Processing math: 29%
Research article Special Issues

A numerical study of fractional population growth and nuclear decay model

  • This paper is devoted to solving the initial value problem (IVP) of the fractional differential equation (FDE) in Caputo sense for arbitrary order β(0,1]. Based on a few examples and application models, the main motivation is to show that FDE may model more effectively than the ordinary differential equation (ODE). Here, two cubic convergence numerical schemes are developed: the fractional third-order Runge-Kutta (RK3) scheme and fractional strong stability preserving third-order Runge-Kutta (SSRK3) scheme. The approximated solution is derived without taking any assumption of perturbations and linearization. The schemes are presented, and the convergence of the schemes is established. Also, a comparative study has been done of our proposed scheme with fractional Euler method (EM) and fractional improved Euler method (IEM), which has linear and quadratic convergence rates, respectively. Illustrative examples and application examples with the numerical comparison between the proposed scheme, the exact solution, EM, and IEM are given to reveal our scheme's accuracy and efficiency.

    Citation: Sara S. Alzaid, Pawan Kumar Shaw, Sunil Kumar. A numerical study of fractional population growth and nuclear decay model[J]. AIMS Mathematics, 2022, 7(6): 11417-11442. doi: 10.3934/math.2022637

    Related Papers:

    [1] Huiyang Xu . Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials. Communications in Analysis and Mechanics, 2023, 15(2): 132-161. doi: 10.3934/cam.2023008
    [2] Tingfu Feng, Yan Dong, Kelei Zhang, Yan Zhu . Global existence and blow-up to coupled fourth-order parabolic systems arising from modeling epitaxial thin film growth. Communications in Analysis and Mechanics, 2025, 17(1): 263-289. doi: 10.3934/cam.2025011
    [3] Yuxuan Chen . Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity. Communications in Analysis and Mechanics, 2023, 15(4): 658-694. doi: 10.3934/cam.2023033
    [4] Yue Pang, Xiaotong Qiu, Runzhang Xu, Yanbing Yang . The Cauchy problem for general nonlinear wave equations with doubly dispersive. Communications in Analysis and Mechanics, 2024, 16(2): 416-430. doi: 10.3934/cam.2024019
    [5] Reinhard Racke . Blow-up for hyperbolized compressible Navier-Stokes equations. Communications in Analysis and Mechanics, 2025, 17(2): 550-581. doi: 10.3934/cam.2025022
    [6] Isaac Neal, Steve Shkoller, Vlad Vicol . A characteristics approach to shock formation in 2D Euler with azimuthal symmetry and entropy. Communications in Analysis and Mechanics, 2025, 17(1): 188-236. doi: 10.3934/cam.2025009
    [7] Mustafa Avci . On an anisotropic p()-Laplace equation with variable singular and sublinear nonlinearities. Communications in Analysis and Mechanics, 2024, 16(3): 554-577. doi: 10.3934/cam.2024026
    [8] Fangyuan Dong . Multiple positive solutions for the logarithmic Schrödinger equation with a Coulomb potential. Communications in Analysis and Mechanics, 2024, 16(3): 487-508. doi: 10.3934/cam.2024023
    [9] Ying Chu, Bo Wen, Libo Cheng . Existence and blow up for viscoelastic hyperbolic equations with variable exponents. Communications in Analysis and Mechanics, 2024, 16(4): 717-737. doi: 10.3934/cam.2024032
    [10] Ho-Sik Lee, Youchan Kim . Boundary Riesz potential estimates for parabolic equations with measurable nonlinearities. Communications in Analysis and Mechanics, 2025, 17(1): 61-99. doi: 10.3934/cam.2025004
  • This paper is devoted to solving the initial value problem (IVP) of the fractional differential equation (FDE) in Caputo sense for arbitrary order β(0,1]. Based on a few examples and application models, the main motivation is to show that FDE may model more effectively than the ordinary differential equation (ODE). Here, two cubic convergence numerical schemes are developed: the fractional third-order Runge-Kutta (RK3) scheme and fractional strong stability preserving third-order Runge-Kutta (SSRK3) scheme. The approximated solution is derived without taking any assumption of perturbations and linearization. The schemes are presented, and the convergence of the schemes is established. Also, a comparative study has been done of our proposed scheme with fractional Euler method (EM) and fractional improved Euler method (IEM), which has linear and quadratic convergence rates, respectively. Illustrative examples and application examples with the numerical comparison between the proposed scheme, the exact solution, EM, and IEM are given to reveal our scheme's accuracy and efficiency.



    Fractional calculus has been concerned with integration and differentiation of fractional (non-integer) order of the function. Riemann and Liouville defined the concept of fractional order intgro-differential equations [1]. Fractional calculus has developed an extensive attraction in current years in applied mathematics such as physics, medical, biology and engineering [2,3,4,5,6,7,8]. Whenever dealing with the fractional integro-differential equation many authors consider the terms Caputo fractional derivative, Riemann-Liouville and Grunwald-Letnikvo [9,10,11,12,13]. The subject fractional calculus has many applications in widespread and diverse field of science and engineering such as fractional dynamics in the trajectory control of redundant manipulators, viscoelasticity, electrochemistry, fluid mechanics, optics and signals processing etc.

    Fractional integro-differential equations having some uncertainties in the form of boundary conditions, initial conditions and so on [14,15,16]. To resolve these type of uncertainties mathematicians introduced some concepts fuzzy set theory is one of them.

    Zadeh introduced the concept of fuzzy set theory [17,18,19,20]. Later on Prade and Dubois [21,22], Nahmias [23], Tanaka and Mizumoto [24]. All of them experienced that the fuzzy number as a location of r-cut 0r1.

    Many authors investigated some numerical techniques related to these problem which include the existence of the solution for discontinuous [25], reproducing kernel algorithm [26], integro-differential under generalized Caputo differentiability [27], A domain decomposition method [28], fractional differential transform method [29], Jacobi polynomial operational matrix [30], global solutions for nonlinear fuzzy equations [31], radioactivity decay model [32], Caputo-Katugampola fractional derivative approach [33], two-dimensional legendre wavelet method [34], fuzzy Laplace transform [35], fuzzy sumudu transform [36]. Further we can see [37,38,39,40]

    Optimal Homotopy Asymptotic Method (OHAM) is one of the powerful techniques introduced by Marinca at al. [41,42,43] for approximate solution of differential equations. OHAM attracted an enormous importance in solving various problems in different field of science. Iqbal et al. applied this technique to Klein-Gordon equations and singular Lane-Emden type equation [44]. Sheikholeslami et al. used the proposed method for investigation of the laminar viscous flow and magneto hydrodynamic flow in a permeable channel [45]. Hashmi et al. obtained the solution of nonlinear Fredholm integral equations using OHAM [46]. Nawaz at al. applied the proposed method for solution of fractional order integro-differential equations [47], fractional order partial differential equations [48] and three-dimensional integral equations [49].

    Aim of our study is to extend OHAM for solution of system of fuzzy Volterra integro differential equation of fractional order of the following form

    Dαxu(x)=h(x)+xak(x,t)u(t)dt,0α1,x[0,1], (1.1)

    with the given initial condition

    uk(0),u0k(x),k=1,2,3,....,η1,η1<α<η,ηN,

    Where Dαx represents the fuzzy fractional derivative in Caputo sense for fractional order of α with respect to x, h:[a,b]RF is fuzzy valued function, k(x,t) is arbitrary kernel u0(x)RF is an unknown solution. RF represent set of all fuzzy valued function on real line.

    The remaining paper is structured as follows: A brief overview on some elementary concept, notations and definitions of fuzzy calculus and fuzzy fractional calculus are discussed in section 2. Analysis of the technique is presented in section 3. Proposed method is applied to solve fuzzy fractional order Volterra integro-differential equations in section 4. Result and discussion of the paper is given in section 5 and section 6 is the conclusion of the paper.

    In literature there exist various definitions of fuzzy calculus and fuzzy fractional calculus [50]. Some elementary concept, notations and definitions of fuzzy calculus and fuzzy fractional calculus related to this study are provided in this section.

    Definition 2.1. The Riemann-Liouville fractional integral operator Iαx of order α is [50]:

    Iαxu(x)={1Γ(α)x0(xt)α1u(t)dt=0,α>0,u(x),α=0. (2.1)

    Definition 2.2. Caputo partial fractional Derivative operator Dαx of order α with respect to x is defined as follow [50]:

    Dαxu(x)={1Γ(ηα)x0(xt)ηα1u(n)(t)dt=0,η1<αη,dηu(x)dxη,α=ηN. (2.2)

    which clearly shows that

    DαxIαxu(x)=u(x) (2.3)

    Definition 2.3. A fuzzy number σ is a mapping σ:R[0,1], satisfy the following property:

    a. σ is normal that is, x0R with u(x0)=1 [51,52].

    b. σ is a convex fuzzy set that is, u(λx+(1λ)y)min{u(x),u(y)} for all x,yR, λ[0,1].

    c. σ is upper semi-continuous in R.

    d. ¯{xR:u(x)>0} is compact.

    Definition 2.4. Parametric form of fuzzy number σ represented by an order pair (σ_,ˉσ) of the function (σ_(r),ˉσ(r)), satisfies the following conditions [52,53]:

    a. σ_(r) is bounded monotonic increasing left continuous r[0,1].

    b. ˉσ(r) is bounded monotonic decreasing left continuous r[0,1].

    c. σ_(r)ˉσ(r)r[0,1].

    Definition 2.5. Addition and scalar multiplication of fuzzy number is given as:

    a. (σ1σ2)=(σ_1(r)+σ_2(r),ˉσ1(r)+ˉσ2(r))

    b. (kσ)={(σ_(r),ˉσ(r)),k0,(σ_(r),ˉσ(r)),k<0.

    Definition 2.6. A fuzzy real valued function σ1,σ2:[a,b]R, then in [54]:

    DU(σ1,σ2)=sup{D(σ1(x),σ2(x))|x[a,b]}.

    Definition 2.7. Assume u:[a,b]RF. For every partition P={σ0,σ1,σ2,σ3,....,σn} and arbitrary i:σi1iσi, 2in consider

    Rp=nΣi=2u(j)(σiσi1). The definite integral of u(x) over [α,β] is

    βαu(x)dx=limRρ,

    which show existence of limit in metric [55].

    Definite integral exist if u(x) is continuous in metric D [51]:

    (βαu(x)dx_)=βαu_(x)dx,(¯βαu(x)dx)=βα¯u(x)dxt.

    By considering definition 2.4. as discussed in section 2, Eq (1.1) becomes:

    {Dαxu(x,r)h(x,r)xak(x,t)u(t,r)dt=0,Dαxˉu(x,r)h(x,r)xak(x,t)ˉu(t,r)dt=0,0α1,0r1,x[0,1], (3.1)

    with the given initial condition

    [uk(0)]r,(u0k(x,r),ˉu0k(x,r)),k=1,2,3,....,η1,η1<α<η,ηN, (3.2)

    The homotopy of OHAM [41,42,43], constructed as follow:

    {(1ρ)(αυ(x,r;ρ)tαh(x,r))=H(ρ)(αυ(x,r;ρ)tαh(x,r)δ(υ,r)),(1ρ)(αˉυ(x,r;ρ)tαˉh(x,r))=H(ρ)(αˉυ(x,r;ρ)tαˉh(x,r)ˉδ(ˉυ,r)). (3.3)

    where ρ[0,1], H(ρ)=m1cmρm for all ρ0 is an auxiliary function, if ρ=0 then H(0)=0 where

    {υ(x,r,0)=u0(x,r)υ(x,r;1)=u(x,r),ˉυ(x,r,0)=ˉu0(x,r)ˉυ(x,r;1)=ˉu(x,r).

    and cm represent auxiliary constants. Using Taylor's series to expand υ(x,r;ρ) about ρ we get

    {υ(x,r;ρ)=u0(x,r)+m1um(x,r)ρm,ˉυ(x,r;ρ)=ˉu0(x,r)+m1ˉum(x,r)ρm. (3.4)

    Inserting Eq (3.4) into Eq (3.3) we get series of the problems by comparing the like power of ρ given as follow:

    ρ0:{u0(x,r)h(x,r)=0,ˉu0(x,r)ˉh(x,r)=0. (3.5)
    ρ1:{u1(x,r)+c1δ(u0)+(1+c1)+u0(x,r)=0,ˉu1(x,r)+c1δ(ˉu0)+(1+c1)+ˉu0(x,r)=0. (3.6)
    ρ2:{u2(x,r)+c1δ(u1)+c2δ(u0)+c2(h(x,r)u0(x,r))(1+c1)u1(x,r)=0,ˉu2(x,r)+c1δ(ˉu1)+c2δ(ˉu0)+c2(ˉh(x,r)ˉu0(x,r))(1+c1)ˉu1(x,r)=0. (3.7)
    ρn:{un(x,r)+c1δ(un)+c2δ(un1)+c3(h+δ(u0))...c2un1(x,r)(1+c1)un(x,r)=0,ˉun(x,r)+c1δ(ˉun)+c2δ(ˉun1)+c3(h+δ(ˉu0))...c2ˉun1(x,r)(1+c1)ˉun(x,r)=0. (3.8)

    For calculating the constants c1,c2,c3..., mth order optimum solution becomes

    {um(x,r,cl)=u0(x,r)+mk=1uk(x,r,cl),l=1,2,3,...m,ˉum(x,r,cl)=ˉu0(x,r)+mk=1ˉuk(x,r,cl),l=1,2,3,...m. (3.9)

    Putting Eq (3.9) into Eq (3.1), we can found our residual given as follow:

    {R(x,r;cl)=um(x,r;cl)h(x,r)δ(u),l=1,2,...ˉR(x,r;cl)=ˉum(x,r;cl)ˉh(x,r)δ(ˉu),l=1,2,... (3.10)

    If R(x,r;cl)=0, then um(x,r;cl)&ˉum(x,r;cl) will be the exact solutions.

    Optimum solution contains some auxiliary constants; the optimal values of these constants are obtained through various techniques. In the present work, we have used the least square method [56,57]. The method of least squares is a powerful technique for obtaining the values of auxiliary constants. By putting the optimal values of these constants in Eq (8), we obtain the OHAM solution.

    Problem 4.1. Consider system of fuzzy fractional order Volterra integro-differential equation as [58]:

    {Dαxu_(x,r)=(r1)+x0u_(t,r)dtDαxˉu(x,r)=(1r)+x0ˉu(t,r)dt,0<α1,x[0,1], (4.1)

    subject to the fuzzy initial condition [u(0)]r=[r1,1r], and for α=1 fuzzy fractional order Volterra integro-differential equations the exact solution is [u(x)]r=[r1,1r]Sinh(x) and 0r1.

    By follow the technique as discussed in section 3, we get series of problems and their solutions as:

    {Dxαu_0(x,r)+(1r)=0,Dxα¯u0(x,r)+(r1)=0. (4.2)
    {Dxαu_1(x,r)1+rc1+rc1+(x0u_0(t,r)dt)c1Dxαu_0(x,r)c1Dxαu_0(x,r)=0,Dxαˉu1(x,r)+1r+c1rc1+(x0ˉu0(t,r)dt)c1Dxαˉu0(x,r)c1Dxαˉu(x,r)=0. (4.3)
    {Dxαu_2(x,r)+(x0u_1(t,r)dt)c1c2+rc2+(x0u_0(t,r)dt)c2c2Dxαu_0(x,r)Dxαu_1(x,r)c1Dxαu_0(x,r)=0,Dxαˉu2(x,r)+(x0ˉu1(t,r)dt)c1+c2rc2+(x0ˉu0(t,r)dt)c2c2Dxαˉu0(x,r)Dxαˉu1(x,r)c1Dxαˉu0(x,r)=0. (4.4)
    {Dxαu_3(x,r)+(x0u_2(t,r)dt)c1+(x0u_1(t,r)dt)c2c3+rc3+(x0u_0(t,r)dt)c3c3Dxαu_0(x,r)c2Dxαu_1(x,r)Dxαu_2(x,r)c1Dxαu_2(x,r)=0,Dxαˉu3(x,r)+(x0ˉu2(t,r)dt)c1+(x0ˉu1(t,r)dt)c2+c3rc3+(x0ˉu0(t,r)dt)c3c3Dxαˉu0(x,r)c2Dxαˉu1(x,r)Dxαˉu2(x,r)c1Dxαˉu2(x,r)=0. (4.5)

    Their solutions are

    {u_0(x,r)=(1+r)xααΓ(α)ˉu0(x,r)=(1+r)xααΓ(α), (4.6)
    {u_1(x,r)=(1+r)x1+2αc1Γ(2+2α),ˉu1(x,r)=(1+r)x1+2αc1Γ(2+2α). (4.7)
    {u_2(x,r)=(1+r)x1+2α(x1+αc21Γ(3+3α)c1+c21+c2Γ(2+2α)),ˉu2(x,r)=(1+r)x1+α(x1+αc21Γ(3+3α)+c1+c21+c2Γ(2+2α)). (4.8)
    {u_3(x,r)=(1+r)x1+2α(x2+2αc31Γ(4+4α)+2x1+αc1(c1+c21+c2)Γ(3+3α)c1+2c21+c31+c2+2c1c2+c3Γ(2+2α)),ˉu3(x,r)=(1+r)x1+2α(x2+2αc31Γ(4+4α)2x1+αc1(c1+c21+c2)Γ(3+3α)+c1+2c21+c31+c2+2c1c2+c3Γ(2+2α)). (4.9)

    Adding (4.6), (4.7), (4.8) and (4.9), one can construct u_(x,r) & ˉu(x,r) :

    {u_(x,r)=(1+r)xα(1Γ(1+α)x3+3αc31Γ(4+4α)+x2+2αc1(c1(3+2c1)+2c2)Γ(3+3α)x1+α(2c2+c1(3+c1(3+c1)+2c2)+c3)Γ(2+2α)),ˉu(x,r)=(1+r)xα(1Γ(1+α)+x3+3αc31Γ(4+4α)x2+2αc1(c1(3+2c1)+2c2)Γ(3+3α)+x1+α(2c2+c1(3+c1(3+c1)+2c2)+c3)Γ(2+2α)). (4.10)

    Values of c1,c2 and c3 contain is in Eq (4.10)

    Substituting the values from Table 1 into Eq (4.10), the approximate solutions for u_(x,r) & ˉu(x,r) at different values of α taking r=0.75 respectively is as follow

    α=0.7
    {u_(x,r)0.2751369x0.70.08602097x2.40.25x2.4(0.00904995+0.0376716x1.7)0.25x2.4(0.0004258590.00198165x1.7+0.0021734872x3.4),¯u(x,r)0.2751369x0.7+0.08602097x2.40.25x2.4(0.009049950.0376716x1.7)0.25x2.4(0.000425859+0.00198165x1.70.0021734872x3.4). (4.11)
    α=0.8
    {u_(x,r)0.2684178x0.80.0685589x2.60.25x2.6(0.005391327+0.023297809x1.8)0.25x2.6(0.0001975130.0009160448x1.8+0.001008410504x3.6),¯u(x,r)0.2684178x0.8+0.0685589x2.60.25x2.6(0.00539130.023297809x1.8)0.25x2.6(0.000197513+0.0009160448x1.80.001008410504x3.6). (4.12)
    α=0.9
    {u_(x,r)0.2599385x0.90.0540269x2.80.25x2.8(0.0031639+0.01418901x1.9)0.25x2.8(0.000089890.0004154745x1.9+0.000458881x3.8),¯u(x,r)0.2599385x0.9+0.0540269x2.80.25x2.8(0.00316390.014189097x1.9)0.25x2.8(0.00008989+0.0004154745x1.90.000458881x3.8). (4.13)
    α=1
    {u_(x,r)0.25x0.042114377x30.25x3(0.001829736+0.0085133796x2)0.25x3(0.00004015350.0001849397x2+0.00020487753x4),¯u(x,r)0.25x+0.042114377x30.25x3(0.0018297360.0085133796x2)0.25x3(0.0000401535+0.0001849397x20.0002048775x4). (4.14)
    Table 1.  at r = 0.75.
    α c_1 & ¯c1 c_2 & ¯c2 c_3 & ¯c3
    0.7 −1.0257850714449026 5.298291106236844×10−4 −3.040859671410477×10−5
    0.8 −1.0193406988378892 3.249294721058776×10−4 −1.5364294422415488×10−5
    0.9 −1.014446487354385 1.9694362983845834×10−4 −7.63055570435551×10−6
    1 −1.0107450504316333 1.1791102776455743×10−4 −3.779171763451589×10−6

     | Show Table
    DownLoad: CSV

    Substituting the values from Table 2 into Eq (4.10), the approximate solutions for u_(x,r) & ˉu(x,r) at different values of α taking r=0.5 respectively is as follow

    α=0.7
    {u_(x,r)0.5502737x0.70.172041940x2.40.5x2.4(0.00904995+0.0376716x1.7)0.5x2.4(0.00042585940.0019816476x1.7+0.0021734872x3.4),ˉu(x,r)0.5502737x0.7+0.172041940x2.40.5x2.4(0.009049950.03767164x1.7)0.5x2.4(0.0004258594+0.0019816476x1.70.0021734872x3.4). (4.15)
    α=0.8
    {u_(x,r)0.53683564x0.80.137117858x2.60.5x2.6(0.00539133+0.02329781x1.8)0.5x2.6(0.000197510.0009160448x1.8+0.0010084105x3.6),¯u(x,r)0.53683564x0.8+0.137117858x2.60.5x2.6(0.005391330.02329781x1.8)0.5x2.6(0.00019751+0.0009160448x1.80.0010084105x3.6). (4.16)
    α=0.9
    {u_(x,r)0.5198771x0.90.10805378x2.80.5x2.8(0.0031640+0.0141891x1.9)0.5x2.8(0.00008989450.0004154745x1.9+0.000458881x3.8),¯u(x,r)0.5198771x0.9+0.10805378x2.80.5x2.8(0.00316400.0141891x1.9)0.5x2.8(0.0000898945+0.0004154745x1.90.000458881x3.8). (4.17)
    α=1
    {u_(x,r)0.5x0.0842288x30.5x3(0.0018298+0.008513x2)0.5x3(0.00004016120.00018494622x2+0.0002048777x4),¯u(x,r)0.5x+0.0842288x30.5x3(0.00182980.008513x2)0.5x3(0.000040162+0.00018494622x20.0002048777x4). (4.18)
    Table 2.  at r = 0.5.
    α c_1 & ¯c1 c_2 & ¯c2 c_3 & ¯c3
    0.7 −1.0257850714449026 5.298291106236844×10−4 −3.040859671410477×10−5
    0.8 −1.0193406988378892 3.249294721058776×10−4 −1.5364294422415488×10−5
    0.9
    1
    −1.014446487354385
    −1.0107453381292266
    1.9694362983845834×10−4
    1.1800167363027721×10−4
    −7.630555570435551×10−6
    −3.726389827252244×10−6

     | Show Table
    DownLoad: CSV

    Problem 4.2. Consider system of fuzzy fractional order Volterra integro-differential equation as [59]:

    Dαxu(x,r)+t0u(t,r)dt=0,0<α1,x[0,1], (4.19)

    subject to the fuzzy initial condition [u(0)]r=[r1,1r], and the exact solution is u_(x,r)=(r1)Eα+1(tα+1),ˉu(x,r)=(1r)Eα+1(tα+1),

    where Eα+1 is a Mittag-Leffler function and 0r1.

    By follow the technique as discussed in section 3, we get series of problems and their solutions as:

    {Dxαu_0(x,r)=0,Dxαˉu0(x,r)=0. (4.20)
    {Dxαu_1(x,r)+(x0u_0(t,r)dt)c1Dxαu_0(x,r)c1Dxαu_0(x,r)=0,Dxαˉu1(x,r)+(x0ˉu0(t,r)dt)c1Dxαˉu0(x,r)c1Dxαˉu(x,r)=0. (4.21)
    {Dxαu_2(x,r)+(x0u_1(t,r)dt)c1(x0u_0(t,r)dt)c2c2Dxαu_0(x,r)Dxαu_1(x,r)c1Dxαu_0(x,r)=0,Dxαˉu2(x,r)+(x0ˉu1(t,r)dt)c1(x0ˉu0(t,r)dt)c2c2Dxαˉu0(x,r)Dxαˉu1(x,r)c1Dxαˉu0(x,r)=0. (4.22)
    {Dxαu_3(x,r)(x0u_2(t,r)dt)c1(x0u_1(t,r)dt)c2(x0u_0(t,r)dt)c3c3Dxαu_0(x,r)c2Dxαu_1(x,r)Dxαu_2(x,r)c1Dxαu_2(x,r)=0,Dxαˉu3(x,r)(x0ˉu2(t,r)dt)c1(x0ˉu1(t,r)dt)c2(x0ˉu0(t,r)dt)c3c3Dxαˉu0(x,r)c2Dxαˉu1(x,r)Dxαˉu2(x,r)c1Dxαˉu2(x,r)=0. (4.23)

    And their solutions are

    {u_0(x,r)=r1,ˉu0(x,r)=1r. (4.24)
    {u_1(x,r_)=(1+r)x1+αc1(α+α2)Γ(α),¯u1(x,¯r)=(1+r)x1+αc1α(1+α)Γ(α), (4.25)
    {u_2(x,r)=(1+r)x1+α(x1+αc21Γ(3+2α)+c1+c21+c2Γ(2+α)),ˉu2(x,r)=(1+r)x1+α(x1+αc21Γ(3+2α)c1+c21+c2Γ(2+α)). (4.26)
    {u_3(x,r)=(1+r)x1+α(c2+c1(1+x2+2αc21Γ(4+2α)+c1(2+c1)+2c2+2x1+α(c1+c21+c2)Γ(3+3α))+c3)Γ(1+α),ˉu3(x,r)=(1+r)x1+α(x2+2αc31Γ(4+3α)2x1+αc1(c1+c21+c2)Γ(3+2α)c2+c1((1+c1)2+2c2)+c3Γ(2+α)), (4.27)

    Adding (4.24), (4.25), (4.26) and (4.27), one can construct u_(x,r) & ˉu(x,r) :

    {u_(x,r)=1+r+(1+r)x1+α(x1+αc21Γ(3+2α)+x2+2αc31Γ(1+α)Γ(4+2α)+2x1+αc1(c1+c21+c2)Γ(1+α)Γ(3+α)+c1(2+c1)+c2Γ(2+α)+c2+c1((1+c1)2+2c2)+c3Γ(1+α)),ˉu(x,r)=1r+(1+r)x1+α(x2+2αc31Γ(4+3α)x1+αc1(c1(3+2c1)+2c2)Γ(3+2α)2c2+c1(3+c1(3+c1)+2c2)+c3Γ(2+α)). (4.28)

    Values of c1,c2 and c3 contain in Eq (4.28)

    Substituting the values from Tables 3 and 4 into Eq (4.28), the approximate solutions for u_(x,r) & ˉu(x,r) at different values of α taking r=0.5 is as follow

    α=0.2
    {u_(x,r)0.50.5x1.2(0.905948+0.325139x1.20.055807x2.4),¯u(x,r)0.50.5x1.2(0.9059480.325139x1.2+0.055807x2.4). (4.29)
    α=0.4
    {u_(x,r)0.50.5x1.4(0.804545+0.210093x1.40.025570x2.8),¯u(x,r)0.50.5x1.4(0.804545450.210093x1.4+0.025570x2.8). (4.30)
    α=0.6
    {u_(x,r)0.50.5x1.6(0.699349+0.128177x1.60.010450x3.2),¯u(x,r)0.50.5x1.6(0.6993490.128177x1.6+0.010450x3.2). (4.31)
    α=0.8
    {u_(x,r)0.50.5x1.8(0.596450+0.074561x1.80.0038863x3.6),¯u(x,r)0.50.5x1.8(0.59645030.074561x1.8+0.0038863x3.6). (4.32)
    α=1
    {u_(x,r)0.50.5x2(0.499992+0.04163089x20.001336253x4),¯u(x,r)0.50.5x2(0.49999140.04163076x2+0.001336247x4). (4.33)
    Table 3.  at r = 0.5.
    \alpha {\underline c _1} {\underline c _2} {\underline c _3}
    0.2 −0.8038238618267683 7.6178003377104005×10−3 −1.334733828882206×10−3
    0.4 −0.739676946061329 0.02530379950927192 −3.78307542584476×10−3
    0.6 −0.6725325561865596 0.04771922184372877 −8.140310215705777×10−3
    0.8 −0.6062340661192892 0.06889015391501904 −0.015746150088743013
    1.0 −0.5432795308983783 0.08615024033359142 −0.026582381449582644

     | Show Table
    DownLoad: CSV
    Table 4.  at r = 0.5.
    \alpha {\overline c _1} {\overline c _2} {\overline c _3}
    0.2 −0.9072542694138958 3.5727393445527333×10−3 3.637119200533134×10−4
    0.4 −0.9409187563211361 1.9803045412863643×10−3 1.7807647588483674×10−4
    0.6 −0.9636043521097131 9.808463578935658×10−4 7.369503633679291×10−5
    0.8 −0.9781782948007163 4.4492367269725435×10−4 2.6729929232143615×10−5
    1.0 −0.9872029432879605 1.896941835601795×10−4 1.021455544474314×10−5

     | Show Table
    DownLoad: CSV

    Substituting the values from Tables 5 and 6 into Eq (4.28), the approximate solutions for \underline u (x, r) & \bar u(x, r) at different values of r taking \alpha = 0.5 is as follow

    r = 0
    \left\{ \begin{array}{l} \underset{\_}{u}(x, r)\approx -1-{x}^{1.5}(-0.75199032254+0.165168588631{x}^{1.5}-0.016559344247{x}^{3.}), \\ \overline{u}(x, r)\approx 1-{x}^{1.5}(0.75199032256-0.165168588653{x}^{1.5}+0.016559344262{x}^{3.}).\end{array} \right. (4.34)
    r = 0.2
    \left\{ \begin{array}{l} \underset{\_}{u}(x, r)\approx -0.8-0.8{x}^{1.5}(-0.751990322550+0.165168588{x}^{1.5}-0.01655934425{x}^{3.}), \\ \overline{u}(x, r)\approx 0.8-0.8{x}^{1.5}(0.751990322554-0.165168588{x}^{1.5}+0.01655934426{x}^{3.}). \end{array} \right. (4.35)
    r = 0.4
    \left\{ \begin{array}{l} \underset{\_}{u}(x, r)\approx -0.6-0.6{x}^{1.5}(-0.7519903225+0.1651685886{x}^{1.5}-0.016559344250{x}^{3.}), \\ \overline{u}(x, r)\approx 0.6-0.6{x}^{1.5}(0.7519903225-0.1651685886{x}^{1.5}+0.0165593442496{x}^{3.}).\end{array} \right. (4.36)
    r = 0.6
    \left\{ \begin{array}{l} \underset{\_}{u}(x, r)\approx -0.4-0.4{x}^{1.5}(-0.751990322550+0.16516858863{x}^{1.5}-0.01655934425{x}^{3.}), \\ \overline{u}(x, r)\approx 0.4-0.4{x}^{1.5}(0.751990322554-0.16516858865{x}^{1.5}+0.01655934426{x}^{3.}).\end{array} \right. (4.37)
    r = 0.8
    \left\{ \begin{array}{l} \underset{\_}{u}(x, r)\approx -0.1999910-0.1999910{x}^{1.5}(-0.7519903+0.16516859{x}^{1.5}-0.0165593{x}^{3.}), \\ \overline{u}(x, r)\approx 0.19999910-0.19999910{x}^{1.5}(0.7519903-0.16516859{x}^{1.5}+0.0165593{x}^{3.}).\end{array} \right. (4.38)
    Table 5.  at \alpha = 0.5.
    r {\underline c _1} {\underline c _2} {\underline c _3}
    0 - 0.7062087686601037 0.03638991875243272 - 5.6065011933001474 \times {10^{ - 3}}
    0.2 - 0.7062087687083373 0.03638991875755982 - 5.606501189519195 \times {10^{ - 3}}
    0.4 - 0.7062087686911187 0.03638991875566347 - 5.606501190876118 \times {10^{ - 3}}
    0.6 - 0.7062087687083373 0.03638991875755982 - 5.606501189519195 \times {10^{ - 3}}
    0.8 - 0.7062087686312865 0.036389918749298394 - 5.606501195566148 \times {10^{ - 3}}

     | Show Table
    DownLoad: CSV
    Table 6.  at \alpha = 0.5.
    r {\overline c _1} {\overline c _2} {\overline c _3}
    0 - 0.9534544876637709 1.4110239362094313 \times {10^{ - 3}} 1.1669890178958486 \times {10^{ - 4}}
    0.2 - 0.9534544876175205 1.4110239407705756 \times {10^{ - 3}} 1.1669890245071123 \times {10^{ - 4}}
    0.4 - 0.9534544874104965 1.4110239614371703 \times {10^{ - 3}} 1.1669890547775563 \times {10^{ - 4}}
    0.6 - 0.9534544876175205 1.4110239407705756 \times {10^{ - 3}} 1.1669890245071123 \times {10^{ - 4}}
    0.8 - 0.9534544876289686 1.4110239398903034 \times {10^{ - 3}} 1.1669890235330204 \times {10^{ - 4}}

     | Show Table
    DownLoad: CSV

    Tables 16 show the values of auxiliary constant at different values of r & \alpha for both lower and upper solution of OHAM for the solved problems. Tables 7 and 8 show the comparison of absolute error of 3rd order OHAM with Fractional Residual Power Series (FRPS) Method for 5-approximated solution and k = 5 for both lower and upper solutions of OHAM at different value of \alpha for problem 1. Comparison of absolute error of 3rd orders OHAM for both lower and upper solution of OHAM are shown in Tables 9 and 10. Numerical result show that OHAM provide more accuracy as compared to the other method and as \alpha \to 1 the approximate solution become very close to the exact solution. Graphical representation confirmed the convergence of fractional order solution towards the integer order solution. In Figure 1 graphical representation of OHAM at \alpha = 0.7, \, \, 0.8, \, \, 0.9\, , \, \, 1, \, \, r = 0.75 and \alpha = 0.7, \, \, 0.8, \, \, 0.9\, , \, \, 1, \, \, r = 0.50 are discussed for both \underline u (x, r) & \bar u(x, r) for problem 1. Figures 2 and 3 show the comparison of OHAM with the exact solution at different values of and taking r = 0.75 & r = 0.5 respectively for problem 1. Figure 4 represent the comparison of OHAM at \alpha = 0.2, \, 0.4, \, \, 0.6, \, \, 0.8, \, \, 1, \, \, r = 0.5 and r = 0, \, \, 0.2, \, 0.4, \, \, 0.6, \, \, 0.8, \, \, \alpha \, = 0.5 for both \underline u (x, r) and \bar u(x, r) for problem 2. Figure 5 shows the comparison of OHAM with the exact solution at different values of and r = 0.5 while Figure 6 shows the comparison of OHAM with the exact solution at different values of r and = 0.5 for problem 2.

    Table 7.  Comparison of Absolute Error (Abs Err.) of 3rd order OHAM for \underline u (x, r) and Fractional Residual Power Series (FRPS) [54] Method for 5-approximated solution and k = 5 for problem 1.
    r x FRPS [58]
    \alpha = 0.7
    OHAM FRPS [58]
    \alpha = 0.8
    OHAM FRPS [58]
    \alpha = 0.9
    OHAM FRPS [58]
    \alpha = 1
    OHAM
    0.75 0.2 0.042797 0.040621 0.025514 0.024764 0.011512 0.011321 6.35273×10−10 2.14676×10−9
    0.4 0.059664 0.051698 0.035840 0.032584 0.016392 0.015405 8.14507×10−8 1.00832×10−8
    0.6 0.075769 0.058997 0.045171 0.037635 0.020545 0.018031 1.39554×10−6 1.11336×10−8
    0.8 0.094364 0.066136 0.055863 0.04232 0.025182 0.020362 1.04955×10−5 6.21567×10−9
    0.50 0.2 0.085595 0.081241 0.051027 0.049528 0.011321 0.022643 1.27055×10−9 4.25946×10−9
    0.4 0.119328 0.103396 0.071680 0.065167 0.015405 0.030811 1.62901×10−7 1.98877×10−8
    0.6 0.151537 0.117994 0.090342 0.075269 0.018031 0.036062 2.79107×10−6 2.12923×10−8
    0.8 0.188728 0.132271 0.111723 0.084640 0.020362 0.040725 2.09911×10−5 1.00120×10−8

     | Show Table
    DownLoad: CSV
    Table 8.  Comparison of Absolute Error (Abs Err.) of 3rd order OHAM for \bar u(x, r) and Fractional Residual Power Series (FRPS) [58] Method for 5-approximated solution and k = 5 for problem 1.
    r x FRPS [58]
    \alpha = 0.7
    OHAM FRPS [58]
    \alpha = 0.8
    OHAM FRPS [58]
    \alpha = 0.9
    OHAM FRPS [58]
    \alpha = 1
    OHAM
    0.75 0.2 0.085595 0.081242 0.025514 0.024764 0.011512 0.011321 6.35273×10−10 2.14676×10−9
    0.4 0.119328 0.103396 0.035840 0.032584 0.016392 0.015405 8.14507×10−8 1.00832×10−8
    0.6 0.151537 0.117994 0.045171 0.037635 0.020545 0.018031 1.39554×10−6 1.11336×10−8
    0.8 0.188728 0.132271 0.055862 0.04232 0.025182 0.020362 1.04955×10−5 6.21567×10−9
    0.50 0.2 0.042797 0.040621 0.051027 0.049528 0.023025 0.022643 1.27055×10−9 4.25946×10−9
    0.4 0.059664 0.051698 0.071680 0.065167 0.032784 0.030811 1.62901×10−7 1.98877×10−8
    0.6 0.075769 0.058997 0.090342 0.075269 0.041090 0.036062 2.79107×10−6 2.12923×10−8
    0.8 0.094364 0.066136 0.111723 0.084640 0.050364 0.040725 2.09911×10−5 1.0012×10−8

     | Show Table
    DownLoad: CSV
    Table 9.  Comparison of Absolute Error (Abs Err.) of 3rd order OHAM for \underline u (x, \underline r ) & \bar u(x, r) at different values of \alpha taking r = 0.5 for problem 2.
    x \underline u (x, r)
    \alpha = 0.4
    \bar u(x, r) \underline u (x, r)
    \alpha = 0.6
    \bar u(x, r) \underline u (x, r)
    \alpha = 0.8
    \bar u(x, r) \underline u (x, r)
    \alpha = 1
    \bar u(x, r)
    0.2 1.2736×10−5 1.2736×10−5 3.2527×10−6 3.2527×10−6 6.93075×10−7 6.93076×10−7 1.29476×10−7 1.44585×10−7
    0.4 2.3337×10−6 2.3337×10−6 2.4426×10−6 2.4426×10−6 9.50573×10−7 9.50573×10−7 2.67538×10−7 3.26771×10−7
    0.6 9.9993×10-6 9.9993×10−6 1.8451×10−6 1.8451×10−6 3.8544×10−8 3.85438×10−8 1.10198×10−7 2.39031×10−7
    0.8 4.1251×10−6 4.1251×10−6 1.3416×10−7 1.3416×10−7 6.55017×10−8 6.55017×10−8 9.64628×10−9 2.27883×10−7
    1.0 1.312×10−5 1.312×10−5 1.8373×10−6 1.8373×10−6 5.49341×10−8 5.4934×10−8 7.7356×10−8 3.9735×10−7

     | Show Table
    DownLoad: CSV
    Table 10.  Comparison of Absolute Error (Abs Err.) of 3rd order OHAM for \underline u (x, r) & \bar u(x, r) at different values of r taking \alpha = 0.5 for problem 2.
    x \underline u (x, r)
    r = 0.4
    \bar u(x, r) \underline u (x, r)
    r = 0.6
    \bar u(x, r) \underline u (x, r)
    r = 0.8
    \bar u(x, r) \underline u (x, r)
    r = 1
    \bar u(x, r)
    0. 0. 0. 0. 0. 0. 0. 0. 0.
    0.2 1.0578×10−5 1.0578×10−5 7.9338×10−6 7.9338×10−6 5.28921×10−6 5.28921×10−6 2.64461×10−6 2.64461×10−6
    0.4 4.8940×10−6 4.8940×10−6 3.6705×10−6 3.6705×10−6 2.44698×10−6 2.44698×10−6 1.22349×10−6 1.22349×10−6
    0.6 7.4825×10−6 7.4825×10−6 5.6119×10−6 5.6119×10−6 3.74125×10−6 3.74125×10−6 1.87062×10−6 1.87062×10−6
    1.8 1.8038×10−6 1.8038×10−6 1.35291×10−6 1.35291×10−6 9.01939×10−7 9.01939×10−7 4.5097×10−7 4.5097×10−7

     | Show Table
    DownLoad: CSV
    Figure 1.  Solution plot of OHAM for \underline u (x, r) & \bar u(x, r) at different values of r & \alpha for problem 1.
    Figure 2.  Solution plot of OHAM and Exact for \underline u (x, r) & \bar u(x, r) at different values of \alpha taking r = 0.75 for problem 1.
    Figure 3.  Solution plot of OHAM and Exact for \underline u (x, r) & \bar u(x, r) at different values of \alpha taking r = 0.50 for problem 1.
    Figure 4.  Solution plot of OHAM for \underline u (x, r) & \bar u(x, r) at different values of r & \alpha for problem 2.
    Figure 5.  Solution plot of OHAM and Exact for \underline u (x, r) & \bar u(x, r) at different values of \alpha taking r = 0.5 for problem 2.
    Figure 6.  Solution plot of OHAM and Exact for \underline u (x, r) & \bar u(x, r) at different values of r taking \alpha = 0.5 for problem 2.

    In the research paper, a powerful technique known as Optimal Homotopy Asymptotic Method (OHAM) has been extended to the solution of system of fuzzy integro differential equations of fractional order. The obtained results are quite interesting and are in good agreement with the exact solution. Two numerical equations are taken as test examples which show the behavior and reliability of the proposed method. The extension of OHAM to system of fuzzy integro differential equations of fractional order is more accurate and as a result this technique will more appealing for the researchers for finding out optimum solutions of system of fuzzy integro differential equations of fractional order.

    The authors declare no conflict of interest.



    [1] I. Podlubny, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 198 (1999), 1–340.
    [2] R. L. Bagley, P. J. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA J., 23 (1985), 918–925. https://doi.org/10.2514/3.9007 doi: 10.2514/3.9007
    [3] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, World Scientific, 2010. https://doi.org/10.1142/9781848163300
    [4] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [5] C. A. Cruz-López, G. Espinosa-Parede, Fractional radioactive decay law and Bateman equations, Nucl. Eng. Technol., 54 (2022), 275–282. https://doi.org/10.1016/j.net.2021.07.026 doi: 10.1016/j.net.2021.07.026
    [6] C. A. Cruz-López, G. Espinosa-Paredes, J. Luis François, Development of the General Bateman Solution using fractional calculus: A theoretical and algorithmic approach, Comput. Phys. Commun., 273 (2022), 108268. https://doi.org/10.1016/j.cpc.2021.108268 doi: 10.1016/j.cpc.2021.108268
    [7] Z. Altawallbeh, M. Al-Smadi, I. Komashynska, A. Ateiwi, Numerical solutions of fractional systems of two-point BVPs by using the iterative reproducing kernel algorithm, Ukr. Math. J., 70 (2018), 687–701. https://doi.org/10.1007/s11253-018-1526-8 doi: 10.1007/s11253-018-1526-8
    [8] K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional adams method, Numer. Algorithms, 36 (2004), 31–52. https://doi.org/10.1023/B:NUMA.0000027736.85078.be doi: 10.1023/B:NUMA.0000027736.85078.be
    [9] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677–2682. https://doi.org/10.1016/j.na.2007.08.042 doi: 10.1016/j.na.2007.08.042
    [10] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72 (2010), 2859–2862. https://doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029
    [11] R. P. Agarwal, D. O'Regan, S. Staněk, Positive solutions for dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal. Appl., 371 (2010), 57–68. https://doi.org/10.1016/j.jmaa.2010.04.034 doi: 10.1016/j.jmaa.2010.04.034
    [12] A. Yakar, M. E. Koksal, Existence results for solutions of nonlinear fractional differential equations, Abstr. Appl. Anal., 2012 (2012). https://doi.org/10.1155/2012/267108 doi: 10.1155/2012/267108
    [13] V. Daftardar-Gejji, A. Babakhani, Analysis of a system of fractional differential equations, J. Math. Anal. Appl., 293 (2004), 511–522. https://doi.org/10.1016/j.jmaa.2004.01.013 doi: 10.1016/j.jmaa.2004.01.013
    [14] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9 doi: 10.1016/0022-247X(88)90170-9
    [15] J. He, Variational iteration method for delay differential equations, Commun. Nonlinear Sci., 2 (1997), 235–236. https://doi.org/10.1016/S1007-5704(97)90008-3 doi: 10.1016/S1007-5704(97)90008-3
    [16] S. Momani, A. Freihat, M. AL-Smadi, Analytical study of fractional-order multiple chaotic FitzHugh-Nagumo neurons model using multistep generalized differential transform method, Abstr. Appl. Anal., 2014 (2014). https://doi.org/10.1155/2014/276279 doi: 10.1155/2014/276279
    [17] M. M. Khader, S. Kumar, An efficient computational method for solving a system of FDEs via fractional finite difference method, Appl. Appl. Math., 14 (2019).
    [18] A. Hemeda, Homotopy perturbation method for solving systems of nonlinear coupled equations, Appl. Math. Sci., 6 (2012), 4787–4800.
    [19] E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, A chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl., 62 (2011), 2364–2373. https://doi.org/10.1016/j.camwa.2011.07.024 doi: 10.1016/j.camwa.2011.07.024
    [20] K. Diethelm, G. Walz, Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms, 16 (1997), 231–253. https://doi.org/10.1023/A:1019147432240 doi: 10.1023/A:1019147432240
    [21] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional ivps, Commun. Nonlinear Sci., 14 (2009), 674–684. https://doi.org/10.1016/j.cnsns.2007.09.014 doi: 10.1016/j.cnsns.2007.09.014
    [22] S. S. Ray, R. Bera, Analytical solution of the bagley torvik equation by adomian decomposition method, Appl. Math. Comput., 168 (2005), 398–410. https://doi.org/10.1016/j.amc.2004.09.006 doi: 10.1016/j.amc.2004.09.006
    [23] S. Momani, K. Al-Khaled, Numerical solutions for systems of fractional differential equations by the decomposition method, Appl. Math. Comput., 162 (2005), 1351–1365. https://doi.org/10.1016/j.amc.2004.03.014 doi: 10.1016/j.amc.2004.03.014
    [24] J. H. He, Variational iteration method some recent results and new interpretations, J. Comput. Appl. Math., 207 (2007), 3–17. https://doi.org/10.1016/j.cam.2006.07.009 doi: 10.1016/j.cam.2006.07.009
    [25] C. Runge, Ü about the numerical solution ö solution of differential equations, Math. Ann., 46 (1895), 167–178.
    [26] W. Kutta, Contribution to approximate integration of total differential equations, Z. Math. Phys., 46 (1901), 435–453.
    [27] J. C. Butcher, A history of runge-kutta methods, Appl. Numer. Math., 20 (1996), 247–260. https://doi.org/10.1016/0168-9274(95)00108-5 doi: 10.1016/0168-9274(95)00108-5
    [28] D. Evans, New runge-kutta methods for initial value problems, Appl. Math. Lett., 2 (1989), 25–28. https://doi.org/10.1016/0893-9659(89)90109-2 doi: 10.1016/0893-9659(89)90109-2
    [29] M. S. Arshad, D. Baleanu, M. B. Riaz, M. Abbas, A novel 2-stage fractional Runge-Kutta method for a time-fractional logistic growth model, Discrete Dyn. Nat. Soc., 2020 (2020). https://doi.org/10.1155/2020/1020472 doi: 10.1155/2020/1020472
    [30] S. Kumar, P. K. Shaw, A. H. Abdel-Aty, E. E. Mahmoud, A numerical study on fractional differential equation with population growth model, Numer. Meth. Part. D. E., 2020, 1–22. https://doi.org/10.1002/num.22684 doi: 10.1002/num.22684
    [31] P. Tong, Y. Feng, H. Lv, Euler's method for fractional differential equations, WSEAS Trans. Math., 12 (2013), 1146–1153.
    [32] J. Patade, S. Bhalekar, A new numerical method based on daftardar-gejji and jafari technique for solving differential equations, World J. Model. Simul., 11 (2015), 256–271.
    [33] O. Y. Ababneh, New numerical methods for solving differential equations, J. Adv. Math., 16 (2019), 8384–8390.
    [34] A. Jhinga, V. Daftardar-Gejji, A new finite-difference predictor-corrector method for fractional differential equations, Appl. Math. Comput., 336 (2018), 418–432. https://doi.org/10.1016/j.amc.2018.05.003 doi: 10.1016/j.amc.2018.05.003
    [35] S. Kumar, An analytical algorithm for nonlinear fractional fornberg-whitham equation arising in wave breaking based on a new iterative method, Alex. Eng. J., 53 (2014), 225–231. http://dx.doi.org/10.1016/j.aej.2013.11.004 doi: 10.1016/j.aej.2013.11.004
    [36] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.
    [37] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 204 (2006).
    [38] G. M. Mittag-Leffler, Sur la nouvelle fonction e_\alpha (x), CR Acad. Sci. Paris, 137 (1903), 554–558.
    [39] M. Al-Smadi, O. A. Arqub, Computational algorithm for solving Fredholm time-fractional partial integro differential equations of Dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280–294. https://doi.org/10.1016/j.amc.2018.09.020 doi: 10.1016/j.amc.2018.09.020
    [40] M. Al-Smadi, A. Freihat, H. Khalil, S. Momani, R. A. Khan, Numerical multistep approach for solving fractional partial differential equations, Int. J. Comput. Methods, 14 (2017), 1750029. https://doi.org/10.1142/S0219876217500293 doi: 10.1142/S0219876217500293
    [41] S. Hasan, M. Al-Smadi, A. El-Ajou, S. Momani, S. Hadid, Z. Al-Zhour, Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system, Chaos Soliton. Fract., 143 (2021), 110506. https://doi.org/10.1016/j.chaos.2020.110506 doi: 10.1016/j.chaos.2020.110506
    [42] A. Wiman, Ü about the fundamental theorem in the theory of functions E^a(x), Acta Math., 29 (1905), 191–201. https://doi.org/10.1007/BF02403202 doi: 10.1007/BF02403202
    [43] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer Science & Business Media, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [44] C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shockhcapturing schemes Ⅱ, J. Comput. Phys., 83 (1989), 32H78. https://doi.org/10.1016/0021-9991(89)90222-2 doi: 10.1016/0021-9991(89)90222-2
    [45] S. Gottlieb, On high order strong stability preserving runge-kutta and multi step time discretizations, J. Sci. Comput., 25 (2005), 105–128. https://doi.org/10.1007/s10915-004-4635-5 doi: 10.1007/s10915-004-4635-5
    [46] S. Gottlieb, D. I. Ketcheson, C. W. Shu, Strong stability preserving Runge-Kutta and multistep time discretizations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. https://doi.org/10.1142/7498
    [47] Z. Odibat, S. Momani, An algorithm for the numerical solution of differential equations of fractional order, J. Appl. Math. Inform., 26 (2008), 15–27.
    [48] R. Almeida, N. R. Bastos, M. T. T. Monteiro, Modeling some real phenomena by fractional differential equations, Math. Method. Appl. Sci., 39 (2016), 4846–4855. https://doi.org/10.1002/mma.3818 doi: 10.1002/mma.3818
    [49] U. Nations, The world at six billion off site, World Population From Year 0 to Stabilization 5, 1999.
    [50] M. Awadalla, Y. Yameni, Modeling exponential growth and exponential decay real phenomena by \psi-caputo fractional derivative, J. Adv. Math. Comput. Sci., 28 (2018), 1–13. https://doi.org/10.9734/JAMCS/2018/43054 doi: 10.9734/JAMCS/2018/43054
    [51] A. E. Calik, H. Ertik, B. Öder, H. Şirin, A fractional calculus approach to investigate the alpha decay processes, Int. J. Modern. Phys. E, 22 (2013), 1350049. https://doi.org/10.1142/S0218301313500493 doi: 10.1142/S0218301313500493
  • This article has been cited by:

    1. Tareq Manzoor, S. Iqbal, Mohd Asif Shah, A note on the slip effects of an Oldroyd 6-constant fluid: Optimal homotopy asymptotic method, 2022, 10, 2296-424X, 10.3389/fphy.2022.1003000
    2. Laiq Zada, Rashid Nawaz, Wasim Jamshed, Rabha W. Ibrahim, El Sayed M. Tag El Din, Zehba Raizah, Ayesha Amjad, New optimum solutions of nonlinear fractional acoustic wave equations via optimal homotopy asymptotic method-2 (OHAM-2), 2022, 12, 2045-2322, 10.1038/s41598-022-23644-5
    3. HIMAYAT ULLAH JAN, HAKEEM ULLAH, MEHREEN FIZA, ILYAS KHAN, ABDULLAH MOHAMED, ABD ALLAH A. MOUSA, MODIFICATION OF OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR MULTI-DIMENSIONAL TIME-FRACTIONAL MODEL OF NAVIER–STOKES EQUATION, 2023, 31, 0218-348X, 10.1142/S0218348X23400212
    4. RI ZHANG, NEHAD ALI SHAH, ESSAM R. EL-ZAHAR, ALI AKGÜL, JAE DONG CHUNG, NUMERICAL ANALYSIS OF FRACTIONAL-ORDER EMDEN–FOWLER EQUATIONS USING MODIFIED VARIATIONAL ITERATION METHOD, 2023, 31, 0218-348X, 10.1142/S0218348X23400285
    5. Nagwa Saeed, Deepak Pachpatte, Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations, 2025, 8, 2619-9653, 81, 10.32323/ujma.1631793
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2245) PDF downloads(109) Cited by(1)

Figures and Tables

Figures(11)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog