Processing math: 82%
Research article

A note on the bounds of Roman domination numbers

  • Let G be a graph and f:V(G){0,1,2} be a mapping. f is said to be a Roman dominating function of G if every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight w(f) of a Roman dominating function f is the value w(f)=uV(G)f(u), and the minimum weight of a Roman dominating function is the Roman domination number γR(G). f is said to be a Roman {2}-dominating function of G if vN(u)f(v)2 for every vertex u with f(u)=0, where N(u) is the set of neighbors of u in G. The weight of a Roman {2}-dominating function f is the sum vVf(v) and the minimum weight of a Roman {2}-dominating function is the Roman {2}-domination number γ{R2}(G). Chellali et al. (2016) proved that γR(G)Δ+1Δγ(G) for every nontrivial connected graph G with maximum degree Δ. In this paper, we generalize this result on nontrivial connected graph G with maximum degree Δ and minimum degree δ. We prove that γR(G)Δ+2δΔ+δγ(G), which also implies that 32γ(G)γR(G)2γ(G) for any nontrivial regular graph. Moreover, we prove that γR(G)2γ{R2}(G)1 for every graph G and there exists a graph Ik such that γ{R2}(Ik)=k and γR(Ik)=2k1 for any integer k2.

    Citation: Zepeng Li. A note on the bounds of Roman domination numbers[J]. AIMS Mathematics, 2021, 6(4): 3940-3946. doi: 10.3934/math.2021234

    Related Papers:

    [1] Tingting Liu, Tasneem Mustafa Hussain Sharfi, Qiaozhen Ma . Time-dependent asymptotic behavior of the solution for evolution equation with linear memory. AIMS Mathematics, 2023, 8(7): 16208-16227. doi: 10.3934/math.2023829
    [2] Sen Ming, Xiaodong Wang, Xiongmei Fan, Xiao Wu . Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities. AIMS Mathematics, 2024, 9(10): 26854-26876. doi: 10.3934/math.20241307
    [3] Fatima Siham Djeradi, Fares Yazid, Svetlin G. Georgiev, Zayd Hajjej, Khaled Zennir . On the time decay for a thermoelastic laminated beam with microtemperature effects, nonlinear weight, and nonlinear time-varying delay. AIMS Mathematics, 2023, 8(11): 26096-26114. doi: 10.3934/math.20231330
    [4] Mustafa Inc, Hadi Rezazadeh, Javad Vahidi, Mostafa Eslami, Mehmet Ali Akinlar, Muhammad Nasir Ali, Yu-Ming Chu . New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Mathematics, 2020, 5(6): 6972-6984. doi: 10.3934/math.2020447
    [5] Adel M. Al-Mahdi . Long-time behavior for a nonlinear Timoshenko system: Thermal damping versus weak damping of variable-exponents type. AIMS Mathematics, 2023, 8(12): 29577-29603. doi: 10.3934/math.20231515
    [6] Sobajima Motohiro, Wakasugi Yuta . Remarks on an elliptic problem arising in weighted energy estimates for wave equations with space-dependent damping term in an exterior domain. AIMS Mathematics, 2017, 2(1): 1-15. doi: 10.3934/Math.2017.1.1
    [7] Jing Wang, Qiaozhen Ma, Wenxue Zhou . Attractor of the nonclassical diffusion equation with memory on time- dependent space. AIMS Mathematics, 2023, 8(6): 14820-14841. doi: 10.3934/math.2023757
    [8] Jian-Gen Liu, Jian Zhang . A new approximate method to the time fractional damped Burger equation. AIMS Mathematics, 2023, 8(6): 13317-13324. doi: 10.3934/math.2023674
    [9] Noorah Mshary . Exploration of nonlinear traveling wave phenomena in quintic conformable Benney-Lin equation within a liquid film. AIMS Mathematics, 2024, 9(5): 11051-11075. doi: 10.3934/math.2024542
    [10] Abdulghani R. Alharbi . Traveling-wave and numerical solutions to nonlinear evolution equations via modern computational techniques. AIMS Mathematics, 2024, 9(1): 1323-1345. doi: 10.3934/math.2024065
  • Let G be a graph and f:V(G){0,1,2} be a mapping. f is said to be a Roman dominating function of G if every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight w(f) of a Roman dominating function f is the value w(f)=uV(G)f(u), and the minimum weight of a Roman dominating function is the Roman domination number γR(G). f is said to be a Roman {2}-dominating function of G if vN(u)f(v)2 for every vertex u with f(u)=0, where N(u) is the set of neighbors of u in G. The weight of a Roman {2}-dominating function f is the sum vVf(v) and the minimum weight of a Roman {2}-dominating function is the Roman {2}-domination number γ{R2}(G). Chellali et al. (2016) proved that γR(G)Δ+1Δγ(G) for every nontrivial connected graph G with maximum degree Δ. In this paper, we generalize this result on nontrivial connected graph G with maximum degree Δ and minimum degree δ. We prove that γR(G)Δ+2δΔ+δγ(G), which also implies that 32γ(G)γR(G)2γ(G) for any nontrivial regular graph. Moreover, we prove that γR(G)2γ{R2}(G)1 for every graph G and there exists a graph Ik such that γ{R2}(Ik)=k and γR(Ik)=2k1 for any integer k2.



    The linear Diophantine problem of Frobenius is to find the largest integer which is not expressed by a nonnegative linear combination of given positive relatively prime integers a1,a2,,al. Such a largest integer is called the Frobenius number [3], denoted by g(A)=g(a1,a2,,al), where A={a1,a2,,al}. In the literature on the Frobenius problem, the Sylvester number or genus n(A)=n(a1,a2,,al), which is the total number of integers that cannot be represented as a nonnegative linear combination of a1,a2,,al [4].

    There are many aspects to studying the Frobenius problem. For example, there are algorithmic aspects to find the values or the bounds, complexity of computations, denumerants, numerical semigroup, applications to algebraic geometry and so on (see e.g., [5,6]). Nevertheless, one of the motivations for our p-generalizations originates in the number of representations d(n;a1,a2,,al) to a1x1+a2x2++alxl=n for a given positive integer n. This number is equal to the coefficient of xn in 1/(1xa1)(1xa2)(1xal) for positive integers a1,a2,,al with gcd(a1,a2,,al)=1 [4]. Sylvester [7] and Cayley [8] showed that d(n;a1,a2,,al) can be expressed as the sum of a polynomial in n of degree k1 and a periodic function of period a1a2al. In [9], the explicit formula for the polynomial part is derived by using Bernoulli numbers. For two variables, a formula for d(n;a1,a2) is obtained in [10]. For three variables in the pairwise coprime case d(n;a1,a2,a3). For three variables, in [11], the periodic function part is expressed in terms of trigonometric functions, and its results have been improved in [12] by using floor functions so that three variables case can be easily worked with-in the formula.

    In this paper, we are interested in one of the most general and most natural types of Frobenius numbers, which focuses on the number of representations. For a nonnegative integer p, the largest integer such that the number of expressions that can be represented by a1,a2,,al is at most p is denoted by gp(A)=gp(a1,a2,,al) and may be called the p-Frobenius number. That is, all integers larger than gp(A) have at least the number of representations of p+1 or more. This generalized Frobenius number gp(A) is called the p-Frobenius number [1,2], which is also called the k-Frobenius number [13] or the s-Frobenius number [14]. When p=0, g(A)=g0(A) is the original Frobenius number. One can consider the largest integer gp(a1,a2,,al) that has exactly p distinct representations (see e.g., [13,14]). However, in this case, the ordering g0g1 may not hold. For example, g17(2,5,7)=43>g18(2,5,7)=42. In addition, for some j, gj may not exist. For example, g22(2,5,7) does not exist because there is no positive integer whose number of representations is exactly 22. Therefore, in this paper we do not study gp(A) but gp(A).

    Similarly to the p-Frobenius number, the p-Sylvester number or the p-genus np(A)=np(a1,a2,,al) is defined by the cardinality of the set of integers which can be represented by a1,a2,,al at most p ways. When p=0, n(A)=n0(A) is the original Sylvester number.

    In this paper, we are interested in one of the most crucial topics, that is, to find explicit formulas of indicators, in particular, of p-Frobenius numbers and p-Sylvester numbers. In the classical case, that is, for p=0, explicit formulas of g(a1,a2) and n(a1,a2) are shown when l=2 [3,4]. However, for l3, g(A) cannot be given by any set of closed formulas which can be reduced to a finite set of certain polynomials [15]. For l=3, there are several useful algorithms to obtain the Frobenius number (see e.g., [16,17,18]). For the concretely given three positive integers, if the conditions are met, the Frobenius number can be completely determined by the method of case-dividing by A. Tripathi [19]. Although it is possible to find the Frobenius number by using the results in [19], it is another question whether the Frobenius number can be given by a closed explicit expression for some special triplets, and special considerations are required. Only for some special cases, explicit closed formulas have been found, including arithmetic, geometric, Mersenne, repunits and triangular (see [20,21,22] and references therein).

    For p>0, if l=2, explicit formulas of gp(a1,a2) and np(a1,a2) are still given without any difficulty (see e.g., [23]). However, if l3, no explicit formula had been given even in a special case. However, quite recently, we have succeeded in giving explicit formulas for the case where the sequence is of triangular numbers [1] or of repunits [2] for the case where l=3.

    In this paper, we give an explicit formula for the p-Frobenius number for the Fibonacci number triple (Fi,Fi+2,Fi+k) (i,k3). Here, the n-th Fibonacci number Fn is defined by Fn=Fn1+Fn2 (n2) with F1=1 and F0=0. Our main result (Theorem 6.1 below) is a kind of generalizations of [24,Theorem 1] when p=0. However, when p>0, the exact situation is not completely similar to the case where p=0, and the case by case discussion is necessary. As analogues, we also show explicit formulas of gp(Li,Li+2,Li+k) for Lucas numbers Ln with i,k3. Here, Lucas numbers Ln satisfy the recurrence relation Ln=Ln1+Ln2 (n2) with L0=2 and L1=1. By using our constructed framework, we can also find explicit formulas of the p-Sylvester numbers np(Fi,Fi+2,Fi+k) and np(Li,Li+2,Li+k). Our result (Theorem 13) can extend the result in [24,Corollary 2]. The main idea is to find the explicit structure of the elements of an Apéry set [25]. In addition, we use a complete residue system, studied initially by Selmer [26]. By using Apéry sets, we construct the first least set of the complete residue system, then the second least set of the complete residue system, and the third, and so on. As a basic framework, we use a similar structure in [2]. We can safely say that one of our theorems (Theorem 6.1 below) is a kind of generalization of [24,Theorem 1]. Nevertheless, for each nonnegative integer p, the exact situation is not completely similar, but the case by case discussion is necessary.

    Without loss of generality, we assume that a1=min{a1,a2,,al}. For each 0ia11, we introduce the positive integer m(p)i congruent to i modulo a1 such that the number of representations of m(p)i is bigger than or equal to p+1, and that of mia1 is less than or equal to p. Note that m(0)0 is defined to be 0. The set

    Ap(A;p)=Ap(a1,a2,,al;p)={m(p)0,m(p)1,,m(p)a11},

    is called the p-Apéry set of A={a1,a2,,al} for a nonnegative integer p, which is congruent to the set

    {0,1,,a11}(moda1).

    When p=0, the 0-Apéry set is the original Apéry set [25].

    It is hard to find any explicit formula of gp(a1,a2,,al) when l3. Nevertheless, the following convenient formulas are known (see [28]). After finding the structure of m(p)j, we can obtain p-Frobenius or p-Sylvester numbers for triple (Fi,Fi+2,Fi+k).

    Lemma 1. Let k, p and μ be integers with k2, p0 and μ1. Assume that gcd(a1,a2,,al)=1. We have

    gp(a1,a2,,al)=max0ja11m(p)ja1, (2.1)
    np(a1,a2,,al)=1a1a11j=0m(p)ja112. (2.2)

    Remark. When p=0, (2.1) is the formula by Brauer and Shockley [27]:

    g(a1,a2,,al)=(max1ja11mj)a1, (2.3)

    where mj=m(0)j (1ja11) with m0=0. When p=0, (2.2) is the formula by Selmer [26]:

    n(a1,a2,,al)=1a1a11j=1mja112. (2.4)

    Note that m0=m(0)0=0. A more general form by using Bernoulli numbers is given in [28], as well as the concept of weighted sums [29,30].

    It is necessary to find the exact situation of 0-Apéry set Ap(Fi,0), the least complete residue system, which was initially studied in [26]. Concerning Fibonacci numbers, we use the framework in [24].

    Throughout this paper, for a fixed integer i, we write

    Ap(Fi;p)={m(p)0,m(p)1,,m(p)Fi1}

    for short. Then, we shall construct the set of the least complete residue system Ap(Fi;0). That is, mjmh(modFi) (0j<hFi1), and if for a positive integer M, Mj and Mmj (0jFi1), then M>mj. Then, for the case p=1 we shall construct the second set of the least complete residue system Ap(Fi;1). That is, m(1)jm(1)h(modFi) (0j<hFi1), m(1)jmj(modFi) (0jFi1), and there does not exist an integer M such that m(1)j>M>mj and Mj(modFi). Similarly, for p=2, we shall construct the third set of the least complete residue system Ap(Fi;2). That is, m(2)jm(2)h(modFi) (0j<hFi1), m(2)jm(1)j(modFi) (0jFi1), and there does not exist an integer M such that m(2)j>M>m(1)j and Mj(modFi).

    By using a similar frame as in [24], we first show an analogous result about Lucas triple (Li,Li+2,Li+k) when p=0. As a preparation we shall show the result when p=0, with a sketch of the proof. The results about Fibonacci numbers can be applied to get those about Lucas numbers. When p=0, by setting integers r and as Li1=rFk+ with r0 and 0Fk1 and by using the identity Ln=LmFnm+1+Lm1Fnm, we can get an analogous identity of the Fibonacci one in [24,Theorem 1].

    Theorem 1. For integers i,k3 and r=(Li1)/Fk, we have

    g0(Li,Li+2,Li+k)={(Li1)Li+2Li(rFk2+1)if r=0, or r1 and(LirFk)Li+2>Fk2Li,(rFk1)Li+2Li((r1)Fk2+1)otherwise.

    Proof. Consider the linear representation

    tx,y:=xLi+2+yLi+k=(x+yFk)Li+2yFk2Li(x,y0).

    Then, by gcd(Li,Li+2)=1, we can prove that the above table represents the least complete residue system {0,1,,Li1}(modLi).

    That is, we can prove that none of two elements among this set is not congruent modulo Fi, and if there exists an element congruent to any of the elements among this set, then such an element is bigger and not in this set.

    When r=0, the largest element among all the tx,y's in this table is t,0. When r1, the largest element is either tFk1,r1 or t,r. Since tFk1,r1<t,r is equivalent to Fk2Li<(LirFk)Li+2, the result is followed by the identity (2.3). The first case is given by t,rLi, and the second is given by tFk1,r1Li.

    Now, let us begin to consider the case p1. We shall obtain the Frobenius number using Lemma 1 (2.1). For this it is necessary to know the structure of the elements of the p-Apéry set, and the structure of the elements of the p-Apéry set depends on the structure of the elements of the (p1)-Apéry set. Therefore, in the case of p=1, the structure of the elements of the 1-Apéry set is analyzed from the structure of the elements of the 0-Apéry set, which is the original Apéry set, thereby obtaining the 1-Frobenius number. When p=1, we have the following.

    Theorem 2. For i3, we have

    g1(Fi,Fi+2,Fi+k)=(2Fi1)Fi+2Fi(ki+2), (3.1)
    g1(Fi,Fi+2,F2i+1)=(Fi21)Fi+2+F2i+1Fi, (3.2)
    g1(Fi,Fi+2,F2i)=(Fi1)Fi+2+F2iFi. (3.3)

    When r=(Fi1)/Fk1, that is, ki1, we have

    g1(Fi,Fi+2,Fi+k)={(FirFk1)Fi+2+(r+1)Fi+kFiif (FirFk)Fi+2Fk2Fi,(Fk1)Fi+2+rFi+kFiif (FirFk)Fi+2<Fk2Fi. (3.4)

    Remark. When r1 and k=i1,i2,i3,i4,i5, we have more explicit formulas.

    g1(Fi,Fi+2,F2i1)=(Fi21)Fi+2+2F2i1Fi(i4),g1(Fi,Fi+2,F2i2)=(Fi31)Fi+2+3F2i2Fi(i5),g1(Fi,Fi+2,F2i3)={(Fi61)Fi+2+5F2i3Fi(i7)Fi+2+4F2i3Fi(=149)(i=6),g1(Fi,Fi+2,F2i4)=(Fi5+Fi71)Fi+2+7F2i4Fi,g1(Fi,Fi+2,F2i5)={(Fi51)Fi+2+11F2i5Fi(i10)12F2i5Fi(i=9)11F2i5Fi(i=8).

    Proof. Put the linear representation

    tx,y:=xFi+2+yFi+k=(x+yFk)Fi+2yFk2Fi(x,y0).

    For given Fi and Fk, integers r and are determined uniquely as Fi1=rFk+ with 0Fk1.

    Table 1.  Ap(Fi;0) and Ap(Fi;1) for r1.

     | Show Table
    DownLoad: CSV

    The second set Ap(Fi;1) can be yielded from the first set Ap(Fi;0) as follows. Assume that r1. Only the first line {t0,0,t1,0,,tFk1,0} moves to fill the last gap in the (r+1)-st line, and the rest continue to the next (r+2)-nd line. Everything else from the second line shifts up by 1 and moves to the next right block (When r=1, the new right block consists of only one line tFk,0,,tFk+,0, but this does not affect the final result).

    t0,1tFk,0,t1,1tFk+1,0,,tFk1,1t2Fk1,0,t0,2tFk,1,t1,2tFk+1,1,,tFk1,2t2Fk1,1,t0,r1tFk,r2,t1,r1tFk+1,r2,,tFk1,r1t2Fk1,r2,t0,rtFk,r1,,t,rtFk+,r1,
    t0,0t+1,r,,tFk2,0tFk1,r,
    tFk1,0t0,r+1,,tFk1,0t,r+1.

    The first group is summarized as

    tx,ytFk+x,y1(modFi)

    for 0xFk1 and 1yr1 or 0x and y=r. This congruence is valid because

    tx,y=(x+yFk)Fi+2yFk2Fi(Fk+x+(y1)Fk)Fi+2(y1)Fk2Fi=tFk+x,y1(modFi).

    The second group is valid because for 0xFk2,

    tx,0=xFi+2(+1+x+rFk)Fi+2rFk2Fi=t+1+x,r(modFi).

    The third group is valid because for 0x,

    tFk1+x,0=(Fk1+x)Fi+2(x+(r+1)Fk)Fi+2(r+1)Fk2Fi=tx,r+1(modFi).
    Table 2.  Ap(Fi;0) and Ap(Fi;1) for r=0 and 2+1Fk.

     | Show Table
    DownLoad: CSV

    Assume that r=0. The first set Ap(Fi;0) consists of only the first line. If 2+1Fk, then the second set Ap(Fi;1) can be yielded by moving to fill the last gap in the line, the rest continuing to the next line.

    t0,0t+1,0,,tFk2,0tFk1,0,tFk1,0t0,1,,t,0t2+1Fk,1(modFi).

    They are valid because for 0jFk2,

    tj,0=jFi+2(Fi+j)Fi+2=(+1j)Fi+2=t+1j,0(modFi),

    and for 0j2+1Fk,

    tFk1+j,0=(Fk1+j)Fi+2(j+Fk)Fi+2Fk2Fi=tj,1(modFi).
    Table 3.  Ap(Fi;0) and Ap(Fi;1) for r=0 and 2+1Fk1.

     | Show Table
    DownLoad: CSV

    If 2+1Fk1, then the second set Ap(Fi;1) can be yielded by moving to fill the last gap in the line only.

    t0,0t+1,0,,t,0t2+1,0(modFi).

    They are valid because for 0j,

    tj,0=jFi+2(Fi+j)Fi+2=(+j+1)Fi+2=t+j+1,0(modFi).

    Next, we shall decide the maximal element in the second set Ap(Fi;1) (and also in the first set Ap(Fi;0)).

    Case 1 (1) Assume that r=0 and 2+1Fk1. The second condition is equivalent to 2FiFk, which is equivalent to ik2. The largest element in the second set Ap(Fi;1), which is congruent to {0,1,,Fi1}(modFi), is given by t2+1,0=(2Fi1)Fi+2.

    Case 1 (2) Assume that r=0 and 2+1Fk. The second condition is equivalent to 2Fi1Fk, which is equivalent to ik13. In this case there are two possibilities for the largest element in the second set Ap(Fi;1): tFk1,0=(Fk1)Fi+2 or t2+1Fk,1=(2Fi1)Fi+2Fk2Fi. However, because of ik13, always tFk1,0<t2+1Fk,1.

    Case 2 Assume that r1. This condition is equivalent to Fi1Fk, which is equivalent to ik+1.

    In this case there are four possibilities for the largest element in the second set Ap(Fi;1):

    t2Fk1,r2=(rFk1)Fi+2(r2)Fk2Fi,tFk+,r1=(Fi1)Fi+2(r1)Fk2Fi,tFk1,r=((r+1)Fk1)Fi+2rFk2Fi,t,r+1=(Fi+Fk1)Fi+2(r+1)Fk2Fi.

    However, it is clear that t2Fk1,r2<tFk1,r. Because ik+1, tFk+,r1<tFk1,r. Thus, the only necessity is to compare tFk1,r and t,r+1, and tFk1,r>t,r+1 is equivalent to (FirFk)Fi+2>Fk2Fi.

    Finally, rewriting the forms in terms of Fi+2 and Fi+k and applying Lemma 1 (2.1), we get the result. Namely, the formula (3.1) comes from Case 1 (1). The formulas (3.2) and (3.3) come from Case 1 (2) when k=i+1 and k=i, respectively. The general formula (3.4) comes from Case 2.

    When p=2, we have the following.

    Theorem 3. For i3, we have

    g2(Fi,Fi+2,Fi+k)=(3Fi1)Fi+2Fi(ki+3), (4.1)
    g2(Fi,Fi+2,F2i+2)={(Fi21)Fi+2+F2i+2Fi(i is odd)(Fi+21)Fi+2Fi(i is even), (4.2)
    g2(Fi,Fi+2,F2i+1)=(Fi1)Fi+2+F2i+1Fi, (4.3)
    g2(Fi,Fi+2,F2i)=(2Fi1)Fi+2Fi, (4.4)
    g2(Fi,Fi+2,F2i1)={(Fi41)Fi+2+3F2i1Fi(i5)Fi+2+2F2i1Fi(=31)(i=4). (4.5)

    When r=(Fi1)/Fk2, that is, ki2, we have

    g2(Fi,Fi+2,Fi+k)={(FirFk1)Fi+2+(r+2)Fi+kFiif (FirFk)Fi+2Fk2Fi;(Fk1)Fi+2+(r+1)Fi+kFiif (FirFk)Fi+2<Fk2Fi. (4.6)

    Remark. When k=i2 and k=i3, we can write this more explicitly as

    g2(Fi,Fi+2,F2i2)=(Fi31)Fi+2+4F2i2Fi(i5), (4.7)
    g2(Fi,Fi+2,F2i3)={(Fi61)Fi+2+6F2i3Fi(i7)Fi+2+5F2i3Fi(=183)(i=6), (4.8)

    respectively. The formulas (4.7) and (4.8) hold when r=2 and r=4, respectively.

    Proof. When p=2, the third least complete residue system Ap(Fi;2) is determined from the second least complete residue system Ap(Fi;1). When r2, some elements go to the third block.

    Table 4.  Ap(Fi;p) (p=0,1,2) for r=0 and Fk3+3.

     | Show Table
    DownLoad: CSV

    Case 1 (1) Let r=0 and Fk3+3=3Fi. Since for +1j2+1,

    tj,0=jFi+2(Fi+j)Fi+2=(+j+1)Fi+2=t+j+1,0(modFi),

    the third set Ap(Fi;2) is given by

    {t2+1,0,,t3+2,0}(modFi).

    As the maximal element is t3+2,0, by (2.1), we have

    g2(Fi,Fi+2,Fi+k)=(3Fi1)Fi+2Fi.
    Table 5.  Ap(Fi;p) (p=0,1,2) for r=0 and 2+2Fk3+2.

     | Show Table
    DownLoad: CSV

    Case 1 (2) Let r=0 and 2Fi=2+2Fk3+2=3Fi1. Since tj,0t+j+1,0(modFi) (+1jFk2), and for 0j3+2Fk,

    tFk1+j,0=(Fk1+j)Fi+2=(FkFi+j)Fi+2(Fk+j)Fi+2(j+Fk)Fi+2+Fk2Fi=tj,1(modFi),

    the third set Ap(Fi;2) is

    {t2+1,0,,tFk1,0,t0,1,,t3+2Fk,1}(modFi).
    Table 6.  Ap(Fi;p) (p=0,1,2) for r=0 and Fk2+1.

     | Show Table
    DownLoad: CSV

    The first elements t2+1,0,,tFk1,0 are in the last of the first line, and the last elements t0,1,,,t3+2Fk,1 are in the first part of the second line. Hence, the maximal element is tFk1,0=(Fk1)Fi+2 or t3+2Fk,1=(3Fi1)Fi+2Fk2Fi. Therefore, when (3FiFk)Fi+2Fk2Fi, g2(Fi,Fi+2,Fi+k)=(3Fi1)Fi+2(Fk2+1)Fi. When (3FiFk)Fi+2<Fk2Fi, g2(Fi,Fi+2,Fi+k)=(Fk1)Fi+2Fi.

    Case 1 (3) Let r=0 and Fk2+1=2Fi1. Since for +1jFk1

    tj,0=jFi+2(Fi+j)Fi+2(+1+j)Fi+2Fk2Fi=tFk+1+j,1(modFi),

    and for 0j2+1Fk

    tj,1=(j+Fk)Fi2Fk2Fi(Fk+j)Fi+2=tFk+j,0(modFi),

    the third set Ap(Fi;2) is

    {t2+2Fk,1,,t,1,tFk,0,,t2+1,0}(modFi).

    The first elements t2+2Fk,1,,t,1 are in the second line of the first block, and the last elements are tFk,0,,t2+1,0 in the first line of the second block. So, the maximal element is t,1=(Fi+Fk1)Fi+2Fk2Fi or t2+1,0=(2Fi1)Fi+2. Since Fk2Fi1, only when k=i+1, we have g2(Fi,Fi+2,Fi+k)=(Fi+Fk1)Fi+2(Fk2+1)Fi. When ki, we have g2(Fi,Fi+2,Fi+k)=(2Fi1)Fi+2Fi.

    Table 7.  Ap(Fi;p) (p=0,1,2) for r=1 and Fk2+2.

     | Show Table
    DownLoad: CSV

    Case 2 (1) Let r=1 and 2+2Fk, that is, 23FiFkFi1. This case happens only when i=4 and k=3. Since for +1jFk1

    tj,1=(j+Fk)Fi+2Fk2Fi(Fk+j)Fi+2=tFk+j,0(modFi),

    for 0j

    tj,2=(j+2Fk)Fi+22Fk2Fi(Fk+j+Fk)Fi+2Fk2Fi=tFk+j,1(modFi),

    and for 0j

    tFk+j,0=(Fk+j)Fi+2(Fi+j+Fk)Fi+2(+1+j+2Fk)Fi+22Fk2Fi=t+1+j,2(modFi),

    the third set Ap(Fi;2) is

    {tFk++1,0,,t2Fk1,0,tFk,1,,tFk+,1,t+1,2,,t2+1,2}(modFi).

    The first elements tFk++1,0,,t2Fk1,0 are in the first line of the second block, the second elements tFk,1,,tFk+,1 are in the second line of the second block, and the last elements t+1,2,,t2+1,2 in the third line of the first block. So, the maximal element is one of t2Fk1,0=(2Fk1)Fi+2, tFk+,1=(Fi+Fk1)Fi+2Fk2Fi or t2+1,2=(2Fi1)Fi+22Fk2Fi. As i=4 and k=3, t2+1,2=34 is the largest. Hence, g2(Fi,Fi+2,Fi+k)=(2Fi1)Fi+2(2Fk2+1)Fi, that is, g2(F4,F6,F7)=34F4=31.

    Table 8.  Ap(Fi;p) (p=0,1,2) for r=1 and Fk2+1.

     | Show Table
    DownLoad: CSV

    Case 2 (2) Let r=1 and 2+1Fk, that is, (Fi1)/2<Fk(2Fi1)/3. This relation holds only when k=i14. Since tj,1tFk+j,0(modFi) (+1jFk1), tj,2tFk+j,1(modFi) (0j), tFk+j,0t+1+j,2(modFi) (0jFk2), and for 0j2+1Fk

    t2Fk1+j,0=(2Fk1+j)Fi+2(3FkFi+j)Fi+2(j+3Fk)Fi+23Fk2Fi=tj,3(modFi),

    the third set Ap(Fi;2) is

    {tFk++1,0,,t2Fk1,0,tFk,1,,tFk+,1,t+1,2,,tFk1,2,t0,3,,t2+1Fk,3}(modFi).

    So, the maximal element is one of t2Fk1,0=(2Fk1)Fi+2, tFk+,1=(Fi+Fk1)Fi+2Fk2Fi, tFk1,2=(3Fk1)Fi+22Fk2Fi or t2+1Fk,3=(2Fi1)Fi+23Fk2Fi. As k=i14, t2+1Fk,3=(2Fi1)Fi+23Fi3Fi is the largest. Hence, g2(Fi,Fi+2,F2i1)=(2Fi1)Fi+2(3Fi3+1)Fi.

    Case 3 Let r2. The part

    tFk,1,,t2Fk1,1,,tFk,r2,,t2Fk1,r2,tFk,r1,,tFk+,r1

    in the second block among the second set Ap(Fi;1) corresponds to the part

    t2Fk,0,,t3Fk1,0,,t2Fk,r3,,t3Fk1,r3,t2Fk,r2,,t2Fk+,r2

    in the third block among the third least set Ap(Fi;2)* because

    *When r=2, only the last shorter line remains, and t3Fk1,r3 in table 9 does not appear. However, this does not affect the result.

    tFk+j,h=(Fk+j+hFk)Fi+2hFk2Fi(2Fk+j+(h1)Fk)Fi+2(h1)Fk2Fi=t2Fk+j,h1(modFi)
    Table 9.  Ap(Fi;p) (p=0,1,2) for r2.

     | Show Table
    DownLoad: CSV

    for 0jFk1 and 1hr2 or 0j and h=r1. The part t+1,r,,tFk1,r in the first block among the second set Ap(Fi;1) corresponds to the part tFk++1,r1,,t2Fk1,r1 in the second block among the third set Ap(Fi;2) because for ell+1jFk1

    tj,r=(j+rFk)Fi+2rFk2Fi(Fk+j+(r1)Fk)Fi+2(r1)Fk2Fi=tFk+j,r1(modFi).

    The part t0,r+1,,t,r+1 in the first block among the second set Ap(Fi;1) corresponds to the part tFk,r,,tFk+,r in the second block among the third set Ap(Fi;2) because for 0j

    tj,r+1=(j+(r+1)Fk)Fi+2(r+1)Fk2Fi(Fk+j+rFk)Fi+2rFk2Fi=tFk+j,r(modFi).

    The first line tFk,0,,t2Fk2,t2Fk1,,t2Fk1,0 in the second block among the second set Ap(Fi;1) corresponds to two parts t+1,r+1,,tFk1,r+1 and t0,r+2,,t,r+2 in the first block among the third set Ap(Fi;2) because for 0jFk2

    tFk+j,0=(Fk+j)Fi+2(Fi+Fk+j)Fi+2(r+1)Fk2Fi=(+1+j+(r+1)Fk)Fi+2(r+1)Fk2Fi=t+1+j,r+1(modFi),

    and for 0j,

    t2Fk1+j,0=(2Fk1+j)Fi+2=(2FkFi+rFk+j)Fi+2(j+(r+2)Fk)Fi+2(r+2)Fk2Fi=tj,r+2(modFi).

    Hence, the third set Ap(Fi;2) is given by

    {t2Fk,0,,t3Fk1,0,,t2Fk,r3,,t3Fk1,r3,t2Fk,r2,,t2Fk+,r2,tFk++1,r1,,t2Fk1,r1,tFk,r,,tFk+,r,t+1,r+1,,tFk1,r+1,t0,r+2,,t,r+2}(modFi).

    There are six candidates for the maximal element:

    t3Fk1,r3=(rFk1)Fi+2(r3)Fk2Fi,t2Fk+,r2=(Fi1)Fi+2(r2)Fk2Fi,t2Fk1,r1=((r+1)Fk1)Fi+2(r1)Fk2Fi,tFk+,r=(Fi+Fk1)Fi+2rFk2Fi,tFk1,r+1=((r+2)Fk1)Fi+2(r+1)Fk2Fi,t,r+2=(Fi+2Fk1)Fi+2(r+2)Fk2Fi.

    However, it is easy to see that the first four values are less than the last two. Hence, if (FirFk)Fi+2Fk2Fi, then g2(Fi,Fi+2,Fi+k)=t,r+2Fi=(Fi+2Fk1)Fi+2((r+2)Fk2+1)Fi. If (FirFk)Fi+2<Fk2Fi, then g2(Fi,Fi+2,Fi+k)=tFk1,r+1Fi=((r+2)Fk1)Fi+2((r+1)+1)Fk2Fi.

    Finally, we rewrite the form as the linear combination of Fi+2 and Fi+k and apply Lemma 1 (2.1). The formula (4.1) comes from Case 1 (1). The formula (4.2) comes from Case 1 (2). The formulas (4.3) and (4.4) come from Case 1 (3). The formula (4.5) comes from Case 2 (1) (2). The general formula (4.6) comes from Case 3.

    When p=3, we have the following.

    Theorem 4. For i3, we have

    g3(Fi,Fi+2,Fi+k)=(4Fi1)Fi+2Fi(ki+3), (5.1)
    g3(Fi,Fi+2,F2i+2)=(Fi1)Fi+2+F2i+2Fi,g3(Fi,Fi+2,F2i+1)=(Fi+Fi21)Fi+2+F2i+1Fi,g3(Fi,Fi+2,F2i)=(Fi1)Fi+2+2F2iFi,g3(Fi,Fi+2,F2i1)=(Fi21)Fi+2+3F2i1Fi(i4),g3(Fi,Fi+2,F2i2)={(Fi51)Fi+2+5F2i2Fi(i6)Fi+2+4F2i2Fi(=92)(i=5). (5.2)

    When r=(Fi1)/Fk3, that is, ki3, we have

    g3(Fi,Fi+2,Fi+k)={(FirFk1)Fi+2+(r+3)Fi+kFiif (FirFk)Fi+2Fk2Fi;(Fk1)Fi+2+(r+2)Fi+kFiif (FirFk)Fi+2<Fk2Fi. (5.3)
    Table 10.  Ap(Fi;p) (p=0,1,2,3) for r3.

     | Show Table
    DownLoad: CSV

    Proof. When p=3, the fourth least complete residue system Ap(Fi;3) is determined from the third least complete residue system Ap(Fi;2). When r3, some elements go to the fourth block. The proof of the cases r=0,1,2 is similar to that of Theorem 3 and needs more case-by-case discussions, and it is omitted.

    In the table, denotes the area of the n-th least set of the complete residue system Ap(Fi;n1). Here, each m(n1)j, satisfying m(n1)jj(modFi) (0jFi1), can be expressed in at least n ways, but m(n1)jFi can be expressed in at most n1 ways. As illustrated in the proof of Theorem 4.1, two areas (lines) of ④ in the first block correspond to the first line of ③ in the third block, two areas (lines) of ④ in the second block correspond to two areas (lines) of ③ in the first block, two areas (lines) of ④ in the third block correspond to two areas (lines) of ③ in the second block, and the area of ④ in the fourth block correspond to the area of ③ in the third block except the first line. Eventually, the maximal element of the fourth set of the complete residue system is from the first block, that is, tFk1,r+2=((r+3)Fk1)Fi+2(r+2)Fk2Fi or t,r+3=(Fi+3Fk1)Fi+2(r+3)Fk2Fi. Hence, if (FirFk)Fi+2Fk2Fi, then g3(Fi,Fi+2,Fi+k)=t,r+3Fi=(Fi+3Fk1)Fi+2((r+3)Fk2+1)Fi. If (FirFk)Fi+2<Fk2Fi, then g3(Fi,Fi+2,Fi+k)=tFk1,r+2Fi=((r+3)Fk1)Fi+2((r+2)Fk2+1)Fi. Notice that r3 implies that ki3.

    Repeating the same process, when r is big enough that rp, that is, k is comparatively smaller than i, as a generalization of (3.4), (4.6) and (5.3), we can have an explicit formula.

    Theorem 5. Let i3 and p be a nonnegative integer. When r=(Fi1)/Fkp with (r,p)(0,0), we have

    gp(Fi,Fi+2,Fi+k)={(FirFk1)Fi+2+(r+p)Fi+kFiif (FirFk)Fi+2Fk2Fi;(Fk1)Fi+2+(r+p1)Fi+kFiif (FirFk)Fi+2<Fk2Fi.

    Remark. When p=0, Theorem 5 reduces to [24,Theorem 1] except r=0.

    On the other hand, k is comparatively larger than i. As a generalization of (3.1), (4.1) and (5.1), we can also have the following formula.

    Proposition 1. For i,k3, we have

    gp(Fi,Fi+2,Fi+k)=gp(Fi,Fi+2)(ki+h)

    when (p,h)=(3,4), (4,4), (5,5), (6,5), (7,5), (8,5), (9,6), (10,6), (11,6), (12,6), (13,6), (14,6), (15,7), (16,7), (17,7), (18,7), (19,7), (20,7), (21,7), (22,7), (23,7), (24,8), .

    The proof depends on the fact

    (p+1)FiFi+2FiFi+2<F2i+h(i3).

    Nevertheless, such h's are not necessarily sharp because even if (p+1)FiFi+2FiFi+2>F2i+h, it is possible to have gp(Fi,Fi+2,Fi+k)=gp(Fi,Fi+2) (ki+h).

    The formulas about Fibonacci numbers can be applied to obtain those about Lucas numbers. The discussion is similar, though the value (Li1)/Fk is different from (Fi1)/Fk. So, we list the results only.

    When p=1, we have the following.

    Theorem 6. For i3, we have

    g1(Li,Li+2,Li+k)=(2Li1)Li+2Li(ki+4),g1(Li,Li+2,L2i+3)=(Fi+31)Li+2Li,g1(Li,Li+2,L2i+2)=(3Fi11)Li+2+L2i+2Li.

    When r=(Li1)/Fk1, that is, ki+1, we have

    g1(Li,Li+2,Li+k)={(LirFk1)Li+2+(r+1)Li+kLiif (LirFk)Li+2Fk2Li,(Fk1)Li+2+rLi+kLiif (LirFk)Li+2<Fk2Li.

    When p=2, we have the following.

    Theorem 7. For i3, we have

    g2(Li,Li+2,Li+k)=(3Li1)Li+2Li(ki+4),g2(Li,Li+2,L2i+3)=(Li1)Li+2+L2i+3Li,g2(Li,Li+2,L2i+2)={(Li1)Li+2+L2i+2Li(i is odd)(2Li1)Li+2Li(i is even),g2(Li,Li+2,L2i+1)=(2Fi11)Li+2+2L2i+1Li,g2(Li,Li+2,L2i)=Li+2+3L2iLi(=61)(i=3).

    When r=(Li1)/Fk2, that is, ki except i=k=3, we have

    g2(Li,Li+2,Li+k)={(LirFk1)Li+2+(r+2)Li+kLiif (LirFk)Li+2Fk2Li,(Fk1)Li+2+(r+1)Li+kLiif (LirFk)Li+2<Fk2Li.

    When p=3, we have the following.

    Theorem 8. For i3, we have

    g3(Li,Li+2,Li+k)=(4Li1)Li+2Li(ki+5),g3(Li,Li+2,L2i+4)=(4Fi1Fi21)Li+2+L2i+4Li,g3(Li,Li+2,L2i+3)=(4Fi+11)Li+2Li,g3(Li,Li+2,L2i+2)=(Fi+2Fi31)Li+2+2L2i+2Li,g3(Li,Li+2,L2i+1)=(Fi11)Li+2+3L2i+1Li,g3(Li,Li+2,L2i)={(2Fi31)Li+2+4L2iLi(i4)3Li+2+2L2iLi(=69)(i=3).

    When r=(Li1)/Fk3, that is, ki1, we have

    g3(Li,Li+2,Li+k)={(LirFk1)Li+2+(r+3)Li+kLiif (LirFk)Li+2Fk2Li,(Fk1)Li+2+(r+2)Li+kLiif (LirFk)Li+2<Fk2Li.

    For general p, when r is not less than p, we have an explicit formula.

    Theorem 9. Let i3 and p be a nonnegative integer. When r=(Li1)/Fkp with (r,p)(0,0), we have

    gp(Li,Li+2,Li+k)={(LirFk1)Li+2+(r+p)Li+kLiif (LirFk)Li+2Fk2Li;(Fk1)Li+2+(r+p1)Li+kLiif (LirFk)Li+2<Fk2Li.

    By using the table of complete residue systems, we can also find explicit formulas of the p-Sylvester number, which is the total number of nonnegative integers that can only be expressed in at most p ways. When p=0, such a number is often called the Sylvester number.

    When p=1, we have the following.

    Theorem 10. For i3, we have

    n1(Fi,Fi+2,Fi+k)=12(3FiFi+2FiFi+2+1)(ki+2), (8.1)
    n1(Fi,Fi+2,F2i+1)=12(3FiFi+2FiFi+2+1)(2FiFk)Fk2,(k=i,i+1). (8.2)

    When r=(Fi1)/Fk1, that is, ki1, we have

    n1(Fi,Fi+2,Fi+k)=12(Fi+2Fk1)Fi+2Fi+1)(rFi(r1)(r+2)2Fk)Fk2. (8.3)

    Proof. When r=0 and 2+1Fk1, by Fi1=,

    Fi1j=0m(1)j=t+1,0++t2+1,0=((2+1)(2+2)2(+1)2)Fi+2=(3Fi1)FiFi+22.

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} n_1(F_i, F_{i+2}, F_{i+k})& = \frac{(3 F_i-1)F_{i+2}}{2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)\, , \end{align*}

    which is (8.1).

    When r = 0 and 2\ell+1\ge F_k , by F_i-1 = \ell ,

    \begin{align*} \sum\limits_{j = 0}^{F_i-1}m_j^{(1)}& = (t_{\ell+1, 0}+\cdots+t_{F_k-1, 0})+(t_{0, 1}+\cdots+t_{2\ell+1-F_k, 1})\\ & = \left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}\\ &\quad +\frac{(2\ell+1-F_k)(2\ell+2-F_k)}{2}F_{i+2}+(2\ell+2-F_k)F_{i+k}\\ & = \left(\frac{(3 F_i-1)F_i}{2}-2 F_i F_k+F_k^2\right)F_{i+2}+(2 F_i-F_k)F_{i+k}\, . \end{align*}

    Since F_{i+k} = F_{i+2}F_k-F_i F_{k-2} ,

    \sum\limits_{j = 0}^{F_i-1}m_j^{(1)} = \left(\frac{(3 F_i-1)F_{i+2}}{2}-(2 F_i-F_k)F_{k-2}\right)F_i\, .

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} n_1(F_i, F_{i+2}, F_{i+k})& = \frac{(3 F_i-1)F_{i+2}}{2}-(2 F_i-F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)-(2 F_i-F_k)F_{k-2}\, , \end{align*}

    which is (8.2).

    When r\ge 1 , by F_i-1 = r F_k+\ell , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(1)}\\ & = \sum\limits_{h = 0}^{r-2}(t_{F_k, h}+\cdots+t_{2 F_k-1, h}) +(t_{F_k, r-1}+\cdots+t_{F_k+\ell, r-1})\\ &\quad +(t_{\ell+1, r}+\cdots+t_{F_k-1, r})+(t_{0, r+1}+\cdots+t_{\ell, r+1})\\ & = (r-1)\left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+\frac{(r-2)(r-1)}{2}F_k F_{i+k}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)(r-1)F_{i+k}\\ &\quad +\left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+(F_k-1-\ell)r F_{i+k}\\ &\quad +\frac{\ell(\ell+1)}{2}F_{i+2}+(\ell+1)(r+1)F_{i+k}\\ & = \frac{1}{2}\left((r-1)(3 F_k-1)F_k+\bigl(F_i-(r-1)F_k-1\bigr)\bigl(F_i-(r-1)F_k\bigr)\right)F_{i+2}\\ &\quad +\left(\frac{(r-2)(r-1)}{2}F_k+r\bigl(F_i-(r-1)F_k\bigr)\right)F_{i+k}\\ & = \frac{1}{2}(F_i+2 F_k-1)F_i F_{i+2}\\ &\quad -\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\bigr)\right)F_{k-2}F_i\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} &n_1(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}(F_i+2 F_k-1)F_{i+2}-\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\right)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+2 F_k-1)F_{i+2}-F_i+1\bigr)-\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\right)F_{k-2}\, , \end{align*}

    which is (8.3).

    When p = 2 , we have the following.

    Theorem 11. For i\ge 3 , we have

    \begin{align} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(5 F_i F_{i+2}-F_i-F_{i+2}+1)\quad(k\ge i+3)\, , \end{align} (8.4)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i+2})& = \frac{1}{2}\bigl((7 F_{i+2}-6 F_i-1)F_{i}-F_{i+2}+1\bigr)\, , \end{align} (8.5)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i+1})& = \frac{1}{2}\bigl((7 F_{i+2}-8 F_i-1)F_{i}-F_{i+2}+1\bigr)\, , \end{align} (8.6)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i})& = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)\, , \end{align} (8.7)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i-1})& = \frac{1}{2}\bigl((170 F_i-1)F_i+(24 F_{i+2}-125 F_i-1)F_{i+2}+1\bigr)\, . \end{align} (8.8)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 2 , that is, k\le i-2 , we have

    \begin{align} &n_2(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}\bigl((F_i+4 F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_{k-2}\, . \end{align} (8.9)

    Proof. When r = 0 and F_k\ge 3\ell+3 , by F_i-1 = \ell , we have

    \begin{align*} \sum\limits_{j = 0}^{F_i-1}m_j^{(2)} & = t_{2\ell+2, 0}+\cdots+t_{3\ell+2, 0}\\ & = \left(\frac{(3\ell+2)(3\ell+3)}{2}-\frac{(2\ell+1)(2\ell+2)}{2}\right)F_{i+2}\\ & = \frac{1}{2}(5 F_i-1)F_i F_{i+2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(5 F_i-1)F_{i+2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(5 F_i F_{i+2}-F_i-F_{i+2}+1)\, , \end{align*}

    which is (8.4).

    When r = 0 and 2\ell+2\le F_k\le 3\ell+2 , by F_{i+k} = F_{i+2}F_k-F_i F_{k-2} , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = (t_{2\ell+2, 0}+\cdots+t_{F_k-1, 0})+(t_{0, 1}+\cdots+t_{3\ell+2-F_k, 1})\\ & = \left(\frac{(F_k-1)F_k}{2}-\frac{(2\ell+1)(2\ell+2)}{2}\right)F_{i+2}\\ &\quad +\frac{(3\ell+2-F_k)(3\ell+3-F_k)}{2}F_{i+2}+(3\ell+3-F_k)F_{i+k}\\ & = \frac{1}{2}(5 F_i-1)F_i F_{i+2}-(3 F_i-F_k)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(5 F_i-1)F_{i+2}-(3 F_i-F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(5 F_i F_{i+2}-F_i-F_{i+2}+1)-(3 F_i-F_k)F_{k-2}\, . \end{align*}

    This case occurs only when k = i+2 . Hence, we get (8.5).

    When r = 0 and F_k\le 2\ell+1 , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)} = (t_{F_k, 0}+\cdots+t_{2\ell+1, 0})+(t_{2\ell+2-F_k, 1}+\cdots+t_{\ell, 1})\\ & = \left(\frac{(2\ell+1)(2\ell+2)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}\\ &\quad +\left(\frac{\ell(\ell+1)}{2}-\frac{(2\ell+1-F_k)(2\ell+2-F_k)}{2}\right)F_{i+2}+(F_k-\ell-1)F_{i+k}\\ & = \frac{1}{2}(F_i+2 F_k-1)F_i F_{i+2}-(F_k-F_i)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(F_i+2 F_k-1)F_{i+2}-(F_k-F_i)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+2 F_k-1)F_{i+2}-F_i+1\bigr)-(F_k-F_i)F_{k-2}\, . \end{align*}

    This case occurs only when k = i+1 . Hence, by rewriting we get (8.6).

    When r = 1 and 2\ell+2\le F_k , by F_i-1 = F_k+\ell , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = (t_{F_k+\ell+1, 0}+\cdots+t_{2 F_k-1, 0})+(t_{F_k, 1}+\cdots+t_{F_k+\ell, 1})\\ &\quad +(t_{\ell+1, 2}+\cdots+t_{2\ell+1, 2})\\ & = \left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k+\ell)(F_k+\ell+1)}{2}\right)F_{i+2}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)F_{i+k}\\ &\quad +\left(\frac{(2\ell+1)(2\ell+2)}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+2(\ell+1)F_{i+k}\\ & = \frac{1}{2}(3 F_i-1)F_i F_{i+2}-3(F_i-F_k)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(3 F_i-1)F_{i+2}-3(F_i-F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl(3 F_i F_{i+2}-F_i-F_{i+2}+1\bigr)-3(F_i-F_k)F_{k-2}\, . \end{align*}

    This case occurs only when k = i . Hence, we get (8.7).

    When r = 1 and 2\ell+1\ge F_k , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = (t_{F_k+\ell+1, 0}+\cdots+t_{2 F_k-1, 0})+(t_{F_k, 1}+\cdots+t_{F_k+\ell, 1})\\ &\quad +(t_{\ell+1, 2}+\cdots+t_{F_k-1, 2})+(t_{0, 3}+\cdots+t_{2\ell+1-F_k, 3})\\ & = \left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k+\ell)(F_k+\ell+1)}{2}\right)F_{i+2}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)F_{i+k}\\ &\quad +\left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+2(F_k-\ell-1)F_{i+k}\\ &\quad +\frac{(2\ell+1-F_k)(2\ell+2-F_k)}{2}F_{i+2}+3(2\ell+2-F_k)F_{i+k}\\ & = \frac{1}{2}(3 F_i-1)F_i F_{i+2}-(5 F_i-6 F_k)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(3 F_i-1)F_{i+2}-(5 F_i-6 F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl(3 F_i F_{i+2}-F_i-F_{i+2}+1\bigr)-(5 F_i-6 F_k)F_{k-2}\, . \end{align*}

    This case occurs only when k = i-1 . Hence, after rewriting, we get (8.8).

    When r\ge 2 , by F_i-1 = r F_k+\ell , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = \sum\limits_{h = 0}^{r-3}(t_{2 F_k, h}+\cdots+t_{3 F_k-1, h}) +(t_{2 F_k, r-2}+\cdots+t_{2 F_k+\ell, r-2})\\ &\quad +(t_{F_k+\ell+1, r-1}+\cdots+t_{2 F_k-1, r-1})+(t_{F_k, r}+\cdots+t_{F_k+\ell, r})\\ &\quad +(t_{\ell+1, r+1}+\cdots+t_{F_k-1, r+1})+(t_{0, r+2}+\cdots+t_{\ell, r+2})\\ & = (r-2)\left(\frac{(3 F_k-1)(3 F_k)}{2}-\frac{(2 F_k-1)(2 F_k)}{2}\right)F_{i+2}+\frac{(r-3)(r-2)}{2}F_k F_{i+k}\\ &\quad +\left(\frac{(2 F_k+\ell)(2 F_k+\ell+1)}{2}-\frac{(2 F_k-1)(2 F_k)}{2}\right)F_{i+2}+(\ell+1)(r-2)F_{i+k}\\ &\quad +\left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k+\ell)(F_k+\ell+1)}{2}\right)F_{i+2}+(F_k-\ell-1)(r-1)F_{i+k}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)r F_{i+k}\\ &\quad +\left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+(F_k-\ell-1)(r+1)F_{i+k}\\ &\quad +\frac{\ell(\ell+1)}{2}F_{i+2}+(\ell+1)(r+2)F_{i+k}\\ & = \frac{1}{2}(F_i+4 F_k-1)F_i F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_i F_{k-2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} &n_2(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}(F_i+4 F_k-1)F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_{k-2} -\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+4 F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_{k-2}\, , \end{align*}

    which is (8.9).

    When p = 3 , we have the following. The process is similar, and the proof is omitted.

    Theorem 12. For i\ge 3 , we have

    \begin{align} n_3(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(7 F_i F_{i+2}-F_i-F_{i+2}+1)\quad(k\ge i+3)\, , \\ n_3(F_i, F_{i+2}, F_{2 i+2})& = (F_{i}-1)F_{i+2}+F_{2 i+2}-F_i\, , \\ n_3(F_i, F_{i+2}, F_{2 i+1})& = (F_{i}+F_{i-2}-1)F_{i+2}+F_{2 i+1}-F_i\, , \\ n_3(F_i, F_{i+2}, F_{2 i})& = \frac{1}{2}\bigl((5 F_i-1)F_{i+2}-F_i+1\bigr)-2 F_{i}F_{i-2}\, , \\ n_3(F_i, F_{i+2}, F_{2 i-1})& = \frac{1}{2}\bigl((F_i+4 F_{i-1}-1)F_{i+2}-F_i+1\bigr)-2 F_{i-1}F_{i-3}\quad(i\ge 4)\, , \\ n_3(F_i, F_{i+2}, F_{2 i-2})& = \frac{1}{2}\bigl((3 F_i-1)F_{i+2}-F_i+1\bigr)-(8 F_i-15 F_{i-2})F_{i-4}\quad(i\ge 5)\, . \end{align} (8.10)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 3 , that is, k\le i-3 , we have

    \begin{align*} &n_3(F_i, F_{i+2}, F_{i+k})\notag\\ & = \frac{1}{2}\bigl((F_i+6 F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+4)(r-3)F_k\bigr)F_{k-2}\, . \end{align*}

    We can continue to obtain explicit formulas of n_p(F_i, F_{i+2}, F_{i+k}) for p = 4, 5, \dots . However, the situation becomes more complicated. We need more case-by-case discussions.

    For general p , when r\ge p , we can have an explicit formula.

    Theorem 13. Let i\ge 3 and p be a nonnegative integer. When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge p , we have

    \begin{align} &n_p(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}\bigl((F_i+2 p F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_{k-2}\, . \end{align} (8.11)

    Remark. When p = 0 , Theorem 13 reduces to [24,Corollary 2].

    Sketch of the proof of Theorem 13. We have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(p)}\\ & = \sum\limits_{h = 0}^{r-p-1}(t_{p F_k, h}+\cdots+t_{(p+1)F_k-1, h})\\ &\quad +(t_{p F_k, r-p}+\cdots+t_{p F_k+\ell, r-p})\\ &\quad +(t_{(p-1)F_k+\ell+1, r-p+1}+\cdots+t_{(p-1)F_k-1, r-p+1})\\ &\quad +(t_{(p-1)F_k, r-p+2}+\cdots+t_{(p-1)F_k+\ell, r-p+2})\\ &\quad +\cdots\\ &\quad +(t_{\ell+1, r+p-1}+\cdots+t_{F_k-1, r+p-1})+(t_{0, r+p}+\cdots+t_{\ell, r+p})\\ & = \frac{1}{2}\bigl((r-p)((2 p+1)F_k-1)F_k+(F_i-(r-p)F_k-1)(F_i-(r-p)F_k)\bigr)F_{i+2}\\ &\quad +\left(\frac{(r-p-1)(r-p)}{2}F_k+r(F_i-(r-p)F_k)\right)F_{i+k}\\ & = \frac{1}{2}(F_i+2 p F_k-1)F_i F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_i F_{k-2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} &n_p(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}(F_i+2 p F_k-1)F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_{k-2} -\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+2 p F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_{k-2}\, , \end{align*}

    which is (8.11).

    Consider the Fibonacci triple (F_6, F_8, F_{10}) . Since F_6-1 = 2 F_4+1 , we see that r = 2 and \ell = 1 . Then, we can construct the first least set, the second least and 3rd, 4th and 5th least sets of the complete residue systems as follows.

    \begin{align*} ①{\rm Ap} (F_6;0)& = \{0, 21, 42, 55, 76, 97,110,131\}\pmod{F_6}\, , \\ ②{\rm Ap} (F_6;1)& = \{63, 84,105,118,139,152,165,186\}\pmod{F_6}\, , \\ ③{\rm Ap} (F_6;2)& = \{126,147,160,173,194,207,220,241\}\pmod{F_6}\, , \\ ④{\rm Ap} (F_6;3)& = \{168,181,202,215,228,249,262,275\}\pmod{F_6}\, , \\ ⑤{\rm Ap} (F_6;4)& = \{189,210,223,236,257,270,283,296\}\pmod{F_6}\, .\\ \end{align*}
    Table 11.  {\rm Ap}(F_6,j) (j=0,1,2,3,4).

     | Show Table
    DownLoad: CSV

    Therefore, by Lemma 1 (2.1) with (2.3), we obtain that

    \begin{align*} g_0(F_6, F_8, F_{10})& = 131-8 = 123\, , \\ g_1(F_6, F_8, F_{10})& = 186-8 = 178\, , \\ g_2(F_6, F_8, F_{10})& = 241-8 = 233\, , \\ g_3(F_6, F_8, F_{10})& = 275-8 = 267\, , \\ g_4(F_6, F_8, F_{10})& = 296-8 = 288\, . \end{align*}

    By Lemma 1 (2.2) with (2.4), we obtain that

    \begin{align*} n_0(F_6, F_8, F_{10})& = \frac{0+21+\cdots+131}{8}-\frac{8-1}{2} = 63\, , \\ n_1(F_6, F_8, F_{10})& = \frac{63+84+\cdots+186}{8}-\frac{8-1}{2} = 123\, , \\ n_2(F_6, F_8, F_{10})& = \frac{126+147+\cdots+241}{8}-\frac{8-1}{2} = 180\, , \\ n_3(F_6, F_8, F_{10})& = \frac{168+181+\cdots+275}{8}-\frac{8-1}{2} = 219\, , \\ n_4(F_6, F_8, F_{10})& = \frac{189+210+\cdots+296}{8}-\frac{8-1}{2} = 242\, . \end{align*}

    On the other hand, from (3.4), by (F_6-2 F_4)F_8 > F_2 F_6 , we get

    \begin{align*} g_1(F_6, F_8, F_{10})& = (F_6-2 F_4-1)F_{8}+3 F_{10}-F_6\\ & = 178\, . \end{align*}

    From (4.6) and (5.2), we get

    \begin{align*} g_2(F_6, F_8, F_{10})& = (F_6-2 F_4-1)F_{8}+4 F_{10}-F_6\\ & = 233\, , \\ g_3(F_6, F_8, F_{10})& = (F_{1}-1)F_{8}+5 F_{10}-F_6\\ & = 267\, , \end{align*}

    respectively. From (8.3), (8.9) and (8.10), we get

    \begin{align*} &n_1(F_6, F_8, F_{10})\\ & = \frac{1}{2}\bigl(F_6+2 F_4-1)F_{8}-F_6+1\bigr)-\left(2 F_6-\frac{(2-1)(2+2)}{2}F_4\right)F_{2}\\ & = 123\, , \\ &n_2(F_6, F_8, F_{10})\\ & = \frac{1}{2}\bigl((F_6+4 F_4-1)F_{8}-F_6+1\bigr)-\frac{1}{2}\bigl(4 F_6-(2+3)(2-2)F_4\bigr)F_{2}\\ & = 180\, , \\ &n_3(F_6, F_8, F_{10})\\ & = \frac{1}{2}\bigl((3 F_6-1)F_{8}-F_6+1\bigr)-(8 F_6-15 F_{4})F_{2}\\ & = 219\, , \end{align*}

    respectively.

    In [31], a more general triple g(F_a, F_b, F_c) is studied for distinct Fibonacci numbers with a, b, c\ge 3 . In [32], the Frobenius number g(a, a+b, 2 a+3 b, \dots, F_{2k-1}a+F_{2 k}b) is given for relatively prime integers a and b . Will we be able to say anything in terms of these p -Frobenius numbers?

    The authors thank the anonymous referees for careful reading of this manuscript.

    The authors declare there is no conflict of interest.



    [1] B. Brešar, M. A. Henning, D. F. Rall, Rainbow domination in graphs, Taiwan. J. Math., 12 (2008), 213–225. doi: 10.11650/twjm/1500602498
    [2] A. Cabrera-Martínez, I. G. Yero, Constructive characterizations concerning weak Roman domination in trees, Discrete Appl. Math., 284 (2020), 384–390. doi: 10.1016/j.dam.2020.03.058
    [3] E. W. Chambers, B. Kinnersley, N. Prince, D. B. West, Extremal problems for Roman domination, SIAM J. Discrete Math., 23 (2009), 1575–1586. doi: 10.1137/070699688
    [4] M. Chellali, T. W. Haynes, S. T. Hedetniemi, Lower bounds on the Roman and independent Roman domination numbers, Appl. Anal. Discrete Math., 10 (2016), 65–72. doi: 10.2298/AADM151112023C
    [5] M. Chellali, T. W. Haynes, S. T. Hedetniemi, A. A. McRae, Roman {2}-domination, Discrete Appl. Math., 204 (2016), 22–28. doi: 10.1016/j.dam.2015.11.013
    [6] E. J. Cockayne, P. A. Dreyer Jr, S. M. Hedetniemi, S. T. Hedetniemi, Roman domination in graphs, Discrete Math., 278 (2004), 11–22. doi: 10.1016/j.disc.2003.06.004
    [7] O. Favaron, H. Karami, R. Khoeilar, S. M. Sheikholeslami, On the Roman domination number of a graph, Discrete Math., 309 (2009), 3447–3451. doi: 10.1016/j.disc.2008.09.043
    [8] W. Goddard, M. A. Henning, Domination in planar graphs with small diameter, J. Graph Theory, 40 (2002), 1–25. doi: 10.1002/jgt.10027
    [9] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Domination in Graphs: Advanced Topics, New York: Marcel Dekker, 1998.
    [10] Z. P. Li, E. Q. Zhu, Z. H. Shao, J. Xu, On dominating sets of maximal outerplanar and planar graphs, Discrete Appl. Math., 198 (2016), 164–169. doi: 10.1016/j.dam.2015.06.024
    [11] Z. P. Li, Z. H. Shao, J. Xu, Weak {2}-domination number of Cartesian products of cycles, J. Comb. Optim., 35 (2018), 75–85. doi: 10.1007/s10878-017-0157-6
    [12] M. Liedloff, T. Kloks, J. Liu, S. L. Peng, Efficient algorithms for Roman domination on some classes of graphs, Discrete Appl. Math., 156 (2008), 3400–3415. doi: 10.1016/j.dam.2008.01.011
    [13] C. J. Liu, A note on domination number in maximal outeplanar graphs, Discrete Appl. Math., 293 (2021), 90–94. doi: 10.1016/j.dam.2021.01.021
    [14] P. Wu, Z. P. Li, Z. H. Shao, S. M. Sheikholeslami, Trees with equal Roman {2}-domination number and independent Roman 2-domination number, RAIRO-Oper. Res., 53 (2019), 389–400. doi: 10.1051/ro/2018116
    [15] E. Q. Zhu, Z. H. Shao, Extremal problems on weak Roman domination number, Inf. Process. Lett., 138 (2018), 12–18. doi: 10.1016/j.ipl.2018.05.009
  • This article has been cited by:

    1. Takao Komatsu, Claudio Pita-Ruiz, The Frobenius Number for Jacobsthal Triples Associated with Number of Solutions, 2023, 12, 2075-1680, 98, 10.3390/axioms12020098
    2. Takao Komatsu, Shanta Laishram, Pooja Punyani, p-Numerical Semigroups of Generalized Fibonacci Triples, 2023, 15, 2073-8994, 852, 10.3390/sym15040852
    3. Takao Komatsu, Haotian Ying, p-Numerical semigroups with p-symmetric properties, 2024, 23, 0219-4988, 10.1142/S0219498824502165
    4. Takao Komatsu, Haotian Ying, The p-Numerical Semigroup of the Triple of Arithmetic Progressions, 2023, 15, 2073-8994, 1328, 10.3390/sym15071328
    5. Takao Komatsu, On the determination of p-Frobenius and related numbers using the p-Apéry set, 2024, 118, 1578-7303, 10.1007/s13398-024-01556-5
    6. Takao Komatsu, Ruze Yin, 2024, Chapter 2, 978-3-031-49217-4, 15, 10.1007/978-3-031-49218-1_2
    7. Takao Komatsu, Vichian Laohakosol, The p-Frobenius Problems for the Sequence of Generalized Repunits, 2024, 79, 1422-6383, 10.1007/s00025-023-02055-6
    8. Ruze Yin, Takao Komatsu, Frobenius Numbers Associated with Diophantine Triples of x2-y2=zr, 2024, 16, 2073-8994, 855, 10.3390/sym16070855
    9. Ruze Yin, Jiaxin Mu, Takao Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, 2024, 16, 2073-8994, 1090, 10.3390/sym16081090
    10. Evelia R. García Barroso, Juan I. García-García, Luis José Santana Sánchez, Alberto Vigneron-Tenorio, On p-Frobenius of Affine Semigroups, 2024, 21, 1660-5446, 10.1007/s00009-024-02625-0
    11. TAKAO KOMATSU, NEHA GUPTA, MANOJ UPRETI, FROBENIUS NUMBERS ASSOCIATED WITH DIOPHANTINE TRIPLES OF x^2+y^2=z^3 , 2024, 0004-9727, 1, 10.1017/S0004972724000960
    12. Jiaxin Mu, Takao Komatsu, p-Numerical Semigroups of Triples from the Three-Term Recurrence Relations, 2024, 13, 2075-1680, 608, 10.3390/axioms13090608
    13. Takao Komatsu, Fatih Yilmaz, The p-Frobenius number for the triple of certain quadratic numbers, 2024, 1367-0751, 10.1093/jigpal/jzae125
    14. Takao Komatsu, Tapas Chatterjee, Frobenius numbers associated with Diophantine triples of x^2+3 y^2=z^3, 2025, 119, 1578-7303, 10.1007/s13398-025-01725-0
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3009) PDF downloads(177) Cited by(4)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog