Research article

A Hardy-Hilbert-type inequality involving modified weight coefficients and partial sums

  • Received: 30 October 2021 Revised: 14 January 2022 Accepted: 16 January 2022 Published: 19 January 2022
  • MSC : 26D15, 26D10, 47A05

  • In this article, we construct proper weight coefficients and use them to establish a Hardy-Hilbert-type inequality involving one partial sum. Based on this inequality, the equivalent conditions of the best possible constant factor related to several parameters are discussed. We also consider the equivalent forms and the operator expressions of the obtained inequalities. At the end of the paper, we demonstrate that more new Hardy-Hilbert-type inequalities can be derived from the special cases of the present results.

    Citation: Xianyong Huang, Shanhe Wu, Bicheng Yang. A Hardy-Hilbert-type inequality involving modified weight coefficients and partial sums[J]. AIMS Mathematics, 2022, 7(4): 6294-6310. doi: 10.3934/math.2022350

    Related Papers:

    [1] Bicheng Yang, Shanhe Wu, Qiang Chen . On an extended Hardy-Littlewood-Polya’s inequality. AIMS Mathematics, 2020, 5(2): 1550-1561. doi: 10.3934/math.2020106
    [2] Limin Yang, Ruiyun Yang . Some new Hardy-Hilbert-type inequalities with multiparameters. AIMS Mathematics, 2022, 7(1): 840-854. doi: 10.3934/math.2022050
    [3] Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb . On Hardy-Hilbert-type inequalities with $ \alpha $-fractional derivatives. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126
    [4] Jiankang Wang, Zhefeng Xu, Minmin Jia . Distribution of values of Hardy sums over Chebyshev polynomials. AIMS Mathematics, 2024, 9(2): 3788-3797. doi: 10.3934/math.2024186
    [5] Tianyang He, Zhiwen Liu, Ting Yu . The Weighted $ \boldsymbol{L}^{\boldsymbol{p}} $ estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041
    [6] K. Saritha, K. Thilagavathi . An application of Pascal distribution involving Kamali type related to leaf like domain. AIMS Mathematics, 2023, 8(7): 16511-16527. doi: 10.3934/math.2023844
    [7] M. Zakarya, Ghada AlNemer, A. I. Saied, H. M. Rezk . Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales. AIMS Mathematics, 2024, 9(8): 21414-21432. doi: 10.3934/math.20241040
    [8] Najla Altwaijry, Cristian Conde, Silvestru Sever Dragomir, Kais Feki . Further norm and numerical radii inequalities for operators involving a positive operator. AIMS Mathematics, 2025, 10(2): 2684-2696. doi: 10.3934/math.2025126
    [9] Mohammed Z. Alqarni, Mohamed Abdalla . Analytic properties and numerical representations for constructing the extended beta function using logarithmic mean. AIMS Mathematics, 2024, 9(5): 12072-12089. doi: 10.3934/math.2024590
    [10] Yaser Khatib, Stanford Shateyi . Improvement of inequalities related to powers of the numerical radius. AIMS Mathematics, 2024, 9(7): 19089-19103. doi: 10.3934/math.2024930
  • In this article, we construct proper weight coefficients and use them to establish a Hardy-Hilbert-type inequality involving one partial sum. Based on this inequality, the equivalent conditions of the best possible constant factor related to several parameters are discussed. We also consider the equivalent forms and the operator expressions of the obtained inequalities. At the end of the paper, we demonstrate that more new Hardy-Hilbert-type inequalities can be derived from the special cases of the present results.



    The classical Hardy-Hilbert's inequality asserted that

    m=1n=1ambnm+n<πsin(π/p)(m=1apm)1p(n=1bqn)1q, (1)

    where p>1,1p+1q=1,am,bn0,0<m=1apm<  and  0<n=1bqn<,πsin(π/p) is the best possible constant factor (cf. [1], Theorem 315).

    A sharpened inequality of (1) was included in [1] by Theorem 323, as follows:

    m=1n=1ambnm+n1<πsin(π/p)(m=1apm)1p(n=1bqn)1q. (2)

    In 2006, Krnić and J. Pečarić [2] provided an extension of (1) by introducing parameters

    λi(0,2](i=1,2),λ1+λ2=λ(0,4], i.e.,

    m=1n=1ambn(m+n)λ<B(λ1,λ2)[m=1mp(1λ1)1apm]1p[n=1nq(1λ2)1bqn]1q, (3)

    where, the constant factor B(λ1,λ2) is the best possible, and

    B(u,v)=0tu1(1+t)u+vdt(u,v>0)

    is the beta function. For λ=1,λ1=1q,λ2=1p, inequality (3) reduces to (1); for p=q=2, λ1=λ2=λ2, (3) reduces to a generalization of Hilbert's inequality which was proved by Yang in [3].

    Recently, by the use of inequality (3), Adiyasuren et al. [4] gave a Hardy-Hilbert's inequality involving partial sums, as follows:

    If λi(0,1](0,λ)(λ(0,2];i=1,2),λ1+λ2=λ, then

    m=1n=1ambn(m+n)λ<λ1λ2B(λ1,λ2)(m=1mpλ11Apm)1p(n=1nqλ21Bqn)1q, (4)

    where the constant factor λ1λ2B(λ1,λ2) is the best possible, and the partial sums Am:=mi=1ai and Bn:=nk=1bk (m,nN={ 1, 2, }) satisfy

    0<m=1mpλ11Apm<  and  0<n=1nqλ21Bqn<. (5)

    Inequalities (1), (2) and the integral analogues play an important role in analysis and applications (cf. [5,6,7,8,9,10,11,12,13,14,15,16,17,18]).

    In 2016, by means of the techniques of real analysis, Hong et al. [19] considered some equivalent statements of the extensions of (1) with the best possible constant factor related to a few parameters.

    Motivated by the inequalities (2) and (4), in this paper, we establish a new Hardy-Hilbert-type inequality, which contains modified weight coefficients and partial sums. The main technical approaches are the constructing of weight coefficients and the use of Hermite-Hadamard's inequality, Euler-Maclaurin summation formula and Abel's partial summation formula. Moreover, the equivalent conditions of the best possible constant factor related to several parameters are discussed. As applications, we deal with some equivalent forms, the operator expressions and some special cases about the inequality obtained in the main result.

    In what follows, we suppose that p>1,1p+1q=1, λ(0,2],

    λ1(0,32](0,λ+1),λ2(0,12](0,λ),
    ˆλ1:=λλ2p+λ1q,ˆλ2:=λλ1q+λ2p,
    ηi[0,14](i=1,2),η:=η1+η2.

    We also assume that for am,bn0 (m,nN:={ 1, 2, }),  the partial sums Bn:=nk=1bk satisfy Bn=o(et(nη2)) (t>0;n), and

    0<m=1(mη1)p(1ˆλ1)1apm<,0<n=1(nη2)qˆλ21Bqn<.

    Lemma 1. (cf. [5], (2.2.3)) (i) If (1)ididtig(t)>0, t[m,)(mN) with g(i)()=0 (i=0,1,2,3), Pi(t),Bi(iN) are the Bernoulli functions and the Bernoulli numbers of i-order, then

    mP2q1(t)g(t)dt=εqB2q2qg(m)(0<εq<1;q=1,2,). (6)

    In particular, for q=1, in view of B2=16, we have

    112g(m)<mP1(t)g(t)dt<0; (7)

    for q=2, in view of B4=130, we have

    0<mP3(t)g(t)dt<1120g(m). (8)

    (ii) (cf. [5], (2.3.2)) If f(t)(>0)C3[m,),f(i)()=0(i=0,1,2,3), then we have the following Euler-Maclaurin summation formula:

    k=mf(k)=mf(t)dt+12f(m)+mP1(t)f(t)dt, (9)
    mP1(t)f(t)dt=112f(m)+16mP3(t)f(t)dt. (10)

    Lemma 2. Let s(0,3], si(0,32](0,s), ks(si):=B(si,ssi)(i=1,2), we define the following weight coefficient:

    ϖ(s2,m):=(mη1)ss2n=1(nη2)s21(m+nη)s(mN). (11)

    Then we have the following inequalities:

    0<ks(s2)(1O1(1(mη1)s2))<ϖ(s2,m)<ks(s2)(mN). (12)

    Where

    O1(1(mη1)s2):=1ks(s2)1η2mη10us21(1+u)sdu>0.

    Proof. For estimating the series (11), we set the following real function: For fixed mN,

    g(m,t):=(tη2)s21(mη+t)s(t>η2).

    In the following we divide two cases of s2(0,1)(0,s) and s2[1,32](0,s) to prove (12).

    (i) For s2(0,1)(0,s), since

    (1)ig(i)(m,t)>0(t>η2;i=0,1,2),

    by Hermite-Hadamard's inequality (cf. [20]), setting u=tη2mη1, we have

    ϖ(s2,m)=(mη1)ss2n=1g(m,n)<(mη1)ss212g(m,t)dt
    =(mη1)ss212ts21(mη1+tη2)sdt=12η2mη1us21(1+u)sdu0us21(1+u)sdu=B(s2,ss2)=kλ(s2).

    On the other hand, in view of the decreasingness property of series, setting u=tη2mη1, we obtain

    ϖ(s2,m)=(mη1)ss2n=1g(m,n)>(mη1)ss21g(m,t)dt
    =1η2mη1us21(1+u)sdu=B(s2,ss2)1η2mη10us21(1+u)sdu=ks(s2)(1O1(1(mη1)s2))>0,

    where

    O1(1(mη1)s2)=1ks(s2)1η2mη10us21(1+u)sdu>0,

    satisfying

    0<1η2mη10us21(1+u)sdu<1η2mη10us21du=1s2(1η2mη1)s2(mN).

    Hence, we obtain (12).

    (ii) For s2[1,32](0,s), by (9), we have

    n=1g(m,n)=1g(m,t)dt+12g(m,1)+1P1(t)g(m,t)dt=η2g(m,t)dth(m),

    where, h(m) is indicated as

    h(m):=1η2g(m,t)dt12g(m,1)1P1(t)g(m,t)dt.

    We obtain 12g(m,1)=(1η2)s212(mη+1)s, and integrating by parts, it follows that

    1η2g(m,t)dt=1η2(tη2)s21(mη+t)sdt=1s21η2d(tη2)s2(mη+t)s
    =1s2(tη2)s2(mη+t)s|1η2+ss21η2(tη2)s2dt(mη+t)s+1=1s2(1η2)s2(mη+1)s+ss2(s2+1)1η2d(tη2)s2+1(mη+t)s+1
    >1s2(1η2)s2(mη+1)s+ss2(s2+1)[(tη2)s2+1(mη+t)s+1]1η2+s(s+1)s2(s2+1)(mη+1)s+21η2(tη2)s2+1dt
    =1s2(1η2)s2(mη+1)s+ss2(s2+1)(1η2)s2+1(mη+1)s+1+s(s+1)(1η2)s2+2s2(s2+1)(s2+2)(mη+1)s+2.

    We find

    g(m,t)=(s21)(tη2)s22(mη+t)s+s(tη2)s21(mη+t)s+1=(1s2)(tη2)s22(mη+t)s+s(tη2)s22[(mη+t)(mη1)](mη+t)s+1=(1s2)(tη2)s22(mη+t)s+s(tη2)s22(mη+t)ss(mη1)(tη2)s22(mη+t)s+1=(s+1s2)(tη2)s22(mη+t)ss(mη1)(tη2)s22(mη+t)s+1,

    and for s2[1,32](0,s), it follows that

    (1)ididti[(tη2)s22(mη+t)s]>0,(1)ididti[(tη2)s22(mη+t)s+1]>0(t>η2;i=0,1,2,3).

    By (8)–(10), for a:=1η2([34,1]), we obtain

    (s+1s2)1P1(t)(tη2)s22(mη+t)sdt>s+1s212(mη+1)sas22,
    (mη1)s1P1(t)(tη2)s22(mη+t)s+1dt>(mη1)sas2212(mη+1)s+1(mη1)s720[(tη2)s22(mη+t)s+1]t=1>(mη+1)sas12(mη+1)s+1as22(mη+1)s720[(s+1)(s+2)(mη+1)s+3as22+2(s+1)(2s2)(mη+1)s+2as23+(2s2)(3s2)(mη+1)s+1as24]=sas2212(mη+1)ssas2112(mη+1)s+1s720[(s+1)(s+2)(mη+1)s+2as22+2(s+1)(2s2)(mη+1)s+1as23+(2s2)(3s2)(mη+1)sas24],

    and then we have

    h(m)>as24(mη+1)sh1+sas23(mη+1)s+1h2+s(s+1)as22(mη+1)s+2h3,

    where, hi(i=1,2,3) are indicated as

    h1:=a4s2a32(1s2)a212s(2s2)(3s2)720,h2:=a4s2(s2+1)a212(s+1)(2s2)360,and
    h3:=a4s2(s2+1)(s2+2)s+2720.

    For s(0,3],s2[1,32](0,s), a[34,1], we find

    h1>a212s2[s22(6a+1)s2+12a2]1120.

    In view of

    dda[s22(6a+1)s2+12a2]=6(4as2)6(43432)>0,

    and

    dds2[s22(6a+1)s2+12a2]=2s2(6a+1)232(634+1)=3112<0,

    we obtain

    h1(3/4)212(3/2)[(32)2(634+1)32+12(34)2]1120=31281120>0,
    h2>a2(4a215112)190(34)2[415(34)2112]190=380190>0,
    h38a410557208105(34)41144=2711201144>0,

    and then h(m)>0.

    On the other hand, we also have

    n=1g(m,n)=1g(m,t)dt+12g(m,1)+1P1(t)g(m,t)dt=1g(m,t)dt+H(m),

    where, H(m) is indicated as

    H(m):=12g(m,1)+1P1(t)g(m,t)dt.

    We have obtained that

    12g(m,1)=as212(mη+1)s

    and

    g(m,t)=(s+1s2)(tη2)s22(mη+t)s+s(mη1)(tη2)s22(mη+t)s+1.

    For s2[1,32](0,s),0<s3, by (7), we obtain

    (s+1s2)1P1(t)(tη2)s22(mη+t)sdt>0,
    (mη1)s1P1(t)(tη2)s22(mη+t)s+1dt>(mη1)s12(mη+1)s+1as22=(mη+1)s+as12(mη+1)s+1as22=s12(mη+1)sas22+s12(mη+1)s+1as21>s12(mη+1)sas22.

    Hence, we have

    H(m)>as212(mη+1)ssas2212(mη+1)s=(a2s12)as22(mη+1)s(1234312)as22(mη+1)s=(38312)as22(mη+1)s>0.

    Therefore, we obtain the following inequalities:

    1g(m,t)dt<n=1g(m,n)<η2g(m,t)dt.

    In view of the the results in case (i), we have

    ϖ(s2,m)>(mη1)ss21g(m,t)dt=ks(s2)(1O1(1(mη1)s2))>0,
    ϖ(s2,m)<(mη1)ss2η2g(m,t)dtB(s2,ss2)=kλ(s2).

    Hence, we obtain (12). The Lemma 2 is proved.

    Lemma 3. Let s(0,3], si(0,32](0,s)(i=1,2). Then we have the following Hardy-Hilbert-type inequality:

    I=n=1m=1ambn(m+nη)s(ks(s2))1p(ks(s1))1q×{m=1(mη1)p[1(ss2p+s1q)]1apm}1p{n=1(nη2)q[1(ss1q+s2p)]1bqn}1q. (13)

    Proof. In the same way as the proof of inequality (12) along with the symmetry of the parameters s1,n,η2 and s2,m,η1, we obtain the following inequalities for the next weight coefficient:

    0<ks(s1)(1O2(1(nη2)s1))
    <ω(s1,n):=(nη2)ss1m=1(mη1)s11(m+nη)s<ks(s1)(nN), (14)

    where

    O2(1(nη2)s1):=1ks(s1)1η1nη20us11(1+u)sdu>0.

    By Hӧlder's inequality (cf. [20]), we obtain

    I=n=1m=11(m+nη)s[(mη1)(1s1)/q(nη2)(1s2)/pam][(nη2)(1s2)/p(mη1)(1s1)/qbn][m=1n=11(m+nη)s(mη1)(1s1)(p1)apm(nη2)1s2]1p[n=1m=11(m+nη)s(nη2)(1s2)(q1)bqn(mη1)1s1]1q={m=1ϖ(s2,m)(mη1)p[1(ss2p+s1q)]1apm}1p×{n=1ω(s1,n)(nη2)q[1(ss1q+s2p)]1bqn}1q.

    Then by (12) and (14), we obtain (13). The proof Lemma 3 is complete.

    Remark 1. In particular, for

    s=λ+1(1,3],s1=λ1(0,32](0,λ+1),s2=λ2+1(1,32](1,λ+1),

    in (13), then

    λ(0,2],λ1(0,32](0,λ+1),λ2(0,12](0,λ),

    replacing bn by Bn, in view of the assumptions of am  and  Bn, we have

    n=1m=1amBn(m+nη)λ+1<(kλ+1(λ2+1))1p(kλ+1(λ1))1q
    ×[m=1(mη1)p(1ˆλ1)1apm]1p[n=1(nη2)qˆλ21Bqn]1q. (15)

    Lemma 4. If t>0, then the following inequality holds

    n=1et(nη2)bntn=1et(nη2)Bn. (16)

    Proof. In view of Bnet(nη2)=o(1)(n), by Abel's summation by parts formula, we find

    n=1et(nη2)bn=limnBnet(nη2)+n=1Bn[et(nη2)et(nη2+1)]
    =n=1Bn[et(nη2)et(nη2+1)]=(1et)n=1et(nη2)Bn. (17)

    Since 1et<t(t>0), by (17), we have inequality

    n=1et(nη2)bntn=1et(nη2)Bn,

    namely, (16) follows. The Lemma 4 is proved.

    Theorem 1. Let p>1,1p+1q=1, λ(0,2], λ1(0,32](0,λ+1), λ2(0,12](0,λ), ˆλ1:=λλ2p+λ1q, ˆλ2:=λλ1q+λ2p, ηi[0,14](i=1,2), η=η1+η2, Bn=nk=1bk, Bn=o(et(nη2)) (t>0;n), and let

    0<m=1(mη1)p(1ˆλ1)1apm<,0<n=1(nη2)qˆλ21Bqn<.

    Then, we have the following Hardy-Hilbert-type inequality:

    I:=m=1n=1ambn(m+nη)λ<Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q
    ×[m=1(mη1)p(1ˆλ1)1apm]1p[n=1(nη2)qˆλ21Bqn]1q. (18)

    In particular, for λ1+λ2=λ (λ1(0,32](0,λ),λ2(0,12](0,λ)), then we have

    m=1n=1ambn(m+nη)λ<λ2B(λ1,λ2)[m=1(mη1)p(1λ1)1apm]1p[n=1(nη2)qλ21Bqn]1q. (19)

    Proof. In view of the formula that

    1(m+nη)λ=1Γ(λ)0tλ1e(m+nη)tdt,

    by (16), it follows that

    I=1Γ(λ)m=1n=1ambn0tλ1e(m+nη)tdt=1Γ(λ)0tλ1m=1e(mη1)tamn=1e(nη2)tbndt1Γ(λ)0t1m=1e(mη1)tamn=1e(nη2)tBndt
    =1Γ(λ)m=1n=1amBn0t(λ+1)1e(m+nη)tdt=Γ(λ+1)Γ(λ)m=1n=1amBn(m+nη)λ+1.

    Then by (15), we have (18).

    For λ1+λ2=λ((0,2])(λ1(0,32](0,λ),λ2(0,12](0,λ)), we have

    kλ+1(λ2+1)=kλ+1(λ1)=B(λ1,λ2+1)=Γ(λ1)Γ(λ2+1)Γ(λ+1)=λ2Γ(λ1)Γ(λ2)Γ(λ+1)=λ2Γ(λ)Γ(λ+1)B(λ1,λ2),

    inequality (18) reduces to (19). The Theorem 1 is proved.

    Theorem 2. Suppose that λ(0,2],λ1(0,32](0,λ),λ2(0,12](0,λ). If λ1+λ2=λ, then the constant factor

    Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q

    in (18) is the best possible. On the other hand, if the same constant factor in (18) is the best possible, then for λλ112,λλ232, we have λ1+λ2=λ.

    Proof. We now prove that the constant factor λ2B(λ1,λ2) in (19) is the best possible. For any 0<ε<min{pλ1,qλ2}, we set

    ˜am:=mλ1εp1,˜bn:=nλ2εq1(m,nN).

    Since for λ212, g(t):=tλ2εq1 is strictly decreasing with respect to t>0, by the decreasingness property of series, we have

    ˜Bn:=nk=1˜bk=nk=1kλ2εq1<n0tλ2εq1dt=1λ2εqnλ2εq.

    If there exists a positive constant Mλ2B(λ1,λ2), such that (19) is valid when we replace λ2B(λ1,λ2) by M, then in particular, for ηi=η=0(i=1,2), substitution of am=˜am, bn=˜bn and Bn=˜Bn in (19), we have

    ˜I:=n=1m=11(m+n)λ˜am˜bn<M[m=1mp(1λ1)1˜apm]1p(n=1nqλ21˜Bqn)1q. (20)

    In the following, we obtain that Mλ2B(λ1,λ2), which follows that M=λ2B(λ1,λ2) is the best possible constant factor in (19).

    By (20) and the decreasingness property of series, we obtain

    ˜I<M(m=1mp(1λ1)1mpλ1pε)1p1λ2εq(n=1nqλ21nqλ2ε)1q=Mλ2εq(1+m=2mε1)
    <Mλ2εq(1+1xε1dx)=Mε(1λ2εq)(ε+1).

    By (14), for ηi=η=0(i=1,2), s=λ,s1=λ1εp((0,32)(0,λ)),s2=λ2+εp ((0,λ)), we have

    ˜I=n=1[n(λ2+εp)m=11(m+n)λm(λ1εp)1]nε1=n=1ω(λ1εp,n)nε1>kλ(λ1εp)n=1[1O2(1nλ1εp)]nε1>kλ(λ1εp)[1yε1dyn=1O2(1nλ1+εq+1)]=1εB(λ1εp,λ2+εp)(1εO(1)).

    By (20) and the above results, we have

    B(λ1εp,λ2+εp)(1εO(1))<ε˜I<M(1λ2εq)(ε+1).

    Setting ε0+, in view of the continuity of the beta function, we find λ2B(λ1,λ2)M. Hence, M=λ2B(λ1,λ2) is the best possible constant factor in (19).

    On the other hand, for ˆλ1=λλ2p+λ1q,ˆλ2=λλ1q+λ2p, and λλ232,λλ112, we find

    ˆλ1+ˆλ2=λλ2p+λ1q+λλ1q+λ2p=λ,
    0<ˆλ1,ˆλ2<λ,ˆλ132p+32q=32,ˆλ212,

    and ˆλ2B(ˆλ1,ˆλ2)R+=(0,). By (19), we still have

    m=1n=1ambn(m+nη)λ<ˆλ2B(ˆλ1,ˆλ2)[m=1(mη1)p(1ˆλ1)1apm]1p[n=1(nη2)qˆλ21Bqn]1q. (21)

    If the constant factor Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q in (18) is the best possible, then for any M, when we replace Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q by M, we have

    Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1qM,

    and then by (21), we have the following inequality:

    Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1qˆλ2B(ˆλ1,ˆλ2)=Γ(λ+1)Γ(λ)kλ+1(ˆλ1).

    It follows that

    kλ+1(ˆλ1)(kλ+1(λ2+1))1p(kλ+1(λ1))1q.

    By using Hӧlder's inequality (cf. [20]), we obtain

    kλ+1(ˆλ1)=kλ+1(λλ2p+λ1q)=01(1+u)λ+1uλλ2p+λ1q1du=01(1+u)λ+1(uλλ21p)(uλ11q)du[01(1+u)λ+1uλλ21du]1p[01(1+u)λ+1uλ11du]1q
    =[01(1+v)λ+1v(λ2+1)1dv]1p[01(1+u)λ+1uλ11du]1q
    =(kλ+1(λ2+1))1p(kλ+1(λ1))1q. (22)

    Then we have

    kλ+1(ˆλ1)=(kλ+1(λ2+1))1p(kλ+1(λ1))1q,

    namely, (22) keeps the form of equality.

    We observe that (22) keeps the form of equality if and only if there exist constants A and B, such that they are not both zero satisfying (cf. [20])

    Auλλ21=Buλ11a.e. in R+.

    Assuming that A0, we have uλλ2λ1=BAa.e. in R+, and then λλ2λ1=0, namely, λ1+λ2=λ. This completes the proof of Theorem 2.

    Theorem 3. We have the following inequality equivalent to (18):

    J:={m=1(mη1)qˆλ11[n=1bn(m+nη)λ]q}1q
    <Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q[n=1(nη2)qˆλ21Bqn]1q. (23)

    In particular, for λ1+λ2=λ (λ1(0,32](0,λ),λ2(0,12](0,λ)), we have the following inequality equivalent to (19):

    {m=1(mη1)qλ11[n=1bn(m+nη)λ]q}1q<λ2B(λ1,λ2)[n=1(nη2)qλ21Bqn]1q. (24)

    Proof. Suppose that (23) is valid. By using Hӧlder's inequality (cf. [20]), we have

    I=m=1[(mη1)1qˆλ1am][(mη1)1q+ˆλ1n=1bn(m+nη)λ]
    [m=1(mη1)p(1ˆλ1)1apm]1pJ. (25)

    Then by (23), we have (18). On the other hand, assuming that (18) is valid, we set

    am:=(mη1)qˆλ11[n=1bn(m+nη)λ]q1,mN.

    Then, it follows that J=[m=1(mη1)p(1ˆλ1)1apm]1q.

    If J=0, then (23) is naturally valid; if J=, then it is impossible that makes (23) valid, namely, J<. Suppose that 0<J<. By (18), we have

    m=1(mη1)p(1ˆλ1)1apm=Jq=I
    <Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1qJq1[n=1(nη2)qˆλ21Bqn]1q,
    J<Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q[n=1(nη2)qˆλ21]1Bqn]1q,

    namely, (23) follows, which is equivalent to (18). The Theorem 3 is proved.

    Theorem 4. Suppose that λ(0,2],λ1(0,32](0,λ),λ2(0,12](0,λ). If λ1+λ2=λ, then the constant factor Γ(λ+1)Γ(λ) (kλ+1(λ2+1))1p(kλ+1(λ1))1q in (23) is the best possible; On the other hand, if the same constant factor in (23) is the best possible, then for λλ232,λλ112, we have λ1+λ2=λ.

    Proof. If λ1+λ2=λ, then by Theorem 2, the constant factor

    Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q

    in (18) is the best possible. Then by (25), the constant factor in (23) is the best possible.

    On the other hand, if the same constant factor in (23) is the best possible, then by the equivalency of (23) and (18), in view of Jq=I (in the proof of Theorem 3), it follows that the same constant factor in (18) is the best possible. By Theorem 2, in view of λλ232, λλ112, we have λ1+λ2=λ. The theorem is proved.

    Setting

    φ(m):=(mη1)p(1ˆλ1)1,ψ(n):=(nη2)q(1ˆλ2)1,Ψ(n):=(nη2)qˆλ21,

    where from,

    φ1q(m)=(mη1)qˆλ11(m,nN),

    we define the following normed linear spaces:

    lp,φ:={a={am}m=1;||a||p,φ:=(m=1φ(m)|am|p)1p<},
    lq,ψ:={b={bn}n=1;||b||q,ψ:=(n=1ψ(n)|bn|q)1q<},
    lq,Ψ:={B={Bn}n=1;||B||q,Ψ:=(n=1Ψ(n)|Bn|q)1q<},
    lq,φ1q:={c={cm}m=1;||c||q,φ1q:=(m=1φ1q(m)|cm|q)1q<}.

    For b={bn}n=1lq,ψ, setting c={cm}m=1: cm:=n=1bn(m+nη)λ, we can rewrite (23) as follows:

    ||c||q,φ1q<Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q||B||q,Ψ<,

    namely, clq,φ1q. The proof of Theorem 4 is complete.

    Definition 1. Define a more accurate Hardy-Hilbert's operator T:lq,ψlq,φ1q as follows: For any blq,ψ, there exists a unique representation c=Tblq,φ1q, such that for any mN,  Tb(m)=cm. Define the formal inner product of Tb and alp,φ and the norm of T as follows:

    (Tb,a):=m=1amn=1bn(m+nη)λ,
    ||T||:=supb(0)lq,ψ||Tb||q,φ1q||B||q,Ψ.

    By Theorems 2–4, we have

    Theorem 5. Suppose that

    λ(0,2],λ1(0,32](0,λ),λ2(0,12](0,λ).

    If

    b(0)lq,ψ,Blq,Ψ,a(0)lp,φ,||b||q,ψ>0,||B||q,Ψ>0||a||p,φ>0,

    then we have the following equivalent inequalities:

    (Tb,a)<Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q||a||p,φ||B||q,Ψ, (26)
    ||Tb||q,φ1q<Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q||B||q,Ψ. (27)

    Moreover, for λ1+λ2=λ, the constant factor Γ(λ+1)Γ(λ)(kλ+1(λ2+1))1p(kλ+1(λ1))1q in (26) and (27) is the best possible, namely

    ||T||=λ2B(λ1,λ2).

    On the other hand, if the same constant factor in (26) (or (27)) is the best possible, then for λλ232, λλ112, we have λ1+λ2=λ.

    Remark 3. Taking λ=1,λ1=λ2=12 in (19) and (24), we have the following equivalent inequalities with the best possible constant factor π2 :

    m=1n=1ambnm+nη<π4[m=1(mη1)p21apm]1p[n=1(nη2)q21Bqn]1q, (28)
    {m=1(mη1)q21[n=1bnm+nη]q}1q<π2[n=1(nη2)q21Bqn]1q. (29)

    In particular, putting η1=η2=η=0 in (28) and (29), we get

    m=1n=1ambnm+n<π4(m=1mp21apm)1p(n=1nq21Bqn)1q, (30)
    [m=1mq21(n=1bnm+n)q]1q<π2(n=1nq21Bqn)1q. (31)

    Putting η1=η2=14,η=12 in (28) and (29), we obtain

    m=1n=1ambnm+n12<π4[m=1(m14)p21apm]1p[n=1(n14)q21Bqn]1q, (32)
    {m=1(m14)q21[n=1bnm+n12]q}1q<π2[n=1(n14)q21Bqn]1q. (33)

    In this paper, by means of the weight coefficients, the idea of introduced parameters and the techniques of real analysis, using Hermite-Hadamard's inequality, the Euler-Maclaurin summation formula and Abel's summation by parts formula, a more accurate Hardy-Hilbert-type inequality involving one partial sums is given in Theorem 1. The equivalent conditions of the best possible constant factor related to several parameters are provided in Theorem 2. We also consider the equivalent forms, the operator expressions and some particular inequalities in Theorem 3, Theorem 4, Theorem 5 and Remark 3. The lemmas and theorems provide an extensive account of this type of inequalities.

    This work is supported by the National Natural Science Foundation (No. 61772140, No. 12071491), the Characteristic Innovation Project of Guangdong Provincial Colleges and Universities (No. 2020KTSCX088), the Construction Project of Teaching Quality and Teaching Reform in Guangdong Undergraduate Colleges and Universities in 2018 (Specialty of Financial Mathematics), and the Natural Science Foundation of Fujian Province of China (No. 2020J01365). All authors contributed equally in the preparation of this paper.

    The authors declare that they have no competing interests.



    [1] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge: Cambridge University Press, 1934.
    [2] M. Krnić, J. Pečarić, Extension of Hilbert's inequality, J. Math. Anal. Appl., 324 (2006), 150-160. https://doi.org/10.1016/j.jmaa.2005.11.069 doi: 10.1016/j.jmaa.2005.11.069
    [3] B. Yang, On a generalization of Hilbert double series theorem, J. Nanjing Univ. Math. Biquarterly, 18 (2001), 145-152.
    [4] V. Adiyasuren, T. Batbold, L. E. Azar, A new discrete Hilbert-type inequality involving partial sums, J. Inequal. Appl., 2019 (2019), 127. https://doi.org/10.1186/s13660-019-2087-6 doi: 10.1186/s13660-019-2087-6
    [5] B. C. Yang, The norm of operator and Hilbert-type inequalities, Beijing: Science Press, 2009.
    [6] M. Krnić, J. Pečarić, General Hilbert's and Hardy's inequalities, Math. Inequal. Appl., 8 (2005), 29-51. http://dx.doi.org/10.7153/mia-08-04 doi: 10.7153/mia-08-04
    [7] I. Perić, P. Vuković, Multiple Hilbert's type inequalities with a homogeneous kernel, Banach J. Math. Anal., 5 (2011), 33-43. https://doi.org/10.15352/bjma/1313363000 doi: 10.15352/bjma/1313363000
    [8] Q. L. Huang, A new extension of Hardy-Hilbert-type inequality, J. Inequal. Appl., 2015 (2015), 397. https://doi.org/10.1186/s13660-015-0918-7 doi: 10.1186/s13660-015-0918-7
    [9] B. He, Q. Wang, A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor, J. Math. Anal. Appl., 431 (2015), 990-902. https://doi.org/10.1016/j.jmaa.2015.06.019 doi: 10.1016/j.jmaa.2015.06.019
    [10] J. S. Xu, Hardy-Hilbert's inequalities with two parameters, Adv. Math., 36 (2007), 63-76.
    [11] Z. T. Xie, Z. Zeng, Y. F. Sun, A new Hilbert-type inequality with the homogeneous kernel of degree-2, Adv. Appl. Math. Sci., 12 (2013), 391-401.
    [12] Z. Zhen, K. Raja Rama Gandhi, Z. T. Xie, A new Hilbert-type inequality with the homogeneous kernel of degree -2 and with the integral, Bull. Math. Sci. Appl., 2014, 11-20.
    [13] D. M. Xin, A Hilbert-type integral inequality with the homogeneous kernel of zero degree, Math. Theor. Appl., 30 (2010), 70-74.
    [14] L. E. Azar, The connection between Hilbert and Hardy inequalities, J. Inequal. Appl., 2013 (2013), 452. https://doi.org/10.1186/1029-242X-2013-452 doi: 10.1186/1029-242X-2013-452
    [15] V. Adiyasuren, T. Batbold, M. Krnić, Hilbert-type inequalities involving differential operators, the best constants and applications, Math. Inequal. Appl., 18 (2015), 111-124. http://dx.doi.org/10.7153/mia-18-07 doi: 10.7153/mia-18-07
    [16] G. Datt, M. Jain, N. Ohri, On weighted generalized composition operators on weighted Hardy spaces, Filomat, 34 (2020), 1689-1700. https://doi.org/10.2298/FIL2005689D doi: 10.2298/FIL2005689D
    [17] M. A. Ragusa, Parabolic Herz spaces and their applications, Appl. Math. Lett., 25 (2012), 1270-1273. https://doi.org/10.1016/j.aml.2011.11.022 doi: 10.1016/j.aml.2011.11.022
    [18] B. Yang, M. T. Rassias, A. Raigorodskii, On an extension of a Hardy-Hilbert-type inequality with multi-parameters, Mathematics, 9 (2021), 2432. https://doi.org/10.3390/math9192432 doi: 10.3390/math9192432
    [19] Y. Hong, Y. Wen, A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor, Chin. Ann. Math., 37A (2016), 329-336.
    [20] J. C. Kuang, Applied inequalities, Jinan: Shangdong Science and Technology Press, 2004.
  • This article has been cited by:

    1. Bicheng Yang, Shanhe Wu, A Weighted Generalization of Hardy–Hilbert-Type Inequality Involving Two Partial Sums, 2023, 11, 2227-7390, 3212, 10.3390/math11143212
    2. Qiong Liu, The equivalent conditions for norm of a Hilbert-type integral operator with a combination kernel and its applications, 2025, 487, 00963003, 129076, 10.1016/j.amc.2024.129076
    3. Ling Peng, Qiong Liu, The construction conditions of a Hilbert-type local fractional integral operator and the norm of the operator, 2025, 10, 2473-6988, 1779, 10.3934/math.2025081
    4. Bicheng Yang, Shanhe Wu, An Improved Version of the Parameterized Hardy–Hilbert Inequality Involving Two Partial Sums, 2025, 13, 2227-7390, 1331, 10.3390/math13081331
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2167) PDF downloads(48) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog