Loading [MathJax]/jax/output/SVG/jax.js
Research article

Pricing catastrophe reinsurance under the standard deviation premium principle

  • Received: 22 September 2021 Revised: 16 December 2021 Accepted: 19 December 2021 Published: 22 December 2021
  • MSC : 62P05, 62M20

  • Catastrophe reinsurance is an important way to prevent and resolve catastrophe risks. As a consequence, the pricing of catastrophe reinsurance becomes a core problem in catastrophic risk management field. Due to the severity of catastrophe loss, the Peak Over Threshold (POT) model in extreme value theory (EVT) is extensively applied to capture the tail characteristics of catastrophic loss distribution. However, there is little research available on the pricing formula of catastrophe excess of loss (Cat XL) reinsurance when the catastrophe loss is modeled by POT. In the context of POT model, we distinguish three different relations between retention and threshold, and then prove the explicit pricing formula respectively under the standard deviation premium principle. Furthermore, we fit POT model to the earthquake loss data in China during 1990–2016. Finally, we give the prices of earthquake reinsurance for different retention cases. The computational results illustrate that the pricing formulas obtained in this paper are valid and can provide basis for the pricing of Cat XL reinsurance contracts.

    Citation: Wen Chao. Pricing catastrophe reinsurance under the standard deviation premium principle[J]. AIMS Mathematics, 2022, 7(3): 4472-4484. doi: 10.3934/math.2022249

    Related Papers:

    [1] Mudassir Shams, Nasreen Kausar, Serkan Araci, Liang Kong . On the stability analysis of numerical schemes for solving non-linear polynomials arises in engineering problems. AIMS Mathematics, 2024, 9(4): 8885-8903. doi: 10.3934/math.2024433
    [2] Godwin Amechi Okeke, Akanimo Victor Udo, Rubayyi T. Alqahtani, Melike Kaplan, W. Eltayeb Ahmed . A novel iterative scheme for solving delay differential equations and third order boundary value problems via Green's functions. AIMS Mathematics, 2024, 9(3): 6468-6498. doi: 10.3934/math.2024315
    [3] Sadia Arshad, Iram Saleem, Ali Akgül, Jianfei Huang, Yifa Tang, Sayed M Eldin . A novel numerical method for solving the Caputo-Fabrizio fractional differential equation. AIMS Mathematics, 2023, 8(4): 9535-9556. doi: 10.3934/math.2023481
    [4] Xiaopeng Yi, Chongyang Liu, Huey Tyng Cheong, Kok Lay Teo, Song Wang . A third-order numerical method for solving fractional ordinary differential equations. AIMS Mathematics, 2024, 9(8): 21125-21143. doi: 10.3934/math.20241026
    [5] Miguel Vivas-Cortez, Usama Asif, Muhammad Zakria Javed, Muhammad Uzair Awan, Yahya Almalki, Omar Mutab Alsalami . A new approach to error inequalities: From Euler-Maclaurin bounds to cubically convergent algorithm. AIMS Mathematics, 2024, 9(12): 35885-35909. doi: 10.3934/math.20241701
    [6] Junaid Ahmad, Kifayat Ullah, Reny George . Numerical algorithms for solutions of nonlinear problems in some distance spaces. AIMS Mathematics, 2023, 8(4): 8460-8477. doi: 10.3934/math.2023426
    [7] Kamsing Nonlaopon, Farooq Ahmed Shah, Khaleel Ahmed, Ghulam Farid . A generalized iterative scheme with computational results concerning the systems of linear equations. AIMS Mathematics, 2023, 8(3): 6504-6519. doi: 10.3934/math.2023328
    [8] G Thangkhenpau, Sunil Panday, Bhavna Panday, Carmen E. Stoenoiu, Lorentz Jäntschi . Generalized high-order iterative methods for solutions of nonlinear systems and their applications. AIMS Mathematics, 2024, 9(3): 6161-6182. doi: 10.3934/math.2024301
    [9] Fiza Zafar, Alicia Cordero, Dua-E-Zahra Rizvi, Juan Ramon Torregrosa . An optimal eighth order derivative free multiple root finding scheme and its dynamics. AIMS Mathematics, 2023, 8(4): 8478-8503. doi: 10.3934/math.2023427
    [10] Dong Ji, Yao Yu, Chaobo Li . Fixed point and endpoint theorems of multivalued mappings in convex b-metric spaces with an application. AIMS Mathematics, 2024, 9(3): 7589-7609. doi: 10.3934/math.2024368
  • Catastrophe reinsurance is an important way to prevent and resolve catastrophe risks. As a consequence, the pricing of catastrophe reinsurance becomes a core problem in catastrophic risk management field. Due to the severity of catastrophe loss, the Peak Over Threshold (POT) model in extreme value theory (EVT) is extensively applied to capture the tail characteristics of catastrophic loss distribution. However, there is little research available on the pricing formula of catastrophe excess of loss (Cat XL) reinsurance when the catastrophe loss is modeled by POT. In the context of POT model, we distinguish three different relations between retention and threshold, and then prove the explicit pricing formula respectively under the standard deviation premium principle. Furthermore, we fit POT model to the earthquake loss data in China during 1990–2016. Finally, we give the prices of earthquake reinsurance for different retention cases. The computational results illustrate that the pricing formulas obtained in this paper are valid and can provide basis for the pricing of Cat XL reinsurance contracts.



    One of the oldest and most basic problems in mathematics is that of solving nonlinear equations. To solve these equations, we can use iterative methods such as Newton's method and its variants. Newton's method is one of the most powerful and well-known iterative methods known to converge quadratically.

    In the Adomian decomposition method, the solution is considered in terms of an infinite series, which converges to an exact solution. Chun [5] and Abbasbandy [4] constructed and investigated different higher-order iterative methods by applying the decomposition technique of Adomian [3]. Darvishi and Barati [6] also applied the Adomian decomposition technique to develop Newton-type methods that are cubically convergent for the solution of the system of non-linear equations. Implementation of this Adomian decomposition technique required higher-order derivatives evaluation, which is the major pitfall of this method.

    To overcome this drawback, several new techniques have been suggested and analyzed by many researchers. Daftardar-Gejji and Jafari [7] have used different modifications of the Adomian decomposition method [3] and proposed a simple technique that does not need the derivative evaluation of the Adomian polynomial, which is the major advantage of using this technique over Adomian decomposition method. Saqib and Iqbal [13] and Ali et al. [1,2] have used this decomposition technique and developed a family of iterative methods with better efficiency and convergence order for solving the nonlinear equations. Heydari et al. [15,16] proposed several iterative methods including derivative free methods and discussed their convergence. For finding multiple roots of nonlinear equations and iterative schemes using homotopy perturbation techniques, see [17,18].

    Weerakon and Fernando [14] improved the convergence of the Newton method using the quadrature rule. Later on, Ozban [11] investigated some new variant forms of the Newton method by using the concept of harmonic mean and mid-point rule. Noor [10] developed the fifth-order convergent iterative method using the Gaussian quadrature formula and investigated its efficacy compared to the existing methods in the literature.

    In this paper, we consider the well know fixed-point iterative method in which we rewrite the nonlinear equation Λ()=0 as =Υ(). We present and introduce some new iterative methods. We also determine the convergence analysis of proposed methods. Some numerical examples are presented to make a comparative study of newly constructed methods with known third and fourth-order convergent iterative algorithms.

    This section comprises some new multi-step third and fourth-order convergent iterative methods in view of Simpson's one-third rule and decomposition technique [7].

    Consider the nonlinear equation

    Λ()=0, (2.1)

    which is equivalent to

    =Υ(). (2.2)

    Assume that α is the simple root of nonlinear Eq (2.1) and γ is the initial guess sufficiently close to the root. Using fundamental theorem of calculus and Simpson's one-third quadrature formula, we have

    γΥ()d=γ6{Υ(γ)+4Υ(+γ2)+Υ()},Υ()=Υ(γ)+γ6{Υ(γ)+4Υ(+γ2)+Υ()}. (2.3)

    Now, from (2.2) and (2.3), we have

    =Υ(γ)+16(γ)(Υ(γ)+4Υ(+γ2)+Υ()). (2.4)

    Now, using the technique of He [8], the nonlinear Eq (2.1) can be written as an equivalent coupled system of equations

    =Υ(γ)+16(γ)(Υ(γ)+4Υ(+γ2)+Υ())+H(),

    and

    H()=Υ()Υ(γ)16(γ)(Υ(γ)+4Υ(+γ2)+Υ())=[116(Υ(γ)+4Υ(+γ2)+Υ())]+γ6(Υ(γ)+4Υ(+γ2)+Υ())Υ(γ), (2.5)

    from which, it follows that

    =H()116(Υ(γ)+4Υ(+γ2)+Υ())+Υ(γ)γ6(Υ(γ)+4Υ(+γ2)+Υ())116(Υ(γ)+4Υ(+γ2)+Υ())=c+M(), (2.6)

    where

    c=γ, (2.7)

    and

    M()=H()116(Υ(γ)+4Υ(+γ2)+Υ())+Υ(γ)γ116(Υ(γ)+4Υ(+γ2)+Υ()). (2.8)

    It is clear that M() is nonlinear operator. Now, we establish the sequence of higher-order iterative methods implementing the decomposition technique presented by Daftardar-Gejji and Jafari [7]. In this technique, the solution of (2.1) can be represented in terms of infinite series.

    =i=0i. (2.9)

    Here, the operator M() can be decomposed as:

    M()=M()+i=1{M(ij=0j)M(i1j=0j)}. (2.10)

    Thus, from (2.6), (2.9) and (2.10), we have

    i=1i=c+M()+i=1{M(ij=0j)M(i1j=0j)}, (2.11)

    which generates the following iterative schemes:

    o=c,1=M(o),2=M(0+1)M(0),n+1=M(nj=0j)M(n1j=0j),n=0,1,2,. (2.12)

    Consequently, it follows that

    1+2++n+1=M(0+1+2++n),

    and

    =c+i=1i. (2.13)

    It is noted that is approximated by

    Un=(0+1+2++n),

    and

    limxUn=.

    For n=0,

    U0=0=c=γ. (2.14)

    From (2.5), it can easily be computed as:

    H(0)=0.

    Using (2.8), we get

    1=M(0)=H(0)116(Υ(γ)+4Υ(0+γ2)+Υ(0))+Υ(γ)γ116(Υ(γ)+4Υ(0+γ2)+Υ(0))=Υ(γ)γ116(Υ(γ)+4Υ(0+γ2)+Υ(0)).

    For n=1,

    U1=0+1=0+M(0)=γ+Υ(γ)γ116(Υ(γ)+4Υ(0+γ2)+Υ(0)).

    Using (2.14), we have

    =Υ(γ)γΥ(γ)1Υ(γ). (2.15)

    This fixed point formulation is used to suggest the following algorithm {for solving the nonlinear equation Λ()=0}.

    Algorithm 2.1. For a given 0 (initial guess), approximate solution n+1 is computed by the following iterative scheme

    n+1=Υ(n)γΥ(n)1Υ(n). (2.16)

    Kang et al. [9] developed this algorithm and proved that Algorithm 2.1 has quadratic convergence.

    Form (2.5) and (2.8), we have

    H(0+1)=Υ(0+1)Υ(γ)16(0+1γ)(Υ(γ)+4Υ(0+1+γ2)+Υ(0+1)).

    Thus

    1+2=M(0+1)=H(0+1)116(Υ(γ)+4Υ(0+1+γ2)+Υ(0+1))+Υ(γ)γ116(Υ(γ)+4Υ(0+1+γ2)+Υ(0+1))=1116(Υ(γ)+4Υ(0+1+γ2)+Υ(0+1))×(Υ(0+1)Υ(γ)16(0+1γ)(Υ(γ)+4Υ(0+1+γ2)+Υ(0+1)))+Υ(γ)γ116(Υ(γ)+4Υ(0+1+γ2)+Υ(0+1))=1116(Υ(γ)+4Υ(0+1+γ2)+Υ(0+1))×(Υ(0+1)16(0+1γ)(Υ(γ)+4Υ(0+1+γ2)+Υ(0+1))γ).

    For n=2,

    U2=0+1+2=c+M(0+1)=γ+1116(Υ(γ)+4Υ(0+1+γ2)+Υ(0+1))×(Υ(0+1)16(0+1γ)(Υ(γ)+4Υ(0+1+γ2)+Υ(0+1))γ)=1116(Υ(γ)+4Υ(0+1+γ2)+Υ(0))×(Υ(0+1)16(0+1)(Υ(γ)+4Υ(0+1+γ2)+Υ(0+1))).

    Take

    0+1=v=Υ(γ)γΥ(γ)1Υ(γ)=Υ(v)16v(Υ(γ)+4Υ(v+γ2)+Υ(v))116(Υ(γ)+4Υ(v+γ2)+Υ(v)).

    This relation yields the following two-step method for solving the nonlinear equation {Λ()=0}.

    Algorithm 2.2. For a given initial guess 0, the approximated solution n+1 can be computed by the following iterative schemes:

    vn=Υ(n)nΥ(n)1Υ(n), (2.17)
    n+1=Υ(vn)16vn(Υ(n)+4Υ(vn+n2)+Υ(vn))116(Υ()+4Υ(vn+n2)+Υ(vn)), (2.18)

    where n=0,1,2,.

    It is noted that

    0+1+2=w=1116(Υ(γ)+4Υ(0+1+γ2)+Υ(0))[Υ(0+1)16(0+1)Υ(γ)+4Υ(0+1+γ2)+Υ(0+1)]. (2.19)

    Using (2.5) and (2.8), we can write

    H(0+1+2)=Υ(0+1+2)Υ(γ)16(0+1+2γ)(Υ(γ)+4Υ(0+1+2+γ2)+Υ(0+1+2)),

    and

    1+2+3=M(0+1+2)=H(0+1+2)116(Υ(γ)+4Υ(0+1+2+γ2)+Υ(0+1+2))+Υ(γ)γ116(Υ(γ)+4Υ(0+1+2+γ2)+Υ(0+1+2))=1116(Υ(γ)+4Υ(0+1+2+γ2)+Υ(0+1+2))×(Υ(0+1+2)Υ(γ)16(0+1+2γ)Υ(γ)+4Υ(0+1+2+γ2)+Υ(0+1+2))+Υ(γ)γ116(Υ(γ)+4Υ(0+1+2+γ2)+Υ(0+1+2))=1116(Υ(γ)+4Υ(0+1+2+γ2)+Υ(0+1+2))[Υ(0+1+2)16(0+1+2γ)(Υ(γ)+4Υ(0+1+2+γ2)+Υ(0+1+2))γ].

    For n=3,

    U3=0+1+2+3=0+M(0+1+2).=γ+1116(Υ(γ)+4Υ(0+1+2+γ2)+Υ(0+1+2))[Υ(0+1+2)16(0+1+2γ)(Υ(γ)+4Υ(0+1+2+γ2)+Υ(0+1+2))γ]=1116(Υ(γ)+4Υ(0+1+2+γ2)+Υ(0+1+2))×[Υ(0+1+2)16(0+1+2)(Υ(γ)+4Υ(0+1+2+γ2)+Υ(0+1+2))].

    Using (2.19), we have

    =Υ(w)16w(Υ(γ)+4Υ(w+γ2)+Υ(w))116(Υ(γ)+4Υ(w+γ2)+Υ(w)).

    Using this relation, we suggest the following three-step method for solving nonlinear Eq (2.1).

    Algorithm 2.3. For a given initial guess 0, compute the approximate solution n+1 by the following iterative scheme.

    vn=Υ(n)nΥ(n)1Υ(n),
    wn=Υ(vn)116(Υ()+4Υ(vn+n2)+Υ(vn))16vn(Υ(n)+4Υ(vn+n2)+Υ(vn))116(Υ(n)+4Υ(vn+n2)+Υ(vn)), (2.20)

    and

    n+1=Υ(wn)116(Υ()+4Υ(wn+n2)+Υ(wn))16wn(Υ(n)+4Υ(wn+n2)+Υ(wn))116(Υ(n)+4Υ(wn+n2)+Υ(wn)), (2.21)

    where n=0,1,2,.

    This section comprises convergence analysis of proposed Algorithms 2.2 and 2.3. It is shown that these methods are third and fourth-order convergent, respectively.

    Theorem 3.1. Let IR be an open interval and Λ:IR is differential function. If βI be the {simple root} of Λ()=0 and 0 is sufficiently close to β then multi-step method defined by Algorithm 2.2 has third order ofconvergence.

    Proof. Let β be the root of nonlinear equation Λ()=0, or equivalently =Υ(). Let en and en+1 be the errors at nth and (n+1) iterations, respectively.

    Now, expanding Υ() and Υ() by using Taylor series about β, we have

    Υ(n)=β+enΥ(β)+e2nΥ(β)2+e3nΥ(β)6+O(e4n), (3.1)

    and

    Υ(n)=Υ(β)+enΥ(β)+e2nΥ(β)2+e3nΥiv(β)6+O(e4n). (3.2)

    Thus, we have

    Υ(n)nΥ(n)=ββΥ(β)βΥ(β)en12(Υ(β)+βΥ(β))e2n16(2Υ(β)+βΥiv(β))e3n+O(e4n),
    1Υ(n)=1Υ(β)enΥ(β)e2nΥ(β)2e3nΥiv(β)6+O(e4n),

    and

    Υ(n)nΥ(n)1Υ(n)=β+Υ(β)2(1+Υ(β))e2n2Υ(β)2Υ(β)Υ(β)+3Υ2(β)6(1+Υ(β))2e3n+O(e4n).

    From (2.16), we have

    n+1=β+Υ(β)2(1+Υ(β))e2n2Υ(β)2Υ(β)Υ(β)+3Υ2(β)6(1+Υ(β))2e3n+112(1+Υ(β))3(2Υiv(β)4Υiv(β)Υ(β)+2Υiv(β)Υ2(β)+7Υ(β)Υ(β)7Υ(β)Υ(β)Υ(β)+6Υ3(β))e4n+O(e5n).

    Using (2.17), we obtain

    vn=β+Υ(β)2(1+Υ(β))e2n2Υ(β)2Υ(β)Υ(β)+3Υ2(β)6(1+Υ(β))2e3n+112(1+Υ(β))3(2Υiv(β)4Υiv(β)Υ(β)+2Υiv(β)Υ2(β)+7Υ(β)Υ(β)7Υ(β)Υ(β)Υ(β)+6Υ3(β))e4n+O(e5n).

    Expanding Υ(vn) in terms of Taylor series about β, we get

    (3.3)

    Expanding Υ(vn) in terms of Taylor series about β, we get

    Υ(vn)=Υ(β)+12(1+Υ(β))Υ(β)e2n+16(1+Υ(β))2(2Υ(β)+2Υ(β)Υ(β)3Υ2(β))e3n+124(1+Υ(β))3Υ(β)(4Υiv(β)8Υiv(β)Υ(β)+4Υiv(β)Υ2(β)+11Υ(β)Υ(β)11Υ(β)Υ(β)Υ(β)+12Υ3(β))e4n+O(e5n). (3.4)

    Expanding Υ(vn+n2) in terms of Taylor series about β, we get

    Υ(vn+n2)=Υ(β)+Υ(β)2en+18(1+Υ(β))(2Υ2(β)+Υ(β)Υ(β)Υ(β))e2n+148(1+Υ(β))2(14Υ(β)Υ(β)+14Υ(β)Υ(β)Υ(β)+Υiv(β)12Υ3(β)2Υiv(β)Υ(β)+Υiv(β)Υ2(β))e3n+196(1+Υ(β))3(11Υiv(β)Υ(β)22Υiv(β)Υ(β)Υ(β)+11Υiv(β)Υ2(β)Υ(β)+37Υ2(β)Υ(β)37Υ2(β)Υ(β)Υ(β)+24Υ4(β)+8Υ2(β)16Υ3(β)Υ(β)+8Υ2(β)Υ2(β))e4n+O(e5n). (3.5)

    From (3.2), (3.4) and (3.5), we have

    16[Υ(vn)+4Υ(vn+n2)+Υ(n)]=Υ(β)+12Υ(β)en+112Υ(β)e2n+112(1+Υ(β))5Υ2(β)e2n+136Υiv(β)e3n+136(1+Υ(β))25Υ(β)(2Υ(β)Υ(β)2Υ(β)3Υ2(β))e3n+1144Υv(β)e4n+1144(1+Υ(β))35Υ(β)(3Υiv(β)+12Υ3(β)6Υ(β)Υiv(β)+3Υ2(β)Υiv(β)+14Υ(β)Υ(β)14Υ(β)Υ(β)Υ(β))e4n+O(e5n). (3.6)

    Now,

    (3.7)

    Using (3.3) and (3.7), we have

    (3.8)

    Using (3.6), we have

    116[Υ(vn)+4Υ(vn+n2)+Υ(n)]=1Υ(β)12Υ(β)en112Υ(β)e2n112(1+Υ(β))5Υ2(β)e2n136Υiv(β)e3n136(1+Υ(β))25Υ(β)(2Υ(β)Υ(β)2Υ(β)3Υ2(β))e3n1144Υv(β)e4n1144(1+Υ(β))35Υ(β)(3Υiv(β)+12Υ3(β)6Υ(β)Υiv(β)+3Υ2(β)Υiv(β)+14Υ(β)Υ(β)14Υ(β)Υ(β)Υ(β))e4n+O(e5n). (3.9)

    Dividing (3.8) and (3.9), we have

    Υ(vn)vn6[Υ(vn)+4Υ(vn+n2)+Υ(n)]116[Υ(vn)+4Υ(vn+n2)+Υ(n)]=β+14(1+Υ(β))2Υ2(β)e3n+1144(1+Υ(β))3(30Υ(β)Υ(β)Υ(β)30Υ(β)Υ(β)24Υ3(β))e4n+O(e5n).

    Using (2.18), we have

    n+1=β+14(1+Υ(β))2Υ2(β)e3n+1144(1+Υ(β))3(30Υ(β)Υ(β)Υ(β)30Υ(β)Υ(β)24Υ3(β))e4n+O(e5n). (3.10)

    Therefore,

    en+1=14(1+Υ(β))2Υ2(β)e3n+1144(1+Υ(β))3(30Υ(β)Υ(β)Υ(β)30Υ(β)Υ(β)24Υ3(β))e4n+O(e5n).

    This shows that Algorithm 2.2 has third-order of convergence.

    Theorem 3.2. Let IR be an open interval and Λ:IR is differential function. If βI be the {simple root} of Λ()=0 and 0 is sufficiently close to β then multi-step method defined by Algorithm 2.3 has fourth order ofconvergence.

    Proof. From (3.10), we have

    wn=β+14(1+Υ(β))2Υ2(β)e3n+1144(1+Υ(β))3(30Υ(β)Υ(β)Υ(β)30Υ(β)Υ(β)24Υ3(β))e4n+O(e5n).

    Expanding Υ(wn), in terms of Taylor's series

    (3.11)

    Expanding Υ(wn), in terms of Taylor's series

    (3.12)

    Expanding Υ(wn+n2) in terms of Taylor's series

    Υ(wn+n2)=Υ(β)+12Υ(β)en+14(1+Υ(β))2Υ3(β)e3n+148(1+Υ(β))3Υ(β)(15Υ(β)Υ(β)Υ(β)15Υ(β)Υ(β)12Υ3)(β)e4n+O(e5n). (3.13)

    Using (3.2), (3.12) and (3.13), we have

    16[Υ(wn)+4Υ(wn+n2)+Υ(n)]=Υ(β)+12Υ(β)en+112Υ(β)e2n+124Υiv(β)e3n+124(1+Υ(β))25Υ3(β)e3n+1144Υv(β)e4n+136(1+Υ(β))35Υ(β)(15Υ(β)Υ(β)Υ(β)15Υ(β)Υ(β)12Υ3(β))e4n+O(e5n). (3.14)

    Now,

    wn6[Υ(wn)+4Υ(wn+n2)+Υ(n)]=βΥ(β)+12βΥ(β)en+112βΥ(β)e2n+124βΥiv(β)e3n+124(1+Υ(β))25βΥ3(β)e3n+1144βΥv(β)e4n+136(1+Υ(β))35Υ(β)(15Υ(β)Υ(β)Υ(β)15Υ(β)Υ(β)12Υ3(β))e4n+18(1+Υ(β))2Υ3(β)e4n+O(e5n). (3.15)

    Using (3.11) and (3.15), we have

    Υ(wn)wn6[Υ(wn)+4Υ(wn+n2)+Υ(n)] (3.16)
    =ββΥ(β)12βΥ(β)en112βΥ(β)e2n124βΥiv(β)e3n124(1+Υ(β))25βΥ3(β)e3n1144βΥv(β)e4n136(1+Υ(β))35Υ(β)(15Υ(β)Υ(β)Υ(β)15Υ(β)Υ(β)12Υ3(β))e4n18(1+Υ(β))2Υ3(β)e4n+O(e5n). (3.17)

    Using (3.14), we have

    116[Υ(wn)+4Υ(wn+n2)+Υ(n)]=1Υ(β)12Υ(β)en112Υ(β)e2n124Υiv(β)e3n+O(e4n). (3.18)

    Dividing (3.17) and (3.18), we have

    Υ(wn)wn6[Υ(wn)+4Υ(wn+n2)+Υ(n)]116[Υ(wn)+4Υ(wn+n2)+Υ(n)]=β+18(1+Υ(β))2Υ3(β)e4n+O(e5n).

    Using (2.21), we have

    n+1=β+18(1+Υ(β))2Υ3(β)e4n+O(e5n).

    Therefore,

    en+1=1(1+Υ(β))2Υ3(β)e4n+O(e5n).

    This shows that Algorithm 2.3 has fourth order of convergence.

    This section elaborates on the efficacy of algorithms introduced in this paper with the support of examples. We obtain an estimated simple root rather than the exact based on the exactness of the computer. We utilize ε=105, for computational work we use the following stopping criteria |n+1n|<ε.

    We make a comparative representation Newton method (NM), Halley method (HM), Algorithms 2A [12], 2B [12] and 2C [12] with Algorithms 2.2 and 2.3. In tables, we also displayed the number of iterations (IT), the approximate root n and the value of Λ(n).

    We solved all test problems and calculated the CPU time consumptions in second with the aid of the computer software Maple 17.

    Example 4.1. For Λ()=310,Υ()=10 and 0=1.5.

    Methods IT n Λ(n) δ=∣nn1 CPU Time
    NM[12] 5 2.1544346900319185890 4.85518e13 2.740789522304e7 0.218
    HM[12] 5 2.1544346900319185890 4.85518e13 2.740789522304e7 0.453
    Algorithm 2A[12] 4 2.1544346900318834557 3.7048e15 4.78781787078e8 0.390
    Algorithm 2B[12] 3 2.1544346900318837218 1.0e18 3.6257326037e9 0.312
    Algorithm 2C[12] 3 2.1544346900318837217 8.0e19 1.457e16 0.140
    Algorithm 2.2 3 2.1544346900318837216 2.2e18 4.4395190876e9 0.500
    Algorithm 2.3 3 2.1544346900318837217 8.0e19 2.645e16 0.281

    Example 4.2. For Λ()=cos(),Υ()=cos() and 0=1.7.

    Methods IT n Λ(n) δ=∣nn1 CPU Time
    NM [12] 4 0.73908513321516087614 3.9244e16 3.258805388731e8 0.359
    HM [12] 4 0.73908513321516087614 3.9244e16 3.258805388731e18 0.250
    Algorithm 2A [12] 4 0.73908513321516087612 3.9240e16 3.258805388731e8 0.578
    Algorithm 2B [12] 3 0.73908513321516064166 1.0e20 8.63747112426e9 0.203
    Algorithm 2C [12] 3 0.73908513321516064166 1.0e20 3.72234e15 0.187
    Algorithm 2.2 3 0.73908513321516064166 1.0e20 6.04698535295e9 0.218
    Algorithm 2.3 3 0.73908513321516064168 4.0e20 1.41006e15 0.062

    Example 4.3. For Λ()=(1)31,Υ()=1+1(1) and 0=3.5.

    Methods IT n Λ(n) δ=∣nn1 CPU Time
    NM [12] 6 2.0000000000 8.63270019e11 0.53642860080240e5 0.859
    HM [12] 6 2.0000000000 8.63270019e11 0.53642860080240e5 0.531
    Algorithm 2A [12] 5 1.9999999999 3.0e19 5.15552777e11 0.500
    Algorithm 2B [12] 3 2.0000000000 1.95e17 0.47082591839347e5 0.734
    Algorithm 2C [12] 3 1.9999999999 3.0e19 1.408550753e11 0.468
    Algorithm 2.2 3 2.0000000000 3.3e18 0.25348368459034e5 0.546
    Algorithm 2.3 3 2.0000000000 6.0e19 3.64102778e11 $ 0.828

    Example 4.4. For Λ()=e2+7301,Υ()=17(302) and 0=3.5.

    Methods IT n Λ(n) δ=∣nn1 CPU Time
    NM [12] 10 3.0000001961 0.2550069197e18 0.1725678800759161e3 2.031
    HM [12] 10 3.0000001961 0.2550069197e5 0.1725678800759161e3 1.640
    Algorithm 2A [12] 4 3.0000000000 0 4.60291802e11 1.015
    Algorithm 2B [12] 3 3.0000000000 0 1.7047845e12 0.984
    Algorithm 2C [12] 3 2.9999999999 0.9999999999 1.0e19 0.781
    Algorithm 2.2 3 2.9999999999 2.00e18 1.7047846e12 0.203
    Algorithm 2.3 3 2.9999999999 2.00e18 1.0e19 1.656

    Example 4.5. For Λ()=sin2()2+1,Υ()=sin()+1sin()+ and 0=1.

    Methods IT n Λ(n) δ=∣nn1 CPU Time
    NM [12] 5 1.4044916482156470349 7.591622e13 6.247205954873e7 4.500
    HM [12] 5 1.4044916482156470349 7.591622e13 6.247205954873e7 2.703
    Algorithm 2A [12] 4 1.4044916482153412269 2.1e18 1.8258042740e9 1.734
    Algorithm 2B [12] 3 1.4044916482153412261 2.0e19 4.830530998e10 1.656
    Algorithm 2C [12] 3 1.4044916482153412261 2.0e19 3.27e17 1.546
    Algorithm 2.2 3 1.4044916482153412259 3.8e19 3.039794094e10 1.203
    Algorithm 2.3 3 1.4044916482153412260 1.0e19 9.9e18 1.015

    Example 4.6. For Λ()=e32,Υ()=e3 and 0=0.8.

    Methods IT n Λ(n) δ=∣nn1 CPU Time
    NM [12] 4 0.91000757248870906 2.3e18 1.13400774851e9 4.796
    HM [12] 4 0.91000757248870906 2.3e18 1.13400774848e9 3.015
    Algorithm 2A [12] 3 0.91000757248844157 7.959612e13 0.113206254671831e5 2.281
    Algorithm 2B [12] 3 0.91000757248870906 1.0e19 5.97372e15 1.953
    Algorithm 2C [12] 2 0.91000757248870906 2.0e19 0.114201199652787e5 1.828
    Algorithm 2.2 3 0.91000757248870906 0 5.89807e15 1.484
    Algorithm 2.3 2 0.91000757248870906 2.0e19 0.113215100426461e5 0.234

    We have established two new algorithms of third and fourth-order convergence by using a modified decomposition technique for the coupled systems. We have discussed the convergence analysis of these newly established algorithms. With the help of test examples, the computational comparison has been made with well-known third and fourth-order convergent iterative methods. It has been observed from Examples 4.1 to 4.6 that our CPU time and accuracy are much better than the existing algorithms in some cases.

    This research was supported by the Fundamental Fund of Khon Kaen University, Thailand.

    The authors declare that they have no competing interests.



    [1] K. Antonio, R. Plat, Micro-level stochastic loss reserving for general insurance, Scand. Actuar. J., 2014 (2014), 113–145. http://dx.doi.org/10.2139/ssrn.1620446 doi: 10.2139/ssrn.1620446
    [2] A. A. Balkema, L. de Haan, Residual life time at great age, Ann. Probab., 2 (1974), 792–804. http://dx.doi.org/10.1214/aop/1176996548 doi: 10.1214/aop/1176996548
    [3] W. Chao, Valuing multirisks catastrophe reinsurance based on the Cox-Ingersoll-Ross (CIR) model, Discrete Dyn. Nat. Soc., 2021 (2021), 1–8. http://dx.doi.org/10.1155/2021/8818486 doi: 10.1155/2021/8818486
    [4] W. Chao, H. W. Zhou, Multiple-event catastrophe bond pricing based on Cox-Ingersoll-Ross model, Discrete Dyn. Nat. Soc., 2018 (2018), 1–9. http://dx.doi.org/10.1155/2018/5068480 doi: 10.1155/2018/5068480
    [5] S. H. Cox, H. W. Pedersen, Catastrophe risk bonds, N. Am. Actuar. J., 4 (2000), 56–82. http://dx.doi.org/10.1080/10920277.2000.10595938 doi: 10.1080/10920277.2000.10595938
    [6] C. D. Daykin, T. Pentikäinen, M. Pesonen, Practical risk theory for actuaries, London: Chapman and Hall, 1994.
    [7] M. Egami, V. R. Young, Indifference prices of structured catastrophe (CAT) bonds, Insur. Math. Econ., 42 (2008), 771–778. http://dx.doi.org/10.1016/j.insmatheco.2007.08.004 doi: 10.1016/j.insmatheco.2007.08.004
    [8] E. Ekheden, O. Hössjer, Pricing catastrophe risk in life (re)insurance, Scand. Actuar. J., 4 (2014), 352–367. http://dx.doi.org/10.1080/03461238.2012.695747 doi: 10.1080/03461238.2012.695747
    [9] P. Embrechts, C. Klüppelberg, T. Mikosch, Modeling extremal events for insurance and finance, Berlin: Springer, 1997. http://dx.doi.org/10.1007/978-3-642-33483-2
    [10] S. Finken, C. Laux, Catastrophe bonds and reinsurance: The competitive effect of information-insensitive triggers, J. Risk Insur., 76 (2009), 579–605. http://dx.doi.org/10.1111/j.1539-6975.2009.01317.x doi: 10.1111/j.1539-6975.2009.01317.x
    [11] M. N. Giuricich, K. Burnecki, Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing, Phys. A: Stat. Mech. Appl., 525 (2019), 498–513. http://dx.doi.org/10.1016/j.physa.2019.03.073 doi: 10.1016/j.physa.2019.03.073
    [12] M. Harbitz, Catastrophe covers in life assurance, In: Transactions of international congress of actuaries, 3 (1992), 109–119. http://dx.doi.org/10.1016/0167-6687(94)90441-3
    [13] W. K. Härdle, B. L. Cabrera, Calibrating CAT bonds for Mexican earthquakes, J. Risk Insur., 77 (2010), 625–650. http://dx.doi.org/10.1111/j.1539-6975.2010.01355.x doi: 10.1111/j.1539-6975.2010.01355.x
    [14] N. Karagiannis, H. Assa, A. A. Pantelous, C. G. Turvey, Modelling and pricing of catastrophe risk bonds with a temperature-based agricultural application, Quant. Finance, 16 (2016), 1949–1959. http://dx.doi.org/10.1080/14697688.2016.1211791 doi: 10.1080/14697688.2016.1211791
    [15] M. Leppisaari, Modeling catastrophic deaths using EVT with a microsimulation approach to reinsurance pricing, Scand. Actuar. J., 2016 (2016), 113–145. http://dx.doi.org/10.1080/03461238.2014.910833 doi: 10.1080/03461238.2014.910833
    [16] J. Liu, Y. Li, Empirical study on earthquake losses distribution and CAT bond pricing in China (in Chinese), Finance Trade Res., 20 (2009), 82–88.
    [17] Z. G. Ma, C. Q. Ma, S. T. Xiao, Pricing zero-coupon catastrophe bonds using EVT with doubly stochastic poisson arrivals, Discrete Dyn. Nat. Soc., 2017 (2017), 1–14. http://dx.doi.org/10.1155/2017/3279647 doi: 10.1155/2017/3279647
    [18] P. Nowak, M. Romaniuk, Pricing and simulations of catastrophe bonds, Insur. Math. Econ., 52 (2013), 18–28. http://dx.doi.org/10.1016/j.insmatheco.2012.10.006 doi: 10.1016/j.insmatheco.2012.10.006
    [19] J. Pickands, The two-dimensional possion process and external process, J. Appl. Probab., 8 (1971), 745–756. http://dx.doi.org/10.1017/s0021900200114640 doi: 10.1017/s0021900200114640
    [20] J. Pickands, Statistical inference using extreme order statistics, Ann. Stat., 3 (1975), 119–131. http://dx.doi.org/10.1214/aos/1176343003 doi: 10.1214/aos/1176343003
    [21] M. Pigeon, K. Antonio, M. Denuit, Individual loss reserving with the multivariate skew normal framework, Astin Bull., 43 (2013), 399–428. http://dx.doi.org/10.1017/asb.2013.20 doi: 10.1017/asb.2013.20
    [22] J. Shao, A. Papaioannou, A. Pantelous, Pricing and simulating catastrophe risk bonds in a Markov-dependent environment, Appl. Math. Comput., 309 (2017), 68–84. http://dx.doi.org/10.1016/j.amc.2017.03.041 doi: 10.1016/j.amc.2017.03.041
    [23] P. Strickler, Rückversicherung des kumulrisikos in der lebensversicherung, In: XVI International Congress of Actuaries in Brussels, 1 (1960), 666–679.
    [24] D. A. Trottier, V. S. Lai, Reinsurance or CAT bond? How to optimally combine both, J. Fixed Income Fall, 27 (2017), 65–87. http://dx.doi.org/10.3905/jfi.2017.27.2.065 doi: 10.3905/jfi.2017.27.2.065
    [25] H. Q. Xiao, S. W. Meng, EVT and its application to pricing of catastrophe reinsurance (in Chinese), J. Appl. Stat. Manage., 32 (2013), 240–246. http://dx.doi.org/10.13860/j.cnki.sltj.2013.02.003 doi: 10.13860/j.cnki.sltj.2013.02.003
    [26] V. R. Young, Pricing in an incomplete market with an affine term stucture, Math. Finance, 14 (2004), 359–381. http://dx.doi.org/10.1111/j.0960-1627.2004.00195.x doi: 10.1111/j.0960-1627.2004.00195.x
    [27] A. A. Zimbidis, N. E. Frangos, A. A. Pantelous, Modeling earthquake risk via extreme value theory and pricing the respective catastrophe bonds, ASTIN Bull.: J. IAA, 37 (2007), 163–183. http://dx.doi.org/10.2143/AST.37.1.2020804 doi: 10.2143/AST.37.1.2020804
  • This article has been cited by:

    1. Asfaw Tsegaye Moltot, Alemayehu Tamirie Deresse, S. A. Edalatpanah, Approximate Analytical Solution to Nonlinear Delay Differential Equations by Using Sumudu Iterative Method, 2022, 2022, 1687-9139, 1, 10.1155/2022/2466367
    2. Miguel Vivas-Cortez, Naseem Zulfiqar Ali, Awais Gul Khan, Muhammad Uzair Awan, Numerical Analysis of New Hybrid Algorithms for Solving Nonlinear Equations, 2023, 12, 2075-1680, 684, 10.3390/axioms12070684
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3618) PDF downloads(183) Cited by(2)

Figures and Tables

Figures(4)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog