In this article, we construct proper weight coefficients and use them to establish a Hardy-Hilbert-type inequality involving one partial sum. Based on this inequality, the equivalent conditions of the best possible constant factor related to several parameters are discussed. We also consider the equivalent forms and the operator expressions of the obtained inequalities. At the end of the paper, we demonstrate that more new Hardy-Hilbert-type inequalities can be derived from the special cases of the present results.
Citation: Xianyong Huang, Shanhe Wu, Bicheng Yang. A Hardy-Hilbert-type inequality involving modified weight coefficients and partial sums[J]. AIMS Mathematics, 2022, 7(4): 6294-6310. doi: 10.3934/math.2022350
[1] | Bicheng Yang, Shanhe Wu, Qiang Chen . On an extended Hardy-Littlewood-Polya’s inequality. AIMS Mathematics, 2020, 5(2): 1550-1561. doi: 10.3934/math.2020106 |
[2] | Limin Yang, Ruiyun Yang . Some new Hardy-Hilbert-type inequalities with multiparameters. AIMS Mathematics, 2022, 7(1): 840-854. doi: 10.3934/math.2022050 |
[3] | Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb . On Hardy-Hilbert-type inequalities with $ \alpha $-fractional derivatives. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126 |
[4] | Jiankang Wang, Zhefeng Xu, Minmin Jia . Distribution of values of Hardy sums over Chebyshev polynomials. AIMS Mathematics, 2024, 9(2): 3788-3797. doi: 10.3934/math.2024186 |
[5] | Tianyang He, Zhiwen Liu, Ting Yu . The Weighted $ \boldsymbol{L}^{\boldsymbol{p}} $ estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041 |
[6] | K. Saritha, K. Thilagavathi . An application of Pascal distribution involving Kamali type related to leaf like domain. AIMS Mathematics, 2023, 8(7): 16511-16527. doi: 10.3934/math.2023844 |
[7] | M. Zakarya, Ghada AlNemer, A. I. Saied, H. M. Rezk . Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales. AIMS Mathematics, 2024, 9(8): 21414-21432. doi: 10.3934/math.20241040 |
[8] | Najla Altwaijry, Cristian Conde, Silvestru Sever Dragomir, Kais Feki . Further norm and numerical radii inequalities for operators involving a positive operator. AIMS Mathematics, 2025, 10(2): 2684-2696. doi: 10.3934/math.2025126 |
[9] | Mohammed Z. Alqarni, Mohamed Abdalla . Analytic properties and numerical representations for constructing the extended beta function using logarithmic mean. AIMS Mathematics, 2024, 9(5): 12072-12089. doi: 10.3934/math.2024590 |
[10] | Yaser Khatib, Stanford Shateyi . Improvement of inequalities related to powers of the numerical radius. AIMS Mathematics, 2024, 9(7): 19089-19103. doi: 10.3934/math.2024930 |
In this article, we construct proper weight coefficients and use them to establish a Hardy-Hilbert-type inequality involving one partial sum. Based on this inequality, the equivalent conditions of the best possible constant factor related to several parameters are discussed. We also consider the equivalent forms and the operator expressions of the obtained inequalities. At the end of the paper, we demonstrate that more new Hardy-Hilbert-type inequalities can be derived from the special cases of the present results.
The classical Hardy-Hilbert's inequality asserted that
∞∑m=1∞∑n=1ambnm+n<πsin(π/p)(∞∑m=1apm)1p(∞∑n=1bqn)1q, | (1) |
where p>1,1p+1q=1,am,bn≥0,0<∑∞m=1apm<∞ and 0<∑∞n=1bqn<∞,πsin(π/p) is the best possible constant factor (cf. [1], Theorem 315).
A sharpened inequality of (1) was included in [1] by Theorem 323, as follows:
∞∑m=1∞∑n=1ambnm+n−1<πsin(π/p)(∞∑m=1apm)1p(∞∑n=1bqn)1q. | (2) |
In 2006, Krnić and J. Pečarić [2] provided an extension of (1) by introducing parameters
λi∈(0,2](i=1,2),λ1+λ2=λ∈(0,4], i.e.,
∞∑m=1∞∑n=1ambn(m+n)λ<B(λ1,λ2)[∞∑m=1mp(1−λ1)−1apm]1p[∞∑n=1nq(1−λ2)−1bqn]1q, | (3) |
where, the constant factor B(λ1,λ2) is the best possible, and
B(u,v)=∫∞0tu−1(1+t)u+vdt(u,v>0) |
is the beta function. For λ=1,λ1=1q,λ2=1p, inequality (3) reduces to (1); for p=q=2, λ1=λ2=λ2, (3) reduces to a generalization of Hilbert's inequality which was proved by Yang in [3].
Recently, by the use of inequality (3), Adiyasuren et al. [4] gave a Hardy-Hilbert's inequality involving partial sums, as follows:
If λi∈(0,1]∩(0,λ)(λ∈(0,2];i=1,2),λ1+λ2=λ, then
∞∑m=1∞∑n=1ambn(m+n)λ<λ1λ2B(λ1,λ2)(∞∑m=1m−pλ1−1Apm)1p(∞∑n=1n−qλ2−1Bqn)1q, | (4) |
where the constant factor λ1λ2B(λ1,λ2) is the best possible, and the partial sums Am:=∑mi=1ai and Bn:=∑nk=1bk (m,n∈N={ 1, 2, ⋯}) satisfy
0<∞∑m=1m−pλ1−1Apm<∞ and 0<∞∑n=1n−qλ2−1Bqn<∞. | (5) |
Inequalities (1), (2) and the integral analogues play an important role in analysis and applications (cf. [5,6,7,8,9,10,11,12,13,14,15,16,17,18]).
In 2016, by means of the techniques of real analysis, Hong et al. [19] considered some equivalent statements of the extensions of (1) with the best possible constant factor related to a few parameters.
Motivated by the inequalities (2) and (4), in this paper, we establish a new Hardy-Hilbert-type inequality, which contains modified weight coefficients and partial sums. The main technical approaches are the constructing of weight coefficients and the use of Hermite-Hadamard's inequality, Euler-Maclaurin summation formula and Abel's partial summation formula. Moreover, the equivalent conditions of the best possible constant factor related to several parameters are discussed. As applications, we deal with some equivalent forms, the operator expressions and some special cases about the inequality obtained in the main result.
In what follows, we suppose that p>1,1p+1q=1, λ∈(0,2],
λ1∈(0,32]∩(0,λ+1),λ2∈(0,12]∩(0,λ), |
ˆλ1:=λ−λ2p+λ1q,ˆλ2:=λ−λ1q+λ2p, |
ηi∈[0,14](i=1,2),η:=η1+η2. |
We also assume that for am,bn⩾0 (m,n∈N:={ 1, 2, ⋯}), the partial sums Bn:=∑nk=1bk satisfy Bn=o(et(n−η2)) (t>0;n→∞), and
0<∞∑m=1(m−η1)p(1−ˆλ1)−1apm<∞,0<∞∑n=1(n−η2)−qˆλ2−1Bqn<∞. |
Lemma 1. (cf. [5], (2.2.3)) (i) If (−1)ididtig(t)>0, t∈[m,∞)(m∈N) with g(i)(∞)=0 (i=0,1,2,3), Pi(t),Bi(i∈N) are the Bernoulli functions and the Bernoulli numbers of i-order, then
∫∞mP2q−1(t)g(t)dt=−εqB2q2qg(m)(0<εq<1;q=1,2,⋯). | (6) |
In particular, for q=1, in view of B2=16, we have
−112g(m)<∫∞mP1(t)g(t)dt<0; | (7) |
for q=2, in view of B4=−130, we have
0<∫∞mP3(t)g(t)dt<1120g(m). | (8) |
(ii) (cf. [5], (2.3.2)) If f(t)(>0)∈C3[m,∞),f(i)(∞)=0(i=0,1,2,3), then we have the following Euler-Maclaurin summation formula:
∞∑k=mf(k)=∫∞mf(t)dt+12f(m)+∫∞mP1(t)f′(t)dt, | (9) |
∫∞mP1(t)f′(t)dt=−112f′(m)+16∫∞mP3(t)f‴(t)dt. | (10) |
Lemma 2. Let s∈(0,3], si∈(0,32]∩(0,s), ks(si):=B(si,s−si)(i=1,2), we define the following weight coefficient:
ϖ(s2,m):=(m−η1)s−s2∞∑n=1(n−η2)s2−1(m+n−η)s(m∈N). | (11) |
Then we have the following inequalities:
0<ks(s2)(1−O1(1(m−η1)s2))<ϖ(s2,m)<ks(s2)(m∈N). | (12) |
Where
O1(1(m−η1)s2):=1ks(s2)∫1−η2m−η10us2−1(1+u)sdu>0. |
Proof. For estimating the series (11), we set the following real function: For fixed m∈N,
g(m,t):=(t−η2)s2−1(m−η+t)s(t>η2). |
In the following we divide two cases of s2∈(0,1)∩(0,s) and s2∈[1,32]∩(0,s) to prove (12).
(i) For s2∈(0,1)∩(0,s), since
(−1)ig(i)(m,t)>0(t>η2;i=0,1,2), |
by Hermite-Hadamard's inequality (cf. [20]), setting u=t−η2m−η1, we have
ϖ(s2,m)=(m−η1)s−s2∞∑n=1g(m,n)<(m−η1)s−s2∫∞12g(m,t)dt |
=(m−η1)s−s2∫∞12ts2−1(m−η1+t−η2)sdt=∫∞12−η2m−η1us2−1(1+u)sdu⩽∫∞0us2−1(1+u)sdu=B(s2,s−s2)=kλ(s2). |
On the other hand, in view of the decreasingness property of series, setting u=t−η2m−η1, we obtain
ϖ(s2,m)=(m−η1)s−s2∞∑n=1g(m,n)>(m−η1)s−s2∫∞1g(m,t)dt |
=∫∞1−η2m−η1us2−1(1+u)sdu=B(s2,s−s2)−∫1−η2m−η10us2−1(1+u)sdu=ks(s2)(1−O1(1(m−η1)s2))>0, |
where
O1(1(m−η1)s2)=1ks(s2)∫1−η2m−η10us2−1(1+u)sdu>0, |
satisfying
0<∫1−η2m−η10us2−1(1+u)sdu<∫1−η2m−η10us2−1du=1s2(1−η2m−η1)s2(m∈N). |
Hence, we obtain (12).
(ii) For s2∈[1,32]∩(0,s), by (9), we have
∞∑n=1g(m,n)=∫∞1g(m,t)dt+12g(m,1)+∫∞1P1(t)g′(m,t)dt=∫∞η2g(m,t)dt−h(m), |
where, h(m) is indicated as
h(m):=∫1η2g(m,t)dt−12g(m,1)−∫∞1P1(t)g′(m,t)dt. |
We obtain −12g(m,1)=−(1−η2)s2−12(m−η+1)s, and integrating by parts, it follows that
∫1η2g(m,t)dt=∫1η2(t−η2)s2−1(m−η+t)sdt=1s2∫1η2d(t−η2)s2(m−η+t)s |
=1s2(t−η2)s2(m−η+t)s|1η2+ss2∫1η2(t−η2)s2dt(m−η+t)s+1=1s2(1−η2)s2(m−η+1)s+ss2(s2+1)∫1η2d(t−η2)s2+1(m−η+t)s+1 |
>1s2(1−η2)s2(m−η+1)s+ss2(s2+1)[(t−η2)s2+1(m−η+t)s+1]1η2+s(s+1)s2(s2+1)(m−η+1)s+2∫1η2(t−η2)s2+1dt |
=1s2(1−η2)s2(m−η+1)s+ss2(s2+1)(1−η2)s2+1(m−η+1)s+1+s(s+1)(1−η2)s2+2s2(s2+1)(s2+2)(m−η+1)s+2. |
We find
−g′(m,t)=−(s2−1)(t−η2)s2−2(m−η+t)s+s(t−η2)s2−1(m−η+t)s+1=(1−s2)(t−η2)s2−2(m−η+t)s+s(t−η2)s2−2[(m−η+t)−(m−η1)](m−η+t)s+1=(1−s2)(t−η2)s2−2(m−η+t)s+s(t−η2)s2−2(m−η+t)s−s(m−η1)(t−η2)s2−2(m−η+t)s+1=(s+1−s2)(t−η2)s2−2(m−η+t)s−s(m−η1)(t−η2)s2−2(m−η+t)s+1, |
and for s2∈[1,32]∩(0,s), it follows that
(−1)ididti[(t−η2)s2−2(m−η+t)s]>0,(−1)ididti[(t−η2)s2−2(m−η+t)s+1]>0(t>η2;i=0,1,2,3). |
By (8)–(10), for a:=1−η2(∈[34,1]), we obtain
(s+1−s2)∫∞1P1(t)(t−η2)s2−2(m−η+t)sdt>−s+1−s212(m−η+1)sas2−2, |
−(m−η1)s∫∞1P1(t)(t−η2)s2−2(m−η+t)s+1dt>(m−η1)sas2−212(m−η+1)s+1−(m−η1)s720[(t−η2)s2−2(m−η+t)s+1]″t=1>(m−η+1)s−as12(m−η+1)s+1as2−2−(m−η+1)s720[(s+1)(s+2)(m−η+1)s+3as2−2+2(s+1)(2−s2)(m−η+1)s+2as2−3+(2−s2)(3−s2)(m−η+1)s+1as2−4]=sas2−212(m−η+1)s−sas2−112(m−η+1)s+1−s720[(s+1)(s+2)(m−η+1)s+2as2−2+2(s+1)(2−s2)(m−η+1)s+1as2−3+(2−s2)(3−s2)(m−η+1)sas2−4], |
and then we have
h(m)>as2−4(m−η+1)sh1+sas2−3(m−η+1)s+1h2+s(s+1)as2−2(m−η+1)s+2h3, |
where, hi(i=1,2,3) are indicated as
h1:=a4s2−a32−(1−s2)a212−s(2−s2)(3−s2)720,h2:=a4s2(s2+1)−a212−(s+1)(2−s2)360,and |
h3:=a4s2(s2+1)(s2+2)−s+2720. |
For s∈(0,3],s2∈[1,32]∩(0,s), a∈[34,1], we find
h1>a212s2[s22−(6a+1)s2+12a2]−1120. |
In view of
dda[s22−(6a+1)s2+12a2]=6(4a−s2)⩾6(4⋅34−32)>0, |
and
dds2[s22−(6a+1)s2+12a2]=2s2−(6a+1)⩽2⋅32−(6⋅34+1)=3−112<0, |
we obtain
h1⩾(3/4)212(3/2)[(32)2−(6⋅34+1)32+12(34)2]−1120=3128−1120>0, |
h2>a2(4a215−112)−190⩾(34)2[415(34)2−112]−190=380−190>0, |
h3⩾8a4105−5720⩾8105(34)4−1144=271120−1144>0, |
and then h(m)>0.
On the other hand, we also have
∞∑n=1g(m,n)=∫∞1g(m,t)dt+12g(m,1)+∫∞1P1(t)g′(m,t)dt=∫∞1g(m,t)dt+H(m), |
where, H(m) is indicated as
H(m):=12g(m,1)+∫∞1P1(t)g′(m,t)dt. |
We have obtained that
12g(m,1)=as2−12(m−η+1)s |
and
g′(m,t)=−(s+1−s2)(t−η2)s2−2(m−η+t)s+s(m−η1)(t−η2)s2−2(m−η+t)s+1. |
For s2∈[1,32]∩(0,s),0<s≤3, by (7), we obtain
−(s+1−s2)∫∞1P1(t)(t−η2)s2−2(m−η+t)sdt>0, |
(m−η1)s∫∞1P1(t)(t−η2)s2−2(m−η+t)s+1dt>−(m−η1)s12(m−η+1)s+1as2−2=−(m−η+1)s+as12(m−η+1)s+1as2−2=−s12(m−η+1)sas2−2+s12(m−η+1)s+1as2−1>−s12(m−η+1)sas2−2. |
Hence, we have
H(m)>as2−12(m−η+1)s−sas2−212(m−η+1)s=(a2−s12)as2−2(m−η+1)s⩾(12⋅34−312)as2−2(m−η+1)s=(38−312)as2−2(m−η+1)s>0. |
Therefore, we obtain the following inequalities:
∫∞1g(m,t)dt<∞∑n=1g(m,n)<∫∞η2g(m,t)dt. |
In view of the the results in case (i), we have
ϖ(s2,m)>(m−η1)s−s2∫∞1g(m,t)dt=ks(s2)(1−O1(1(m−η1)s2))>0, |
ϖ(s2,m)<(m−η1)s−s2∫∞η2g(m,t)dt⩽B(s2,s−s2)=kλ(s2). |
Hence, we obtain (12). The Lemma 2 is proved.
Lemma 3. Let s∈(0,3], si∈(0,32]∩(0,s)(i=1,2). Then we have the following Hardy-Hilbert-type inequality:
I=∞∑n=1∞∑m=1ambn(m+n−η)s⩽(ks(s2))1p(ks(s1))1q×{∞∑m=1(m−η1)p[1−(s−s2p+s1q)]−1apm}1p{∞∑n=1(n−η2)q[1−(s−s1q+s2p)]−1bqn}1q. | (13) |
Proof. In the same way as the proof of inequality (12) along with the symmetry of the parameters s1,n,η2 and s2,m,η1, we obtain the following inequalities for the next weight coefficient:
0<ks(s1)(1−O2(1(n−η2)s1)) |
<ω(s1,n):=(n−η2)s−s1∞∑m=1(m−η1)s1−1(m+n−η)s<ks(s1)(n∈N), | (14) |
where
O2(1(n−η2)s1):=1ks(s1)∫1−η1n−η20us1−1(1+u)sdu>0. |
By Hӧlder's inequality (cf. [20]), we obtain
I=∞∑n=1∞∑m=11(m+n−η)s[(m−η1)(1−s1)/q(n−η2)(1−s2)/pam][(n−η2)(1−s2)/p(m−η1)(1−s1)/qbn]⩽[∞∑m=1∞∑n=11(m+n−η)s(m−η1)(1−s1)(p−1)apm(n−η2)1−s2]1p[∞∑n=1∞∑m=11(m+n−η)s(n−η2)(1−s2)(q−1)bqn(m−η1)1−s1]1q={∞∑m=1ϖ(s2,m)(m−η1)p[1−(s−s2p+s1q)]−1apm}1p×{∞∑n=1ω(s1,n)(n−η2)q[1−(s−s1q+s2p)]−1bqn}1q. |
Then by (12) and (14), we obtain (13). The proof Lemma 3 is complete.
Remark 1. In particular, for
s=λ+1∈(1,3],s1=λ1∈(0,32]∩(0,λ+1),s2=λ2+1∈(1,32]∩(1,λ+1), |
in (13), then
λ∈(0,2],λ1∈(0,32]∩(0,λ+1),λ2∈(0,12]∩(0,λ), |
replacing bn by Bn, in view of the assumptions of am and Bn, we have
∞∑n=1∞∑m=1amBn(m+n−η)λ+1<(kλ+1(λ2+1))1p(kλ+1(λ1))1q |
×[∞∑m=1(m−η1)p(1−ˆλ1)−1apm]1p[∞∑n=1(n−η2)−qˆλ2−1Bqn]1q. | (15) |
Lemma 4. If t>0, then the following inequality holds
∞∑n=1e−t(n−η2)bn⩽t∞∑n=1e−t(n−η2)Bn. | (16) |
Proof. In view of Bne−t(n−η2)=o(1)(n→∞), by Abel's summation by parts formula, we find
∞∑n=1e−t(n−η2)bn=limn→∞Bne−t(n−η2)+∞∑n=1Bn[e−t(n−η2)−e−t(n−η2+1)] |
=∞∑n=1Bn[e−t(n−η2)−e−t(n−η2+1)]=(1−e−t)∞∑n=1e−t(n−η2)Bn. | (17) |
Since 1−e−t<t(t>0), by (17), we have inequality
∞∑n=1e−t(n−η2)bn⩽t∞∑n=1e−t(n−η2)Bn, |
namely, (16) follows. The Lemma 4 is proved.
Theorem 1. Let p>1,1p+1q=1, λ∈(0,2], λ1∈(0,32]∩(0,λ+1), λ2∈(0,12]∩(0,λ), ˆλ1:=λ−λ2p+λ1q, ˆλ2:=λ−λ1q+λ2p, ηi∈[0,14](i=1,2), η=η1+η2, Bn=∑nk=1bk, Bn=o(et(n−η2)) (t>0;n→∞), and let
0<∞∑m=1(m−η1)p(1−ˆλ1)−1apm<∞,0<∞∑n=1(n−η2)−qˆλ2−1Bqn<∞. |
Then, we have the following Hardy-Hilbert-type inequality:
I:=∞∑m=1∞∑n=1ambn(m+n−η)λ<Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q |
×[∞∑m=1(m−η1)p(1−ˆλ1)−1apm]1p[∞∑n=1(n−η2)−qˆλ2−1Bqn]1q. | (18) |
In particular, for λ1+λ2=λ (λ1∈(0,32]∩(0,λ),λ2∈(0,12]∩(0,λ)), then we have
∞∑m=1∞∑n=1ambn(m+n−η)λ<λ2B(λ1,λ2)[∞∑m=1(m−η1)p(1−λ1)−1apm]1p[∞∑n=1(n−η2)−qλ2−1Bqn]1q. | (19) |
Proof. In view of the formula that
1(m+n−η)λ=1Γ(λ)∫∞0tλ−1e−(m+n−η)tdt, |
by (16), it follows that
I=1Γ(λ)∞∑m=1∞∑n=1ambn∫∞0tλ−1e−(m+n−η)tdt=1Γ(λ)∫∞0tλ−1∞∑m=1e−(m−η1)tam∞∑n=1e−(n−η2)tbndt⩽1Γ(λ)∫∞0t1∞∑m=1e−(m−η1)tam∞∑n=1e−(n−η2)tBndt |
=1Γ(λ)∞∑m=1∞∑n=1amBn∫∞0t(λ+1)−1e−(m+n−η)tdt=Γ(λ+1)Γ(λ)∞∑m=1∞∑n=1amBn(m+n−η)λ+1. |
Then by (15), we have (18).
For λ1+λ2=λ(∈(0,2])(λ1∈(0,32]∩(0,λ),λ2∈(0,12]∩(0,λ)), we have
kλ+1(λ2+1)=kλ+1(λ1)=B(λ1,λ2+1)=Γ(λ1)Γ(λ2+1)Γ(λ+1)=λ2Γ(λ1)Γ(λ2)Γ(λ+1)=λ2Γ(λ)Γ(λ+1)B(λ1,λ2), |
inequality (18) reduces to (19). The Theorem 1 is proved.
Theorem 2. Suppose that λ∈(0,2],λ1∈(0,32]∩(0,λ),λ2∈(0,12]∩(0,λ). If λ1+λ2=λ, then the constant factor
Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q |
in (18) is the best possible. On the other hand, if the same constant factor in (18) is the best possible, then for λ−λ1⩽12,λ−λ2⩽32, we have λ1+λ2=λ.
Proof. We now prove that the constant factor λ2B(λ1,λ2) in (19) is the best possible. For any 0<ε<min{pλ1,qλ2}, we set
˜am:=mλ1−εp−1,˜bn:=nλ2−εq−1(m,n∈N). |
Since for λ2⩽12, g(t):=tλ2−εq−1 is strictly decreasing with respect to t>0, by the decreasingness property of series, we have
˜Bn:=n∑k=1˜bk=n∑k=1kλ2−εq−1<∫n0tλ2−εq−1dt=1λ2−εqnλ2−εq. |
If there exists a positive constant M⩽λ2B(λ1,λ2), such that (19) is valid when we replace λ2B(λ1,λ2) by M, then in particular, for ηi=η=0(i=1,2), substitution of am=˜am, bn=˜bn and Bn=˜Bn in (19), we have
˜I:=∞∑n=1∞∑m=11(m+n)λ˜am˜bn<M[∞∑m=1mp(1−λ1)−1˜apm]1p(∞∑n=1n−qλ2−1˜Bqn)1q. | (20) |
In the following, we obtain that M⩾λ2B(λ1,λ2), which follows that M=λ2B(λ1,λ2) is the best possible constant factor in (19).
By (20) and the decreasingness property of series, we obtain
˜I<M(∞∑m=1mp(1−λ1)−1mpλ1−p−ε)1p1λ2−εq(∞∑n=1n−qλ2−1nqλ2−ε)1q=Mλ2−εq(1+∞∑m=2m−ε−1) |
<Mλ2−εq(1+∫∞1x−ε−1dx)=Mε(1λ2−εq)(ε+1). |
By (14), for ηi=η=0(i=1,2), s=λ,s1=λ1−εp(∈(0,32)∩(0,λ)),s2=λ2+εp (∈(0,λ)), we have
˜I=∞∑n=1[n(λ2+εp)∞∑m=11(m+n)λm(λ1−εp)−1]n−ε−1=∞∑n=1ω(λ1−εp,n)n−ε−1>kλ(λ1−εp)∞∑n=1[1−O2(1nλ1−εp)]n−ε−1>kλ(λ1−εp)[∫∞1y−ε−1dy−∞∑n=1O2(1nλ1+εq+1)]=1εB(λ1−εp,λ2+εp)(1−εO(1)). |
By (20) and the above results, we have
B(λ1−εp,λ2+εp)(1−εO(1))<ε˜I<M(1λ2−εq)(ε+1). |
Setting ε→0+, in view of the continuity of the beta function, we find λ2B(λ1,λ2)⩽M. Hence, M=λ2B(λ1,λ2) is the best possible constant factor in (19).
On the other hand, for ˆλ1=λ−λ2p+λ1q,ˆλ2=λ−λ1q+λ2p, and λ−λ2⩽32,λ−λ1⩽12, we find
ˆλ1+ˆλ2=λ−λ2p+λ1q+λ−λ1q+λ2p=λ, |
0<ˆλ1,ˆλ2<λ,ˆλ1⩽32p+32q=32,ˆλ2⩽12, |
and ˆλ2B(ˆλ1,ˆλ2)∈R+=(0,∞). By (19), we still have
∞∑m=1∞∑n=1ambn(m+n−η)λ<ˆλ2B(ˆλ1,ˆλ2)[∞∑m=1(m−η1)p(1−ˆλ1)−1apm]1p[∞∑n=1(n−η2)−qˆλ2−1Bqn]1q. | (21) |
If the constant factor Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q in (18) is the best possible, then for any M, when we replace Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q by M, we have
Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q⩽M, |
and then by (21), we have the following inequality:
Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q⩽ˆλ2B(ˆλ1,ˆλ2)=Γ(λ+1)Γ(λ)kλ+1(ˆλ1). |
It follows that
kλ+1(ˆλ1)⩾(kλ+1(λ2+1))1p(kλ+1(λ1))1q. |
By using Hӧlder's inequality (cf. [20]), we obtain
kλ+1(ˆλ1)=kλ+1(λ−λ2p+λ1q)=∫∞01(1+u)λ+1uλ−λ2p+λ1q−1du=∫∞01(1+u)λ+1(uλ−λ2−1p)(uλ1−1q)du⩽[∫∞01(1+u)λ+1uλ−λ2−1du]1p[∫∞01(1+u)λ+1uλ1−1du]1q |
=[∫∞01(1+v)λ+1v(λ2+1)−1dv]1p[∫∞01(1+u)λ+1uλ1−1du]1q |
=(kλ+1(λ2+1))1p(kλ+1(λ1))1q. | (22) |
Then we have
kλ+1(ˆλ1)=(kλ+1(λ2+1))1p(kλ+1(λ1))1q, |
namely, (22) keeps the form of equality.
We observe that (22) keeps the form of equality if and only if there exist constants A and B, such that they are not both zero satisfying (cf. [20])
Auλ−λ2−1=Buλ1−1a.e. in R+. |
Assuming that A≠0, we have uλ−λ2−λ1=BAa.e. in R+, and then λ−λ2−λ1=0, namely, λ1+λ2=λ. This completes the proof of Theorem 2.
Theorem 3. We have the following inequality equivalent to (18):
J:={∞∑m=1(m−η1)qˆλ1−1[∞∑n=1bn(m+n−η)λ]q}1q |
<Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q[∞∑n=1(n−η2)−qˆλ2−1Bqn]1q. | (23) |
In particular, for λ1+λ2=λ (λ1∈(0,32]∩(0,λ),λ2∈(0,12]∩(0,λ)), we have the following inequality equivalent to (19):
{∞∑m=1(m−η1)qλ1−1[∞∑n=1bn(m+n−η)λ]q}1q<λ2B(λ1,λ2)[∞∑n=1(n−η2)−qλ2−1Bqn]1q. | (24) |
Proof. Suppose that (23) is valid. By using Hӧlder's inequality (cf. [20]), we have
I=∞∑m=1[(m−η1)1q−ˆλ1am][(m−η1)−1q+ˆλ1∞∑n=1bn(m+n−η)λ] |
⩽[∞∑m=1(m−η1)p(1−ˆλ1)−1apm]1pJ. | (25) |
Then by (23), we have (18). On the other hand, assuming that (18) is valid, we set
am:=(m−η1)qˆλ1−1[∞∑n=1bn(m+n−η)λ]q−1,m∈N. |
Then, it follows that J=[∑∞m=1(m−η1)p(1−ˆλ1)−1apm]1q.
If J=0, then (23) is naturally valid; if J=∞, then it is impossible that makes (23) valid, namely, J<∞. Suppose that 0<J<∞. By (18), we have
∞∑m=1(m−η1)p(1−ˆλ1)−1apm=Jq=I |
<Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1qJq−1[∞∑n=1(n−η2)−qˆλ2−1Bqn]1q, |
J<Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q[∞∑n=1(n−η2)−qˆλ2−1]−1Bqn]1q, |
namely, (23) follows, which is equivalent to (18). The Theorem 3 is proved.
Theorem 4. Suppose that λ∈(0,2],λ1∈(0,32]∩(0,λ),λ2∈(0,12]∩(0,λ). If λ1+λ2=λ, then the constant factor Γ(λ+1)Γ(λ) (kλ+1(λ2+1))1p(kλ+1(λ1))1q in (23) is the best possible; On the other hand, if the same constant factor in (23) is the best possible, then for λ−λ2⩽32,λ−λ1⩽12, we have λ1+λ2=λ.
Proof. If λ1+λ2=λ, then by Theorem 2, the constant factor
Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q |
in (18) is the best possible. Then by (25), the constant factor in (23) is the best possible.
On the other hand, if the same constant factor in (23) is the best possible, then by the equivalency of (23) and (18), in view of Jq=I (in the proof of Theorem 3), it follows that the same constant factor in (18) is the best possible. By Theorem 2, in view of λ−λ2⩽32, λ−λ1⩽12, we have λ1+λ2=λ. The theorem is proved.
Setting
φ(m):=(m−η1)p(1−ˆλ1)−1,ψ(n):=(n−η2)q(1−ˆλ2)−1,Ψ(n):=(n−η2)−qˆλ2−1, |
where from,
φ1−q(m)=(m−η1)qˆλ1−1(m,n∈N), |
we define the following normed linear spaces:
lp,φ:={a={am}∞m=1;||a||p,φ:=(∞∑m=1φ(m)|am|p)1p<∞}, |
lq,ψ:={b={bn}∞n=1;||b||q,ψ:=(∞∑n=1ψ(n)|bn|q)1q<∞}, |
lq,Ψ:={B={Bn}∞n=1;||B||q,Ψ:=(∞∑n=1Ψ(n)|Bn|q)1q<∞}, |
lq,φ1−q:={c={cm}∞m=1;||c||q,φ1−q:=(∞∑m=1φ1−q(m)|cm|q)1q<∞}. |
For b={bn}∞n=1∈lq,ψ, setting c={cm}∞m=1: cm:=∑∞n=1bn(m+n−η)λ, we can rewrite (23) as follows:
||c||q,φ1−q<Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q||B||q,Ψ<∞, |
namely, c∈lq,φ1−q. The proof of Theorem 4 is complete.
Definition 1. Define a more accurate Hardy-Hilbert's operator T:lq,ψ→lq,φ1−q as follows: For any b∈lq,ψ, there exists a unique representation c=Tb∈lq,φ1−q, such that for any m∈N, Tb(m)=cm. Define the formal inner product of Tb and a∈lp,φ and the norm of T as follows:
(Tb,a):=∞∑m=1am∞∑n=1bn(m+n−η)λ, |
||T||:=supb(≠0)∈lq,ψ||Tb||q,φ1−q||B||q,Ψ. |
By Theorems 2–4, we have
Theorem 5. Suppose that
λ∈(0,2],λ1∈(0,32]∩(0,λ),λ2∈(0,12]∩(0,λ). |
If
b(⩾0)∈lq,ψ,B∈lq,Ψ,a(⩾0)∈lp,φ,||b||q,ψ>0,||B||q,Ψ>0||a||p,φ>0, |
then we have the following equivalent inequalities:
(Tb,a)<Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q||a||p,φ||B||q,Ψ, | (26) |
||Tb||q,φ1−q<Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q||B||q,Ψ. | (27) |
Moreover, for λ1+λ2=λ, the constant factor Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q in (26) and (27) is the best possible, namely
||T||=λ2B(λ1,λ2). |
On the other hand, if the same constant factor in (26) (or (27)) is the best possible, then for λ−λ2⩽32, λ−λ1⩽12, we have λ1+λ2=λ.
Remark 3. Taking λ=1,λ1=λ2=12 in (19) and (24), we have the following equivalent inequalities with the best possible constant factor π2 :
∞∑m=1∞∑n=1ambnm+n−η<π4[∞∑m=1(m−η1)p2−1apm]1p[∞∑n=1(n−η2)−q2−1Bqn]1q, | (28) |
{∞∑m=1(m−η1)q2−1[∞∑n=1bnm+n−η]q}1q<π2[∞∑n=1(n−η2)−q2−1Bqn]1q. | (29) |
In particular, putting η1=η2=η=0 in (28) and (29), we get
∞∑m=1∞∑n=1ambnm+n<π4(∞∑m=1mp2−1apm)1p(∞∑n=1n−q2−1Bqn)1q, | (30) |
[∞∑m=1mq2−1(∞∑n=1bnm+n)q]1q<π2(∞∑n=1n−q2−1Bqn)1q. | (31) |
Putting η1=η2=14,η=12 in (28) and (29), we obtain
∞∑m=1∞∑n=1ambnm+n−12<π4[∞∑m=1(m−14)p2−1apm]1p[∞∑n=1(n−14)−q2−1Bqn]1q, | (32) |
{∞∑m=1(m−14)q2−1[∞∑n=1bnm+n−12]q}1q<π2[∞∑n=1(n−14)−q2−1Bqn]1q. | (33) |
In this paper, by means of the weight coefficients, the idea of introduced parameters and the techniques of real analysis, using Hermite-Hadamard's inequality, the Euler-Maclaurin summation formula and Abel's summation by parts formula, a more accurate Hardy-Hilbert-type inequality involving one partial sums is given in Theorem 1. The equivalent conditions of the best possible constant factor related to several parameters are provided in Theorem 2. We also consider the equivalent forms, the operator expressions and some particular inequalities in Theorem 3, Theorem 4, Theorem 5 and Remark 3. The lemmas and theorems provide an extensive account of this type of inequalities.
This work is supported by the National Natural Science Foundation (No. 61772140, No. 12071491), the Characteristic Innovation Project of Guangdong Provincial Colleges and Universities (No. 2020KTSCX088), the Construction Project of Teaching Quality and Teaching Reform in Guangdong Undergraduate Colleges and Universities in 2018 (Specialty of Financial Mathematics), and the Natural Science Foundation of Fujian Province of China (No. 2020J01365). All authors contributed equally in the preparation of this paper.
The authors declare that they have no competing interests.
[1] | G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge: Cambridge University Press, 1934. |
[2] |
M. Krnić, J. Pečarić, Extension of Hilbert's inequality, J. Math. Anal. Appl., 324 (2006), 150-160. https://doi.org/10.1016/j.jmaa.2005.11.069 doi: 10.1016/j.jmaa.2005.11.069
![]() |
[3] | B. Yang, On a generalization of Hilbert double series theorem, J. Nanjing Univ. Math. Biquarterly, 18 (2001), 145-152. |
[4] |
V. Adiyasuren, T. Batbold, L. E. Azar, A new discrete Hilbert-type inequality involving partial sums, J. Inequal. Appl., 2019 (2019), 127. https://doi.org/10.1186/s13660-019-2087-6 doi: 10.1186/s13660-019-2087-6
![]() |
[5] | B. C. Yang, The norm of operator and Hilbert-type inequalities, Beijing: Science Press, 2009. |
[6] |
M. Krnić, J. Pečarić, General Hilbert's and Hardy's inequalities, Math. Inequal. Appl., 8 (2005), 29-51. http://dx.doi.org/10.7153/mia-08-04 doi: 10.7153/mia-08-04
![]() |
[7] |
I. Perić, P. Vuković, Multiple Hilbert's type inequalities with a homogeneous kernel, Banach J. Math. Anal., 5 (2011), 33-43. https://doi.org/10.15352/bjma/1313363000 doi: 10.15352/bjma/1313363000
![]() |
[8] |
Q. L. Huang, A new extension of Hardy-Hilbert-type inequality, J. Inequal. Appl., 2015 (2015), 397. https://doi.org/10.1186/s13660-015-0918-7 doi: 10.1186/s13660-015-0918-7
![]() |
[9] |
B. He, Q. Wang, A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor, J. Math. Anal. Appl., 431 (2015), 990-902. https://doi.org/10.1016/j.jmaa.2015.06.019 doi: 10.1016/j.jmaa.2015.06.019
![]() |
[10] | J. S. Xu, Hardy-Hilbert's inequalities with two parameters, Adv. Math., 36 (2007), 63-76. |
[11] | Z. T. Xie, Z. Zeng, Y. F. Sun, A new Hilbert-type inequality with the homogeneous kernel of degree-2, Adv. Appl. Math. Sci., 12 (2013), 391-401. |
[12] | Z. Zhen, K. Raja Rama Gandhi, Z. T. Xie, A new Hilbert-type inequality with the homogeneous kernel of degree -2 and with the integral, Bull. Math. Sci. Appl., 2014, 11-20. |
[13] | D. M. Xin, A Hilbert-type integral inequality with the homogeneous kernel of zero degree, Math. Theor. Appl., 30 (2010), 70-74. |
[14] |
L. E. Azar, The connection between Hilbert and Hardy inequalities, J. Inequal. Appl., 2013 (2013), 452. https://doi.org/10.1186/1029-242X-2013-452 doi: 10.1186/1029-242X-2013-452
![]() |
[15] |
V. Adiyasuren, T. Batbold, M. Krnić, Hilbert-type inequalities involving differential operators, the best constants and applications, Math. Inequal. Appl., 18 (2015), 111-124. http://dx.doi.org/10.7153/mia-18-07 doi: 10.7153/mia-18-07
![]() |
[16] |
G. Datt, M. Jain, N. Ohri, On weighted generalized composition operators on weighted Hardy spaces, Filomat, 34 (2020), 1689-1700. https://doi.org/10.2298/FIL2005689D doi: 10.2298/FIL2005689D
![]() |
[17] |
M. A. Ragusa, Parabolic Herz spaces and their applications, Appl. Math. Lett., 25 (2012), 1270-1273. https://doi.org/10.1016/j.aml.2011.11.022 doi: 10.1016/j.aml.2011.11.022
![]() |
[18] |
B. Yang, M. T. Rassias, A. Raigorodskii, On an extension of a Hardy-Hilbert-type inequality with multi-parameters, Mathematics, 9 (2021), 2432. https://doi.org/10.3390/math9192432 doi: 10.3390/math9192432
![]() |
[19] | Y. Hong, Y. Wen, A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor, Chin. Ann. Math., 37A (2016), 329-336. |
[20] | J. C. Kuang, Applied inequalities, Jinan: Shangdong Science and Technology Press, 2004. |
1. | Bicheng Yang, Shanhe Wu, A Weighted Generalization of Hardy–Hilbert-Type Inequality Involving Two Partial Sums, 2023, 11, 2227-7390, 3212, 10.3390/math11143212 | |
2. | Qiong Liu, The equivalent conditions for norm of a Hilbert-type integral operator with a combination kernel and its applications, 2025, 487, 00963003, 129076, 10.1016/j.amc.2024.129076 | |
3. | Ling Peng, Qiong Liu, The construction conditions of a Hilbert-type local fractional integral operator and the norm of the operator, 2025, 10, 2473-6988, 1779, 10.3934/math.2025081 | |
4. | Bicheng Yang, Shanhe Wu, An Improved Version of the Parameterized Hardy–Hilbert Inequality Involving Two Partial Sums, 2025, 13, 2227-7390, 1331, 10.3390/math13081331 |