{d}^{(0)})\cong& K[V(\mathscr{P}_{2, t, d-3})]/I(\mathscr{P}_{2, t, d-3}) \quad \otimes _{K} \underset{i = 1}{\overset{2}{ \otimes _{K}}} \quad K[V(P_{t})]/I(P_{t}) \quad \\&{ \otimes _{K}} \quad K[V(P_{t-1})]/I(P_{t-1}) \quad { \otimes _{K}} \quad K[x_{d}^{(0)}] \end{split} \end{equation*}

    and

    S/(J, x_{d}^{(0)})\cong K[V(\mathscr{P}_{2, t, d-1})]/I(\mathscr{P}_{2, t, d-1}) \quad { \otimes _{K}} \quad K[V(P_{t-1})]/I(P_{t-1}).

    Then by Lemma 2.14, Lemma 2.2 and Theorem 3.4 we have

    \begin{equation*} \begin{split} \text{depth}\left(S/(I(\mathscr{C}_{2, t, d}):x_{d}^{(1)})\right)& = \text{depth}(K[V(\mathscr{P}_{2, t, d-1})]/I(\mathscr{P}_{2, t, d-1}))\\& \quad+ \text{depth}(K[V(P_{t-2})]/I(P_{t-2})) + 1\\& = \big\lceil\frac{t}{3}\big\rceil\cdot(d-1)+\lceil\frac{t-2}{3}\rceil+1\\& = \big\lceil\frac{t}{3}\big\rceil\cdot d-\big\lceil\frac{t}{3}\big\rceil+\lceil\frac{t+1}{3}\rceil, \end{split} \end{equation*}
    \begin{equation*} \begin{split} \text{depth}\left(S/(J:x_{d}^{(0)})\right)& = \text{depth}(K[V(\mathscr{P}_{2, t, d-3})]/I(\mathscr{P}_{2, t, d-3})) +\underset{i = 1}{\overset{2}\sum}\text{depth}(K[V(P_{t})]/I(P_{t}))\\&\quad+\text{depth}(K[V(P_{t-1})]/I(P_{t-1}))+1\\& = \big\lceil\frac{t}{3}\big\rceil\cdot (d-3)+2\lceil\frac{t}{3}\rceil+\big\lceil\frac{t-1}{3}\big\rceil+1\\& = \big\lceil\frac{t}{3}\big\rceil\cdot d-3\big\lceil\frac{t}{3}\big\rceil+2\lceil\frac{t}{3}\rceil+\lceil\frac{t+1}{3}-\frac{2}{3}\rceil+1 \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} \text{depth}\left(S/(J, x_{d}^{(0)})\right)& = \text{depth}(K[V(\mathscr{P}_{2, t, d-1})]/I(\mathscr{P}_{2, t, d-1})) +\text{depth}(K[V(P_{t-1})]/I(P_{t-1}))\\& = \lceil\frac{t}{3}\rceil\cdot (d-1)+\lceil\frac{t-1}{3}\rceil\\& = \lceil\frac{t}{3}\rceil\cdot d-\lceil\frac{t}{3}\rceil+\lceil\frac{t+1}{3}-\frac{2}{3}\rceil. \end{split} \end{equation*}

    Since t+1\equiv0(\mod3) implies \lceil\frac{t+1}{3}\rceil = \lceil\frac{t}{3}\rceil . Hence \text{depth}\left(S/(I(\mathscr{C}_{2, t, d}):x_{d}^{(1)})\right) = \lceil\frac{t}{3}\rceil\cdot d , \text{depth}\left(S/(J:x_{d}^{(0)})\right) = \lceil\frac{t}{3}\rceil\cdot d+1 and \text{depth}\left(S/(J, x_{d}^{(0)})\right) = \lceil\frac{t}{3}\rceil\cdot d . Thus by Remark 2.12 \text{depth}\left(S/J\right)\geq\lceil\frac{t}{3}\rceil\cdot d and also J = (I(\mathscr{C}_{2, t, d}), x_{d}^{(1)}) implies \text{depth}(S/(I(\mathscr{C}_{2, t, d}), x_{d}^{(1)})) \geq \lceil\frac{t}{3}\rceil\cdot d . Hence again by Remark 2.12 \text{depth}(S/I(\mathscr{C}_{2, t, d})) = \lceil\frac{t}{3}\rceil \cdot d.

    Theorem 4.3. Let d\geq3 and t\geq1 . If S = K[V(\mathscr{C}_{2, t, d})] , then \text{ sdepth}\left(S/I(\mathscr{C}_{2, t, d})\right) = \lceil\frac{t}{3}\rceil\cdot d for t\equiv1, 2(\mod3) . Otherwise, \frac{dt}{3}+\lceil\frac{d-1}{3}\rceil \leq \text{ sdepth}\left(S/I(\mathscr{C}_{2, t, d})\right) \leq \frac{dt}{3}+\lceil\frac{d}{3}\rceil .

    Proof. We compute lower bound by using similar arguments as in Theorem 4.2 and using Lemma 2.14 and Remark 2.12 that is \text{ sdepth}\left(S/I(\mathscr{C}_{2, t, d})\right)\geq \lceil\frac{t}{3}\rceil\cdot d for t\equiv1, 2(\mod3) otherwise, \text{ sdepth}\left(S/I(\mathscr{C}_{2, t, d})\right) \geq \frac{dt}{3}+\lceil\frac{d-1}{3}\rceil . Now we compute upper bound by induction on t . If t = 1 , then by Lemma 2.15 \text{ sdepth}(S/I(\mathscr{C}_{2, t, d})) = d , as desired. For t = 2 , by Theorem 2.6 \text{ sdepth}(S/I(\mathscr{C}_{2, t, d})) = d , as desired. For t = 3 we have the following isomorphism:

    \begin{align*} S/(I(\mathscr{C}_{2, 3, d}):x_{1}^{(0)}x_{1}^{(2)}x_{2}^{(2)}\dotso x_{d}^{(2)}) \cong K[V(P_{d-3})]/I(P_{d-3}) \quad { \otimes _{K}} \quad K[x_{1}^{(0)}, x_{1}^{(2)}, x_{2}^{(2)}, \dotso , x_{d}^{(2)}]. \end{align*}

    Then we have

    \begin{equation*} \begin{split} \text{ sdepth} (S/(I(\mathscr{C}_{2, 3, d}):x_{1}^{(0)}x_{1}^{(2)}x_{2}^{(2)}\dotso x_{d}^{(2)}))& = \text{ sdepth}(K[V(P_{d-3})]/I(P_{d-3}))+d+1 \\& = \lceil\frac{d-3}{3}\rceil +d+1\\& = \lceil\frac{d}{3}\rceil +d. \end{split} \end{equation*}

    Also by Proposition 2.10 we have \text{ sdepth}(S/I(\mathscr{C}_{2, 3, d})) \leq d+\lceil\frac{d}{3}\rceil , and as already we have computed lower bound that is \text{ sdepth}(S/I(\mathscr{C}_{2, 3, d})) \geq d+\lceil\frac{d-1}{3}\rceil. Hence

    d+\lceil\frac{d-1}{3}\rceil\leq \text{ sdepth}(S/I(\mathscr{C}_{2, 3, d}))\leq d + \lceil\frac{d}{3}\rceil.

    Now let t\geq4 and u be a monomial such that u: = x_{1}^{(t-1)}x_{2}^{(t-1)}\dotso x_{d}^{(t-1)} . We have the following isomorphism:

    S/(I(\mathscr{C}_{2, t, d}):u) \cong K[V(\mathscr{C}_{2, t-3, d})]/I(\mathscr{C}_{2, t-3, d}) { \otimes _{K}} K[x_{1}^{(t-1)}, x_{2}^{(t-1)}, \dotso, x_{d}^{(t-1)}].

    Then we have

    \begin{equation} \text{ sdepth} (S/(I(\mathscr{C}_{2, t, d}):x_{1}^{(t-1)}x_{2}^{(t-1)}\dotso x_{d}^{(t-1)})) = \text{ sdepth}(K[V(\mathscr{C}_{2, t-3, d})]/I(\mathscr{C}_{2, t-3, d})) + d. \end{equation} (4.2)

    By Proposition 2.10, \text{ sdepth}(S/I(\mathscr{C}_{2, t, d})) \leq \text{ sdepth}(S/(I(\mathscr{C}_{2, t, d}):u)) .

    \bf (1) Let t\equiv1, 2(\mod3) . Since t-3\equiv1, 2(\mod3) , then by using induction on Eq (4.2) we have \text{ sdepth}(K[V(\mathscr{C}_{2, t-3, d})]/I(\mathscr{C}_{2, t-3, d})) + d = \lceil\frac{t-3}{3}\rceil\cdot d + d = \lceil\frac{t}{3}\rceil\cdot d.

    \bf (2) Let t\equiv0(\mod3) . Since t-3\equiv0(\mod3) , then by using induction on Eq 4.2 we have \text{ sdepth}(K[V(\mathscr{C}_{2, t-3, d})]/I(\mathscr{C}_{2, t-3, d})) + d = \frac{dt}{3}+\lceil\frac{d}{3}\rceil.

    Corollary 4.4. Let h = 2 , t\geq1 and d\geq 3 . If S = K[V(\mathscr{C}_{2, t, d})] , then

    \begin{equation*} \text{pdim}\left(S/I(\mathscr{C}_{2, t, d})\right) = \begin{cases} (\frac{2t}{3}+1)d - \lceil\frac{d-1}{3}\rceil, \quad t\equiv0(\mod3);\\ d(t+1) - \lceil\frac{t}{3}\rceil\cdot d, \quad t\equiv1, 2(\mod3). \end{cases} \end{equation*}

    Proof. We have |V(\mathscr{C}_{2, t, d})| = d(t+1) , therefore, \text{depth}(S) = d(t+1) . Hence we get the required result by using Theorem 4.2 and Theorem 2.8.

    Theorem 4.5. Let d\geq3 , t\geq1 and h\geq3 . If S = K[V(\mathscr{C}_{h, t, d})] , then

    \begin{equation*} \text{depth}\left(S/I(\mathscr{C}_{h, t, d})\right) = \begin{cases} \frac{d\big((h-1)^{t+2}-(h-1)^{2}\big)}{(h-1)^{3}-1} + \lceil\frac{d-1}{3}\rceil, \quad t\equiv0(\mod3);\\ \frac{d\big((h-1)^{t+2}-1\big)}{(h-1)^{3}-1} + (h-2)\lceil\frac{d}{2}\rceil, \quad t\equiv1(\mod3);\\ \frac{d\big((h-1)^{t+2}-(h-1)\big)}{(h-1)^{3}-1}, \quad t\equiv2(\mod3). \end{cases} \end{equation*}

    Proof. If t = 1 the result follows from the Lemma 2.15. If t = 2 the result follows from Theorem 2.6. Now let t\geq3 .

    \bf (1) Let t\equiv0(\mod3) . We have the following isomorphisms:

    \begin{equation*} \begin{split} S/(I(\mathscr{C}_{h, t, d}):x^{(0)}_{d}) \cong & \underset{i = 1}{\overset{2(h-1)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \quad { \otimes _{K}} K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}}\\& \underset{i = 1}{\overset{(h-1)^{2}}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \quad { \otimes _{K}} \quad K[x^{(0)}_{d}] \end{split} \end{equation*}

    and

    S/(I(\mathscr{C}_{h, t, d}), x^{(0)}_{d}) \cong K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-1)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}).

    Since t-1 \equiv 2(\mod3) and t-2 \equiv 1(\mod3) , then by Lemma 2.14, Theorem 3.7 and Proposition 2.7 we have

    \begin{equation*} \begin{split} \text{depth}(S/&(I(\mathscr{C}_{h, t, d}):x^{(0)}_{d}))\\& = \underset{i = 1}{\overset{2(h-1)}{\sum}}\text{depth}(K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1})) +\text{depth}(K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}))\\& \quad+ \underset{i = 1}{\overset{(h-1)^{2}}{\sum}} \text{depth}(K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}))+1 \\& = 2(h-1)\cdot\frac{(h-1)^{t-1+2}-(h-1)}{(h-1)^{3}-1}+ \frac{(h-1)^{t+2}-(h-1)^{2}}{(h-1)^{3}-1} \cdot (d-3) \\& \quad+ \lceil\frac{d-3}{3}\rceil + (h-1)^{2} \cdot \frac{(h-1)^{t-2+2}-1}{(h-1)^{3}-1} +1\\& = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1} + \lceil\frac{d}{3}\rceil \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} \text{depth}(S/&(I(\mathscr{C}_{h, t, d}), x^{(0)}_{d})) \\& = \text{depth}(K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1})) + \underset{i = 1}{\overset{(h-1)}{\sum}} \text{depth}(K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}))\\& = \frac{(h-1)^{t+2}-(h-1)^{2}}{(h-1)^{3}-1}\cdot(d-1) +\lceil\frac{d-1}{3}\rceil +(d-1)\cdot\frac{(d-1)^{t-1+2}-(h-1)}{(h-1)^{3}-1} \\& = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1} + \lceil\frac{d-1}{3}\rceil. \end{split} \end{equation*}

    For d\equiv 0, 2(\mod3), \lceil\frac{d-1}{3}\rceil = \lceil\frac{d}{3}\rceil . Then by Remark 2.12 we have

    \text{depth}(S/I(\mathscr{C}_{h, t, d})) = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+ \lceil\frac{d-1}{3}\rceil.

    Now let d\equiv1(\mod3) . We have the following isomorphism:

    \begin{equation} \frac{(I(\mathscr{C}_{h, t, d}):x_{d}^{(0)})}{I(\mathscr{C}_{h, t, d})} \cong x_{1}^{(0)}A_{0} \oplus \quad x_{d-1}^{(0)}A_{1} \quad \oplus x_{(h-1)d-(h-2)}^{(1)}B_{0} \quad \oplus x_{(h-1)d-(h-3)}^{(1)}B_{1} \oplus \quad , \dotso, \quad \oplus x_{(h-1)d}^{(1)}B_{h-2} \end{equation} (4.3)

    where

    \begin{equation*} \begin{split} A_{0} = \Big(K&[x_{3}^{(0)}, x_{4}^{(0)}, \dotso, x_{d-1}^{(0)}, x_{h}^{(1)}, x_{h+1}^{(1)}, \dotso, x_{(h-1)d}^{(1)}, x_{1}^{(2)}, x_{2}^{(2)}, \dotso, x_{(h-1)^{2}d}^{(2)}, \dotso, x_{1}^{(t)}, x_{2}^{(t)}, \\&\dotso, x_{(h-1)^{t}d}^{(t)}]/\big(G(I(\mathscr{C}_{h, t, d}))\setminus \underset{l = 0}{\overset{1}{\bigcup }}\underset{p = 1}{\overset{(h-1)^{l}}{\bigcup }}\underset{q = (h-1)p-(h-2)}{\overset{(h-1)p}{\bigcup }}\{x_{p}^{(l)}x_{q}^{(l+1)}\} \cup \underset{q = h}{\overset{2(h-1)}{\bigcup }}\{x_{2}^{(0)}x_{q}^{(1)}\}\cup\\&\underset{q = (h-1)d-(h-2)}{\overset{(h-1)d}{\bigcup }}\{x_{d}^{(0)}x_{q}^{(1)}\}\cup\{x_{1}^{(0)}x_{2}^{(0)}, x_{2}^{(0)}x_{3}^{(0)}, x_{1}^{(0)}x_{d}^{(0)}, x_{d-1}^{(0)}x_{d}^{(0)}\}\big)\Big)[x_{1}^{(0)}]. \end{split} \end{equation*}

    Indeed if w is a monomial such that w\in (I(\mathscr{C}_{h, t, d}):x_{d}^{(0)}) but w \notin I(\mathscr{C}_{h, t, d}) , then w is divisible by at least one variable from the set \{x_{1}^{(0)}, x_{d-1}^{(0)}, x_{(h-1)d-(h-2)}^{(1)}, x_{(h-1)d-(h-3)}^{(1)}, \dotso, x_{(h-1)d}^{(1)}\} . If w is not divisible by any variable from the set \{x_{1}^{(0)}, x_{d-1}^{(0)}, x_{(h-1)d-(h-2)}^{(1)}, x_{(h-1)d-(h-3)}^{(1)}, \dotso, x_{(h-1)d}^{(1)}\} , then w\in I(\mathscr{C}_{h, t, d}) , a contradiction. Let w be a monomial such that w \in \frac{(I(\mathscr{C}_{h, t, d}):x_{d}^{(0)})}{I(\mathscr{C}_{h, t, d})} . In order to establish the isomorphism as given in Eq (4.3) we adopt the similar strategy of Theorem 4.2. If x_{1}^{(0)}|w then w = ({x_{1}^{(0)}})^{\alpha}u , where \alpha\geq1 , u\notin(G(I(\mathscr{C}_{h, t, d}))\setminus \underset{l = 0}{\overset{1}{\bigcup }}\underset{p = 1}{\overset{(h-1)^{l}}{\bigcup }}\underset{q = (h-1)p-(h-2)}{\overset{(h-1)p}{\bigcup }}\{x_{p}^{(l)}x_{q}^{(l+1)}\}\cup\underset{q = h}{\overset{2(h-1)}{\bigcup }}\{x_{2}^{(0)}x_{q}^{(1)}\}\cup\underset{q = (h-1)d-(h-2)}{\overset{(h-1)d}{\bigcup }}\{x_{d}^{(0)}x_{q}^{(1)}\}\cup\{x_{1}^{(0)}x_{2}^{(0)}, x_{2}^{(0)}x_{3}^{(0)}, x_{1}^{(0)}x_{d}^{(0)}, x_{d-1}^{(0)}x_{d}^{(0)}\}) and u\in K[x_{3}^{(0)}, x_{4}^{(0)}, \dotso, x_{d-1}^{(0)}, x_{h}^{(1)}, x_{h+1}^{(1)}, \dotso, x_{(h-1)d}^{(1)}, x_{1}^{(2)}, x_{2}^{(2)}, \dotso, x_{(h-1)^{2}d}^{(2)}, \dotso, x_{1}^{(t)}, x_{2}^{(t)}, \dotso, x_{(h-1)^{t}d}^{(t)}]. Thus w \in x_{1}^{(0)}A_{0} where

    \begin{equation*} \begin{split} A_{0}\cong& \underset{i = 1}{\overset{(h-1)^{2}} \otimes _{K}}K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \otimes _{K} K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}}\\ &\underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K}K[x_{1}^{(0)}]. \end{split} \end{equation*}

    Now proceeding in a similar way if x_{d-1}^{(0)}|w and x_1^{(0)}\nmid w then we have w\in x_{d-1}^{(0)}A_1 . Now let x_{(h-1)d-(h-2)}^{(0)}|w , x_1^{(0)}\nmid w and x_{d-1}^{(0)}\nmid w we have w\in x_{(h-1)d-(h-2)}^{(1)}B_{0} . Continuing in the same fashion we get the required isomorphism and

    \begin{equation*} \begin{split} A_{1}\cong& \underset{i = 1}{\overset{3(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K} K[V(\mathscr{P}_{h, t, d-4})]/I(\mathscr{P}_{h, t, d-4}) \quad { \otimes _{K}}\\ &\underset{i = 1}{\overset{(h-1)^{2}} \otimes _{K}} K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \otimes _{K}K[x_{d-1}^{(0)}], \end{split} \end{equation*}
    \begin{equation*} \begin{split} B_{0}\cong& \underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K} K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{(h-1)^{2}} \otimes _{K}}K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1}) \quad { \otimes _{K}} \underset{i = 1}{\overset{(h-2)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \\&\, \, \, \otimes _{K}K[x_{(h-1)d-(h-2)}^{(1)}], \end{split} \end{equation*}
    \begin{equation*} \begin{split} B_{1}\cong& \underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K} K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{h-1} \otimes _{K}}K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-1)^{2}} \otimes _{K}} K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{(h-3)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K}K[x_{(h-1)d-(h-3)}^{(1)}], \end{split} \end{equation*}
    \begin{equation*} \begin{split} B_{2}\cong& \underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K} K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-1)^{2}} \otimes _{K}} K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{h-4} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K}K[x_{(h-1)d-(h-4)}^{(1)}], \end{split} \end{equation*}
    \vdots
    \begin{equation*} \begin{split} B_{h-3}\cong& \underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K} K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}}\\& \underset{i = 1}{\overset{(h-3)(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-1)^{2}} \otimes _{K}} K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1})\\& \quad \, \, \otimes _{K}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K}K[x_{(h-1)d-1}^{(1)}], \end{split} \end{equation*}
    \begin{equation*} \begin{split} B_{h-2}\cong& \underset{i = 1}{\overset{2(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \otimes _{K} K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{(h-2)(h-1)} \otimes _{K}}K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-1)^{2}} \otimes _{K}} K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1}) \\& \quad \, \, \otimes _{K}K[x_{(h-1)d}^{(1)}]. \end{split} \end{equation*}

    Now by Lemma 2.14, Theorem 3.7 and Proposition 2.7 we have

    \begin{equation*} \begin{split} \text{depth}(A_{0})& = (h-1)^{2}\cdot\frac{(h-1)^{t-2+2}-1}{(h-1)^{3}-1}+\frac{(h-1)^{t+2}-(h-1)^{2}}{(h-1)^{3}-1}\cdot(d-3)+\lceil\frac{d-3}{3}\rceil\\&\quad+2(h-1)\cdot\frac{(h-1)^{t-1+2}-(h-1)}{(h-1)^{3}-1}+1\\& = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d}{3}\rceil, \end{split} \end{equation*}
    \begin{equation*} \begin{split} \text{depth}(A_{1})& = 3(h-1)\cdot\frac{(h-1)^{t-1+2}-(h-1)}{(h-1)^{3}-1}+\frac{(h-1)^{t+2}-(h-1)^{2}}{(h-1)^{3}-1}\cdot(d-4)\\&\quad+\lceil\frac{d-4}{3}\rceil+(h-1)^{2}\cdot\frac{(h-1)^{t-2+2}-1}{(h-1)^{3}-1}+1\\& = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d-1}{3}\rceil, \end{split} \end{equation*}
    \begin{equation*} \begin{split} \text{depth}(B_{0})& = 2(h-1)\cdot\frac{(h-1)^{t-1+2}-(h-1)}{(h-1)^{3}-1}+\frac{(h-1)^{t+2}-(h-1)^{2}}{(h-1)^{3}-1}\cdot(d-3)\\&\quad+\lceil\frac{d-3}{3}\rceil+(h-1)^{2}\cdot(\frac{(h-1)^{t-3+2}-(h-1)^{2}}{(h-1)^{3}-1}+1)\\&\quad+(h-2)\cdot\frac{(h-1)^{t-1+2}-(h-1)}{(h-1)^{3}-1}+1\\& = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d}{3}\rceil+(h-1)(h-2). \end{split} \end{equation*}

    Similarly

    \begin{equation*} \begin{split} \text{depth}(B_{1})& = \text{depth}(B_{2}) = \dotso = \text{depth}(B_{h-3}) = \text{depth}(B_{h-2})\\& = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d}{3}\rceil+(h-1)(h-2). \end{split} \end{equation*}

    Thus \text{depth}\big(\frac{(I(\mathscr{C}_{h, t, d}):x_{d}^{(0)})}{I(\mathscr{C}_{h, t, d})} \big) = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d-1}{3}\rceil. Now by applying Lemma 2.11 on the following short exact sequence

    \begin{equation*} \label{E22*} 0\longrightarrow \frac{(I(\mathscr{C}_{h, t, d}):x_{d}^{(0)})}{I(\mathscr{C}_{h, t, d})} \longrightarrow S/I(\mathscr{C}_{h, t, d})\longrightarrow S/(I(\mathscr{C}_{h, t, d}):x^{(0)}_{d}) \longrightarrow 0, \end{equation*}

    we have the required result that is \text{depth}(S/I(\mathscr{C}_{h, t, d})) = \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d-1}{3}\rceil.

    \bf (2) Let t\equiv1(\mod3) . In a similar way as done in Case 1 we have

    \begin{equation*} \begin{split} \text{depth}(S/&(I(\mathscr{C}_{h, t, d}):x^{(0)}_{d})) \\& = \underset{i = 1}{\overset{2(h-1)}{\sum}}\text{depth}(K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1})) + \text{depth}(K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}))\\& \quad+ \underset{i = 1}{\overset{(h-1)^{2}}{\sum}} \text{depth}(K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}))+1\\& = 2(h-1)\cdot\Big\{\frac{(h-1)^{t-1+2}-(h-1)^{2}}{(h-1)^{3}-1}+1\Big\}+ \frac{(h-1)^{t+2}-1}{(h-1)^{3}-1} \cdot(d-3)\\&\quad + (h-2)\lceil\frac{d-3-1}{2}\rceil+ (h-1)^{2}\cdot\frac{(h-1)^{t-2+2}-(h-1)}{(h-1)^{3}-1}+1\\& = \frac{d((h-1)^{t+2}-1)}{(h-1)^{3}-1} + (h-2)\lceil\frac{d}{2}\rceil \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} \text{depth}(&S/(I(\mathscr{C}_{h, t, d}), x^{(0)}_{d})) \\& = \text{depth}(K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1})) + \underset{i = 1}{\overset{(h-1)}{\sum}} \text{depth}(K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}))\\& = \frac{(h-1)^{t+2}-1}{(h-1)^{3}-1}\cdot (d-1) + (h-2)\lceil\frac{d-2}{2}\rceil+(h-1)\cdot \Big\{\frac{(h-1)^{t-1+2}-(h-1)^{2}}{(h-1)^{3}-1}+1\Big\} \\& = \frac{d((h-1)^{t+2}-1)}{(h-1)^{3}-1} + (h-2)\lceil\frac{d}{2}\rceil. \end{split} \end{equation*}

    Hence by Remark 2.12 we have \text{depth}(S/I(\mathscr{C}_{h, t, d}) = \frac{d((h-1)^{t+2}-1)}{(h-1)^{3}-1} + (h-2)\lceil\frac{d}{2}\rceil.

    \bf (3) Let t\equiv2(\mod3) . We have the following isomorphism:

    \begin{equation*} \begin{split} S/(I(\mathscr{C}_{h, t, d}):x^{(1)}_{(h-1)d}) \cong& K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-2)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \quad { \otimes _{K}}\\&\underset{i = 1}{\overset{(h-1)^{2}}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1} ) \quad { \otimes _{K}} \quad K[x^{(1)}_{(h-1)d}]. \end{split} \end{equation*}

    Now let J = (I(\mathscr{C}_{h, t, d}), x^{(1)}_{(h-1)d}) , then we have

    \begin{equation*} \begin{split} S/(J:x^{(0)}_{d}) \cong& \underset{i = 1}{\overset{2(h-1)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \quad { \otimes _{K}} \quad K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}) \quad { \otimes _{K}} \\& \underset{i = 1}{\overset{(h-1)^{2}}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}) \quad { \otimes _{K}} \quad K[x^{(0)}_{d}] \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} S/(J, x^{(0)}_{d}) \cong& K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1}) \quad { \otimes _{K}}\underset{i = 1}{\overset{(h-2)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}) \quad { \otimes _{K}}\\& \underset{i = 1}{\overset{(h-1)}{ \otimes _{K}}} K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}). \end{split} \end{equation*}

    Since t-1 \equiv 1(\mod3) , t-2 \equiv 0(\mod3) and t-3 \equiv 2(\mod3) , then by Lemma 2.14, Theorem 3.7 and Proposition 2.7 we have

    \begin{equation*} \begin{split} \text{depth}(S/(I(&\mathscr{C}_{h, t, d}):x^{(1)}_{(h-1)d})) \\& = \text{depth}(K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1}))+ \underset{i = 1}{\overset{(h-2)}{\sum}}\text{depth}(K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}))\\& \quad+ \underset{i = 1}{\overset{(h-1)^{2}}{\sum}} \text{depth}(K[V(\mathscr{P}_{h, t-3, 1})]/I(\mathscr{P}_{h, t-3, 1}))+1\\& = \frac{(h-1)^{t+2}-(h-1)}{(h-1)^{3}-1}\cdot (d-1) +(h-2)\cdot \frac{(h-1)^{t-1+2}-1}{(h-1)^{3}-1}\\& \quad+ (h-1)^{2}\cdot\frac{(h-1)^{t-3+2}-(h-1)}{(h-1)^{3}-1}+1 \\& = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}, \end{split} \end{equation*}
    \begin{equation*} \begin{split} \text{depth}(S/(J&:x^{(0)}_{d})) \\& = \underset{i = 1}{\overset{2(h-1)}{\sum}}\text{depth}(K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}))+\text{depth}(K[V(\mathscr{P}_{h, t, d-3})]/I(\mathscr{P}_{h, t, d-3}))\\&\quad+ \underset{i = 1}{\overset{(h-1)^{2}}{\sum}} \text{depth}(K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}))+1\\& = 2(h-1)\cdot \frac{(h-1)^{t-1+2}-1}{(h-1)^{3}-1}+ \frac{(h-1)^{t+2}-(h-1)}{(h-1)^{3}-1}\cdot(d-3) \\&\quad+ (h-1)^{2}\cdot\Big\{\frac{(h-1)^{t-2+2}-(h-1)^{2}}{(h-1)^{3}-1}+1\Big\}+1 \\& = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}+(h-1)(h-2)+1 \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} \text{depth}(S/(J&, x^{(0)}_{d})) \\& = \text{depth}(K[V(\mathscr{P}_{h, t, d-1})]/I(\mathscr{P}_{h, t, d-1})) + \underset{i = 1}{\overset{(h-2)}{\sum}}\text{depth}(K[V(\mathscr{P}_{h, t-1, 1})]/I(\mathscr{P}_{h, t-1, 1}))\\&\quad+ \underset{i = 1}{\overset{(h-1)}{\sum}} \text{depth}(K[V(\mathscr{P}_{h, t-2, 1})]/I(\mathscr{P}_{h, t-2, 1}))\\& = \frac{(h-1)^{t+2}-(h-1)}{(h-1)^{3}-1}\cdot(d-1) + (h-2)\cdot \frac{(h-1)^{t-1+2}-1}{(h-1)^{3}-1}\\&\quad+ (h-1)\cdot\Big\{\frac{(h-1)^{t-2+2}-(h-1)^{2}}{(h-1)^{3}-1}+1\Big\} \\& = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}+(h-2) . \end{split} \end{equation*}

    Hence by Remark 2.12 we have \text{depth}(S/J)\geq \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}+(h-2) and also J = (I(\mathscr{C}_{h, t, d}), x^{(1)}_{(h-1)d}) implies \text{depth}(S/(I(\mathscr{C}_{h, t, d}), x^{(1)}_{(h-1)d}))\geq \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}+(h-2) . Thus again by Remark 2.12 we have \text{depth}(S/I(\mathscr{C}_{h, t, d})) = \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}.

    Theorem 4.6. Let d\geq3 , t\geq0 and h\geq3 . If S = K[V(\mathscr{C}_{h, t, d})] , then

    \begin{equation*} \text{ sdepth}\left(S/I(\mathscr{C}_{h, t, d})\right) = \begin{cases} \frac{d\big((h-1)^{t+2}-1\big)}{(h-1)^{3}-1} + (h-2)\lceil\frac{d}{2}\rceil, \quad t\equiv1(\mod3);\\ \frac{d\big((h-1)^{t+2}-(h-1)\big)}{(h-1)^{3}-1}, \quad t\equiv2(\mod3). \end{cases} \end{equation*}

    Otherwise, \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d-1}{3}\rceil \leq \text{ sdepth}\left(S/I(\mathscr{C}_{h, t, d})\right) \leq \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d}{3}\rceil.

    Proof. We compute lower bound by using similar arguments as in Theorem 4.5 and using Lemma 2.14 and Remark 2.12 we get.

    \begin{equation*} \text{ sdepth}\left(S/I(\mathscr{C}_{h, t, d})\right) \geq \begin{cases} \frac{d((h-1)^{t+2}-1)}{(h-1)^{3}-1} + (h-2)\lceil\frac{d}{2}\rceil, \quad t\equiv1(\mod3);\\ \frac{d((h-1)^{t+2}-(h-1))}{(h-1)^{3}-1}, \quad t\equiv2(\mod3), \end{cases} \end{equation*}

    otherwise \text{ sdepth}\left(S/I(\mathscr{C}_{h, t, d})\right) \geq \frac{d((h-1)^{t+2}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d-1}{3}\rceil .

    Now we compute upper bound by induction on t . If t = 1 result follows from Lemma 2.15 and for t = 2 result follows from Theorem 2.6. For t = 3 we have the following isomorphism:

    S/(I(\mathscr{C}_{h, 3, d}):x_{1}^{(0)}x_{1}^{(2)}x_{2}^{(2)}\dotso x_{d(h-1)^{2}}^{(2)}) \cong K[V(P_{d-3})]/I(P_{d-3}) \quad { \otimes _{K}} \quad K[x_{1}^{(0)}, x_{1}^{(2)}, x_{2}^{(2)}, \dotso , x_{d(h-1)^{2}}^{(2)}].

    Then we have

    \begin{eqnarray} \text{ sdepth} (S/(I(\mathscr{C}_{h, 3, d}):x_{1}^{(0)}x_{1}^{(2)}x_{2}^{(2)}\dotso x_{d(h-1)^{2}}^{(2)})) = \text{ sdepth}(K[V(P_{d-3})]/I(P_{d-3}) )+d(h-1)^{2}+1, \end{eqnarray}

    then by Lemma 2.2 we have

    \begin{equation*} \begin{split} \text{ sdepth} (S/(I(\mathscr{C}_{h, 3, d}):x_{1}^{(0)}x_{1}^{(2)}x_{2}^{(2)}\dotso x_{d(h-1)^{2}}^{(2)}))& = \lceil\frac{d-3}{3}\rceil +(h-1)^{2}d+1\\& = \lceil\frac{d}{3}\rceil +(h-1)^{2}d. \end{split} \end{equation*}

    Also by Proposition 2.10 we have \text{ sdepth}(S/I(\mathscr{C}_{h, 3, d})) \leq (h-1)^{2}d+\lceil\frac{d}{3}\rceil and already we have computed lower bound that is \text{ sdepth}(S/I(\mathscr{C}_{h, 3, d})) \geq (h-1)^{2}d+\lceil\frac{d-1}{3}\rceil. Now let t\geq4 and u be a monomial such that u: = x_{1}^{(t-1)}x_{2}^{(t-1)}\dotso x_{d(h-1)^{t-1}}^{(t-1)} . We have

    S/(I(\mathscr{C}_{h, t, d}):u) \cong K[V(\mathscr{C}_{h, t-3, d})]/I(\mathscr{C}_{h, t-3, d}) \quad { \otimes _{K}} \quad K[x_{1}^{(t-1)}, x_{2}^{(t-1)}, \dotso, x_{d(h-1)^{t-1}}^{(t-1)}].

    Then we have

    \begin{equation} \text{ sdepth} (S/(I(\mathscr{C}_{h, t, d}):u)) = \text{ sdepth}(K[V(\mathscr{C}_{h, t-3, d})]/I(\mathscr{C}_{h, t-3, d})) + d(h-1)^{t-1}. \end{equation} (4.4)

    By Proposition 2.10 we have \text{ sdepth}(S/I(\mathscr{C}_{h, t, d})) \leq \text{ sdepth}(S/(I(\mathscr{C}_{h, t, d}):u)) .

    \bf (1) Let t\equiv1(\mod3) implies t-3\equiv1(\mod3) then from Eq (4.4) and by induction we have \text{ sdepth}(K[V(\mathscr{C}_{h, t-3, d})]/I(\mathscr{C}_{h, t-3, d})) + d(h-1)^{t-1} = \frac{{d((h-1)^{t+2-3}}-1)}{(h-1)^{3}-1}+(h-2)\lceil\frac{d}{2}\rceil + d(h-1)^{t-1} = \frac{{d((h-1)^{t+2}}-1)}{(h-1)^{3}-1}+(h-2)\lceil\frac{d}{2}\rceil , as desired.

    \bf (2) Let t\equiv2(\mod3) implies t-3\equiv2(\mod3) then from Eq (4.4) and by induction we have \text{ sdepth}(K[V(\mathscr{C}_{h, t-3, d})]/I(\mathscr{C}_{h, t-3, d})) + d(h-1)^{t-1} = \frac{{d((h-1)^{t+2-3}}-(h-1))}{(h-1)^{3}-1}+ d(h-1)^{t-1} = \frac{{d((h-1)^{t+2}}-(h-1))}{(h-1)^{3}-1} , as desired.

    \bf (3) Let t\equiv0(\mod3) implies t-3\equiv0(\mod3) then from Eq (4.4) and by induction we have \text{ sdepth}(K[V(\mathscr{C}_{h, t-3, d})]/I(\mathscr{C}_{h, t-3, d})) + d(h-1)^{t-1} = \frac{{d((h-1)^{t+2}}-(h-1)^{2})}{(h-1)^{3}-1}+\lceil\frac{d}{3}\rceil, as desired.

    Corollary 4.7. Let h\geq 3 , t\geq1 and d\geq 3 . If S = K[V(\mathscr{C}_{h, t, d})] , then

    \begin{equation*} \text{pdim}\left(S/I(\mathscr{C}_{h, t, d})\right) = \begin{cases} \Big(\frac{(h-1)^{t+1}-1}{(h-2)}-\frac{(h-1)^{t+2}-(h-1)^{2}}{(h-1)^{3}-1}\Big)(d) - \lceil\frac{d-1}{3}\rceil, \quad t\equiv0(\mod3);\\ \Big(\frac{(h-1)^{t+1}-1}{(h-2)}-\frac{(h-1)^{t+2}-1}{(h-1)^{3}-1}\Big)(d) - (h-2)\lceil\frac{d}{2}\rceil, \quad t\equiv1(\mod3);\\ \Big(\frac{(h-1)^{t+1}-1}{(h-2)}-\frac{(h-1)^{t+2}-(h-1)}{(h-1)^{3}-1}\Big)(d), \quad t\equiv2(\mod3). \end{cases} \end{equation*}

    Proof. We have |V(\mathscr{C}_{h, t, d})| = \Big(\frac{(h-1)^{t+1}-1}{(h-2)}\Big)(d) , therefore, \text{depth}(S) = \Big(\frac{(h-1)^{t+1}-1}{(h-2)}\Big)(d) . Hence we get the required result by using Theorem 4.5 and Theorem 2.8.

    It is declared by the authors that there is no conflict of interest in this paper.



    [1] M. G. Sakar, O. Saldlr, F. Erdogan, An iterative approximation for time-fractional Cahn-Allen equation with reproducing kernel method, Comput. Appl. Math., 37 (2018), 5951–5964. https://doi.org/10.1007/s40314-018-0672-9 doi: 10.1007/s40314-018-0672-9
    [2] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fract., 114 (2018), 478–482. https://doi.org/10.1016/j.chaos.2018.07.032 doi: 10.1016/j.chaos.2018.07.032
    [3] C. Han, Y. L. Wang, Z. Y. Li, A high-precision numerical approach to solving space fractional Gray-Scott model, Appl. Math. Lett., 125 (2022), 107759. https://doi.org/10.1016/j.aml.2021.107759 doi: 10.1016/j.aml.2021.107759
    [4] C. Han, Y. L. Wang, Z. Y. Li, Numerical solutions of space fractional variable-coefficient KdV-modified KdV equation by Fourier spectral method, Fractals, 29 (2021), 2150246. https://doi.org/10.1142/S0218348X21502467 doi: 10.1142/S0218348X21502467
    [5] C. Han, Y. L. Wang, Numerical solutions of variable-coefficient fractional-in-space KdV equation with the Caputo fractional derivative, Fractal Fract., 6 (2022), 207. https://doi.org/10.3390/fractalfract6040207 doi: 10.3390/fractalfract6040207
    [6] Y. L. Wang, M. J. Du, F. G. Tan, Z. Y. Li, T. F. Nie, Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions, Appl. Math. Comput., 219 (2013), 5918–5925. https://doi.org/10.1016/j.amc.2012.12.009 doi: 10.1016/j.amc.2012.12.009
    [7] Y. L. Wang, L. N. Jia, H. L. Zhang, Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method, Int. J. Comput. Math., 96 (2019), 2100–2111. https://doi.org/10.1080/00207160.2018.1544367 doi: 10.1080/00207160.2018.1544367
    [8] X. Y. Li, B. Y. Wu, A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations, J. Comput. Appl. Math., 311 (2017), 387–393. https://doi.org/10.1016/j.cam.2016.08.010 doi: 10.1016/j.cam.2016.08.010
    [9] X. Y. Li, B. Y. Wu, A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions, Appl. Math. Lett., 86 (2018), 194–199. https://doi.org/10.1016/j.aml.2018.06.035 doi: 10.1016/j.aml.2018.06.035
    [10] X. Y. Li, H. L. Wang, B. Y. Wu, An accurate numerical technique for fractional oscillation equations with oscillatory solutions, Math. Methods Appl. Sci., 45 (2022), 956–966. https://doi.org/10.1002/mma.7825 doi: 10.1002/mma.7825
    [11] M. G. Sakar, O. Saldlr, A. Akgül, Numerical solution of fractional Bratu type equations with Legendre reproducing kernel method, arXiv, 2018. https://doi.org/10.48550/arXiv.1805.12080
    [12] M. G. Sakar, O. Saldlr, A new reproducing kernel approach for nonlinear fractional three-point boundary value problems, Fractal Fract., 4 (2020), 53. https://doi.org/10.3390/fractalfract4040053 doi: 10.3390/fractalfract4040053
    [13] A. Akgül, M. Inc, E. Karatas, D. Baleanu, Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique, Adv. Differ. Equ., 2015 (2015), 220. https://doi.org/10.1186/s13662-015-0558-8 doi: 10.1186/s13662-015-0558-8
    [14] A. Akgül, E. K. Akgül, A novel method for solutions of fourth-order fractional boundary value problems, Fractal Fract., 3 (2019), 33. https://doi.org/10.3390/fractalfract3020033 doi: 10.3390/fractalfract3020033
    [15] A. Akgül, M. Inc, E. Karatas, Reproducing kernel functions for difference equations, Discrete Cont. Dyn. Syst. Ser. S, 8 (2015), 1055–1064. http://dx.doi.org/10.3934/dcdss.2015.8.1055 doi: 10.3934/dcdss.2015.8.1055
    [16] A. Akgül, E. K. Akgül, S. Korhan, New reproducing kernel functions in the reproducing kernel Sobolev spaces, AIMS Math., 5 (2020), 482–497. https://doi.org/10.3934/math.2020032 doi: 10.3934/math.2020032
    [17] Y. L. Wang, J. Pang, Z. Y. Li, Efficient solution of a class of partial integro-differential equation in reproducing kernel space, Int. J. Comput. Math., 87 (2010), 3196–3198. https://doi.org/10.1080/00207160902890287 doi: 10.1080/00207160902890287
    [18] Z. Y. Li, Y. L. Wang, F. G. Tan, X. H. Wan, H. Yu, J. S. Duan, Solving a class of linear nonlocal boundary value problems using the reproducing kernel, Appl. Math. Comput., 265 (2015), 1098–1105. https://doi.org/10.1016/j.amc.2015.05.117 doi: 10.1016/j.amc.2015.05.117
    [19] X. Y. Li, B. Y. Wu, Error estimation for the reproducing kernel method to solve linear boundary value problems, J. Comput. Appl. Math., 243 (2013), 10–15. https://doi.org/10.1016/j.cam.2012.11.002 doi: 10.1016/j.cam.2012.11.002
    [20] Y. L. Wang, Z. Y. Li, Y. Cao, X. H. Wan, A new method for solving a class of mixed boundary value problems with singular coefficient, Appl. Math. Comput., 217 (2010), 2768–2772. https://doi.org/10.1016/j.amc.2010.08.011 doi: 10.1016/j.amc.2010.08.011
    [21] D. D. Dai, T. T. Ban, Y. L. Wang, W. Zhao, The piecewise reproducing kernel method for the time variable fractional order advection-reaction-diffusion equations, Therm. Sci., 25 (2021), 1261–1268. https://doi.org/10.2298/TSCI200302021D doi: 10.2298/TSCI200302021D
    [22] W. Jiang, Z. Chen, Solving a system of linear Volterra integral equations using the new reproducing kernel method, Appl. Math. Comput., 219 (2013), 10225–10230. https://doi.org/10.1016/j.amc.2013.03.123 doi: 10.1016/j.amc.2013.03.123
    [23] X. Y. Li, B. Y. Wu, A kernel regression approach for identification of first order differential equations based on functional data, Appl. Math. Lett., 127 (2022), 107832. https://doi.org/10.1016/j.aml.2021.107832 doi: 10.1016/j.aml.2021.107832
    [24] F. Z. Geng, X. Y. Wu, Reproducing kernel functions based univariate spline interpolation, Appl. Math. Lett., 122 (2021), 107525. https://doi.org/10.1016/j.aml.2021.107525 doi: 10.1016/j.aml.2021.107525
    [25] F. Z. Geng, X. Y. Wu, Reproducing kernel function-based Filon and Levin methods for solving highly oscillatory integral, Appl. Math. Comput., 397 (2021), 125980. https://doi.org/10.1016/j.amc.2021.125980 doi: 10.1016/j.amc.2021.125980
    [26] X. Y. Li, H. L. Wang, B. Y. Wu, A stable and efficient technique for linear boundary value problems by applying kernel functions, Appl. Numer. Math., 172 (2022), 206–214. https://doi.org/10.1016/j.apnum.2021.10.008 doi: 10.1016/j.apnum.2021.10.008
    [27] F. Z. Geng, Piecewise reproducing kernel-based symmetric collocation approach for linear stationary singularly perturbed problems, AIMS Math., 5 (2020), 6020–6029. https://doi.org/10.3934/math.2020385 doi: 10.3934/math.2020385
    [28] F. Z. Geng, S. P. Qian, An optimal reproducing kernel method for linear nonlocal boundary value problems, Appl. Math. Lett., 77 (2018), 49–56. https://doi.org/10.1016/j.aml.2017.10.002 doi: 10.1016/j.aml.2017.10.002
    [29] W. Jiang, Z. Chen, Solving a system of linear Volterra integral equations using the reproducing kernel method, Appl. Math. Comput., 219 (2013), 10225–10230. https://doi.org/10.1016/j.amc.2013.03.123 doi: 10.1016/j.amc.2013.03.123
    [30] M. G. Sakar, Iterative reproducing kernel Hilbert spaces method for Riccati differential equations, J. Comput. Appl. Math., 309 (2017), 163–174. https://doi.org/10.1016/j.cam.2016.06.029 doi: 10.1016/j.cam.2016.06.029
    [31] M. G. Sakar, O. Saldlr, F. Erdogan, A hybrid method for singularly perturbed convection-diffusion equation, Int. J. Appl. Comput. Math., 5 (2019), 135. https://doi.org/10.1007/s40819-019-0714-z doi: 10.1007/s40819-019-0714-z
    [32] O. Saldlr, M. G. Sakar, F. Erdogan, Numerical solution of time-fractional Kawahara equation using reproducing kernel method with error estimate, Comp. Appl. Math., 38 (2019), 198. https://doi.org/10.1007/s40314-019-0979-1 doi: 10.1007/s40314-019-0979-1
    [33] Z. Y. Li, M. C. Wang, Y. L. Wang, J. Pang, Using reproducing kernel for solving a class of fractional order integral differential equations, Advan. Math. Phys., 2020 (2020), 8101843. https://doi.org/10.1155/2020/8101843 doi: 10.1155/2020/8101843
    [34] J. Q. Xie, M. X. Yi, Numerical research of nonlinear system of fractional Volterra-Fredholm integral-differential equations via Block-Pulse functions and error analysis, J. Comput. Appl. Math., 345 (2018), 159–167. https://doi.org/10.1016/j.cam.2018.06.008 doi: 10.1016/j.cam.2018.06.008
  • This article has been cited by:

    1. Fatima Tul Zahra, Muhammad Ishaq, Sarah Aljohani, Regularity of the edge ideals of perfect [ν,h]-ary trees and some unicyclic graphs, 2024, 10, 24058440, e30689, 10.1016/j.heliyon.2024.e30689
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2646) PDF downloads(86) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog