The moment estimates and maximum likelihood estimates of the truncation points in the truncated normal distribution are given, as well as the interval estimates for large samples. The estimation method of truncation point is applied to the assembly of DNA sequencing data, and moment estimation, maximum likelihood estimation and interval estimation of gap length are obtained. Monte Carlo simulations show that the experimental results are very close to the theoretical estimates. When the estimation method given in this paper is applied to a real DNA sequencing dataset, ideal estimation results are also obtained.
Citation: Shenglan Peng, Zikang Wan. Truncation point estimation of truncated normal samples and its applications[J]. AIMS Mathematics, 2022, 7(10): 19083-19104. doi: 10.3934/math.20221048
[1] | Jeong-Kweon Seo, Byeong-Chun Shin . Reduced-order modeling using the frequency-domain method for parabolic partial differential equations. AIMS Mathematics, 2023, 8(7): 15255-15268. doi: 10.3934/math.2023779 |
[2] | Zhoujin Cui, Xiaorong Zhang, Tao Lu . Resonance analysis and time-delay feedback controllability for a fractional horizontal nonlinear roller system. AIMS Mathematics, 2024, 9(9): 24832-24853. doi: 10.3934/math.20241209 |
[3] | Erlin Guo, Cuixia Li, Patrick Ling, Fengqin Tang . Convergence rate for integrated self-weighted volatility by using intraday high-frequency data with noise. AIMS Mathematics, 2023, 8(12): 31070-31091. doi: 10.3934/math.20231590 |
[4] | Ahmed Alshehri, Miled El Hajji . Mathematical study for Zika virus transmission with general incidence rate. AIMS Mathematics, 2022, 7(4): 7117-7142. doi: 10.3934/math.2022397 |
[5] | Rahat Zarin, Amir Khan, Pushpendra Kumar, Usa Wannasingha Humphries . Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators. AIMS Mathematics, 2022, 7(10): 18897-18924. doi: 10.3934/math.20221041 |
[6] | Zihan Yue, Wei Jiang, Boying Wu, Biao Zhang . A meshless method based on the Laplace transform for multi-term time-space fractional diffusion equation. AIMS Mathematics, 2024, 9(3): 7040-7062. doi: 10.3934/math.2024343 |
[7] | Ibrahim-Elkhalil Ahmed, Ahmed E. Abouelregal, Doaa Atta, Meshari Alesemi . A fractional dual-phase-lag thermoelastic model for a solid half-space with changing thermophysical properties involving two-temperature and non-singular kernels. AIMS Mathematics, 2024, 9(3): 6964-6992. doi: 10.3934/math.2024340 |
[8] | Salma M. Al-Tuwairqi, Asma A. Badrah . Modeling the dynamics of innate and adaptive immune response to Parkinson's disease with immunotherapy. AIMS Mathematics, 2023, 8(1): 1800-1832. doi: 10.3934/math.2023093 |
[9] | Zhoujin Cui . Primary resonance and feedback control of the fractional Duffing-van der Pol oscillator with quintic nonlinear-restoring force. AIMS Mathematics, 2023, 8(10): 24929-24946. doi: 10.3934/math.20231271 |
[10] | Ishtiaq Ali, Sami Ullah Khan . Dynamics and simulations of stochastic COVID-19 epidemic model using Legendre spectral collocation method. AIMS Mathematics, 2023, 8(2): 4220-4236. doi: 10.3934/math.2023210 |
The moment estimates and maximum likelihood estimates of the truncation points in the truncated normal distribution are given, as well as the interval estimates for large samples. The estimation method of truncation point is applied to the assembly of DNA sequencing data, and moment estimation, maximum likelihood estimation and interval estimation of gap length are obtained. Monte Carlo simulations show that the experimental results are very close to the theoretical estimates. When the estimation method given in this paper is applied to a real DNA sequencing dataset, ideal estimation results are also obtained.
Let Z be the set of integers. In 2009, Zagier [36] studied the Apéry-like numbers {un} satisfying
u0=1, u1=band(n+1)2un+1=(an(n+1)+b)un−cn2un−1 (n≥1), |
where a,b,c∈Z, c≠0 and un∈Z for n≥1. Let
A′n=n∑k=0(nk)2(n+kk),fn=n∑k=0(nk)3=n∑k=0(nk)2(2kn),Sn=[n/2]∑k=0(2kk)2(n2k)4n−2k=n∑k=0(nk)(2kk)(2n−2kn−k),an=n∑k=0(nk)2(2kk),Qn=n∑k=0(nk)(−8)n−kfk,Wn=[n/3]∑k=0(2kk)(3kk)(n3k)(−3)n−3k, | (1.1) |
where [x] is the greatest integer not exceeding x. According to [2,36], {A′n}, {fn}, {Sn}, {an}, {Qn} and {Wn} are Apéry-like sequences with (a,b,c)=(11,3,−1),(7,2,−8), (12,4,32),(10,3,9),(−17, −6,72),(−9,−3,27), respectively. The sequence {fn} is called Franel numbers. In [22,23,24,25], the author systematically investigated congruences for sums involving Sn, fn and Wn. For {A′n}, {fn}, {Sn}, {an}, {Qn} and {Wn} see A005258, A000172, A081085, A002893, A093388 and A291898 in Sloane's database "The On-Line Encyclopedia of Integer Sequences".
Let p be an odd prime. In [29], Z. W. Sun posed many congruences modulo p2 involving Apéry-like numbers. In [24,25], the author conjectured many congruences modulo p3 involving Apéry-like numbers. In Section 2, we show that for any odd prime p,
p−1∑n=1nSn8n≡(1−(−1)p−12)p2 ( mod p3), | (1.2) |
and obtain a congruence for ∑p−1n=0(2nn)A′n4n ( mod p). In Section 3, we establish some transformation formulas for congruences involving Apéry-like numbers and obtain some congruences involving an and Qn. For example, for any prime p>3 we have
p−1∑n=0Qn(−8)n≡1 ( mod p2)andp−1∑n=0Qn(−9)n≡(p3) ( mod p2), | (1.3) |
where (ap) is the Legendre symbol. We also pose some conjectures on congruences involving Qn and an.
For positive integers a,b and n, if n=ax2+by2 for some integers x and y, we briefly write that n=ax2+by2. Let p>3 be a prime. In 1987, Beukers [4] conjectured a congruence equivalent to
p−1∑k=0(2kk)364k≡{0 ( mod p2)if p≡3 ( mod 4), 4x2−2p ( mod p2)if p≡1 ( mod 4) and so p=x2+4y2. | (1.4) |
This congruence was proved by several authors including Ishikawa [8] (p≡1 ( mod 4)), Van Hamme [7] (p≡3 ( mod 4)) and Ahlgren [1]. Actually, (1.4) follows immediately from the following identity due to Bell (see [5, (6.35)], [17]):
n∑k=0(2kk)2(n+k2k)1(−4)k={0if n is odd, 122n(nn/2)2if n is even. | (1.5) |
In 2003, Rodriguez-Villegas [14] posed 22 conjectures on supercongruences modulo p2. In particular, the following congruences are equivalent to conjectures due to Rodriguez-Villegas:
p−1∑k=0(2kk)2(3kk)108k≡{4x2−2p ( mod p2)if p=x2+3y2≡1 ( mod 3), 0 ( mod p2)if p≡2 ( mod 3), p−1∑k=0(2kk)2(4k2k)256k≡{4x2−2p ( mod p2)if p=x2+2y2≡1,3 ( mod 8), 0 ( mod p2)if p≡5,7 ( mod 8), (p3)p−1∑k=0(2kk)(3kk)(6k3k)123k≡{4x2−2p ( mod p2)if p=x2+4y2≡1 ( mod 4), 0 ( mod p2)if p≡3 ( mod 4). | (1.6) |
These conjectures have been solved by Mortenson [13] and Zhi-Wei Sun [28]. Since (2kk)k+1=(2kk)−(2kk+1), from (1.4), (1.6) and [28], one may deduce that
p−1∑k=0(2kk)364k(k+1)≡{4x2−2p ( mod p2) if p=x2+4y2≡1 ( mod 4), −(2p+2−2p−1)((p−1)/2(p+1)/4)2 ( mod p2)if p≡3 ( mod 4), p−1∑k=0(2kk)3(−8)k(k+1)≡6x2−4p ( mod p2)forp=x2+4y2≡1 ( mod 4),p−1∑k=0(2kk)2(3kk)108k(k+1)≡4x2−2p ( mod p2)forp=x2+3y2≡1 ( mod 3),p−1∑k=0(2kk)2(4k2k)256k(k+1)≡4x2−2p ( mod p2)forp=x2+2y2≡1,3 ( mod 8),(p3)p−1∑k=0(2kk)(3kk)(6k3k)123k(k+1)≡4x2−2p ( mod p2)forp=x2+4y2≡1 ( mod 4). | (1.7) |
Let p be an odd prime, and let m be an integer such that p∤m. In [27,29], Z. W. Sun posed many conjectures for congruences modulo p2 involving the sums
p−1∑k=0(2kk)3mk,p−1∑k=0(2kk)2(3kk)mk,p−1∑k=0(2kk)2(4k2k)mk,p−1∑k=0(2kk)(3kk)(6k3k)mk. |
For 13 similar conjectures see [16]. Most of these congruences modulo p were proved by the author in [17,18,19]. In [25,26], the author conjectured many congruences modulo p3 involving the above sums. For instance, for any prime p≠2,7,
p−1∑k=0(2kk)3≡{4x2−2p−p24x2 ( mod p3)if p≡1,2,4 ( mod 7) and so p=x2+7y2, −114p2(3[p/7][p/7])−2≡−11p2([3p/7][p/7])−2 ( mod p3) if 7∣p−3, −9964p2(3[p/7][p/7])−2≡−1116p2([3p/7][p/7])−2 ( mod p3) if 7∣p−5, −25176p2(3[p/7][p/7])−2≡−114p2([3p/7][p/7])−2 ( mod p3)if 7∣p−6. |
Let p be an odd prime. In Section 4, we deduce congruences for
p−1∑k=0(2kk)364k ( mod p3),p−1∑k=0(2kk)364k(k+1)2 ( mod p2)andp−1∑k=0(2kk)364k(2k−1) ( mod p). |
In Section 5, based on calculations by Maple, we pose lots of challenging conjectures on congruences modulo p3 for the sums
p−1∑k=0(2kk)3mk(k+1),p−1∑k=0(2kk)3mk(2k−1),p−1∑k=0(2kk)3mk(2k−1)2,p−1∑k=0(2kk)3mk(2k−1)3,p−1∑k=0(2kk)2(3kk)mk(k+1),p−1∑k=0(2kk)2(3kk)mk(2k−1),p−1∑k=0(2kk)2(4k2k)mk(k+1),p−1∑k=0(2kk)2(4k2k)mk(2k−1),p−1∑k=0(2kk)(3kk)(6k3k)mk(k+1),p−1∑k=0(2kk)(3kk)(6k3k)mk(2k−1), |
and congruences modulo p2 for the sums
p−1∑k=0(2kk)2mk(k+1)2,p−1∑k=0(2kk)2mk(2k−1)2,p−1∑k=0(2kk)3mk(k+1)2,p−1∑k=0(2kk)2(3kk)mk(k+1)2,p−1∑k=0(2kk)2(4k2k)mk(k+1)2,p−1∑k=0(2kk)(3kk)(6k3k)mk(k+1)2, |
where m is an integer not divisible by p. As two typical conjectures, if p is an odd prime with p≡1,2,4 ( mod 7) and so p=x2+7y2, then
(p−1)/2∑k=01k+1(2kk)3≡−44y2+2p ( mod p3); |
if p≡1,3,4,5,9 ( mod 11) and so 4p=x2+11y2, then
(−2p)(p2+p−1∑k=0(2kk)(3kk)(6k3k)(−32)3k(k+1))≡−26y2+2p ( mod p3). |
In Section 6, we pose many conjectures on ∑p−1k=0(2kk)ukmk(2k−1) modulo p2, where un∈{A′n,fn,Sn,an, Qn,Wn}.
In addition to the above notation, throughout this paper we use the following notations. For a prime p, let Zp be the set of rational numbers whose denominator is not divisible by p. For a∈Zp, let qp(a)=(ap−1−1)/p and ⟨a⟩p be determined by ⟨a⟩p∈{0,1,…,p−1} and a≡⟨a⟩p ( mod p). Let H0=0, Hn=1+12+⋯+1n (n≥1) and let {En} be the Euler numbers given by
E2n−1=0,E0=1,E2n=−n∑k=1(2n2k)E2n−2k (n=1,2,3,…). |
Let {Sn} be the Apéry-like sequence given by (1.1). In this section, we prove the congruence (1.2). Z. W. Sun stated the identity
Sn=n∑k=0(2kk)2(kn−k)(−4)n−k(n=0,1,2,…), | (2.1) |
which can be easily proved by using WZ method, see [34]. Using this identity we see that for any positive integer p and a give sequence {cn},
p−1∑n=0cnSn8n=p−1∑n=0cn8nn∑k=0(2kk)2(kn−k)(−4)n−k=p−1∑k=0(2kk)2(−4)kp−1∑n=kcn(−2)n(kn−k)=p−1∑k=0(2kk)2(−4)kp−1−k∑r=0ck+r(−2)k+r(kr)=p−1∑k=0(2kk)28kp−1−k∑r=0(kr)ck+r(−2)r. |
Thus, for p∈{1,3,5,…},
p−1∑n=0cnSn8n=(p−1)/2∑k=0(2kk)28kk∑r=0(kr)ck+r(−2)r+p−1∑k=(p+1)/2(2kk)28kp−1−k∑r=0(kr)ck+r(−2)r. | (2.2) |
Theorem 2.1. Let p be an odd prime, then
p−1∑n=1nSn8n≡(1−(−1)p−12)p2 ( mod p3). |
Proof. Clearly,
k∑r=0(kr)k+r(−2)r=kk∑r=0(kr)(−12)r−k2k∑r=1(k−1r−1)(−12)r−1=k2k−k2⋅12k−1=0. |
Thus, taking cn=n in (2.2) and then applying the above gives
p−1∑n=1nSn8n=p−1∑k=(p+1)/2(2kk)28kp−1−k∑r=0(kr)k+r(−2)r=(p−1)/2∑s=1(2(p−s)p−s)28p−ss−1∑r=0(p−sr)p−s+r(−2)r. |
Observe that p∣(2kk) for p2<k<p. By [27, Lemma 2.1],
(2(p−s)p−s)p≡−2s(2ss) ( mod p)fors=1,2,…,p−12. |
Now, from the above we deduce that
p−1∑n=1nSn8n≡p2(p−1)/2∑s=14⋅8s−1s2(2ss)2s−1∑r=0(−sr)r−s(−2)r ( mod p3). | (2.3) |
By [5, (1.79)], ∑nk=0(n+kk)/2k=2n. Since (−xr)=(−1)r(x−1+rr), we see that for s≥1,
s−1∑r=0(−sr)1(−2)r=s−1∑r=0(s−1+rr)12r=2s−1 |
and
s−1∑r=0(−sr)r(−2)r=s−1∑r=1−sr(−s−1r−1)r(−2)r=ss−1∑r=1(s+r−1r−1)12r=s2s−2∑t=0(s+tt)12t=s2(s∑t=0(s+tt)12t−(2ss)12s−(2s−1s−1)12s−1)=s2(2s−(2ss)22s)=s(2s−1−(2ss)12s). |
It then follows that
s−1∑r=0(−sr)r−s(−2)r=s(2s−1−(2ss)12s)−s⋅2s−1=−s(2ss)12s. |
Substituting into (2.3) yields
p−1∑n=1nSn8n≡p2(p−1)/2∑s=14⋅8s−1s2(2ss)2⋅(−s)(2ss)12s=−p22(p−1)/2∑s=14ss(2ss) ( mod p3). |
By [12, (25)],
2n∑s=14s−1s(2ss)=4n(2nn)−1. |
Thus,
(p−1)/2∑s=14ss(2ss)=2(4p−12(p−1p−12)−1)≡2((−1)p−12−1) ( mod p) |
and so
p−1∑n=1nSn8n≡−p22(p−1)/2∑s=14ss(2ss)≡(1−(−1)p−12)p2 ( mod p3), |
which completes the proof.
Theorem 2.2. Let p be a prime with p≠2,11, then
p−1∑n=0(2nn)A′n4n≡{x2 ( mod p)if (p11)=1 and so 4p=x2+11y2, 0 ( mod p)if (p11)=−1. |
Proof. For nonnegative integers k,m and n with k≤n≤m, it is known that (mn)(nk)=(mk)(m−kn−k). Thus, applying Vandermonde's identity we see that
m∑n=0(mn)(−1)m−nn∑k=0(nk)2(n+kk)=m∑n=0n∑k=0(mk)(m−kn−k)(2kk)(n+k2k)(−1)m−n=m∑k=0(mk)(2kk)(−1)m−km∑n=k(m−kn−k)(n+k2k)(−1)n−k=m∑k=0(mk)(2kk)(−1)m−km−k∑r=0(m−kr)(2k+rr)(−1)r=m∑k=0(mk)(2kk)(−1)m−km−k∑r=0(m−km−k−r)(−2k−1r)=m∑k=0(mk)(2kk)(−1)m−k(m−3k−1m−k)=m∑k=0(mk)(2kk)(2km−k)=m∑k=0(mk)(2(m−k)m−k)(2m−2kk). |
Note that p∣(2kk) for p2<k<p and (p−12k)≡(−12k)=(2kk)(−4)k ( mod p) for k<p2. Taking m=p−12 in the above, we deduce that
p−1∑n=0(2nn)A′n4n≡(−1)p−12(p−1)/2∑n=0(p−12n)(−1)p−12−nA′n=(−1)p−12(p−1)/2∑k=0(p−12k)(2(p−12−k)p−12−k)(p−1−2kk)≡(−1)p−12(p−1)/2∑k=0(p−12k)(p−12p−12−k)(−4)p−12−k(−2k−1k)=(p−1)/2∑k=0(p−12k)24p−12−k(3kk)≡(p−1)/2∑k=0(2kk)2(3kk)64k≡p−1∑k=0(2kk)2(3kk)64k ( mod p). |
Now applying [18, Theorem 4.4], we deduce the result.
Remark 2.1. In [29], Z. W. Sun conjectured that for any odd prime p,
p−1∑k=0(2kk)A′k4k≡{x2−2p ( mod p2)if (p11)=1 and so 4p=x2+11y2, 0 ( mod p2)if (p11)=−1. |
In this section, we establish some transformation formulas for congruences involving Apéry-like numbers, obtain some congruences involving an and Qn, and pose ten conjectures on related congruences.
Lemma 3.1. Let n be a nonnegative integer, then
fn=n∑k=0(nk)(−1)n−kak=n∑k=0(nk)8n−kQk,Qn=n∑k=0(nk)(−9)n−kak,an=n∑k=0(nk)fk=n∑k=0(nk)9n−kQk. |
Proof. By [15, (38)], an=∑nk=0(nk)fk. Applying the binomial inversion formula gives fn=∑nk=0(nk)(−1)n−kak. Since Qn(−8)n=∑nk=0(nk)(−1)kfk8k, applying the binomial inversion formula gives fn8n=∑nk=0(nk)Qk8k. Also,
n∑k=0(nk)(−9)n−kak=n∑k=0(nk)(−1)n−kakn−k∑r=0(n−kr)8r=n∑r=0(nr)(−8)rn−r∑k=0(n−rk)(−1)n−r−kak=n∑r=0(nr)(−8)rfn−r=Qn. |
Applying the binomial inversion formula yields an=∑nk=0(nk)9n−kQk, which completes the proof.
Theorem 3.1. Let p>3 be a prime, then
p−1∑n=0Qn(−8)n≡1 ( mod p2)andp−1∑n=0Qn(−9)n≡(p3) ( mod p2). |
Proof. It is well known that ∑p−1n=k(nk)=(pk+1) and (p−1k)≡(−1)k ( mod p) for 0≤k≤p−1. Since Qn=∑nk=0(nk)(−8)n−kfk, we see that
p−1∑n=0Qn(−8)n=p−1∑n=0n∑k=0(nk)fk(−8)k=p−1∑k=0fk(−8)kp−1∑n=k(nk)=p−1∑k=0fk(−8)k(pk+1)=fp−1(−8)p−1+p−2∑k=0fk(−8)k⋅pk+1(p−1k)≡fp−18p−1+pp−2∑k=0fk(k+1)8k=fp−18p−1+pp−1∑k=1fp−1−k(p−k)8p−1−k≡fp−18p−1−pp−1∑k=18kfp−1−kk ( mod p2). |
By [11], fk≡(−8)kfp−1−k ( mod p). Thus,
p−1∑n=0Qn(−8)n≡fp−18p−1−pp−1∑k=1(−1)kfkk ( mod p2). |
By [30, Theorem 1.1 and Lemma 2.5],
fp−1≡1+3pqp(2) ( mod p2)andp−1∑k=1(−1)kfkk≡0 ( mod p2). |
Thus,
p−1∑n=0Qn(−8)n≡fp−18p−1≡1+3pqp(2)(1+pqp(2))3≡1 ( mod p2). |
Using Lemma 3.1,
p−1∑n=0Qn(−9)n=p−1∑n=0n∑k=0(nk)ak(−9)k=p−1∑k=0ak(−9)kp−1∑n=k(nk)=p−1∑k=0ak(−9)k(pk+1)=p−1∑k=0ak(−9)k⋅pk+1(p−1k)≡ap−1(−9)p−1+p−2∑k=0ak9k⋅pk+1=ap−19p−1+p−1∑r=1ap−1−r9p−1−r⋅pp−r≡ap−19p−1−pp−1∑r=19rap−1−rr ( mod p2). |
By [11] or [25, Theorem 3.1], ar≡(p3)9rap−1−r ( mod p). By [32, Lemma 3.2], ap−1≡(p3)(1+2pqp(3))≡(p3)9p−1 ( mod p2). Taking x=1 in [32, (3.6)] gives ∑p−1r=1arr≡0 ( mod p). Now, from the above we deduce that
p−1∑n=0Qn(−9)n≡ap−19p−1−pp−1∑r=19rap−1−rr≡(p3)−p(p3)p−1∑r=1arr≡(p3) ( mod p2). |
This completes the proof.
Lemma 3.2. Let p be an odd prime and m∈Zp with m≢0,1 ( mod p). Suppose that u0,u1,…,up−1∈Zp and vn=∑nk=0(nk)uk (n≥0). Then
p−1∑k=0vkmk≡p−1∑k=0uk(m−1)k ( mod p). |
Proof. It is clear that
p−1∑k=0vkmk=p−1∑k=01mkk∑s=0(ks)us=p−1∑s=0p−1∑k=s1mk(−1−sk−s)(−1)k−sus=p−1∑s=0usmsp−1∑k=s(−1−sk−s)1(−m)k−s=p−1∑s=0usmsp−1−s∑r=0(−1−sr)(−1m)r≡p−1∑s=0usmsp−1−s∑r=0(p−1−sr)(−1m)r=p−1∑s=0usms(1−1m)p−1−s≡p−1∑s=0us(m−1)s ( mod p). |
This proves the lemma.
Theorem 3.2. Suppose that p is an odd prime, m∈Zp and m≢0,1 ( mod p), then
p−1∑k=0akmk≡{∑p−1k=0(2kk)(3kk)((m−3)3/(m−1))k ( mod p)if m≢3 ( mod p), ∑p−1k=0(2kk)(3kk)((m+3)3/(m−1)2)k ( mod p)if m≢−3 ( mod p) |
and
p−1∑k=0Qk(−8m)k≡{∑p−1k=0(2kk)(3kk)((4m−3)3/(m−1))k ( mod p)if m≢34 ( mod p), ∑p−1k=0(2kk)(3kk)(−(2m−3)3/(m−1)2)k ( mod p)if m≢32 ( mod p). |
Proof. By Lemma 3.1, a_n = \sum_{k = 0}^n \binom nkf_k . From Lemma 3.2, \sum_{k = 0}^{p-1} \frac {a_k}{m^k} \equiv\sum_{k = 0}^{p-1} \frac {f_k}{(m-1)^k} \ (\text{ mod}\ p) . Now applying [23, Theorem 2.12 and Lemma 2.4 (with z = \frac 1{m-1} )] yields the first result. Since \frac {Q_n}{(-8)^n} = \sum_{k = 0}^n \binom nk \frac {f_k}{(-8)^k} , applying Lemma 3.2 gives \sum_{k = 0}^{p-1} \frac {Q_k}{(-8m)^k} \equiv {\sum_{k = 0}^{p-1}} \frac {f_k}{(-8(m-1))^k}\ (\text{ mod}\ p) . From [23, Theorem 2.12 and Lemma 2.4 (with z = \frac 1{-8(m-1)} )] we deduce the remaining part.
Theorem 3.3. Suppose that p is a prime with p > 3 , then
\sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-6)^n} \equiv \sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-12)^n} \equiv\begin{cases} 2x\ (\text{ mod}\ p)& \hbox{if $3\mid p-1$, $p = x^2+3y^2$ and $3\mid x-1$, } \\0\ (\text{ mod}\ p)& \hbox{if $p \equiv 2\ (\text{ mod}\ 3)$.} \end{cases} |
Proof. Putting m = \frac 34, \frac 32 in Theorem 3.2 yields
\sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-6)^n} \equiv \sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-12)^n} \equiv \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k}{54^k}\ (\text{ mod}\ p). |
Now applying [20, Theorem 3.4] yields the result.
Lemma 3.3. [31, Theorem 2.2] Let p be an odd prime, u_0, u_1, \ldots, u_{p-1}\in\Bbb Z_p and v_n = \sum_{k = 0}^n \binom nk(-1)^ku_k for n\ge 0 . For m\in\Bbb Z_p with m\not\equiv 0, 4\ (\text{ mod}\ p) ,
\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {v_k}{m^k} \equiv\Big( \frac {{m(m-4)}}{p}\Big)\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {u_k}{(4-m)^k}\ (\text{ mod}\ p). |
Theorem 3.4. Let p be an odd prime, m\in\Bbb Z_p and m\not\equiv \pm 2\ (\text{ mod}\ p) , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {a_k}{(m+2)^k} \equiv\Big( \frac {{(m+2)(m-2)}}{p}\Big)\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{(m-2)^k}\ (\text{ mod}\ p), \end{align*} | (3.1) |
\begin{align*} &\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {Q_k}{(-8(m+2))^k} \equiv\Big( \frac {{(m+2)(m-2)}}{p}\Big)\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{(-8(m-2))^k}\ (\text{ mod}\ p), \end{align*} | (3.2) |
\begin{align*} &\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {Q_k}{(-9(m+2))^k} \equiv\Big( \frac {{(m+2)(m-2)}}{p}\Big)\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {a_k}{(-9(m-2))^k}\ (\text{ mod}\ p), \end{align*} | (3.3) |
and for 9m-14\not\equiv 0\ (\text{ mod}\ p) ,
\begin{align} \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {Q_k}{(-9(m+2))^k} \equiv\Big( \frac {{(m+2)(9m-14)}}{p}\Big) \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{(-9m+14)^k}\ (\text{ mod}\ p). \end{align} | (3.4) |
Proof. We first note that p\mid \binom{2k}k for \frac {p+1}2\le k\le p-1 . By Lemma 3.1, taking u_k = (-1)^kf_k and v_k = a_k in Lemma 3.3 gives (3.1). Since \frac {Q_n}{(-8)^n} = \sum_{k = 0}^n \binom nk \frac {f_k}{(-8)^k} , taking u_k = \frac {f_k}{8^k} and v_k = \frac {Q_k}{(-8)^k} in Lemma 3.3 gives (3.2). By Lemma 3.1, taking u_k = \frac {a_k}{9^k} and v_k = \frac {Q_k}{(-9)^k} in Lemma 3.3 yields (3.3). Combining (3.3) with (3.1) yields (3.4).
Theorem 3.5. Suppose that p is a prime with p > 5 , then
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{54^n}& \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{18^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-36)^n} \\& \equiv\begin{cases} 4x^2\ (\text{ mod}\ p)& \hbox{if $p \equiv 1\ (\text{ mod}\ 3)$ and so $p = x^2+3y^2$, } \\0\ (\text{ mod}\ p)& \hbox{if $p \equiv 2\ (\text{ mod}\ 3)$.}\end{cases} \end{align*} |
Proof. Taking m = 52 in (3.1) and then applying [23, Theorem 2.2], we obtain
\begin{align*} \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{54^n}& \equiv \Big( \frac {3}{p}\Big) \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{50^k}\\& \equiv \begin{cases} (-1)^{ \frac {p-1}2}4x^2\ (\text{ mod}\ p)& \hbox{if $3\mid p-1$ and so $p = x^2+3y^2$, } \\0\ (\text{ mod}\ p)& \hbox{if $p \equiv 2\ (\text{ mod}\ 3)$.}\end{cases}\end{align*} |
Taking m = -4 in (3.3) gives \sum_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{18^n} \equiv \big(\frac {3}{p}\big)\sum_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{54^n}\ (\text{ mod}\ p). Taking m = 2 in (3.4) and applying the congruence for \sum_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{(-4)^k}\ (\text{ mod}\ p) (see [23, p.124]) yields
\begin{align*} \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-36)^n} \equiv \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{(-4)^k} \equiv \begin{cases} 4x^2\ (\text{ mod}\ p)& \hbox{if $3\mid p-1$ and so $p = x^2+3y^2$, } \\0\ (\text{ mod}\ p)& \hbox{if $p \equiv 2\ (\text{ mod}\ 3)$.}\end{cases} \end{align*} |
Now combining the above proves the theorem.
Theorem 3.6. Suppose that p is a prime such that p \equiv 1, 19\ (\text{ mod}\ {30}) and so p = x^2+15y^2 , then
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{9^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{(-45)^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-27)^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-81)^n} \equiv 4x^2\ (\text{ mod}\ p). |
Proof. Taking m = 7 in (3.1) and then applying [23, Theorem 2.5] gives
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{9^n} \equiv \Big( \frac {5}{p}\Big) \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{5^k} \equiv 4x^2\ (\text{ mod}\ p). |
Putting m = -47 in (3.1) and then applying [23, Theorem 2.4] gives
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{(-45)^n} \equiv \Big( \frac {5}{p}\Big) \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{(-49)^k} \equiv 4x^2\ (\text{ mod}\ p). |
Taking m = 1, 7 in (3.3) gives
\begin{align*} &\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-27)^n} \equiv \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {a_k}{9^k}\ (\text{ mod}\ p), \\& \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-81)^n} \equiv \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {a_k}{(-45)^k}\ (\text{ mod}\ p). \end{align*} |
Now combining the above proves the theorem.
Theorem 3.7. Suppose that p is a prime with p > 3 , then
\begin{align*} &\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-32)^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{64^n} \equiv \begin{cases} 4x^2\ (\text{ mod}\ p)& \hbox{if $p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8)$, }\\0\ (\text{ mod}\ p)& \hbox{if $p \equiv 5, 7\ (\text{ mod}\ 8)$, } \end{cases} \\&\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{20^n} \equiv\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-16)^n} \equiv 4x^2\ (\text{ mod}\ p){\quad} \hbox{for}{\quad} p = x^2+5y^2 \equiv 1, 9\ (\text{ mod}\ {20}), \\&\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-48)^n} \equiv \begin{cases} 4x^2\ (\text{ mod}\ p)& \hbox{if $p = x^2+9y^2 \equiv 1\ (\text{ mod}\ {12})$, } \\0\ (\text{ mod}\ p)& \hbox{if $p \equiv 11\ (\text{ mod}\ {12})$.} \end{cases} \end{align*} |
Proof. Taking m = \frac {14}9, - \frac {82}9 in (3.3) yields
\begin{align*} &\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-32)^n} \equiv\Big( \frac {{-2}}{p}\Big) \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{4^n}\ (\text{ mod}\ p), \\& \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{64^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{100^n}\ (\text{ mod}\ p). \end{align*} |
Now applying [23, Theorem 2.14] and [21, Theorem 5.6] yields the first congruence. Taking m = 0 in (3.2), m = 18 in (3.1) and then applying [23, Theorem 2.10] yields the second congruence. Taking m = \frac {10}3 in (3.3) and then applying [21, Theorem 4.3] gives the third congruence.
Based on calculations by Maple, we pose the following conjectures.
Conjecture 3.1. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{n = 0}^{p-1} \frac {(n+3)Q_n}{(-8)^n} \equiv \begin{cases} 3p^2\ (\text{ mod}\ {p^3})& \hbox{if $p \equiv 1\ (\text{ mod}\ 3)$, } \\-15p^2\ (\text{ mod}\ {p^3})& \hbox{if $p \equiv 2\ (\text{ mod}\ 3)$, }\end{cases} \\& \sum\limits_{n = 0}^{p-1} \frac {(n-2)Q_n}{(-9)^n} \equiv \begin{cases} -2p^2\ (\text{ mod}\ {p^3})& \hbox{if $p \equiv 1\ (\text{ mod}\ 3)$, } \\14p^2\ (\text{ mod}\ {p^3})& \hbox{if $p \equiv 2\ (\text{ mod}\ 3)$.}\end{cases} \end{align*} |
Conjecture 3.2. Let p be a prime with p > 3 .
(ⅰ) If p \equiv 1\ (\text{ mod}\ 3) and so p = x^2+3y^2 with 3\mid x-1 , then
\sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-6)^n} \equiv \sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-12)^n} \equiv 2x- \frac p{2x}\ (\text{ mod}\ {p^2}). |
(ⅱ) If p \equiv 2\ (\text{ mod}\ 3) , then
\sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-6)^n} \equiv -2\sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-12)^n} \equiv- \frac p{ \binom{(p-1)/2}{(p-5)/6}}\ (\text{ mod}\ {p^2}). |
Conjecture 3.3. Let p be a prime with p > 3 .
(ⅰ) If p \equiv 1\ (\text{ mod}\ 3) and so p = x^2+3y^2 , then
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{18^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-36)^n} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}). |
(ⅱ) If p \equiv 2\ (\text{ mod}\ 3) , then
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{18^n} \equiv -2\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-36)^n} \equiv \frac {p^2}{ \binom{(p-1)/2}{(p-5)/6}^2}\ (\text{ mod}\ {p^3}). |
Conjecture 3.4. Let p > 5 be a prime, then
\begin{align*} \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-27)^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-81)^n} \equiv \Big( \frac {p}{3}\Big)\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{(-45)^n} \equiv\Big( \frac {p}{3}\Big) \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{9^n} \ (\text{ mod}\ {p^2}). \end{align*} |
(ⅰ) If p \equiv 1, 17, 19, 23\ (\text{ mod}\ {30}) , then
\begin{align*} \Big( \frac {p}{3}\Big)\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{9^n} \equiv\begin{cases} 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if\; p \equiv 1,19\ (\text{ mod}\ {30}) \;and\; so\; p = x^2+15y^2,} \\2p-12x^2+ \frac {p^2}{12x^2}\ (\text{ mod}\ {p^3})& {if\; p \equiv 17,23\ (\text{ mod}\ {30})\; and\; so\; p = 3x^2+5y^2.} \end{cases} \end{align*} |
(ⅱ) If p \equiv 7, 11, 13, 29\ (\text{ mod}\ {30}) , then
\Big( \frac {p}{3}\Big)\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{9^n} \equiv\begin{cases} \frac {31}{16}p^2\cdot 5^{[p/3]} \binom{[p/3]}{[p/15]}^{-2}\ (\text{ mod}\ {p^3})& {if \; p \equiv 7\ (\text{ mod}\ {30}) ,} \\ \frac {31}4p^2\cdot 5^{[p/3]} \binom{[p/3]}{[p/15]}^{-2}\ (\text{ mod}\ {p^3})& {if \; p \equiv 11\ (\text{ mod}\ {30}) ,} \\ \frac {31}{256}p^2\cdot 5^{[p/3]} \binom{[p/3]}{[p/15]}^{-2}\ (\text{ mod}\ {p^3})& {if \; p \equiv 13\ (\text{ mod}\ {30}) ,} \\ \frac {31}{64}p^2\cdot 5^{[p/3]} \binom{[p/3]}{[p/15]}^{-2}\ (\text{ mod}\ {p^3})& {if \; p \equiv 29\ (\text{ mod}\ {30}) .} \end{cases} |
Conjecture 3.5. Let p > 3 be a prime, then
(-1)^{ \frac {p-1}2}\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{54^n} \equiv \begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& {if \; p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3) }, \\0\ (\text{ mod}\ {p^2})& {if \; p \equiv 2\ (\text{ mod}\ 3) .} \end{cases} |
Conjecture 3.6. Let p be an odd prime, then
\begin{align*} \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-32)^n} \equiv\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{64^n} \equiv\begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8)}, \\0\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8).} \end{cases} \end{align*} |
Conjecture 3.7 Let p be a prime with p\not = 2, 5 , then
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{20^n} & \equiv (-1)^{ \frac {p-1}2}\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-16)^n} \\& \equiv \begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and \;so \;p = x^2+5y^2, }\\2x^2-2p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;2p = x^2+5y^2, } \\0\ (\text{ mod}\ {p^2})& {if \;p \equiv 11, 13, 17, 19\ (\text{ mod}\ {20}).}\end{cases} \end{align*} |
Conjecture 3.8. Let p > 3 be a prime, then
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-48)^n} \equiv \begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& {if \; 12\mid p-1 \; and \;so \; p = x^2+9y^2 , } \\2p-2x^2\ (\text{ mod}\ {p^2})& {if \; 12\mid p-5 \; and\; so \; 2p = x^2+9y^2 , } \\0\ (\text{ mod}\ {p^2})& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} |
Conjecture 3.9. Let p be a prime with p > 3 . If m\in\{-7, -25, -169, -1519, -70225, 20, 56,650, 2450\} and p\nmid m(m-2) , then
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(16(m-2))^n} \equiv \Big( \frac {{m(m-2)}}{p}\Big)\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {f_n}{(16m)^n}\ (\text{ mod}\ {p^2}). |
Conjecture 3.10. Let p be a prime with p > 3 . If m\in\{-112, -400, -2704, -24304, -1123600\} and p\nmid m(m+4) , then
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{(m+4)^n} \equiv \Big( \frac {{m(m+4)}}{p}\Big)\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {f_n}{m^n}\ (\text{ mod}\ {p^2}). |
For an odd prime p and x\in\Bbb Z_p , the p -adic Gamma function \Gamma_p(x) is defined by
\Gamma_p(0) = 1, {\quad} \Gamma_p(n) = (-1)^n\prod\limits_{k\in\{1, 2, \ldots, n-1\}, p\nmid k}k{\quad}\hbox {for} {\quad}n = 1, 2, 3, \ldots and \Gamma_p(x) = \lim\limits_{n\in\{0, 1, \ldots\}, |x-n|_p\rightarrow 0} \Gamma_p(n). |
Theorem 4.1. [25, Conjecture 4.10] Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k} \equiv\begin{cases} 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}) & {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) , } \\- \frac {p^2}4 \binom{(p-3)/2}{(p-3)/4}^{-2}\ (\text{ mod}\ {p^3}) & {if \; p \equiv 3\ (\text{ mod}\ 4) } \end{cases} |
and
(-1)^{ \frac {p-1}4}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-512)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}){\quad} {for\; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) }. |
Proof. From [10, Theorems 3 and 29],
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k} \equiv\begin{cases} -\Gamma_p\big( \frac {1}{4}\big)^4\ (\text{ mod}\ {p^3})& \hbox{if $ p \equiv 1\ (\text{ mod}\ 4) $, } \\- \frac {p^2}{16}\Gamma_p\big( \frac {1}{4}\big)^4\ (\text{ mod}\ {p^3})& \hbox{if $ p \equiv 3\ (\text{ mod}\ 4) $} \end{cases} |
and
(-1)^{ \frac {p-1}4}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-512)^k} \equiv -\Gamma_p\big( \frac {1}{4}\big)^4\ (\text{ mod}\ {p^3}){\quad} \hbox{for $ p \equiv 1\ (\text{ mod}\ 4) $}. |
By [35, (9)],
\begin{align} \Gamma_p\Big( \frac {1}{4}\Big)^4 \equiv \begin{cases} - \frac 1{2^{p-1}} \binom{ \frac {p-1}2}{ \frac {p-1}4}^2\Big(1- \frac {p^2}2E_{p-3}\Big) \ (\text{ mod}\ {p^3})& \hbox{if $4\mid p-1$, } \\2^{p-3}(16+32p+(48-8E_{p-3})p^2) \binom{ \frac {p-3}2}{ \frac {p-3}4}^{-2} \ (\text{ mod}\ {p^3})& \hbox{if $4\mid p-3$.} \end{cases} \end{align} | (4.1) |
By [24, Theorem 2.8], for p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) ,
\begin{align} \frac 1{2^{p-1}} \binom{ \frac {p-1}2}{ \frac {p-1}4}^2\Big(1- \frac {p^2}2E_{p-3}\Big) \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}). \end{align} | (4.2) |
Combining (4.1) with (4.2) gives
\begin{align} -\Gamma_p\big( \frac {1}{4}\big)^4 \equiv 4x^2-2p- \frac {p^2}{4x^2} \ (\text{ mod}\ {p^3}) {\quad} \hbox{for $p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4)$}. \end{align} | (4.3) |
Now combining all the above proves the theorem.
Theorem 4.2. Suppose that p is an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(k+1)^2} \equiv\begin{cases} 8x^2-5p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\-6R_1(p)-p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(k+1)^3} \equiv\begin{cases} 1+6(2^{p-1}-p)+ \frac {6p^2}{x^2}\ (\text{ mod}\ {p^3}) & {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\1+6(2^{p-1}-p)-24R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \end{align*} |
where R_1(p) = (2p+2-2^{p-1}) \binom{(p-1)/2}{(p-3)/4}^2 .
Proof. By [35], for any positive integer n ,
\begin{align} \sum\limits_{k = 0}^n \frac { \binom{2k}k^2 \binom{n+k}{2k}}{(-4)^k(k+1)^2} = \begin{cases} 2 \binom{2[ \frac n2]}{[ \frac n2]}^2\cdot 16^{-[ \frac n2]}& \hbox{if $2\mid n$, } \\ \frac {2n^2+2n-1}{(n+1)^2} \binom{2[ \frac n2]}{[ \frac n2]}^2\cdot 16^{-[ \frac n2]} & \hbox{if $2\nmid n$.} \end{cases} \end{align} | (4.4) |
From [16],
\begin{align} \binom{ \frac {p-1}2+k}{2k} \equiv \frac { \binom{2k}k}{(-16)^k}\ (\text{ mod}\ {p^2}){\quad}\hbox {for} {\quad}k = 0, 1, \ldots, \frac {p-1}2. \end{align} | (4.5) |
Now, taking n = \frac {p-1}2 in (4.4) and then applying (4.5) gives
\begin{align*} \sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)^2} & \equiv\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^2 \binom{ \frac {p-1}2+k}{2k}}{(-4)^k(k+1)^2} \\& \equiv\begin{cases} 2 \binom{(p-1)/2}{(p-1)/4}^216^{- \frac {p-1}4}\ (\text{ mod}\ {p^2}) & \hbox{if $4\mid p-1$, } \\ \frac { \frac {p^2-1}2-1}{( \frac {{p+1}}{2})^2} \binom{(p-3)/2}{(p-3)/4}^216^{- \frac {p-3}4} = \frac {2p^2-6}{2^{p-1}(p-1)^2} \binom{(p-1)/2}{(p-3)/4}^2 \ (\text{ mod}\ {p^2}) & \hbox{if $4\mid p-3$.} \end{cases} \end{align*} |
For p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) , from [17, Lemma 3.4],
\begin{align} 4x^2-2p \equiv \frac 1{2^{p-1}} \binom{ \frac {p-1}2}{ \frac {p-1}4}^2\ (\text{ mod}\ {p^2}). \end{align} | (4.6) |
Thus,
\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)^2} \equiv \frac 2{2^{p-1}} \binom{ \frac {p-1}2}{ \frac {p-1}4}^2 \equiv 8x^2-4p\ (\text{ mod}\ {p^2}). |
For p \equiv 3\ (\text{ mod}\ 4) , we see that
\frac {2p^2-6}{2^{p-1}(p-1)^2} \equiv \frac {-6}{(1+2^{p-1}-1)(1-2p)} \equiv \frac {-6}{1+(2^{p-1}-1-2p)} \equiv -6(2p+2-2^{p-1})\ (\text{ mod}\ {p^2}) |
and so
\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)^2} \equiv -6(2p+2-2^{p-1}) \binom{ \frac {p-1}2}{ \frac {p-3}4}^2\ (\text{ mod}\ {p^2}). |
Note that p\mid \binom{2k}k for \frac p2 < k < p and
\frac 1{p^2} \binom{2(p-1)}{p-1}^3 = p\Big( \frac {{(2p-2)(2p-3)\cdots(p+1)}}{{(p-1)!}}\Big)^3 \equiv -p\ (\text{ mod}\ {p^2}). |
Then we get
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(k+1)^2} \equiv \frac { \binom{2p-2}{p-1}^3}{64^{p-1}\cdot p^2}+ \sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)^2} \equiv -p+\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)^2}\ (\text{ mod}\ {p^2}). |
Now, combining all the above proves the congruence for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(k+1)^2}\ (\text{ mod}\ {p^2}) . By [35],
\sum\limits_{k = 0}^{ \frac {p-1}2} \frac { \binom{2k}k^3}{64^k(k+1)^3} \equiv\begin{cases} 8- \frac {24p^2}{\Gamma_p( \frac {1}{4})^4}\ (\text{ mod}\ {p^3}){\quad} \hbox{if $ p \equiv 1\ (\text{ mod}\ 4) $, } \\8- \frac {384}{\Gamma_p( \frac {1}{4})^4}\ (\text{ mod}\ {p^3}){\quad} \hbox{if $ p \equiv 3\ (\text{ mod}\ 4) $.} \end{cases} |
This together with (4.1) and (4.3) yields
\sum\limits_{k = 0}^{ \frac {p-1}2} \frac { \binom{2k}k^3}{64^k(k+1)^3} \equiv\begin{cases} 8+ \frac {6p^2}{x^2}\ (\text{ mod}\ {p^3}) & \hbox{if $ p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) $, } \\ 8- \frac {96}{2^{p-1}(1+2p)} \binom{ \frac {p-3}2}{ \frac {p-3}4}^2 \ (\text{ mod}\ {p^2})& \hbox{if $ p \equiv 3\ (\text{ mod}\ 4) $.} \end{cases} |
For p \equiv 3\ (\text{ mod}\ 4) we see that \binom{(p-1)/2}{(p-3)/4} = \frac {2(p-1)}{p+1} \binom{(p-3)/2}{(p-3)/4} and so
\binom{ \frac {p-3}2}{ \frac {p-3}4}^2 \equiv \Big( \frac {{p+1}}{{2(p-1)}}\Big)^2 \binom{ \frac {p-1}2}{ \frac {p-3}4}^2 \equiv \frac {(p+1)^4}4 \binom{ \frac {p-1}2}{ \frac {p-3}4}^2 \equiv \frac {4p+1}4 \binom{ \frac {p-1}2}{ \frac {p-3}4}^2\ (\text{ mod}\ {p^2}). |
Thus,
\begin{align*}& \sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)^3} \equiv 8- \frac {96}{(1+(2^{p-1}-1))(1+2p)} \binom{ \frac {p-3}2}{ \frac {p-3}4}^2\\& \equiv 8- \frac {96}{1+2^{p-1}-1+2p}\cdot \frac {4p+1}4 \binom{ \frac {p-1}2}{ \frac {p-3}4}^2 \\& \equiv 8-24(1-(2^{p-1}-1+2p))(4p+1) \binom{(p-1)/2}{(p-3)/4}^2 \\&\equiv 8-24R_1(p) \ (\text{ mod}\ {p^2}). \end{align*} |
It is well known that \binom{2p-1}{p-1} \equiv 1\ (\text{ mod}\ {p^2}) . Hence,
\begin{align*} \frac { \binom{2(p-1)}{p-1}^3}{64^{p-1}p^3}& = \frac { \binom{2p-1}{p-1}^3}{(1+2^{p-1}-1)^6(2p-1)^3} \equiv - \frac 1{(1+6(2^{p-1}-1))(1-6p)}\\& \equiv -(1-6(2^{p-1}-1))(1+6p) \equiv -(1-6(2^{p-1}-1)+6p) \\& = 3\cdot 2^p-6p-7\ (\text{ mod}\ {p^2}). \end{align*} |
Since p\mid \binom{2k}k for \frac p2 < k < p ,
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(k+1)^3} \equiv \sum\limits_{k = 0}^{ \frac {p-1}2} \frac { \binom{2k}k^3}{64^k(k+1)^3} + \frac { \binom{2(p-1)}{p-1}^3}{64^{p-1}p^3} \equiv \sum\limits_{k = 0}^{ \frac {p-1}2} \frac { \binom{2k}k^3}{64^k(k+1)^3}+3\cdot 2^p-6p-7\ (\text{ mod}\ {p^2}). |
Now combining all the above proves the theorem.
Theorem 4.3. Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(2k-1)} \equiv \Big( \frac p2- \frac 1{2^p}\Big) \binom{ \frac {p-1}2}{[ \frac p4]}^2-p\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(2k-1)^2} \ (\text{ mod}\ {p^2}) |
and so
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(2k-1)} \equiv - \frac 12 \binom{ \frac {p-1}2}{[ \frac p4]}^2\ (\text{ mod}\ p). |
Proof. Using (4.5),
\begin{align*} \binom{ \frac {p-1}2+1+k}{2k}& = \frac { \frac {p-1}2+1+k}{ \frac {p-1}2+1-k} \binom{ \frac {p-1}2+k}{2k} = \Big( \frac {2(p+1)}{p-(2k-1)}-1\Big) \binom{ \frac {p-1}2+k}{2k} \\& \equiv \Big( \frac {2(p+1)(p+2k-1)}{-(2k-1)^2}-1\Big) \frac { \binom{2k}k}{(-16)^k} \equiv \Big(-2 \frac {2k-1+(2k-1)p+p}{(2k-1)^2}-1\Big) \frac { \binom{2k}k}{(-16)^k} \\& = -\Big(1+ \frac 2{2k-1}+ \frac {2p}{2k-1}+ \frac {2p}{(2k-1)^2}\Big) \frac { \binom{2k}k}{(-16)^k} \ (\text{ mod}\ {p^2}). \end{align*} |
Thus,
\sum\limits_{k = 0}^{ \frac {p-1}2} \binom{2k}k^2 \binom{ \frac {p-1}2+1+k}{2k} \frac 1{(-4)^k} \equiv -\sum\limits_{k = 0}^{ \frac {p-1}2} \frac { \binom{2k}k^3}{64^k}\Big(1+ \frac 2{2k-1}+ \frac {2p}{2k-1}+ \frac {2p}{(2k-1)^2}\Big)\ (\text{ mod}\ {p^2}) |
and so
\begin{align*} &-2\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k}\Big( \frac 1{2k-1}+ \frac {p}{2k-1}+ \frac {p}{(2k-1)^2}\Big) \\ \equiv& \sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k}+\sum\limits_{k = 0}^{(p-1)/2} \binom{2k}k^2 \binom{ \frac {p-1}2+1+k}{2k} \frac 1{(-4)^k}\ (\text{ mod}\ {p^2}). \end{align*} |
By (1.5),
\begin{align*} &\sum\limits_{k = 0}^{(p-1)/2} \binom{2k}k^2 \binom{ \frac {p-1}2+1+k}{2k} \frac 1{(-4)^k} \\ = &\sum\limits_{k = 0}^{(p+1)/2} \binom{2k}k^2 \binom{ \frac {p+1}2+k}{2k} \frac 1{(-4)^k}- \binom{p+1}{ \frac {p+1}2}^2 \frac 1{(-4)^{ \frac {p+1}2}} \\ \equiv&\begin{cases} 0\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 1\ (\text{ mod}\ 4)$, } \\ \frac 1{2^{p+1}} \binom{(p+1)/2}{(p+1)/4}^2 = \frac 1{2^{p-1}} \binom{(p-1)/2}{(p-3)/4}^2\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 3\ (\text{ mod}\ 4)$.} \end{cases} \end{align*} |
From the above, (1.4) and (4.6),
\begin{align*} &\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k}\Big( \frac 1{2k-1}+ \frac {p}{2k-1}+ \frac {p}{(2k-1)^2}\Big) \\ \equiv &\begin{cases} - \frac 12(4x^2-2p) \equiv - \frac 12\cdot \frac 1{2^{p-1}} \binom{(p-1)/2}{(p-1)/4}^2\ (\text{ mod}\ {p^2})& \hbox{if $p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4)$, } \\- \frac 12\cdot \frac 1{2^{p-1}} \binom{(p-1)/2}{(p-3)/4}^2\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 3\ (\text{ mod}\ 4)$.} \end{cases} \end{align*} |
Hence,
\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(2k-1)} \equiv - \frac 12 \binom{ \frac {p-1}2}{[ \frac p4]}^2\ (\text{ mod}\ p) |
and so
\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(2k-1)} - \frac p2 \binom{ \frac {p-1}2}{[ \frac p4]}^2+p\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(2k-1)^2} \equiv - \frac 1{2^p} \binom{ \frac {p-1}2}{[ \frac p4]}^2 \ (\text{ mod}\ {p^2}). |
To see the result, we recall that p\mid \binom{2k}k for \frac p2 < k < p .
For k = 1, 2, 3, \ldots , it is clear that
\frac 1{2k-1} \binom{2k}k = 2\Big( \binom{2k-2}{k-1}- \binom{2k-2}k\Big) = \frac 2k \binom{2k-2}{k-1} = 2C_{k-1}\in\Bbb Z, |
where C_k = \frac 1{k+1} \binom{2k}k is the k -th Catalan number. For an odd prime p , let
\begin{align*} &R_1(p) = (2p+2-2^{p-1}) \binom{(p-1)/2}{[p/4]}^2, \end{align*} | (5.1) |
\begin{align*} &R_2(p) = (5-4(-1)^{ \frac {p-1}2})\Big(1+(4+2(-1)^{ \frac {p-1}2})p-4(2^{p-1}-1)- \frac p2\sum\limits_{k = 1}^{[p/8]} \frac 1k\Big) \binom{ \frac {p-1}2}{[ \frac p8]}^2, \end{align*} | (5.2) |
\begin{align*} &R_3(p) = \Big(1+2p+ \frac 43(2^{p-1}-1)- \frac 32(3^{p-1}-1)\Big) \binom{(p-1)/2}{[p/6]}^2. \end{align*} | (5.3) |
Calculations with Maple suggest the following challenging conjectures.
Conjecture 5.1. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-192)^k(k+1)} \equiv\begin{cases} \frac 32x^2-4p-p^2\ (\text{ mod}\ {p^3})& {if \;3\mid p-1\; and \;so \;4p = x^2+27y^2, } \\2(2p+1) \binom{[2p/3]}{[p/3]}^2+p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-192)^k(k+1)^2} \equiv\begin{cases} \frac 14{x^2}-3p\ (\text{ mod}\ {p^2})& {if \;3\mid p-1\; and \;so \;4p = x^2+27y^2, } \\13(2p+1) \binom{[2p/3]}{[p/3]}^2+ \frac p2\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{(-192)^k(2k-1)} \equiv\begin{cases} - \frac 34x^2+ \frac {9p}8+ \frac {3p^2}{8x^2}\ (\text{ mod}\ {p^3})& {if \;3\mid p-1\; and \;so \;4p = x^2+27y^2, } \\- \frac 12(2p+1) \binom{[2p/3]}{[p/3]}^2+ \frac 38p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ {3}).} \end{cases} \end{align*} |
Conjecture 5.2. Let p > 5 be a prime, then
\begin{align*} &\Big( \frac {{10}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-12288000)^k(k+1)} \\ \equiv&\begin{cases} - \frac {26082}5y^2+2p-\big( \frac {{10}}{p}\big)p^2\ (\text{ mod}\ {p^3})& {if \;3\mid p-1\; and \;so \;4p = x^2+27y^2, } \\1280(2p+1) \binom{[2p/3]}{[p/3]}^2+ \frac {1922}5p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\Big( \frac {{10}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-12288000)^k(k+1)^2} \\ \equiv&\begin{cases} - \frac {112604}{25}x^2+\big( \frac {293656}{25}-\big( \frac {{10}}{p}\big)\big)p \ (\text{ mod}\ {p^2}){\quad} {if \;3\mid p-1\; and \;so \;4p = x^2+27y^2, } \\11776(2p+1) \binom{[2p/3]}{[p/3]}^2-\big( \frac {68448}{25} +\big( \frac {{10}}{p}\big)\big)p\ (\text{ mod}\ {p^2}){\quad} {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\Big( \frac {{10}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-12288000)^k(2k-1)} \\ \equiv&\begin{cases} - \frac {177}{200}x^2+ \frac {53199}{32000}p+ \frac {56157}{64000x^2}p^2\ (\text{ mod}\ {p^3}) & {if \;3\mid p-1\; and \;so \;4p = x^2+27y^2, } \\- \frac 1{20}(2p+1) \binom{[2p/3]}{[p/3]}^2+ \frac {3441}{32000}p \ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ {3}).} \end{cases} \end{align*} |
Remark 5.1. Let p be a prime with p > 5 . In [25], the author conjectured that if p \equiv 1\ (\text{ mod}\ 3) and so 4p = x^2+27y^2 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-192)^k} \equiv \Big( \frac {{10}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-12288000)^k} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}); |
if p \equiv 2\ (\text{ mod}\ 3) , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-192)^k} \equiv \frac {800}{161}\Big( \frac {{10}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-12288000)^k} \equiv \frac 34p^2 \binom{[2p/3]}{[p/3]}^{-2}\ (\text{ mod}\ {p^3}). |
The congruence for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-192)^k}\ (\text{ mod}\ {p^2}) was conjectured by Z. W. Sun [27] earlier.
Let p > 3 be a prime. In [27,29], Z. W. Sun conjectured congruences for \sum_{k = 0}^{p-1} \binom{2k}k^3/m^k \ (\text{ mod}\ {p^2}) with m = 1, -8, 16, -64,256, -512, 4096 . Such conjectures were proved by the author in [17]. In [25], the author conjectured congruences for \sum_{k = 0}^{p-1} \binom{2k}k^3/m^k \ (\text{ mod}\ {p^3}) in the cases m = 1, -8, 16, -64,256, -512, 4096 .
Conjecture 5.3. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{(-8)^k(k+1)} \equiv \begin{cases} -24y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ \frac 12R_1(p)+p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-8)^k(k+1)^2} \equiv\begin{cases} -32y^2\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\3R_1(p)+2p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-8)^k(2k-1)} \equiv \begin{cases} -4x^2- \frac {5}{4x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\2p-2R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-8)^k(2k-1)^2} \equiv \begin{cases} -4x^2+2p+ \frac {19}{4x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\6R_1(p) \ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), }\end{cases} \\ &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-8)^k(2k-1)^3} \equiv \begin{cases} 48y^2+ \frac {33}{16y^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\-6p-12R_1(p) \ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4).} \end{cases} \end{align*} |
Conjecture 5.4. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)} \equiv -16y^2+2p\ (\text{ mod}\ {p^3}){\quad}\; {for} {\quad} p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(2k-1)} \equiv \begin{cases} -2x^2+p+ \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac 12R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(2k-1)^2} \equiv \begin{cases} 2x^2-p- \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ \frac 32R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(2k-1)^3} \equiv \begin{cases} \frac {3}{4x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\-3R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4).} \end{cases} \end{align*} |
Conjecture 5.5. Let p be an odd prime, then
\begin{align*} &(-1)^{[ \frac p4]}\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{(-512)^k(k+1)} \equiv\begin{cases} -32y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\-4R_1(p)-2p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&(-1)^{[ \frac p4]}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-512)^k(k+1)^2} \equiv\begin{cases} -16x^2+(8-(-1)^{[ \frac p4]})p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\-24R_1(p)-(-1)^{[ \frac p4]}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&(-1)^{[ \frac p4]}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-512)^k(2k-1)} \equiv \begin{cases} -3x^2+ \frac 54p+ \frac 5{32x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac p4+ \frac {1}4R_1(p)\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&(-1)^{[ \frac p4]}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-512)^k(2k-1)^2} \equiv \begin{cases} 2x^2- \frac 58p- \frac {p^2}{32x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac 34R_1(p)+ \frac 38p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&(-1)^{[ \frac p4]}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-512)^k(2k-1)^3} \equiv \begin{cases} - \frac 32x^2+ \frac 38p- \frac 3{32x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ \frac 32R_1(p)- \frac 38p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3\ (\text{ mod}\ 4).} \end{cases} \end{align*} |
Conjecture 5.6. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{648^k(k+1)} \equiv\begin{cases} - \frac {40}3y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac 32R_1(p)- \frac p3\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{648^k(k+1)^2} \equiv\begin{cases} \frac {112}9x^2- \frac {64}9p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\-11R_1(p)- \frac {10}9 p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{648^k(2k-1)} \equiv \begin{cases} - \frac {76}{27}x^2+ \frac {104}{81}p+ \frac {67}{324x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac 29R_1(p)+ \frac {10}{81}p \ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4).} \end{cases} \end{align*} |
Conjecture 5.7. Let p > 3 be a prime, then
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{12^{3k}(k+1)} \equiv\begin{cases} -16y^2+2p-\big( \frac {p}{3}\big)p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ \frac 35R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), }\end{cases} \\&\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{12^{3k}(k+1)^2} \equiv\begin{cases} 8x^2-(4+( \frac {p}{3}))p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ \frac {138}{25}R_1(p)-( \frac {p}{3})p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}}{12^{3k}(2k-1)} \equiv \begin{cases} - \frac {26}{9}x^2+ \frac {13}{9}p+ \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ \frac 16R_1(p)\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3\ (\text{ mod}\ 4).} \end{cases} \end{align*} |
Conjecture 5.8. Let p be a prime with p\not = 2, 3, 11 , then
\begin{align*} &\Big( \frac {{33}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{66^{3k}(k+1)} \equiv\begin{cases} 104y^2+2p-\big( \frac {{33}}{p}\big)p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac {363}{10}R_1(p)-15p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\Big( \frac {{33}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{66^{3k}(k+1)^2} \equiv\begin{cases} 488x^2-\big(295+( \frac {{33}}{p})\big)p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac {8349}{25}R_1(p)+\big(51-( \frac {{33}}{p})\big)p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\Big( \frac {{33}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}}{66^{3k}(2k-1)} \equiv \begin{cases} - \frac {3716}{1089}x^2+ \frac {18848}{11979}p+ \frac {1121}{5324x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac 2{33}R_1(p) + \frac {530}{3993}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4)$}. \end{cases} \end{align*} |
Conjecture 5.9. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{16^k(k+1)} \equiv\begin{cases} -16y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac 43R_3(p)- \frac 23p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{16^k(k+1)^2} \equiv\begin{cases} -24y^2+p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-8R_3(p)-3p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases}\\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{16^k(2k-1)} \equiv \begin{cases} 4y^2- \frac {p^2}{4y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac {8}3R_3(p)+ \frac 23p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\ &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{16^k(2k-1)^2} \equiv \begin{cases} -12y^2+2p+ \frac {3p^2}{4y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ 8R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{16^k(2k-1)^3} \equiv \begin{cases} -12y^2 - \frac 5{4y^2}p^2\ (\text{ mod}\ {p^3}) & {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-16R_3(p)-2p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 2\ (\text{ mod}\ 3).} \end{cases} \end{align*} |
Conjecture 5.10. Let p > 3 be a prime, then
\begin{align*} &(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{256^k(k+1)} \equiv\begin{cases} -8y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ \frac {16}3R_3(p)+ \frac 23p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{256^k(k+1)^2} \equiv\begin{cases} 16x^2-(8+(-1)^{ \frac {p-1}2})p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\32R_3(p)-(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{256^k(2k-1)} \equiv \begin{cases} 8y^2- \frac 32p- \frac {p^2}{16y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ \frac {2}3R_3(p)- \frac p6\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{256^k(2k-1)^2} \equiv\begin{cases} 2x^2- \frac 34p- \frac 3{16x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-2R_3(p)+ \frac p4\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{256^k(2k-1)^3} \equiv\begin{cases} -x^2+ \frac p4+ \frac {3}{16x^2}p^2 \ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\4R_3(p)- \frac p4\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3).} \end{cases} \end{align*} |
Moreover,
(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{256^k(2k-1)} \equiv - \frac 14\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{16^k(2k-1)}\ (\text{ mod}\ {p^3}){\quad} {for} {\quad}p \equiv 2\ (\text{ mod}\ 3). |
Conjecture 5.11. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{108^k(k+1)} \equiv\begin{cases} -12y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-2R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3)}, \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{108^k(k+1)^2} \equiv\begin{cases} 8x^2-5p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-13R_3(p)-p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^2 \binom{3k}{k}}{108^k(k+1)^3} \equiv\begin{cases} 9-2x^2+p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\9-\frac{115}2R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{108^k(2k-1)} \equiv\begin{cases} - \frac 59(4x^2-2p)+ \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac 89R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3).} \end{cases} \end{align*} |
Conjecture 5.12. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-144)^k(k+1)} \equiv\begin{cases} -16y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ \frac 43R_3(p)+ \frac 23p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-144)^k(k+1)^2} \equiv\begin{cases} - \frac {40}3y^2- \frac {p}3\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ \frac {88}9R_3(p)+ \frac 59p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-144)^k(2k-1)} \equiv\begin{cases} - \frac {28}9x^2+ \frac 89p- \frac {p^2}{36x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac 89R_3(p)+ \frac 23p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3).} \end{cases} \end{align*} |
Conjecture 5.13. Let p > 5 be a prime, then
\begin{align*} &\Big( \frac {p}{5}\Big) \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}}{54000^k(k+1)} \equiv\begin{cases} \frac {48}5y^2+2p-\big( \frac {p}{5}\big)p^2\ (\text{ mod}\ {p^3}) & {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-20R_3(p)- \frac {18}5p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\Big( \frac {p}{5}\Big) \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}}{54000^k(k+1)^2} \equiv\begin{cases} \frac {2504}{25}x^2-\big( \frac {1414}{25}+\big( \frac {p}{5}\big)\big)p\ (\text{ mod}\ {p^2}) & {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-184R_3(p)+\big( \frac {162}{25}-\big( \frac {p}{5}\big)\big)p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases}\\&\Big( \frac {p}{5}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}}{54000^k(2k-1)} \equiv\begin{cases} - \frac {748}{225}x^2+ \frac {1708}{1125}p+ \frac {103}{500x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac 8{45}R_3(p)+ \frac {18}{125}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3).} \end{cases} \end{align*} |
Conjecture 5.14. Let p > 3 be a prime, then
\begin{align*} & \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{1458^k(k+1)} \equiv\begin{cases} 2(-1)^{ \frac {p-1}2}p-p^2\ (\text{ mod}\ {p^3})& {if \;p \equiv 1\ (\text{ mod}\ 3), } \\-12R_3(p)+2(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{1458^k(k+1)^2} \equiv\begin{cases} 42x^2-(22+2(-1)^{ \frac {p-1}2})p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-78R_3(p)-(1+2(-1)^{ \frac {p-1}2})p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{1458^k(2k-1)} \equiv\begin{cases} - \frac {61}{81}\big(4x^2-2p- \frac {p^2}{4x^2}\big)- \frac {44}{243}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac {32}{81}R_3(p)- \frac {44}{243}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 2\ (\text{ mod}\ 3).} \end{cases} \end{align*} |
Conjecture 5.15. Let p be an odd prime, then
\begin{align*} &(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{(-64)^k(k+1)} \equiv\begin{cases} -12y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {1}2R_2(p)-p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-64)^k(k+1)^2} \equiv \begin{cases} 4x^2-5p\ (\text{ mod}\ {p^2}){\qquad} {if \;p = x^2+2y^2 \equiv 1\ (\text{ mod}\ 8), } \\4x^2-3p\ (\text{ mod}\ {p^2}){\qquad} {if \;p = x^2+2y^2 \equiv 3\ (\text{ mod}\ 8), } \\-3R_2(p)-(2+(-1)^{ \frac {p-1}2})p\ (\text{ mod}\ {p^2}){\quad} {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-64)^k(2k-1)} \equiv \begin{cases} p-3x^2\ (\text{ mod}\ {p^3}){\qquad}\ {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {1}4R_2(p)- \frac p2\ (\text{ mod}\ {p^2}){\quad} {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\ &(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-64)^k(2k-1)^2} \equiv\begin{cases} x^2+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac 34R_2(p)+ \frac p2 \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-64)^k(2k-1)^3} \equiv\begin{cases} -2x^2+p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac 32R_2(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8).} \end{cases} \end{align*} |
Conjecture 5.16. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{256^k(k+1)} \equiv \begin{cases} -8y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ - \frac 13R_2(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{256^k(k+1)^2} \equiv \begin{cases} -16y^2+3p\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ - \frac {22}9R_2(p)-p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{256^k(2k-1)} \equiv\begin{cases} 5y^2- \frac 54p- \frac {p^2}{8y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {1}8R_2(p) \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8).} \end{cases} \end{align*} |
Conjecture 5.17. Let p be a prime with p\not = 2, 7 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{28^{4k}(k+1)} \equiv\begin{cases} -284x^2+\big(142+144( \frac {p}{3})\big)p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\-147R_2(p)+144( \frac {p}{3})p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{28^{4k}(k+1)^2} \equiv\begin{cases} 5576x^2-\big(2789+864( \frac {p}{3})\big)p\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\-1078R_2(p)-\big(1+864( \frac {p}{3})\big)p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{28^{4k}(2k-1)} \equiv\begin{cases} - \frac {2363}{686}x^2+ \frac {16541-1224( \frac {p}{3})}{9604}p+ \frac {2041p^2}{9604x^2} \ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {9}{392}R_2(p)- \frac {306}{2401}\big( \frac {p}{3}\big)p \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8).} \end{cases} \end{align*} |
Conjecture 5.18. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{8^k(k+1)} \equiv\begin{cases} -11y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {1}8R_2(p)- \frac 34p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{8^k(k+1)^2} \equiv\begin{cases} - \frac {31}2y^2+ \frac p2\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {13}{16}R_2(p)- \frac {27}8p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{8^k(2k-1)} \equiv \begin{cases} 2y^2+ \frac 52p- \frac {17}{16y^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac 34R_2(p)+3p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8).} \end{cases} \end{align*} |
Conjecture 5.19. Let p be a prime with p\not = 2, 5 , then
\begin{align*} &\Big( \frac {{-5}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{20^{3k}(k+1)} \equiv\begin{cases} - \frac {28}5y^2+2p-\big( \frac {{-5}}{p}\big)p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac 56R_2(p)+ \frac 35p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\Big( \frac {{-5}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{20^{3k}(k+1)^2} \equiv\begin{cases} \frac {484}{25}x^2-\big( \frac {244}{25}+( \frac {{-5}}{p})\big)p\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {23}3R_2(p)-\big( \frac {2}{25}+( \frac {{-5}}{p})\big)p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\Big( \frac {{-5}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{20^{3k}(2k-1)} \equiv\begin{cases} - \frac {79}{25}x^2+ \frac {181}{125}p+ \frac {26}{125x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {1}{20}R_2(p) - \frac {33}{250}p \ (\text{ mod}\ {p^2}) & {if \;p \equiv 5, 7\ (\text{ mod}\ 8).} \end{cases} \end{align*} |
Remark 5.2. Let p be a prime with p > 7 and p\not = 71 . In [25], the author conjectured congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{256^k} , \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{28^{4k}} and \sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{20^{3k}} modulo p^3 . The congruence for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{28^{4k}} \ (\text{ mod}\ {p^2}) was conjectured by Z. W. Sun [27].
For any odd prime p , let
R_7(p) = \sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{k+1}. |
Conjecture 5.20. Let p be a prime with p\not = 2, 7 , then
\begin{align*} &R_7(p) = \sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{k+1} \equiv \begin{cases} -44y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac {1}7 \binom{[3p/7]}{[p/7]}^2\ (\text{ mod}\ p)& {if \;p \equiv 3\ (\text{ mod}\ 7), } \\- \frac {16}7 \binom{[3p/7]}{[p/7]}^2\ (\text{ mod}\ p)& {if \;p \equiv 5\ (\text{ mod}\ 7), } \\- \frac {4}7 \binom{[3p/7]}{[p/7]}^2\ (\text{ mod}\ p)& {if \;p \equiv 6\ (\text{ mod}\ 7), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(k+1)^2} \equiv \begin{cases} -68y^2\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\6R_7(p)+2p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{2k-1} \equiv \begin{cases} -36y^2+14p- \frac 7{4y^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\32R_7(p)+48p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\ &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(2k-1)^2} \equiv \begin{cases} -284y^2+34p+ \frac {23}{4y^2}p^2 \ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ -96R_7(p)-96p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), }\end{cases} \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(2k-1)^3} \equiv \begin{cases} -804y^2-18p- \frac {39}{4y^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ 192R_7(p)+144p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7).}\end{cases} \end{align*} |
Conjecture 5.21. Let p be a prime with p\not = 2, 7 , then
\begin{align*} &(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{4096^k(k+1)} \\ \equiv &\begin{cases} 72y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\-64R_7(p)-66p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{4096^k(k+1)^2} \\ \equiv & \begin{cases} -1136y^2+(64-(-1)^{ \frac {p-1}2})p\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\-384R_7(p)-(456+(-1)^{ \frac {p-1}2})p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \end{align*} |
\begin{align*} &(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{4096^k(2k-1)} \\ \equiv &\begin{cases} 22y^2- \frac 74p- \frac {7p^2}{256y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac 12R_7(p)- \frac 34p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{4096^k(2k-1)^2} \\ \equiv &\begin{cases} -17y^2+ \frac {97}{64}p+ \frac {5p^2}{256y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac 32R_7(p)+ \frac {129}{64}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\& (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{4096^k(2k-1)^3} \\ \equiv &\begin{cases} \frac {201}{16}y^2- \frac {81}{64}p- \frac {3p^2}{256y^2}\ (\text{ mod}\ {p^3}) & {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\-3R_7(p)- \frac {243}{64}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7)} \end{cases} \end{align*} |
and
(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{4096^k(2k-1)} \equiv - \frac 1{64}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{2k-1}\ (\text{ mod}\ {p^3}){\quad}\; {for} {\quad} p \equiv 3, 5, 6\ (\text{ mod}\ 7). |
Conjecture 5.22. Let p be a prime with p\not = 2, 3, 7 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{81^k(k+1)} \equiv \begin{cases} - \frac {100}{3}y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {3}2R_7(p)+ \frac 43p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{81^k(k+1)^2} \equiv \begin{cases} - \frac {436}{9}y^2+ \frac 43p\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\11R_7(p)+ \frac {94}{9}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{81^k(2k-1)} \equiv \begin{cases} \frac {436}{27}y^2- \frac {50}{81}p- \frac {23p^2}{324y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {16}9R_7(p)+ \frac {208}{81}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7).} \end{cases} \end{align*} |
Conjecture 5.23. Let p be a prime with p\not = 2, 3, 7 , then
\begin{align*} & \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}} {(-3969)^k(k+1)} \equiv \begin{cases} - \frac {196}3y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\-21R_7(p)- \frac {64}{3}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}} {(-3969)^k(k+1)^2} \equiv \begin{cases} - \frac {356}9x^2+ \frac {188}{9}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\-154R_7(p)- \frac {1612}{9}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}} {(-3969)^k(2k-1)} \equiv \begin{cases} \frac {4204}{189}y^2- \frac {7090}{3969}p- \frac {2929p^2}{111132y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {32}{63}R_7(p)+ \frac {3088}{3969}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7).} \end{cases} \end{align*} |
Conjecture 5.24. Let p be a prime with p > 7 , then
\begin{align*} &\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-15)^{3k}(k+1)} \\ \equiv &\begin{cases} - \frac {188}{5}y^2+2p-\big( \frac {{-15}}{p}\big)p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {15}{4}R_7(p)+ \frac {18}{5}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-15)^{3k}(k+1)^2} \\ \equiv & \begin{cases} \frac {172}{25}y^2-\big( \frac 75+\big( \frac {{-15}}{p}\big)\big)p\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {69}{2}R_7(p)+\big( \frac {963}{25}-\big( \frac {{-15}}{p}\big)\big)p \ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-15)^{3k}(2k-1)} \\ \equiv & \begin{cases} \frac {5084}{225}y^2- \frac {2138}{1125}p- \frac {11p^2}{500y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac 8{15}R_7(p)- \frac {112}{125}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7).} \end{cases} \end{align*} |
Conjecture 5.25. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-12288)^k(k+1)} \equiv\begin{cases} -144y^2+2p-p^2\ (\text{ mod}\ {p^3}) & {if \;12\mid p-1\; and \;so \;p = x^2+9y^2, } \\72y^2-2p-p^2\ (\text{ mod}\ {p^3}) & {if \;12\mid p-5\; and \;so \;2p = x^2+9y^2, } \\-24 \binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \;p \equiv 7\ (\text{ mod}\ {12}), } \\48 \binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \;p \equiv 11\ (\text{ mod}\ {12}), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-12288)^k(k+1)^2} \equiv\begin{cases} -128x^2+75p\ (\text{ mod}\ {p^2}) & {if \;12\mid p-1\; and \;so \;p = x^2+9y^2, } \\64x^2-77p\ (\text{ mod}\ {p^2}) & {if \;12\mid p-5\; and \;so \;2p = x^2+9y^2, } \\-176 \binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \;p \equiv 7\ (\text{ mod}\ {12}), } \\352 \binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \;p \equiv 11\ (\text{ mod}\ {12}), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-12288)^k(2k-1)} \equiv\begin{cases} - \frac {13}{4}x^2+ \frac {93}{64}p+ \frac {25p^2}{128x^2}\ (\text{ mod}\ {p^3}) & {if \;12\mid p-1\; and \;so \;p = x^2+9y^2, } \\ \frac {13}8x^2- \frac {93}{64}p- \frac {25p^2}{64x^2}\ (\text{ mod}\ {p^3}) & {if \;12\mid p-5\; and \;so \;2p = x^2+9y^2, } \\ \frac 3{16} \binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \;p \equiv 7\ (\text{ mod}\ {12}), } \\- \frac 3{8} \binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \;p \equiv 11\ (\text{ mod}\ {12}).} \end{cases} \end{align*} |
Conjecture 5.26. Let p be a prime with p\not = 2, 5 , and R_{20}(p) = \binom{ \frac {p-1}2}{[p/20]} \binom{ \frac {p-1}2}{[3p/20]} , then
\begin{align*} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k} \equiv\begin{cases} 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and\; so \;p = x^2+5y^2, } \\2p-2x^2+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;2p = x^2+5y^2, } \\ \frac {2p^2}{R_{20}(p)}\ (\text{ mod}\ {p^3}) & {if \;p \equiv 11\ (\text{ mod}\ {20}), } \\ \frac {2p^2}{9R_{20}(p)}\ (\text{ mod}\ {p^3}) & {if \;p \equiv 13\ (\text{ mod}\ {20}), } \\ \frac {6p^2}{7R_{20}(p)} \ (\text{ mod}\ {p^3})& {if \;p \equiv 17\ (\text{ mod}\ {20}), } \\ \frac {2p^2}{21R_{20}(p)}\ (\text{ mod}\ {p^3}) & {if \;p \equiv 19\ (\text{ mod}\ {20}).} \end{cases} \end{align*} |
Remark 5.3. For any prime p\not = 2, 5 , the congruence for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{4k}{2k}(-1024)^{-k} modulo p^2 was first conjectured by Z. W. Sun in [27]. Let p \equiv 1\ (\text{ mod}\ {20}) be a prime and so p = x^2+5y^2 . In 1840, Cauchy proved that
4x^2 \equiv \binom{(p-1)/2}{(p-1)/20} \binom{(p-1)/2}{3(p-1)/20}\ (\text{ mod}\ p), |
see [3, p.291].
Conjecture 5.27. Let p be a prime with p\not = 2, 5 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(k+1)} \equiv\begin{cases} \frac 85R_{20}(p)\ (\text{ mod}\ p)& {if \; p \equiv 1, 3, 7, 9\ (\text{ mod}\ {20}) , } \\ \frac {4}{5}R_{20}(p)\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {20}) , } \\ \frac {36}{5}R_{20}(p)\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {20}) , } \\ \frac {28}{15}R_{20}(p)\ (\text{ mod}\ p)& {if \; p \equiv 17\ (\text{ mod}\ {20}) , } \\ \frac {84}{5}R_{20}(p)\ (\text{ mod}\ p)& {if \; p \equiv 19\ (\text{ mod}\ {20}) .} \end{cases} |
Moreover, if (\frac {{-5}}{p}) = 1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(k+1)} \equiv\begin{cases} -32y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and \;so \; \\p = x^2+5y^2, } \\ 16y^2-2p-p^2\ (\text{ mod}\ {p^3})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;\\2p = x^2+5y^2, }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(k+1)^2} \equiv\begin{cases} 32y^2-5p\ (\text{ mod}\ {p^2})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and \;so \;p = x^2+5y^2, } \\-16y^2+3p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;2p = x^2+5y^2, }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(2k-1)} \equiv\begin{cases} \frac {31}{2}y^2- \frac {29}{16}p- \frac {p^2}{32y^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and \;so \;\\p = x^2+5y^2, } \\- \frac {31}{4}y^2+ \frac {29}{16}p+ \frac {p^2}{16y^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;\\2p = x^2+5y^2;}\end{cases} \end{align*} |
if (\frac {{-5}}{p}) = -1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(k+1)^2} \equiv \frac {22}3\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(k+1)}+ \big(8(-1)^{ \frac {p-1}2}-1\big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(2k-1)} \equiv - \frac 3{32}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(k+1)}- \frac 38(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2}). \end{align*} |
Conjecture 5.28. Let p > 3 be a prime with (\frac {{-6}}{p}) = -1 and R_{24}(p) = \binom{ \frac {p-1}2}{[\frac p{24}]} \binom{ \frac {p-1}2}{[\frac {5p}{24}]} , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}} \equiv\begin{cases} \frac {p^2}{5R_{24}(p)} \ (\text{ mod}\ {p^3})& {if \; p \equiv 13, 17\ (\text{ mod}\ {24}) , } \\- \frac {p^2}{77R_{24}(p)} \ (\text{ mod}\ {p^3})& {if \; p \equiv 19, 23\ (\text{ mod}\ {24}) } \end{cases} |
and
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k} \equiv\begin{cases} - \frac {7p^2}{5R_{24}(p)} \ (\text{ mod}\ {p^3})& {if \; p \equiv 13\ (\text{ mod}\ {24}) , } \\ \frac {7p^2}{5R_{24}(p)} \ (\text{ mod}\ {p^3})& {if \; p \equiv 17\ (\text{ mod}\ {24}) , } \\ \frac {p^2}{11R_{24}(p)} \ (\text{ mod}\ {p^3})& {if \; p \equiv 19\ (\text{ mod}\ {24}) , } \\- \frac {p^2}{11R_{24}(p)} \ (\text{ mod}\ {p^3})& {if \; p \equiv 23\ (\text{ mod}\ {24}) .} \end{cases} |
Conjecture 5.29. Let p > 3 be a prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)} \equiv\begin{cases} \frac {7}{8}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 1, 11\ (\text{ mod}\ {24}) , } \\- \frac {7}{8}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 5, 7\ (\text{ mod}\ {24}) , } \\ - \frac 5{8}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {24}) , } \\ \frac 5{8}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 17\ (\text{ mod}\ {24}) , } \\ \frac {77}{8}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 19\ (\text{ mod}\ {24}) , } \\- \frac {77}{8}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 23\ (\text{ mod}\ {24}) .} \end{cases} |
Moreover, if (\frac {{-6}}{p}) = 1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)} \equiv\begin{cases} -21y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), }\\7x^2-2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}), }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)^2} \equiv\begin{cases} \frac {43}4x^2- \frac {25}4p\ (\text{ mod}\ {p^2})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), }\\ \frac {43}2x^2- \frac {13}2p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}), }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(2k-1)} \equiv\begin{cases} - \frac {23}9x^2+ \frac 76p+ \frac {5p^2}{24x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), }\\- \frac {46}9x^2+ \frac {25}{18}p+ \frac {5p^2}{48x^2}\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24});}\end{cases} \end{align*} |
if (\frac {{-6}}{p}) = -1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)^2} \equiv \frac {13}2 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}-\Big(1+ \frac 32\Big( \frac {p}{3}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(2k-1)} \equiv \frac 29 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}- \frac 16\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}). \end{align*} |
Conjecture 5.30. Let p > 3 be a prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)} \equiv\begin{cases} \frac {1}{3}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 1, 5\ (\text{ mod}\ {24}) , } \\- \frac {1}{3}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 7, 11\ (\text{ mod}\ {24}) , } \\ \frac 5{3}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 13, 17\ (\text{ mod}\ {24}) , } \\- \frac {77}3R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 19, 23\ (\text{ mod}\ {24}) .} \end{cases} |
Moreover, if (\frac {{-6}}{p}) = 1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)} \equiv\begin{cases} -8y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), }\\4y^2-2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24})}, \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)^2} \equiv\begin{cases} \frac {280}9x^2- \frac {157}9p\ (\text{ mod}\ {p^2})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), }\\- \frac {560}9x^2+ \frac {139}9p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24})}, \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(2k-1)} \equiv\begin{cases} - \frac {55}{18}x^2+ \frac {49}{36}p+ \frac {7p^2}{36x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), }\\ \frac {55}9x^2- \frac {49}{36}p- \frac {7p^2}{72x^2}\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24})};\end{cases} \end{align*} |
if (\frac {{-6}}{p}) = -1 , then
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)} \equiv- \frac 83\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{216^k(k+1)} + \frac p3\Big(2\Big( \frac {p}{3}\Big)+4\Big)\ (\text{ mod}\ {p^2}), \\&\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)^2} \equiv- \frac {176}9\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{216^k(k+1)} + \frac p9\Big(35\Big( \frac {p}{3}\Big)-8\Big)\ (\text{ mod}\ {p^2}), \\&\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(2k-1)} \equiv- \frac {1}9\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{216^k(k+1)} + \frac p{36}\Big(\Big( \frac {p}{3}\Big)-6\Big)\ (\text{ mod}\ {p^2}). \end{align*} |
Remark 5.4. Let p be a prime with p > 3 . In [25, Conjecture 4.24], the author conjectured the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k} and \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}} modulo p^3 in the case (\frac {{-6}}{p}) = 1 . The corresponding congruences modulo p^2 were conjectured by Z. W. Sun in [27]. In 2019, Guo and Zudilin [6] proved Z. W. Sun's conjecture:
\sum_{k = 0}^{p-1}(8k+1) \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}} \equiv \Big(\frac {p}{3}\Big)p\ (\text{ mod}\ {p^3}). |
Conjecture 5.31. Let p > 5 be a prime.
(ⅰ) If p \equiv 1, 19\ (\text{ mod}\ {30}) and so p = x^2+15y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)} \equiv -84y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)^2} \equiv -96y^2\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(2k-1)} \equiv \frac {148}3y^2- \frac {26}9p+ \frac {p^2}{36y^2}\ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)} \equiv 60y^2+2p-p^2 \ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)^2} \equiv -1320y^2+36p \ (\text{ mod}\ {p^2}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(2k-1)} \equiv \frac {3508}{75}y^2- \frac {1954}{1125}p- \frac {287p^2}{22500y^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If p \equiv 17, 23\ (\text{ mod}\ {30}) and so p = 3x^2+5y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)} \equiv 28y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)^2} \equiv 32y^2-2p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(2k-1)} \equiv - \frac {148}9y^2+ \frac {26}9p- \frac {p^2}{12y^2}\ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)} \equiv -20y^2-2p-p^2 \ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)^2} \equiv 440y^2-38p \ (\text{ mod}\ {p^2}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(2k-1)} \equiv - \frac {3508}{225}y^2+ \frac {1954}{1125}p+ \frac {287p^2}{7500y^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-15}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)} \equiv\begin{cases} \frac 25\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {30}) , } \\ \frac 1{10}\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {30}) , } \\ \frac {32}{5}\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {30}) , } \\ \frac {8}{5}\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 29\ (\text{ mod}\ {30}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)^2} \equiv \frac {13}2 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}+\Big(3\Big( \frac {p}{3}\Big)-1\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(2k-1)} \equiv- \frac {16}9 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}- \frac 83\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)} \equiv-20 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}-12\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)^2} \equiv-130 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}-\Big(1+111\Big( \frac {p}{3}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(2k-1)} \equiv- \frac {64}{225} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}- \frac {152}{375}\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}). \end{align*} |
Conjecture 5.32. Let p be a prime with p > 5 and
R_{40}(p) = \frac { \binom{(p-1)/2}{[7p/40]} \binom{(p-1)/2}{[9p/40]} \binom{[3p/40]}{[p/40]}}{ \binom{[19p/40]}{[p/20]}}. |
(ⅰ) If (\frac {{-10}}{p}) = 1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} \equiv\begin{cases} - \frac {49}{15}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 1,23\ (\text{ mod}\ {40}) ,} \\- \frac {49}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {40}) ,} \\ \frac {7}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 9\ (\text{ mod}\ {40}) ,} \\ \frac {833}{195}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {40}) ,} \\- \frac {833}{285}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {40}) ,} \\- \frac {98}{555}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 19\ (\text{ mod}\ {40}) ,} \\- \frac {98}{55}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 37\ (\text{ mod}\ {40}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} \equiv\begin{cases} \frac {392}{3}y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+10y^2 \equiv 1, 9, 11, 19\ (\text{ mod}\ {40}), } \\- \frac {196}{3}y^2-2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+5y^2 \equiv 7, 13, 23, 37\ (\text{ mod}\ {40}), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)^2} \equiv\begin{cases}- \frac {20176}{9}y^2+ \frac {265}{3}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+10y^2 \equiv 1, 9, 11, 19\ (\text{ mod}\ {40}), } \\ \frac {10088}{9}y^2- \frac {271}{3}p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+5y^2 \equiv 7, 13, 23, 37\ (\text{ mod}\ {40}), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(2k-1)} \equiv\begin{cases} \frac {883}{27}y^2- \frac {581}{324}p- \frac {13p^2}{648y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+10y^2 \equiv 1, 9, 11, 19\ (\text{ mod}\ {40}), } \\- \frac {883}{54}y^2+ \frac {581}{324}p+ \frac {13p^2}{324y^2}\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+5y^2 \equiv 7, 13, 23, 37\ (\text{ mod}\ {40})}\end{cases} \end{align*} |
and
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}} \equiv\begin{cases} 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 1, 9, 11, 19\ (\text{ mod}\ {40})\; and so \;p = x^2+10y^2, } \\2p-8x^2+ \frac {p^2}{8x^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 7, 13, 23, 37\ (\text{ mod}\ {40}); and so \;p = 2x^2+5y^2.}\end{cases} \end{align*} |
(ⅱ) If (\frac {{-10}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} \equiv\begin{cases} - \frac {21}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ {40}) ,} \\- \frac {4446}{155}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 17\ (\text{ mod}\ {40}) ,} \\- \frac {189}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 21\ (\text{ mod}\ {40}) ,} \\- \frac {702}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 27\ (\text{ mod}\ {40}) ,} \\ \frac {66}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 29\ (\text{ mod}\ {40}) ,} \\ \frac {1026}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 31\ (\text{ mod}\ {40}) ,} \\- \frac {462}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 33\ (\text{ mod}\ {40}) ,} \\- \frac {858}{85}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 39\ (\text{ mod}\ {40}). } \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)^2} \equiv \frac {22}3\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} +\Big( \frac {256}3\Big( \frac {p}{5}\Big)-1\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(2k-1)} \equiv \frac 1{216}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} + \frac {16}{81}\Big( \frac {p}{5}\Big)p\ (\text{ mod}\ {p^2}) \end{align*} |
and
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}}\Big) \equiv - \frac {49}{15}p^2\ (\text{ mod}\ {p^3}). |
Remark 5.5. Let p > 3 be a prime. In [27], Z. W. Sun conjectured the congruence for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}}\ (\text{ mod}\ {p^2}) .
Conjecture 5.33. Let p be a prime with p\not = 2, 11 and R_{11}(p) = \binom{[\frac {3p}{11}]}{[\frac p{11}]}^2 \binom{[\frac {6p}{11}]}{[\frac {3p}{11}]}^2/ \binom{[\frac {4p}{11}]}{[\frac {2p}{11}]}^2 .
(ⅰ) If p \equiv 1, 3, 4, 5, 9\ (\text{ mod}\ {11}) and so 4p = x^2+11y^2 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} \equiv\begin{cases} \frac {25}{22}R_{11}(p)\ (\text{ mod}\ p)& {if\; p \equiv 1, 4, 5, 9\ (\text{ mod}\ {11}) , } \\ \frac 2{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ {11}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} \equiv - \frac {25}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)^2} \equiv - \frac {83}4y^2+2p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(2k-1)} \equiv \frac {23}4y^2- \frac 78p- \frac {p^2}{8y^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}(k+1)} \equiv -26y^2+2p-\Big( \frac {{-2}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}(k+1)^2} \equiv 148y^2-\Big(24+\Big( \frac {{-2}}{p}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}(2k-1)} \equiv \frac {73}{8}y^2- \frac {467}{256}p- \frac {37p^2}{512y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If p \equiv 2, 6, 7, 8, 10\ (\text{ mod}\ {11}) , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} \equiv \begin{cases} - \frac {50}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 2\ (\text{ mod}\ {11}) , } \\- \frac {32}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 6\ (\text{ mod}\ {11}) , } \\- \frac {2}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {11}) , } \\- \frac {72}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 8\ (\text{ mod}\ {11}) , } \\- \frac {18}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 10\ (\text{ mod}\ {11}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)^2} \equiv \frac {13}2 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(2k-1)} \equiv \frac 34\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}+ \frac 38p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-32)^{3k}(k+1)} \equiv \frac {128}{15}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} - \frac 25p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-32)^{3k}(k+1)^2} \equiv \frac {5888}{75}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} +\Big( \frac {608}{25}-\Big( \frac {{-2}}{p}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-32)^{3k}(2k-1)} \equiv - \frac 18\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}- \frac {51}{256}p\ (\text{ mod}\ {p^2}) \end{align*} |
and
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}\Big)\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k}\Big) \equiv \frac {25}{22}p^2\ (\text{ mod}\ {p^3}). |
Remark 5.6. Let p be a prime with p\not = 2, 3, 11 . In [25], the author conjectured the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{64^k} and \sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}} modulo p^3 . The corresponding congruences modulo p^2 were conjectured by Z. W. Sun [29]. Suppose that p \equiv 1, 3, 4, 5, 9\ (\text{ mod}\ {11}) and so 4p = x^2+11y^2 . In [9], Lee and Hahn proved that
x \equiv \begin{cases} \binom{3n}n \binom{6n}{3n} \binom{4n}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-1 $ and $ 11\mid x-2 $, } \\- \binom{3n+1}n \binom{6n+1}{3n} \binom{4n+1}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-3 $ and $ 11\mid x-10 $, } \\ \binom{3n+1}n \binom{6n+2}{3n+1} \binom{4n+1}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-4 $ and $ 11\mid x-7 $, } \\ \binom{3n+1}n \binom{6n+2}{3n+1} \binom{4n+1}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-5 $ and $ 11\mid x-8 $, } \\- \binom{3n+2}n \binom{6n+4}{3n+2} \binom{4n+3}{2n+1}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-9 $ and $ 11\mid x-6 $, }\end{cases} |
where n = [p/11] . The case p \equiv 1\ (\text{ mod}\ {11}) is due to Jacobi.
Conjecture 5.34. Let p > 3 be a prime and
R_{19}(p) = \binom{[8p/19]}{[p/19]}^2 \binom{[10p/19]}{[4p/19]}^2 \binom{[5p/19]}{[2p/19]}^{-2}. |
(ⅰ) If (\frac {{p}}{{19}}) = 1 and so 4p = x^2+19y^2 , then
\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)} \equiv\begin{cases} - \frac {1183}{1368}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 1, 7, 11\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{342}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 4, 6\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{2432}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 5\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{18392}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 9\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{27702}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 16\ (\text{ mod}\ {19}) , } \\ - \frac {57967}{12312}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 17\ (\text{ mod}\ {19}) .} \end{cases} |
Moreover,
\begin{align*} &\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)} \equiv \frac {1183}{72}y^2- \frac {4273}{2304}p- \frac {23p^2}{512y^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)} \equiv -394y^2+2p-\Big( \frac {{-6}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)^2} \equiv 6772y^2-\Big(536+\Big( \frac {{-6}}{p}\Big)\Big)p\ (\text{ mod}\ {p^2}) . \end{align*} |
(ⅱ) If (\frac {{p}}{{19}}) = -1 , then
\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)} \equiv\begin{cases} \frac {49}{228}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 2\ (\text{ mod}\ {19}) , } \\ \frac {1}{228}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ {19}) , } \\ \frac {27}{14896}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 8\ (\text{ mod}\ {19}) , } \\ \frac {3}{19}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 10\ (\text{ mod}\ {19}) , } \\ \frac {121}{57}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 12\ (\text{ mod}\ {19}) , } \\ \frac {4}{57}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {19}) , } \\ \frac {121}{228}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 14\ (\text{ mod}\ {19}) , } \\ \frac {27}{76}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 15\ (\text{ mod}\ {19}) , } \\ \frac {49}{57}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 18\ (\text{ mod}\ {19}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)} \equiv - \frac {9216}5\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)}-270\Big( \frac {{-6}}{p}\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)^2} \equiv \frac {46}5\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)}+\Big(540\Big( \frac {{-6}}{p}\Big)-1\Big)p\ (\text{ mod}\ {p^2}) \end{align*} |
and
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)}\Big)\Big( \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}}\Big) \equiv - \frac {985}{87552}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.35. Let p > 5 be a prime.
(ⅰ) If (\frac {{p}}{{43}}) = 1 and so 4p = x^2+43y^2 , then
\begin{align*} &\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}(k+1)} \equiv- \frac {1867778}5y^2+2p-\Big( \frac {{-15}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}(2k-1)} \equiv \frac {140501}{3600}y^2- \frac {4384321}{2304000}p- \frac {10751p^2}{512000y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{p}}{{43}}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}(2k-1)}\Big)\Big( \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}}\Big) \equiv - \frac {933889}{198144000}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.36. Let p be a prime with p\not = 2, 3, 5, 11 .
(ⅰ) If (\frac {{p}}{{67}}) = 1 and so 4p = x^2+67y^2 , then
\begin{align*} &\Big( \frac {{-330}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-330}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}(k+1)} \equiv- \frac {310714322}5y^2+2p-\Big( \frac {{-330}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-330}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}(2k-1)} \\&{\quad} \equiv \frac 1{217800}\Big(13501789y^2- \frac {736842481}{1760}p- \frac {10552671p^2}{3520y^2}\Big) \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{p}}{{67}}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}(2k-1)}\Big)\Big( \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}}\Big) \equiv - \frac {155357161}{51365952000}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.37. Let p be a prime with p\not = 2, 3, 5, 23, 29 . If (\frac {{p}}{{163}}) = 1 and so 4p = x^2+163y^2 , then
\begin{align*} &\Big( \frac {{-10005}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-640320)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-10005}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-640320)^{3k}(k+1)} \equiv- \frac {554179195816658}5y^2+2p-\Big( \frac {{-10005}}{p}\Big)p^2\ (\text{ mod}\ {p^3}). \end{align*} |
Remark 5.7. Suppose that p > 3 is a prime. In [29], Z. W. Sun conjectured the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{m^{3k}} modulo p^2 in the cases m = -32, -96, -960, -5280, -640320 . The corresponding congruences modulo p were proved by the author in [19].
Conjecture 5.38. Let p be a prime with p > 5 .
(ⅰ) If p \equiv 1, 4\ (\text{ mod}\ {15}) and so 4p = x^2+75y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)} \equiv - \frac {825}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)^2} \equiv \frac {14925}4y^2-78p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(2k-1)} \equiv- \frac {29}{36}x^2+ \frac {517}{360}p+ \frac {31p^2}{40x^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If p \equiv 7, 13\ (\text{ mod}\ {15}) and so 4p = 3x^2+25y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}} \equiv-3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)} \equiv \frac {275}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)^2} \equiv - \frac {4975}4y^2+76p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(2k-1)} \equiv \frac {29}{12}x^2- \frac {517}{360}p- \frac {31p^2}{120x^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If p \equiv 2\ (\text{ mod}\ 3) , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)}\Big) \equiv \frac {11}{2}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.39. Let p be a prime with p > 3 .
(ⅰ) If (\frac {p}{3}) = (\frac {p}{{17}}) = 1 and so 4p = x^2+51y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)} \equiv - \frac {249}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)^2} \equiv \frac {1965}4y^2-18p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(2k-1)} \equiv \frac {475}{12}y^2- \frac {127}{72}p- \frac {p^2}{72y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {p}{3}) = (\frac {p}{{17}}) = -1 and so 4p = 3x^2+17y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}} \equiv -3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)} \equiv \frac {83}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)^2} \equiv - \frac {655}4y^2+16p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(2k-1)} \equiv- \frac {475}{36}y^2+ \frac {127}{72}p+ \frac {p^2}{24y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-51}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)}\Big) \equiv \frac {83}{34}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.40. Let p be a prime with p > 3 .
(ⅰ) If (\frac {p}{3}) = (\frac {p}{{41}}) = 1 and so 4p = x^2+123y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)} \equiv - \frac {8673}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)^2} \equiv \frac {280605}4y^2-792p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(2k-1)} \equiv \frac {19903}{192}y^2- \frac {8425}{4608}p- \frac {31p^2}{4608y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {p}{3}) = (\frac {p}{{41}}) = -1 and so 4p = 3x^2+41y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}} \equiv -3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)} \equiv \frac {2891}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)^2} \equiv- \frac {93535}4y^2+790p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(2k-1)} \equiv- \frac {19903}{576}y^2+ \frac {8425}{4608}p+ \frac {31p^2}{1536y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-123}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)}\Big) \equiv \frac {2891}{82}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.41. Let p be a prime with p > 3 .
(ⅰ) If (\frac {p}{3}) = (\frac {p}{{89}}) = 1 and so 4p = x^2+267y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)} \equiv - \frac {2052321}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)^2} \equiv \frac {113759157}4y^2-131490p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(2k-1)} \equiv \frac {8910623}{37500}y^2- \frac {2118511}{1125000}p- \frac {3721p^2}{1125000y^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {p}{3}) = (\frac {p}{{89}}) = -1 and so 4p = 3x^2+89y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}} \equiv-3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)} \equiv \frac {684107}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)^2} \equiv- \frac {37919719}4y^2+131488p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(2k-1)} \equiv- \frac {8910623}{112500}y^2+ \frac {2118511}{1125000}p+ \frac {3721p^2}{375000y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-267}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)}\Big) \equiv \frac {684107}{178}p^2\ (\text{ mod}\ {p^3}). |
Remark 5.8. Let p > 5 be a prime. In [18], the author proved the congruences modulo p for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{3k}k/m^k in the cases m = -8640, -12^3, -48^3, -300^3 . In [29], Z. W. Sun conjectured the corresponding congruences for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{3k}k/m^k\ (\text{ mod}\ {p^2}) in the cases m = -12^3, -48^3, -300^3 .
Conjecture 5.42. Let p > 3 be a prime.
(ⅰ) If (\frac {{-1}}{p}) = (\frac {{13}}{p}) = 1 and so p = x^2+13y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)} \equiv - \frac {2272}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)^2} \equiv \frac {96032}9y^2- \frac {911}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(2k-1)} \equiv \frac {2357}{54}y^2- \frac {2365}{1296}p- \frac {41p^2}{2592y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{-1}}{p}) = (\frac {{13}}{p}) = -1 and so 2p = x^2+13y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k} \equiv-2x^2+2p+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)} \equiv \frac {1136}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)^2} \equiv- \frac {48016}9y^2+ \frac {905}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(2k-1)} \equiv - \frac {2357}{108}y^2+ \frac {2365}{1296}p+ \frac {41p^2}{1296y^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-13}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)}\Big) \equiv \frac {568}{39}p^2. |
Conjecture 5.43. Let p be a prime with p\not = 2, 3, 7 .
(ⅰ) If (\frac {{-1}}{p}) = (\frac {{37}}{p}) = 1 and so p = x^2+37y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)} \equiv - \frac {5044960}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)^2} \equiv \frac {467407904}9y^2- \frac {1302671}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(2k-1)} \equiv \frac 1{18522}\Big(2469371y^2- \frac {5897725}{168}p- \frac {37649p^2}{336y^2}\Big) \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{-1}}{p}) = (\frac {{37}}{p}) = -1 and so 2p = x^2+37y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k} \equiv-2x^2+2p+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)} \equiv \frac {2522480}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)^2} \equiv- \frac {233703952}9y^2+ \frac {1302665}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(2k-1)} \equiv \frac 1{37044}\Big(-2469371y^2+ \frac {5897725}{84}p+ \frac {37649p^2}{84y^2}\Big) \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-37}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)}\Big) \equiv \frac {1261240}{111}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.44. Let p be a prime with p\not = 2, 3, 11 .
(ⅰ) If \big(\frac {{2}}{p}\big) = (\frac {{-11}}{p}) = 1 and so p = x^2+22y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)} \equiv \frac {63272}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)^2} \equiv - \frac {4221712}9y^2+ \frac {21289}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(2k-1)} \equiv \frac 1{297}\big(22829y^2- \frac {73085}{132}p- \frac {8471p^2}{2904y^2} \big)\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If \big(\frac {{2}}{p}\big) = (\frac {{-11}}{p}) = -1 and so p = 2x^2+11y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}} \equiv-8x^2+2p+ \frac {p^2}{8x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)} \equiv- \frac {31636}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)^2} \equiv \frac {2110856}9y^2- \frac {21295}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(2k-1)} \equiv \frac 1{594}\big(-22829y^2+ \frac {73085}{66}p+ \frac {8471p^2}{726y^2} \big)\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-22}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)}\Big) \equiv - \frac {719}3p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.45. Let p be a prime with p\not = 2, 3, 11 .
(ⅰ) If \big(\frac {{-2}}{p}\big) = (\frac {{29}}{p}) = 1 and so p = x^2+58y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)} \equiv \frac {622903112}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)^2} \equiv - \frac {75716418640}9y^2+ \frac {128477449}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(2k-1)} \equiv \frac 1{323433}\big(69026153y^2- \frac {736357445}{1188}p- \frac {3035509p^2} {2376y^2}\big)\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{-2}}{p}) = (\frac {{29}}{p}) = -1 and so p = 2x^2+29y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}} \equiv-8x^2+2p+ \frac {p^2}{8x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)} \equiv- \frac {311451556}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)^2} \equiv \frac {37858209320}9y^2- \frac {128477455}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(2k-1)} \equiv \frac 1{646866}\big(-69026153y^2+ \frac {736357445}{594}p+ \frac {3035509p^2} {594y^2}\big)\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-58}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)}\Big) \equiv - \frac {77862889}{87}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.46. Let p > 5 be a prime.
(ⅰ) If p \equiv 1, 9\ (\text{ mod}\ {20}) and so p = x^2+25y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)} \equiv - \frac {168400}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)^2} \equiv \frac {12142400}9y^2- \frac {52799}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(2k-1)} \equiv \frac {19025}{216}y^2- \frac {194161}{103680}p- \frac {45239p^2}{5184000y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If p \equiv 13, 17\ (\text{ mod}\ {20}) and so 2p = x^2+25y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k} \equiv 2p-2x^2+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)} \equiv \frac {84200}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)^2} \equiv- \frac {6071200}9y^2+ \frac {52793}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(2k-1)} \equiv \frac 1{432}\big(-19025y^2+ \frac {194161}{240}p+ \frac {45239p^2}{6000y^2}\big) \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If p \equiv 3\ (\text{ mod}\ 4) , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)}\Big) \equiv \frac {1684}3p^2\ (\text{ mod}\ {p^3}). |
Remark 5.9. Let p > 3 be a prime. The congruences for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{4k}{2k}/m^k\ (\text{ mod}\ {p^2}) in the cases m = -82944, -199148544, 1584^2,396^4, -6635520 were conjectured by Z. W. Sun earlier, see [27,29] and arXiv:0911.5665v59.
Conjecture 5.47. Let p be an odd prime.
(ⅰ) If p \equiv 1\ (\text{ mod}\ 4) and so p = x^2+4y^2 with 4\mid x-1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{32^k(2k-1)^2} \equiv x- \frac p{4x}\ (\text{ mod}\ {p^2}){\quad}\; {and} {\quad}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{32^k(k+1)^2} \equiv 8x-7\ (\text{ mod}\ p). |
(ⅱ) If p \equiv 3\ (\text{ mod}\ 4) , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{32^k(2k-1)^2} \equiv \frac 12(2p+3-2^{p-1}) \binom{ \frac {p-1}2}{ \frac {p-3}4}\ (\text{ mod}\ {p^2}). |
Conjecture 5.48. Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{(-16)^k(2k-1)^2} \equiv \begin{cases} (-1)^{ \frac {p-1}4} \frac px\ (\text{ mod}\ {p^2}){\quad} {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) \; and \; 4\mid x-1 , } \\(-1)^{ \frac {p+1}4}(2p+3-2^{p-1}) \binom{(p-1)/2}{(p-3)/4} \ (\text{ mod}\ {p^2}){\quad} {if \; p \equiv 3\ (\text{ mod}\ 4) } \end{cases} |
and
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{(-16)^k(k+1)^2} \equiv 5\ (\text{ mod}\ p){\quad} {for} {\quad}p \equiv 1\ (\text{ mod}\ 4). |
Conjecture 5.49. Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{8^k(2k-1)^2} \equiv\begin{cases} (-1)^{ \frac {p-1}4}\big(2x- \frac {3p}{2x}\big)\ (\text{ mod}\ {p^2})& {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) \; and\; 4\mid x-1 , } \\2(-1)^{ \frac {p+1}4} \binom{(p-1)/2}{(p-3)/4}\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} |
Remark 5.10. Let p be an odd prime. In [33], Z. W. Sun established the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2}{m^k(2k-1)}\ (\text{ mod}\ {p^2}) in the cases m = -16, 8, 32 .
Now we present two general conjectures.
Conjecture 5.50. Let a, x\in\Bbb Q and d\in\Bbb Z with adx\not = 0 , where \Bbb Q is the set of rational numbers. Suppose that \sum_{k = 0}^{p-1} \binom ak \binom{-1-a}kx^k \equiv 0\ (\text{ mod}\ p) for all odd primes p satisfying a, x\in\Bbb Z_p and \big(\frac {{d}}{p}\big) = -1 . Then there is a constant c\in\Bbb Q such that for all odd primes p with c\in\Bbb Z_p and \big(\frac {{d}}{p}\big) = -1 ,
\sum\limits_{k = 0}^{p-1} \binom{2k}k \binom ak \binom{-1-a}k(x(1-x))^k \equiv c\Big(\sum\limits_{k = 0}^{p-1} \binom ak \binom{-1-a}kx^k\Big)^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.51. Let a, m\in\Bbb Q and d\in\Bbb Z with adm\not = 0 . Suppose that
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom ak \binom{-1-a}k}{m^k} \equiv 0\ (\text{ mod}\ {p^2}) |
for all odd primes p satisfying a, m\in\Bbb Z_p , p\nmid m and \big(\frac {{d}}{p}\big) = -1 . Then there is a constant c\in\Bbb Q such that for all odd primes p with c, m\in\Bbb Z_p , p\nmid m and \big(\frac {{d}}{p}\big) = -1 ,
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom ak \binom{-1-a}k}{m^k}\Big)\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom ak \binom{-1-a}k}{(k+1)m^k}\Big) \equiv cp^2\ (\text{ mod}\ {p^3}). |
For an odd prime p , let R_1(p) – R_3(p) be given by (5.1)–(5.3). With the help of Maple, we discover the following conjectures involving Apéry-like numbers.
Conjecture 6.1. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{16^k(k+1)} \equiv\begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ 0\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{16^k(2k-1)} \equiv\begin{cases} 0\ (\text{ mod}\ {p^2})& {if \;p \equiv 1\ (\text{ mod}\ 4), } \\-R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} \end{align*} |
Conjecture 6.2. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{32^k(2k-1)} \equiv\begin{cases} (-1)^{ \frac {p-1}2}( \frac p2-x^2)\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac 14(-1)^{ \frac {p-1}2}R_2(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{800^k(2k-1)} \equiv\begin{cases} - \frac {73}{100}(-1)^{ \frac {p-1}2}( 4x^2-2p)- \frac {24}{125}( \frac {3}{p})p\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \\ \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {9}{100}(-1)^{ \frac {p-1}2}R_2(p)+ \frac {24}{125}( \frac {3}{p})p \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8)\; and \;\\ p\not = 5, } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{(-768)^k(2k-1)} \equiv\begin{cases} - \frac {73}{96}( \frac {3}{p}) ( 4x^2-2p)- \frac {11}{48}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2}) & {if \;p = x^2+2y^2 \\ \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {3}{32}( \frac {3}{p})R_2(p)- \frac {11}{48}(-1)^{ \frac {p-1}2} p \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8) .} \end{cases} \end{align*} |
Conjecture 6.3. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{7^k(2k-1)} \equiv\begin{cases} \frac {124}{49}x^2- \frac {46}{49}p\ (\text{ mod}\ {p^2}){\qquad}{\qquad} {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {64}7\sum_{k = 0}^{p-1} \frac { \binom{2k}k^3}{k+1}+ \frac {496}{49}p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{25^k(2k-1)} \equiv\begin{cases} - \frac {124}{175}x^2+ \frac {326}{875}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {448}{175}\sum_{k = 0}^{p-1} \frac { \binom{2k}k^3}{k+1}+ \frac {2576}{875}p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7)\; and \;p\not = 5.} \end{cases} \end{align*} |
Conjecture 6.4. Let p > 3 be a prime, then
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{(-32)^k(2k-1)} \equiv\begin{cases} 22y^2- \frac 52p\ (\text{ mod}\ {p^2})& {if \;p = x^2+6y^2 \equiv 1, 7\ \\(\text{ mod}\ {24}), } \\-11y^2+ \frac 52p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ \\(\text{ mod}\ {24}), } \\ \frac 23\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}+ \frac p2 \ (\text{ mod}\ {p^2})& {if \;p \equiv 13, 19\ (\text{ mod}\ {24}), } \\- \frac 23\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}- \frac 56p \ (\text{ mod}\ {p^2})& {if \;p \equiv 17, 23\ (\text{ mod}\ {24})} \end{cases} \end{align*} |
and
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{64^k(2k-1)} \equiv\begin{cases} 11y^2-p\ (\text{ mod}\ {p^2})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), } \\ \frac {11}2y^2-p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}), } \\- \frac 13\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)} \ (\text{ mod}\ {p^2})& {if \;p \equiv 13, 19\ (\text{ mod}\ {24}), } \\- \frac 13\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}- \frac p6 \ (\text{ mod}\ {p^2})& {if \;p \equiv 17, 23\ (\text{ mod}\ {24}) .} \end{cases} \end{align*} |
Conjecture 6.5. Let p be a prime with p > 3 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-12)^k(2k-1)} \equiv \begin{cases} 0\ (\text{ mod}\ {p^2})& {if \; p \equiv 1\ (\text{ mod}\ 3) , } \\-2(2p+1) \binom{[2p/3]}{[p/3]}^2\ (\text{ mod}\ {p^2})& {if \; p \equiv 2\ (\text{ mod}\ {3}) }. \end{cases} |
Conjecture 6.6. Let p be a prime with p > 3 , then
\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{54^k(2k-1)} \equiv \begin{cases} - \frac {28}9x^2+ \frac {10}9p\ (\text{ mod}\ {p^2})& {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) , }\\ \frac 23R_1(p)- \frac 49p\ (\text{ mod}\ {p^2})& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} |
Conjecture 6.7. Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{8^k(2k-1)} \equiv \begin{cases} - \frac {11}2x^2+ \frac 54p\ (\text{ mod}\ {p^2}){\qquad} {if \; p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8) , } \\- \frac {9}8R_2(p)+ \frac 32p\ (\text{ mod}\ {p^2}){\quad} {if \; p \equiv 5, 7\ (\text{ mod}\ {8}) }. \end{cases} |
Conjecture 6.8. Let p be a prime with p\not = 2, 3, 7 , then
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-27)^k(2k-1)} \equiv \begin{cases} - \frac {2}{3}p+ \frac {76}{9}y^2\ (\text{ mod}\ {p^2})\ {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac 83\sum_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{k+1}- \frac {28}9p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7)} \end{cases} \end{align*} |
and
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{243^k(2k-1)} \equiv \begin{cases} \frac {1676}{81}y^2- \frac {142}{81}p\ (\text{ mod}\ {p^2})\ {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac {32}{27}\sum_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{k+1}- \frac {44}{27}p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7) .} \end{cases} \end{align*} |
Conjecture 6.9. Let p be a prime with p\not = 2, 11 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-44)^k(2k-1)} \\ \equiv &\begin{cases} \frac {52}{11}y^2- \frac {116}{121}p\ (\text{ mod}\ {p^2}){\qquad} {if \;p \equiv 1, 3, 4, 5, 9 \ (\text{ mod}\ {11})\; and \;so \;4p = x^2+11y^2, } \\ \frac 9{11}\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{64^k(k+1)}+ \frac {39}{121} p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 2, 6, 7, 8, 10\ (\text{ mod}\ {11})}. \end{cases} \end{align*} |
Conjecture 6.10. Let p be a prime with p\not = 2, 3, 19 , then
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-108)^k(2k-1)} \\ \equiv &\begin{cases} \frac {100}9y^2- \frac 43p\ (\text{ mod}\ {p^2})& {if \;( \frac {p}{{19}}) = 1\; and \;so \;4p = x^2+19y^2, } \\8\big( \frac {{-6}}{p}\big)\sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-96)^{3k}(2k-1)} + \frac {241}{288}p\ (\text{ mod}\ {p^2}) & {if \;\big( \frac {p}{{19}}\big) = -1.} \end{cases} \end{align*} |
Conjecture 6.11. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{(-4)^k(2k-1)} \equiv\begin{cases} 2p-4x^2\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-8R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{50^k(2k-1)} \equiv\begin{cases} - \frac {13}{25}(4x^2-2p) - \frac {12}{125}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac {32}{25}R_3(p)- \frac {12}{125}(-1)^{ \frac {p-1}2}p \ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3)\; and \;p\not = 5.} \end{cases} \end{align*} |
Conjecture 6.12. Let p > 3 be a prime, then
\begin{align*} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{96^k(2k-1)} \equiv\begin{cases} - \frac {29}{48}( \frac {p}{3})(4x^2-2p)- \frac p6\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {3}{16}( \frac {p}{3})R_2(p)+ \frac p6 \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8) .}\end{cases} \end{align*} |
Conjecture 6.13. Let p be a prime with p\not = 2, 5 . If (\frac {{-5}}{p}) = 1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{16^k(2k-1)} \equiv\begin{cases} - \frac 75x^2+ \frac {9}{10}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and \;so \;p = x^2+5y^2, } \\- \frac {7}{10}x^2+ \frac 9{10}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;2p = x^2+5y^2;}\end{cases} \end{align*} |
if (\frac {{-5}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{16^k(2k-1)} \equiv -6(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(2k-1)} - \frac {11}8p\ (\text{ mod}\ {p^2}). |
Conjecture 6.14. Let p > 3 be a prime. If (\frac {{-6}}{p}) = 1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{32^k(2k-1)} \equiv \begin{cases} - \frac 74x^2+ \frac 78p\ (\text{ mod}\ {p^2}) & {if \; p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}) , }\\- \frac 72x^2+ \frac {7}{8}p\ (\text{ mod}\ {p^2})& {if \; p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}) ;}\end{cases} |
if (\frac {{-6}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{32^k(2k-1)} \equiv \frac 94\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(2k-1)}+ \frac 14\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}). |
Conjecture 6.15. Let p > 3 be a prime, then
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{54^k(2k-1)} \equiv\begin{cases} \frac {52}{9}y^2- \frac {26+2(-1)^{ \frac {p-1}2}}{27}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ \frac {32}{27}R_3(p)+ \frac 2{27}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3) .} \end{cases} \end{align*} |
Conjecture 6.16. Let p > 3 be a prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{100^k(2k-1)} \equiv\begin{cases} - \frac {58}{25}x^2+ \frac {145-18( \frac {p}{3})}{125}p\ (\text{ mod}\ {p^2})& {if \; p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8) , } \\- \frac {9}{50}R_2(p)- \frac {18}{125}\big( \frac {p}{3}\big)p\ (\text{ mod}\ {p^2})& {if \; p \equiv 5, 7\ (\text{ mod}\ 8) \; and \; p\not = 5 .} \end{cases} |
Conjecture 6.17. Let p > 3 be a prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{(-12)^k(2k-1)} \equiv\begin{cases} p-4x^2\ (\text{ mod}\ {p^2})& {if \; 12\mid p-1 \; and \;so \; p = x^2+9y^2 , } \\ 2x^2-p\ (\text{ mod}\ {p^2})& {if \; 12\mid p-5 \; and \;so \; 2p = x^2+9y^2 , } \\3\binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {12}) , } \\-6\binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {12}) .} \end{cases} |
Conjecture 6.18. Let p > 3 be a prime. If (\frac {{-6}}{p}) = 1 , then
\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{36^k(2k-1)} \equiv \begin{cases} - \frac {14}9x^2+ \frac 79p\ (\text{ mod}\ {p^2}) & {if \; p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}) , }\\- \frac {28}9x^2+ \frac {7}{9}p\ (\text{ mod}\ {p^2})& {if \; p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}) ;}\end{cases} |
if (\frac {{-6}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{36^k(2k-1)} \equiv -2\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(2k-1)}- \frac 29p\ (\text{ mod}\ {p^2}). |
Conjecture 6.19. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kQ_k}{(-36)^k(2k-1)} \equiv\begin{cases} - \frac 49x^2+ \frac 29p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac 89R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kQ_k}{18^k(2k-1)} \equiv\begin{cases} - \frac {52}9x^2+ \frac {26-12(-1)^{(p-1)/2}}9p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac {32}9R_3(p)- \frac 43(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3) .} \end{cases} \end{align*} |
Conjecture 6.20. Let p be a prime with p\not = 2, 3, 11 , then
\begin{align*} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{4^k(2k-1)} \equiv \begin{cases} 2p-2y^2\ (\text{ mod}\ {p^2})& {if \;p \equiv 1, 3, 4, 5, 9\ (\text{ mod}\ {11})\; and \;4p = x^2+11y^2, }\\ 5\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}+3p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2, 6, 7, 8, 10\ (\text{ mod}\ {11}) .}\end{cases} \end{align*} |
Conjecture 6.21. Let p be a prime with p\not = 2, 3, 19 . If (\frac {p}{{19}}) = 1 \; and \;so \; 4p = x^2+19y^2 , the
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'} {36^k(2k-1)} \equiv \frac {74}{9}y^2- \frac {22}{27}p\ (\text{ mod}\ {p^2}); |
if \big(\frac {p}{{19}}\big) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'} {36^k(2k-1)} \equiv- \frac {40}3 \Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-96)^{3k}(2k-1)} - \frac {1397}{864}p \ (\text{ mod}\ {p^2}). |
Conjecture 6.22. Let p be a prime with p > 3 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{18^k(2k-1)} \equiv\begin{cases} - \frac 43x^2+ \frac {26}{27}p\ (\text{ mod}\ {p^2})& {if \; 4\mid p-1 \; and \;so \; p = x^2+4y^2 , } \\ \frac 8{27}p- \frac {10}9R_1(p)\ (\text{ mod}\ {p^2})& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} |
Remark 6.1. In [29], Z. W. Sun conjectured that for any prime p > 3 ,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{36^k} \equiv\begin{cases} x^2-2p\ (\text{ mod}\ {p^2})& \hbox{if $( \frac {p}{{19}}) = 1$ and so $4p = x^2+19y^2$,} \\0\ (\text{ mod}\ {p^2})& \hbox{if $( \frac {p}{{19}}) = -1$,}\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{18^k} \equiv\begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 1\ (\text{ mod}\ 4)$ and so $p = x^2+4y^2$,} \\0\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 3\ (\text{ mod}\ 4)$.} \end{cases} \end{align*} |
For congruences related to Conjectures 6.1–6.18 see [21,22,23,24,25].
In Sections 2–4, we prove some congruences for the sums involving binomial coefficients and Apéry-like numbers modulo p^r , where p is an odd prime and r\in\{1, 2, 3\} . Based on calculations by Maple, in Sections 3, 5 and 6 we pose 83 challenging conjectures on congruences modulo p^2 or p^3 .
The author is supported by the National Natural Science Foundation of China (Grant No. 11771173).
The author declares no conflicts of interest regarding the publication of this paper.
[1] |
W. C. Horrace, Moments of the truncated normal distribution, J. Prod. Anal., 43 (2015), 133–138. http://dx.doi.org/10.1007/s11123-013-0381-8 doi: 10.1007/s11123-013-0381-8
![]() |
[2] |
J. Pender, The truncated normal distribution: Applications to queues with impatient customers, Oper. Res. Lett., 43 (2015), 40–45. https://doi.org/10.1016/j.orl.2014.10.008 doi: 10.1016/j.orl.2014.10.008
![]() |
[3] |
K. Pearson, A. Lee, On the generalized probable error in multiple normal correlation, Biometrika, 6 (1908), 59–68. http://dx.doi.org/10.1093/biomet/6.1.59 doi: 10.1093/biomet/6.1.59
![]() |
[4] | R. A. Fisher, Properties and applications of Hh functions, in Mathematical Tables, British Association for the Advancement of Science, 1931. |
[5] |
C. I. Bliss, W. L. Stevens, The calculation of the time mortality curve, Ann. Appl. Biol., 24 (1937), 815–852. http://dx.doi.org/10.1111/j.1744-7348.1937.tb05058.x doi: 10.1111/j.1744-7348.1937.tb05058.x
![]() |
[6] |
A. Hald, Maximum likelihood estimation of the parameters of a normal distribution which is truncated at a known point, Scand. Actuar. J., 1 (1949), 119–134. http://dx.doi.org/10.1080/03461238.1949.10419767 doi: 10.1080/03461238.1949.10419767
![]() |
[7] |
A. K. Gupta, Estimation of the mean and standard deviation of a normal population from a censored sample, Biometrika, 39 (1952), 260–273. http://dx.doi.org/10.2307/2334023 doi: 10.2307/2334023
![]() |
[8] |
M. Halperin, Maximum likelihood estimation in truncated samples, Ann. Math. Stat., 23 (1952), 226–238. http://dx.doi.org/10.2307/2236448 doi: 10.2307/2236448
![]() |
[9] |
A. C. Cohen, Simplified estimators for the normal distribution when samples are singly censored or truncated, Technometrics, 1 (1959), 217–237. http://dx.doi.org/10.1080/00401706.1959.10489859 doi: 10.1080/00401706.1959.10489859
![]() |
[10] |
A. C. Cohen, Tables for maximum likelihood estimates: Singly truncated and singly censored samples, Technometrics, 3 (1961), 535–541. http://dx.doi.org/10.1080/00401706.1961.10489973 doi: 10.1080/00401706.1961.10489973
![]() |
[11] | A. C. Cohen, Truncated and censored samples theory and applications, New York: Marcel Dekker, 1991. |
[12] |
D. S. Robson, J. H. Whitlock, Estimation of a truncation point, Biometrika, 51 (1964), 33–39. http://dx.doi.org/10.2307/2334193 doi: 10.2307/2334193
![]() |
[13] |
Z. W. Birnbaum, An inequality for Mill's ratio, Ann. Math. Stat., 13 (1942), 245–246. http://dx.doi.org/10.1214/aoms/1177731611 doi: 10.1214/aoms/1177731611
![]() |
[14] |
M. R. Sampford, Some inequalities on Mill's ratio and related functions, Ann. Math. Stat., 24 (1953), 130–132. http://dx.doi.org/10.2307/2236360 doi: 10.2307/2236360
![]() |
[15] |
Z. H. Yang, Y. M. Chu, On approximating Mills ratio, J. Inequal. Appl., 273 (2015), 273. http://dx.doi.org/10.1186/s13660-015-0792-3 doi: 10.1186/s13660-015-0792-3
![]() |
[16] |
E. S. Lander, M. S. Waterman, Genomic mapping by fingerprinting random clones, Genomics, 2 (1988), 231–239. http://dx.doi.org/10.1016/0888-7543(88)90007-9 doi: 10.1016/0888-7543(88)90007-9
![]() |
[17] |
J. C. Roach, C. Boysen, K. Wang, L. Hood, Pairwise end sequencing: A unified approach to genomic mapping and sequencing, Genomics, 26 (1995), 345–353. http://dx.doi.org/10.1016/0888-7543(95)80219-C doi: 10.1016/0888-7543(95)80219-C
![]() |
[18] |
D. R. Zerbino, E. Birney, Algorithms for de novo short read assembly using de Bruijn graphs, Genome Res., 18 (2008), 821–829. http://dx.doi.org/10.1101/gr.074492.107 doi: 10.1101/gr.074492.107
![]() |
[19] |
J. Foox, S. W. Tighe, C. M. Nicolet, J. M. Zook, M. Byrska-Bishop, W. E. Clarke, et al., Performance assessment of DNA sequencing platforms in the ABRF next-generation sequencing study, Nat. Biotechnol., 39 (2021), 1129–1140. http://dx.doi.org/10.1038/s41587-021-01049-5 doi: 10.1038/s41587-021-01049-5
![]() |