Marine Predators algorithm (MPA) is a newly proposed nature-inspired metaheuristic algorithm. The main inspiration of this algorithm is based on the extensive foraging strategies of marine organisms, namely Lévy movement and Brownian movement, both of which are based on random strategies. In this paper, we combine the marine predator algorithm with Teaching-learning-based optimization algorithm, and propose a hybrid algorithm called Teaching-learning-based Marine Predator algorithm (TLMPA). Teaching-learning-based optimization (TLBO) algorithm consists of two phases: the teacher phase and the learner phase. Combining these two phases with the original MPA enables the predators to obtain prey information for foraging by learning from teachers and interactive learning, thus greatly increasing the encounter rate between predators and prey. In addition, effective mutation and crossover strategies were added to increase the diversity of predators and effectively avoid premature convergence. For performance evaluation TLMPA algorithm, it has been applied to IEEE CEC-2017 benchmark functions and four engineering design problems. The experimental results show that among the proposed TLMPA algorithm has the best comprehensive performance and has more outstanding performance than other the state-of-the-art metaheuristic algorithms in terms of the performance measures.
Citation: Keyu Zhong, Qifang Luo, Yongquan Zhou, Ming Jiang. TLMPA: Teaching-learning-based Marine Predators algorithm[J]. AIMS Mathematics, 2021, 6(2): 1395-1442. doi: 10.3934/math.2021087
[1] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[2] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[3] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[4] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[5] | Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299 |
[6] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[7] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[8] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[9] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[10] | Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098 |
Marine Predators algorithm (MPA) is a newly proposed nature-inspired metaheuristic algorithm. The main inspiration of this algorithm is based on the extensive foraging strategies of marine organisms, namely Lévy movement and Brownian movement, both of which are based on random strategies. In this paper, we combine the marine predator algorithm with Teaching-learning-based optimization algorithm, and propose a hybrid algorithm called Teaching-learning-based Marine Predator algorithm (TLMPA). Teaching-learning-based optimization (TLBO) algorithm consists of two phases: the teacher phase and the learner phase. Combining these two phases with the original MPA enables the predators to obtain prey information for foraging by learning from teachers and interactive learning, thus greatly increasing the encounter rate between predators and prey. In addition, effective mutation and crossover strategies were added to increase the diversity of predators and effectively avoid premature convergence. For performance evaluation TLMPA algorithm, it has been applied to IEEE CEC-2017 benchmark functions and four engineering design problems. The experimental results show that among the proposed TLMPA algorithm has the best comprehensive performance and has more outstanding performance than other the state-of-the-art metaheuristic algorithms in terms of the performance measures.
The Bernoulli numbers are defined by the exponential generating function:
yey−1=∞∑n=0Bnynn!. |
For their wide applications to classical analysis (cf. Stromberg [47, Chapter 7], number theory (cf. Apostol [3, §12.12]), combinatorics [44, §3.4] and numerical mathematics (cf. Arfken [5]), these numbers appear frequently in the mathematical literature (see Comtet [17, §1.14], Graham et al. [26, §6.5] and Hansen [27, §50]).
There exist numerous interesting properties (cf. [2,4,8,13,24]); in particular, about recurrence relations (cf. [1,21,30,37]), reciprocities (cf. [12,25,41,42,49]), convolutions (cf. [14,15,16,22,34]), multiple sums (cf. [10,11,19,32]) and combinatorial applications (cf. [6,31,35,38]). A few of them are recorded here as examples:
● Arithmetic sums
m∑k=1kn=n∑j=0(m+1)j+1n+1(n+1j+1)Bn−j. |
● Binomial recurrences
n∑k=0(nk)Bk=(−1)nBn,n≥0;n−2∑k=1(nk)kBk=−n2Bn−1,n≥3;n∑k=0(nk)Bk2+n−k=Bn+1n+1,n≥0. |
● Convolutions of the Miki type (cf. [12,22,34,36,40])
ℓ−1∑k=1BkBℓ−kk−ℓ−1∑k=2(ℓk)BkBℓ−kk=HℓBℓ,ℓ∑k=0BkBℓ−k−2ℓ∑k=2(ℓ+1k+1)BkBℓ−kk+2=(ℓ+1)Bℓ. |
● Riemann zeta series
∞∑k=11k2n=(−1)n−122n−1B2n(2n)!π2n,∞∑k=1(−1)k−1k2n=(−1)n(1−22n−1)B2n(2n)!π2n,∞∑k=11(2k−1)2n=(−1)n(1−22n)B2n2(2n)!π2n. |
The aim of this paper is to examine and review systematically explicit formulae of Bernoulli numbers. Among known double sum expressions, the simplest one reads as
Bn=n∑j=0j∑k=0(−1)kj+1(jk)kn=n∑k=0knn∑j=k(−1)kj+1(jk). |
We observe that when the upper limit n is replaced by m≥n, the last formula is still valid. Letting Ω(m,k) be the connection coefficients
Ω(m,k)=m∑j=k(−1)kj+1(jk), |
we have the following formula (see Theorem 1) with an extra parameter m:
Bn=m∑k=0knΩ(m,k),wherem≥n. |
Three remarkable formulae can be highlighted in anticipation as exemplification (see Eqs (2.20), (3.14) and (4.1)), where for m=n, the last two identities resemble those found respectively by Bergmann [7] and Gould [24, Eq (1.4)]:
n+Bn=m∑k=0(k+2)nm∑j=k(−1)kj+1(jk),m≥n≥2;Bn=m∑k=1knm∑j=k(−1)j−1j(j+1)(mj),m≥n≥2;Bn=m∑k=1knm∑j=k(−1)k−1(j−1k−1)Hj,m>n≥1. |
The rest of the paper will be organized as follows. In the next section, we shall establish several representation formulae of Bn by parameterizing known double sums with m. Then in Section 3, by examining equivalent expressions for Ω(m,k) and another connection coefficient ω(m,k), we shall prove further explicit formulae for Bernoulli numbers. Finally, the paper will end in Section 4, where more summation formulae will be shown.
Throughout the paper, we shall frequently make use of the following notations. Let N be the set of natural numbers with N0={0}∪N. For n∈N0 and an indeterminate x, the shifted factorial is defined by
(x)0≡1and(x)n=n−1∏k=0(x+k)forn∈N. |
The harmonic numbers Hn are given by the partial sums Hn=∑nk=11k,wheren∈N.
Denote by [yn]ϕ(y) the coefficient of yn in the formal power series ϕ(y). Recall the exponential generating function of the Bernoulli numbers
yey−1=∞∑n=0Bnn!yn. |
Expanding this function into the series
yey−1=ln{1+(ey−1)}ey−1=∞∑j=0(−1)jj+1(ey−1)j, |
we get, for m≥n, the following expression
Bn=n![yn]m∑j=0(−1)jj+1(ey−1)j=n!m∑j=0(−1)jj!j+1[yn](ey−1)jj!=m∑j=0(−1)jj!j+1S2(n,j), |
where S2(n,j) is the Stirling number of the second kind
S2(n,j)=njj!=1j!j∑k=0(−1)j−k(jk)kn. | (2.1) |
Therefore, we have established, by substitution, the following explicit formula.
Theorem 1 (m,n∈N0 with m≥n).
Bn=m∑j=0j∑k=0(−1)kj+1(jk)kn=m∑k=0knm∑j=k(−1)kj+1(jk). |
This fundamental result will be the starting point for us to examine explicit formulae of Bernoulli numbers. When m=n+1, the corresponding formula can be located in Jordan [29, §78, Page 236]. Instead, its m=n case is well-known; that can be found in Cook [18], Gould [23, Eq (1)] and [24, Eq (1.3)], Higgens [28], Quaintance and Gould [43, Eq (15.2)].
Define the coefficients Ω(m,k) by
Ω(m,k):=m∑j=k(−1)kj+1(jk). | (2.2) |
We can rewrite the basic formula in Theorem 1 as
Bn=m∑k=0knΩ(m,k),wherem≥n. | (2.3) |
Lemma 2. For m≥k, the coefficients Ω(m,k) satisfy the recurrence relations:
Ω(m,k)−Ω(m−1,k)=(−1)km+1(mk), | (2.4) |
Ω(m,k)−Ω(m,k−1)=(−1)kk(m+1k). | (2.5) |
Proof. The first one (2.4) follows directly from the definition of Ω(m,k). The second one can be done as follows
Ω(m,k)−Ω(m,k−1)=m∑j=k(−1)kj+1(jk)+m∑j=k−1(−1)kj+1(jk−1)=m∑j=k−1(−1)kj+1{(jk)+(jk−1)}=m∑j=k−1(−1)kj+1(j+1k)=(−1)kkm∑j=k−1(jk−1), |
which confirms (2.5) after having evaluated the binomial sum
m∑j=k−1(jk−1)=(m+1k). |
In addition, the lower triangular matrix
Ωm:=[Ω(i,j)]1≤i,j≤m |
with diagonal elements
Ω(k,k)=(−1)kk+1 |
is invertible. We can determine its inverse explicitly by
Ω−1m=[(−1)j(ij)1+2i+ij1+j]1≤i,j≤m. |
Similar to the formula in Theorem 1, we have the following three variants.
Proposition 3 (m,n∈N).
Bn=m∑k=1kn+1m∑j=k(−1)k−1j2(jk),m>n≥2; | (2.6) |
Bn=m∑k=1knm∑j=k(−1)k−1j(j+1)(jk),m≥n≥2; | (2.7) |
Bn=m∑k=1knm∑j=k(−1)k2j+1j(j+1)(jk),m≥n≥2. | (2.8) |
Among these formulae, the first two reduce, for m=n+1 and m=n, to Fekih-Ahmed [20, Eqs (5) and (6)], respectively.
Proof. According to (2.5), we have, for m≥n>1, the following equalities:
Bn=m∑k=1knΩ(m,k)=m∑k=1(−1)k(m+1k)kn−1+m∑k=1knΩ(m,k−1)=(−1)m(m+1)n−1+m∑k=1knm∑i=k−1(−1)k−1i+1(ik−1). |
Simplifying the last line
Bn=m+1∑k=1knm∑i=k−1(−1)k−1i+1(ik−1),(m≥n≥2) | (2.9) |
and then reformulating it as
Bn=m+1∑k=1kn+1m∑i=k−1(−1)k−1(i+1)2(i+1k), |
we confirm (2.6) under the replacements "m→m−1" and "i→j−1".
Observe further that for m≥n, the double sum vanishes
m∑k=1knm∑j=k(−1)kj(jk)=0,(m≥n≥2), | (2.10) |
which is justified by the finite differences
m∑k=1(−1)kkn−1m∑j=k(j−1k−1)=m∑k=1(−1)k(mk)kn−1=0. |
Then (2.7) and (2.8) follow respectively from the difference and sum between Eq (2.10) and that in Theorem 1.
Besides (2.10) and the formula in Theorem 1, we also have the following counterparts.
Theorem 4 (m,n∈N with m≥n≥1).
m∑k=1knm∑j=k(−1)kj+2(jk)={Bn,n≡20;Bn+1,n≡21. | (2.11) |
m∑k=1knm∑j=k(−1)kj+3(jk)={Bn+12Bn+2,n≡20;32Bn+1,n≡21. | (2.12) |
Proof. In accordance with the binomial relation
(jk)=(j+1k)−(jk−1), | (2.13) |
we can write the sum in (2.11) as "A+B", where
A=m∑k=0knm∑j=k(−1)kj+2(j+1k),B=m∑k=0knm∑j=k(−1)k−1j+2(jk−1). |
Replacing the summation index j by i−1 in "A", we can reformulate it as follows:
A=m∑k=0knm+1∑i=k+1(−1)ki+1(ik)=m+1∑k=0knm+1∑i=k(−1)ki+1(ik)−m+1∑k=0(−1)kknk+1. |
Recalling Theorem 1, we deduce the expression
A=Bn−m+1∑k=0(−1)kknk+1. | (2.14) |
When n>1, applying first the partial fractions and then making the replacement "j→i−1", we can rewrite "B" as
B=m∑k=1kn+1m∑j=k(−1)k−1(j+1)(j+2)(j+1k)=m∑k=1kn+1m∑j=k(−1)k−1j+1(j+1k)+m∑k=1kn+1m∑j=k(−1)kj+2(j+1k)=m∑k=1kn+1m+1∑i=k+1(−1)ki+1(ik)−m∑k=1kn+1m+1∑i=k+1(−1)ki(ik). |
By appealing to Theorem 1 and (2.10), we reduce the last expression to the following one:
B=Bn+1+m+1∑k=1(−1)kkn−m+1∑k=1(−1)kkn+1k+1=Bn+1+m+1∑k=1(−1)kknk+1. | (2.15) |
Putting together (2.14) and (2.15), we find that
A+B=Bn+Bn+1, |
which is equivalent to the expression in (2.11).
Similarly, by making use of (2.13), we can write the sum (2.12) as "C+D", where
C=m∑k=1knm∑j=k(−1)kj+3(j+1k),D=m∑k=1knm∑j=k(−1)k−1j+3(jk−1). |
Replacing the summation index j by i−1 in "C", we can manipulate it as follows:
C=m∑k=1knm+1∑i=k+1(−1)ki+2(ik)=m+1∑k=1knm+1∑i=k(−1)ki+2(ik)−m+1∑k=1(−1)kknk+2. |
Evaluating the first sum by (2.11), we obtain the expression
C=Bn+Bn+1−m+1∑k=1(−1)kknk+2. | (2.16) |
We can analogously treat "D" as follows:
D=m∑k=1kn+1m∑j=k(−1)k+1(j+1)(j+3)(j+1k)=12m∑k=1kn+1m∑j=k(−1)kj+3(j+1k)−12m∑k=1kn+1m∑j=k(−1)kj+1(j+1k)=12m∑k=1kn+1m+1∑i=k+1(−1)ki+2(ik)−12m∑k=1kn+1m+1∑i=k+1(−1)ki(ik). |
Applying (2.10) and (2.11), we can further simplify the last expression
D=Bn+1+Bn+22−12m+1∑k=1(−1)kkn+1k+2+12m+1∑k=1(−1)kkn=Bn+1+Bn+22+m+1∑k=1(−1)kknk+2. | (2.17) |
Finally, putting (2.16) and (2.17), we arrive at
C+D=Bn+3Bn+1+Bn+22, |
which proves the second identity (2.12).
Furthermore, there are four similar sums that can be expressed in closed forms in Bernoulli numbers.
Theorem 5 (m,n∈N).
m∑k=0(k+1)nm∑i=k(−1)ki+1(ik)=Bn,m≥n≥2; | (2.18) |
m∑k=0(k+1)nm∑i=k(−1)ki+2(ik)=Bn+1,m≥n≥1; | (2.19) |
m∑k=0(k+2)nm∑i=k(−1)ki+1(ik)=n+Bn,m≥n≥2; | (2.20) |
m∑k=0(k+2)nm∑i=k(−1)ki+2(ik)=1−Bn+Bn+1,m≥n≥1. | (2.21) |
Proof. The first one (2.18) is deduced from (2.9) under the replacement "k→k+1".
By splitting the sum in (2.19) into two, then making the replacements "i→j−1,k→k−1" for the former and "k→k−1" for the latter, we can confirm the second identity (2.19) as follows:
m∑k=0(k+1)nm∑i=k(−1)ki+2(ik)=m∑k=0(k+1)nm∑i=k(−1)ki+2{(i+1k+1)−(ik+1)}=m+1∑k=1knm+1∑j=k(−1)k−1j+1(jk)+m+1∑k=1knm∑i=k−1(−1)ki+2(ik)=m∑k=1knm∑i=k(−1)ki+2(ik)−m+1∑k=1knm+1∑j=k(−1)kj+1(jk)=(Bn+Bn+1)−Bn=Bn+1. |
According to (2.13), we can write the third sum in (2.20) as "E+F", where
E=m∑k=0(k+2)nm∑i=k(−1)ki+1(i+1k+1),F=m∑k=0(k+2)nm∑i=k(−1)k−1i+1(ik+1). |
The sum "E" can be evaluated by
E=m∑k=0(−1)k(k+2)nk+1m∑i=k(ik)=m∑k=0(−1)k(k+2)nk+1(m+1k+1)=n∑i=0(ni)m∑k=0(−1)k(m+1k+1)(k+1)i−1. |
Because the above inner sum results in zero for 2≤i≤n, there remain, for "E", only two terms corresponding to i=1 and i=0:
E=n+m∑k=0(−1)kk+1(m+1k+1)=n+Hm+1. | (2.22) |
The sum "F" can be restated, under "k→k−1", as
F=m+1∑k=1(k+1)nm∑i=k−1(−1)ki+1(ik)=m∑k=1(k+1)nm∑i=k(−1)ki+1(ik)=m∑k=0(k+1)nm∑i=k(−1)ki+1(ik)−m∑i=01i+1. |
Evaluating the former sum by (2.18), we find that
F=Bn−Hm+1. | (2.23) |
Then the third identity (2.20) follows by putting (2.22) and (2.23) together.
Finally, for (2.21), write that sum as "G+H", where
G=m∑k=0(k+2)nm∑i=k(−1)ki+2(i+1k+1),H=m∑k=0(k+2)nm∑i=k(−1)k−1i+2(ik+1). |
By making use of (2.18) and (2.7), we can evaluate
G=m+1∑k=1(k+1)nm+1∑j=k(−1)k−1j+1(jk)=Hm+2−Bn,H=m∑k=0(k+2)n+1m∑i=k(−1)k−1(i+1)(i+2)(i+1k+2)=m+1∑k=2kn+1m+1∑j=k(−1)k+1j(j+1)(jk)=Bn+1−m+1∑j=11j+1=1+Bn+1−Hm+2. |
It follows consequently that
G+H=1−Bn+Bn+1, |
which coincides with the right-hand side of (2.21).
In this section, we shall first prove a binomial identity. Then it will be utilized to derive equivalent expressions for the connection coefficients Ω(m,k) and ω(m,k). These equivalent forms will be useful in proving further explicit formulae for Bernoulli numbers.
We begin with the following binomial identity.
Theorem 6. For two indeterminates x,y and m,k∈N0 with m≥k, the following algebraic identity holds:
m∑j=k(x−j)k(1+y)k(1−x+y+j)=m∑i=k{(x−i)k(1+y+m−i)k+1+(x−k)k+1(1−x+y+i)(1+y−k+i)k+1}=m∑i=k{(x−m+i−k)k(1+y−k+i)k+1+(x−k)k+1(1−x+y+i)(1+y−k+i)k+1}. |
Proof. We prove the theorem by examining the double sum
S:=m∑i=km∑j=iΛ(i,j),whereΛ(i,j):=(k+1)(x−i)k(y−i+j)k+2. |
For the given λ′j-sequence below, it is routine to check its difference
λ′j=(x−i)k(y−i+j)k+1,λ′j−λ′j+1=Λ(i,j). |
Therefore, we can manipulate S by telescoping as follows:
S=m∑i=km∑j=iΛ(i,j)=m∑i=km∑j=i{λ′j−λ′j+1}=m∑i=k{λ′i−λ′m+1}, |
which can be restated as
S=m∑i=k{(x−i)k(y)k+1−(x−i)k(1+y−i+m)k+1}. | (3.1) |
Alternatively, for another λ″i-sequence, we have
λ″i:=(x−i)k+1(1+y−i+j)k+1,λ″i−λ″i+1=(1−x+y+j)Λ(i,j). |
Hence, we can reformulate S analogously as follows:
S=m∑j=kj∑i=kΛ(i,j)=m∑j=kj∑i=kλ″i−λ″i+11−x+y+j=m∑j=kλ″k−λ″j+11−x+y+j, |
which can be rewritten explicitly
S=m∑j=k{(x−k)k+1(1−x+y+j)(1+y−k+j)k+1−(x−j−1)k+1(1−x+y+j)(y)k+1}. | (3.2) |
By relating (3.1) to (3.2), we derive the equality
m∑i=k(x−i)k(1+y−i+m)k+1+m∑j=k(x−k)k+1(1−x+y+j)(1+y−k+j)k+1=m∑i=k(x−i)k(y)k+1+m∑j=k(x−j−1)k+1(1−x+y+j)(y)k+1=m∑j=k(x−j)k(1−x+y+j)(1+y)k, |
which is equivalent to the expression in the theorem.
When x=y=0, Theorem 6 reduces to the crucial identity used by Komatsu and Pita-Ruiz [31, Eq (27)].
m∑j=km+1j+1(jk)=m∑i=k(m+1i−k)(mi)=m∑i=k(m+1m−i)(mi−k). |
From this, we deduce the equivalent expressions below
Ω(m,k)=m∑i=k(−1)km+1(m+1i−k)(mi)=m∑i=k(−i)k(1+m−i)k+1. | (3.3) |
This leads us to the following formula which reduces, for m=n, to Munch [39] (cf. Gould [24, Eq (1.8)], Quaintance and Gould [43, Eq (15.7)]).
Theorem 7 (m≥n≥1).
Bn=m∑k=1knm∑i=k(−i)k(1+m−i)k+1=m∑k=1knm∑i=k(−1)km+1(m+1i−k)(mi). |
Consider the difference
m∑k=1knm∑i=k{(1−i)k−1(2+m−i)k−(−i)k(1+m−i)k+1}=m∑k=1knm∑i=k(1−i)k−1(1+m−i)k+1(m+1)=m∑k=1knm∑i=kλi−λi+1k where λi=(1−i)k(2+m−i)k=m∑k=1(−1)k−1(mk)kn−1=0,m≥n>1. |
We infer that the formula in Theorem 7 is equivalent to the following one.
Theorem 8 (m≥n≥2).
Bn=m∑k=1knm∑i=k(−1)k−1m+1(m+1i−k)(mi−1). | (3.4) |
Its special case m=n can be found in Gould [24, Eq (1.9)], Quaintance and Gould [43, Eq (15.5)] and Shanks [45]. However, the formula produced by Komatsu and Pita–Ruiz [31, Eq (2)] is incorrect.
The last formula can be rewritten as
Bn=m∑k=1knω(m,k), | (3.5) |
where the connection coefficients are defined by
ω(m,k)=m∑i=k(1−i)k−1(2+m−i)k=m∑i=k(−1)k−1m+1(m+1i−k)(mi−1). | (3.6) |
It is obvious that the matrix of the connection coefficients
ωm:=[ω(i,j)]1≤i,j≤m |
with diagonal entries
ω(k,k)=(−1)k+1k(k+1) |
is lower triangular and invertible. It is not difficult to check that its inverse is given explicitly by
ω−1m=[(−1)j+1(ij)(2i−j+ij)]1≤i,j≤m. |
Observing further that
ω(m,k)=m−1∑j=k−1(−j)k−1(1+m−j)k, |
we can prove the following interesting lemma.
Lemma 9. The connection coefficients satisfy the properties:
● Relations between Ω(m,k) and ω(m,k)
ω(m,k)=Ω(m,k−1)−(−m)k−1k!,Ω(m,k)=ω(m,k+1)+(−m)k(k+1)!. | (3.7) |
● Recurrence relations: m,k∈N
ω(m,k)−ω(m,k−1)=(−1)k−1k(k−1)(mk−1), | (3.8) |
ω(m,k)−ω(m−1,k)=(−1)k−1m(m+1)(mk). | (3.9) |
● Equivalent expression: m,k∈N
ω(m,k)=m∑j=k(−1)k−1j(j+1)(jk). | (3.10) |
Proof. The recurrence relations (3.8) and (3.9) follow by combining (3.7) with (2.4) and (2.5). The equivalent expression displayed in (3.10) is obtained by iterating (3.9), which has already appeared in (2.7).
The connection coefficients Ω(m,k) and ω(m,k) are related to the harmonic numbers in the following manners.
Proposition 10 (Equivalent expressions: m,k∈N).
Ω(m,k)=Hm+1+k∑i=1(−1)ii(m+1i)=m∑i=k(−1)ii+1(m+1i+1), | (3.11) |
ω(m,k)=Hm+1−1+k−1∑i=1(−1)ii(i+1)(mi)=m∑i=k(−1)i−1i(i+1)(mi). | (3.12) |
Proof. By iterating the relation (2.5) k-times, we find that
Ω(m,k)=Ω(m,0)+k∑i=1(−1)ii(m+1i) |
which becomes the first expression in (3.11) since Ω(m,0)=Hm+1. The second expression in (3.11) follows by the inverse pair
Hn=n∑i=1(−1)i−1i(ni)and1n=n∑i=1(−1)i−1(ni)Hi. |
Analogously, by iterating the relation (3.8) k-times, we have that
ω(m,k)=ω(m,1)+k−1∑i=1(−1)ii(i+1)(mi), |
which gives the first expression in (3.12) since ω(m,1)=Hm+1−1. The second expression in (3.12) follows by another inverse pair
Hm+1−1=m∑i=1(−1)i−1i(i+1)(mi)and1m(m+1)=m∑i=1(−1)i−1(mi)(Hi+1−1). |
We have therefore the following four explicit formulae.
Theorem 11 (m,n∈N0).
Bn=m∑i=0(−1)ii+1(m+1i+1)i∑k=0kn,m≥n≥0; | (3.13) |
Bn=m∑i=1(−1)i−1i(i+1)(mi)i∑k=1kn,m≥n≥2; | (3.14) |
Bn=m∑i=0(−1)ii+1(m+1i+1)i+1∑k=0kn,m≥n≥2; | (3.15) |
Bn=(−1)nn!χ(m=n)n+1+m∑i=0(−1)ii+1(mi+1)i∑k=0kn,m≥n≥0. | (3.16) |
In the last line, χ stands for the logical function with χ(true)=1 and χ(false)=0. When m=n, the first identity recovers Bergmann [7] (cf. Gould [23, Eq (5)], [24, Eq (1.10)]), and the two variants (3.15) and (3.16) reduce to Gould [24, Eqs (1.11) and (1.12)]. In addition, we remark that when m>n, (3.15) is substantially the same as (3.13).
Proof. The first two identities follow directly by (3.11) and (3.12). In comparison with (3.13), the third identity (3.15) is equivalent to
m∑i=0(−1)i(m+1i+1)(i+1)n−1=m+1∑j=1(−1)j−1(m+1j)jn−1=0, |
because for m≥n>1, the order m+1 of the differences is higher than the polynomial degree n−1.
By means of the binomial relation
(n+1i+1)=(ni+1)+(ni), |
we can rewrite (3.13) as
Bn=m∑i=0(−1)ii+1(mi+1)i∑k=0kn+m∑i=0(−1)ii+1(mi)i∑k=0kn. |
Recall that the power sum ∑j−1k=0kn results in a polynomial of degree n+1 in j with the leading coefficient being equal to 1n+1. We can evaluate the second sum above in closed form as follows:
m∑i=0(−1)ii+1(mi)i∑k=0kn=(−1)mm+1m∑j=0(−1)1+m−j(m+1j)j−1∑k=0kn=(−1)mm+1Δm+1xn+1n+1|x=0=(−1)nn!n+1χ(m=n). |
This confirms identity (3.16) and completes the proof of Theorem 11.
Consider the partial fraction decomposition
(x)ℓ(1+m+x)ℓ+1=ℓ∑j=0(−1)j+ℓ1+m+x+j(ℓj)(1+m+jℓ). |
In the above equation, letting "x→−i,ℓ→k" and "x→1−i,ℓ→k−1", we have, respectively, the two equalities:
(−i)k(1+m−i)k+1=k∑j=0(−1)j+k1+m−i+j(kj)(1+m+jk),(1−i)k−1(2+m−i)k=k∑j=1(−1)j+k1+m−i+j(k−1j−1)(m+jk−1). |
Substituting them into (3.3) and (3.6), respectively, then manipulating the double sums by exchanging the summation order, we derive the following equivalent expressions in terms of harmonic numbers.
Proposition 12 (m,k∈N0).
Ω(m,k)=k∑j=0(−1)j+k(kj)(1+m+jk){H1+m−k+j−Hj},m≥k≥0;ω(m,k)=k∑j=1(−1)j+k(k−1j−1)(m+jk−1){H1+m−k+j−Hj},m≥k≥1. |
Consequently, we find two further explicit formulae involving harmonic numbers.
Theorem 13 (m,n∈N).
Bn=m∑k=1knk∑j=0(−1)j+k(kj)(1+m+jk){H1+m−k+j−Hj},m≥n≥1;Bn=m∑k=1knk∑j=1(−1)j+k(k−1j−1)(m+jk−1){H1+m−k+j−Hj},m≥n≥2. |
We are going to review, finally in this section, more summation formulae involving harmonic numbers and Stirling numbers of the second kind by intervening with an extra integer parameter m.
There exist two formulae expressing Bn in terms of harmonic numbers, that are quite different from those in Theorem 13.
Theorem 14 (m>n≥1).
Bn=m∑i=1Hii∑k=1(−1)k−1(i−1k−1)kn=m∑k=1knm∑i=k(−1)k−1(i−1k−1)Hi, | (4.1) |
Bn=2n+1m∑i=1Hii+1i∑k=1(−1)k−1(ik)kn+1=2n+1m∑k=1kn+1m∑i=k(−1)k−1(ik)Hii+1. | (4.2) |
When m=n, the second formula (4.2) recovers Gould [24, Eq (1.4)].
Proof. Recalling the generating function
∞∑i=1Hiyi=−ln(1−y)1−y, |
we can proceed with
Bn=n![xn]xex−1=n![xn]ex1−ex×−ln{1−(1−ex)}1−(1−ex)=n![xn]m∑i=1Hiex(1−ex)i−1m>n=n![xn]m∑i=1Hii∑k=1(−1)k−1(i−1k−1)ekx, |
which results in the first formula (4.1).
The second formula (4.2) is a variant of (4.1), which can be verified by making use of another generating function
∞∑i=1Hii+1yi+1=ln2(1−y)2. |
In fact, we can similarly extract the coefficient as follows:
Bn=n![xn]xex−1=n![xn]2ln2{1−(1−ex)}2x(ex−1)=−2n![xn+1]m∑i=1Hii+1(1−ex)im>n=−2n![xn+1]m∑i=1Hii+1i∑k=1(−1)k(ik)ekx=2n+1m∑i=1Hii+1i∑k=1(−1)k−1(ik)kn+1. |
Here we offer three formulae containing the Stirling numbers of the second kind, extending those by Shirai [46, Theorem 6 and Corollary 7] (cf. Morrow [38, Eq (1.5)]).
Theorem 15 (λ≠0 and m,n∈N with m≥n≥0).
Bn=m∑j=0(−1)j(m+1j+1)(n+jj)S2(n+j,j), | (4.3) |
Bn=nn−1m+1∑j=1(−1)j(m+2j+1)(n+j−1j)S2(n+j,j), | (4.4) |
Bn=nn−1m+2∑j=1(−1)jλ+j+1λ(m+3j+1)(n+j−1j)S2(n+j,j). | (4.5) |
When m=n, the first formula (4.3) can be found in Gould [23, Eq (11)], [24, Eq (1.5)] (see also Luo [33], Quaintance and Gould [43, Eq (15.10)], Shirai [46, Theorem 6]). Two variants (4.4) and (4.5) with m=n and λ=n+23 are due to Shirai [46, Corollary 7].
Proof. Recall the exponential generating function
(ex−1)jj!=∞∑n=0xn+j(n+j)!S2(n+j,j). |
We can extract the coefficient
Bn=n![xn]xex−1=n![xn]11−{1−ex−1x}=n![xn]m∑i=0{1−ex−1x}im≥n=n!m∑i=0i∑j=0(−1)j(ij)[xn+j](ex−1)j=n!m∑j=0(−1)j[xn+j](ex−1)jm∑i=j(ij). |
Evaluating the last sum
m∑i=j(ij)=(m+1j+1), |
we get the expression
Bn=n!m∑j=0(−1)j(m+1j+1)[xn+j](ex−1)j=m∑j=0(−1)j(m+1j+1)(n+jj)S2(n+j,j), |
which proves the first formula (4.3).
The second sum (4.4) can be evaluated as follows:
m+1∑j=1(−1)jnn−1(m+2j+1)(n+j−1j)S2(n+j,j)=n![xn]m+1∑j=1(−1)j(m+2j+1)n+jn−1(ex−1x)j=n![xn]m+1∑j=1(−1)j(m+2j+1)(1+j+1n−1)(ex−1x)j=Bn+n!(m+2)n−1[xn]m+1∑j=0(−1)j(m+1j)(ex−1x)j=Bn+n!(m+2)n−1[xn](1−ex−1x)m+1, |
because the last coefficient vanishes, thanks to the fact that m+1>n and the constant term of (1−ex−1x) is equal to zero.
Finally, writing
λ+j+1λ=1+j+1λ, |
we can reformulate the third sum in (4.5) as
m+2∑j=1(−1)jn(λ+j+1)(n−1)λ(m+3j+1)(n+j−1j)S2(n+j,j)=nn−1m+2∑j=1(−1)j(m+3j+1)(n+j−1j)S2(n+j,j)+n(m+3)(n−1)λm+2∑j=1(−1)j(m+2j)(n+j−1j)S2(n+j,j). |
The first term on the right equals Bn in view of (4.4). The second term on the right vanishes again, which is justified analogously as follows:
m+2∑j=1(−1)j(m+2j)(n+j−1j)S2(n+j,j)=(n−1)!m+2∑j=1(−1)j(n+j)(m+2j)[xn](ex−1x)j=n(n−1)![xn]m+2∑j=0(−1)j(m+2j)(ex−1x)j+(m+2)(n−1)![xn]m+2∑j=1(−1)j(m+1j−1)(ex−1x)j=n(n−1)m+2−(m+2)(n−1)m+1(ex−1x). |
Theorem 16 (m≥n≥2).
Bn=n2n−1m∑i=1(−1)i−1i!2i+1S2(n−1,i) | (4.6) |
=n2n−1m∑k=1kn−1m∑i=k(−1)k−12i+1(ik),Bn=n2n−1m∑k=1kn−1m∑i=k(−1)k−12i(i−1k−1). | (4.7) |
The special case m=n−1 of the first formula (4.6) was found by Worptzky [50] (see also Carlitz [9, Eq (6)], Garabedian [21], Gould [23, Eq (2)], [24, Eq (3.22)]). Instead, the variant (4.7) reduces, for m=n, to Carlitz [9, Eq (5)].
Proof. By making use of the algebraic identity
F(x):={2xe2x−1−1}−{xex−1−1}=−x1+ex, |
we can extract the coefficient
2n−1n!Bn=[xn]F(x)=[xn]−x1+ex=−[xn−1]12−(1−ex)=−[xn−1]m∑i=1(−1)i2i+1(ex−1)i1+m≥n>0=m∑i=1(−1)i−12i+1i!(n−1)!S2(n−1,i), |
which proves the first identity (4.6). Analogously, we have
2n−1n!Bn=[xn]F(x)=[xn−1]−11+ex=[xn−1]{12(1−1−ex2)−11−1−ex2}=m∑i=1(−1)i−12i[xn−1]{(ex−1)i+(ex−1)i−1}m≥n−1=m∑i=1(−1)i−12i(n−1)!{i!S2(n−1,i)+(i−1)!S2(n−1,i−1)}. |
By invoking the expression
S2(n,i)=i∑j=1(−1)i+ji!(ij)jn, |
we can further manipulate the last sum
2n−1nBn=m∑i=1(−1)k−12ii∑k=1{(ik)−(i−1k)}kn−1=m∑i=1(−1)k−12ii∑k=1(i−1k−1)kn−1=m∑i=1(−1)k−1i2ii∑k=1(ik)kn. |
This confirms the second formula (4.7).
The formulae in Theorem 16 imply the following results, that recover, for m=n−1 and m=n, the two formulae due to Todorov [48, Eqs (8) and (9)] (see also Gould [24, Eq (3.23)] for the former one).
Theorem 17 (m≥n≥2).
Bn=n2m+1(2n−1)m∑j=0j∑k=0(−1)k−1(m+1j+1)kn−1, | (4.8) |
Bn=n2m(2n−1)m∑j=1j∑k=1(−1)k−1(mj)kn−1. | (4.9) |
Proof. By means of the binomial transform
m∑i=k(ik)2m−i=m∑i=k(ik)m∑j=i(m−ij−i)=m∑j=kj∑i=k(ik)(m−im−j)=m∑j=k(m+1j−k)=m∑j=k(m+1j+1), |
we can reformulate the sum in (4.6) as
Bn=n2n−1m∑k=0(−1)k−1kn−12m+1m∑i=k2m+12i+1(ik)=n2n−1m∑k=0(−1)k−1kn−12m+1m∑j=k(m+1j+1)=n2m+1(2n−1)m∑j=0j∑k=0(−1)k−1(m+1j+1)kn−1, |
which confirms the first identity (4.8). The second one (4.8) can be done analogously by applying another binomial transform
m∑i=k(i−1k−1)2m−i=m∑i=k(i−1k−1)m∑j=i(m−ij−i)=m∑j=kj∑i=k(i−1k−1)(m−im−j)=m∑j=k(mj−k)=m∑j=k(mj) |
to (4.6) and then manipulate the double sum as follows:
Bn=n2n−1n∑k=1knn∑i=k(−1)k−1i2i(ik)=n2n−1m∑k=1kn−1(−1)k−12mm∑i=k(i−1k−1)2m−i=n2n−1m∑k=1kn−1(−1)k−12mm∑j=k(mj)=n2m(2n−1)m∑j=1j∑k=1(−1)k−1(mj)kn−1. |
Nadia Na Li: Computation, Writing, and Editing; Wenchang Chu: Original draft, Review, and Supervision. Both authors have read and agreed to the published version of the manuscript.
The authors express their sincere gratitude to the three reviewers for the careful reading, critical comments, and valuable suggestions that contributed significantly to improving the manuscript during revision.
Prof. Wenchang Chu is the Guest Editor of special issue "Combinatorial Analysis and Mathematical Constants" for AIMS Mathematics. Prof. Wenchang Chu was not involved in the editorial review and the decision to publish this article. The authors declare no conflicts of interest.
[1] | J. H. Holland, Genetic algorithms, Sci. Am., 267 (1992), 66-72. |
[2] | J. Kennedy, R. Eberhart, Particle swarm optimization, Perth, WA, Australia: Proceedings of IEEE International Conference on Neural Networks, 1995. |
[3] |
R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11 (1997), 341-359. doi: 10.1023/A:1008202821328
![]() |
[4] | K. V. Price, Differential evolution: A fast and simple numerical optimizer, Berkeley, CA, USA: Proceedings of North American Fuzzy Information Processing, 1996. |
[5] |
D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm, J. Global Optim., 39 (2007), 459-471. doi: 10.1007/s10898-007-9149-x
![]() |
[6] | C. R. Hwang, Simulated annealing: Theory and applications, Acta Appl. Math., 12 (1988), 108- 111. |
[7] |
A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine Predators algorithm: A natureinspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. doi: 10.1016/j.eswa.2020.113377
![]() |
[8] | S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46-61. |
[9] | S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51-67. |
[10] |
S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software, 114 (2017), 163-191. doi: 10.1016/j.advengsoft.2017.07.002
![]() |
[11] |
R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput.-Aided Des., 43 (2011), 303-315. doi: 10.1016/j.cad.2010.12.015
![]() |
[12] |
D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67-82. doi: 10.1109/4235.585893
![]() |
[13] |
M. Liu, X. Yao, Y. Li, Hybrid whale optimization algorithm enhanced with Lévy flight and differential evolution for job shop scheduling problems, Appl. Soft Comput., 87 (2020), 105954. doi: 10.1016/j.asoc.2019.105954
![]() |
[14] | D. Tansui, A. Thammano, Hybrid nature-inspired optimization algorithm: Hydrozoan and sea turtle foraging algorithms for solving continuous optimization problems, IEEE Access, 8 (2020), 65780- 65800. |
[15] |
H. Garg, A hybrid GSA-GA algorithm for constrained optimization problems, Inf. Sci., 478 (2019), 499-523. doi: 10.1016/j.ins.2018.11.041
![]() |
[16] | D. T. Le, D. K. Bui, T. D. Ngo, Q. H. Nguyen, H. Nguyen-Xuan, A novel hybrid method combining electromagnetism-like mechanism and firefly algorithms for constrained design optimization of discrete truss structures, Comput. Struct., 212 (2019), 20-42. |
[17] | N. E. Humphries, N. Queiroz, J. R. M. Dyer, N. G. Pade, M. K. Musyl, K. M. Schaefer, et al., Environmental context explains Lévy and Brownian movement patterns of marine predators, Nature, 465 (2010), 1066-1069. |
[18] |
F. Bartumeus, J. Catalan, U. L. Fulco, M. L. Lyra, G. M. Viswanathan, Erratum: Optimizing the encounter rate in biological interactions: Lévy versus brownian strategies, Phys. Rev. Lett., 89 (2002), 109902. doi: 10.1103/PhysRevLett.89.109902
![]() |
[19] | M. A. A. Al-qaness, A. A. Ewees, H. Fan, L. Abualigah, M. A. Elaziz, Marine Predators algorithm for forecasting confirmed cases of COVID-19 in Italy, USA, Iran and Korea, Int. J. Environ. Res. Public Health, 17 (2020), 3520. |
[20] | D. Yousri, T. S. Babu, E. Beshr, M. B. Eteiba, D. Allam, A robust strategy based on marine predators algorithm for large scale photovoltaic array reconfiguration to mitigate the partial shading effect on the performance of PV system, IEEE Access, 8 (2020), 112407-112426. |
[21] | M. Abdel-Basset, R. Mohamed, M. Elhoseny, R. K. Chakrabortty, M. Ryan, A hybrid COVID- 19 detection model using an improved Marine Predators algorithm and a ranking-based diversity reduction strategy, IEEE Access, 8 (2020), 79521-79540. |
[22] | M. A. Elaziz, A. A. Ewees, D. Yousri, H. S. N. Alwerfali, Q. A. Awad, S. Lu, et al., An improved Marine Predators algorithm with fuzzy entropy for multi-level thresholding: Real world example of COVID-19 CT image segmentation, IEEE Access, 8 (2020), 125306-125330. |
[23] |
R. V. Rao, V. Patel, Multi-objective optimization of heat exchangers using a modified teachinglearning-based optimization algorithm, Appl. Math. Modell., 37 (2013), 1147-1162. doi: 10.1016/j.apm.2012.03.043
![]() |
[24] | R. V. Rao, V. Patel, An improved Teaching-learning-based optimization algorithm for solving unconstrained optimization problems, Sci. Iran., 20 (2013), 710-720. |
[25] |
A. R. Yildiz, Optimization of multi-pass turning operations using hybrid teaching learning-based approach, Int. J. Adv. Manuf. Technol., 66 (2013), 1319-1326. doi: 10.1007/s00170-012-4410-y
![]() |
[26] |
K. Yu, X. Wang, Z. Wang, An improved Teaching-learning-based optimization algorithm for numerical and engineering optimization problems, J. Intell. Manuf., 27 (2016), 831-843. doi: 10.1007/s10845-014-0918-3
![]() |
[27] | E. Uzlu, M. Kankal, A. Akpınar, T. Dede, Estimates of energy consumption in Turkey using neural networks with the Teaching-learning-based optimization algorithm, Energy, 75 (2014), 295-303. |
[28] | V. Toǧan, Design of planar steel frames using teaching-learning based optimization, Eng. Struct., 34 (2012), 225-232. |
[29] |
R. V. Rao, V. D. Kalyankar, Parameter optimization of modern machining processes using teachinglearning-based optimization algorithm, Eng. Appl. Artif. Intell., 26 (2013), 524-531. doi: 10.1016/j.engappai.2012.06.007
![]() |
[30] |
M. Singh, B. K. Panigrahi, A. R. Abhyankar, S. Das, Optimal coordination of directional overcurrent relays using informative differential evolution algorithm, J. Comput. Sci., 5 (2014), 269-276. doi: 10.1016/j.jocs.2013.05.010
![]() |
[31] |
H. Bouchekara, M. A. Abido, M. Boucherma, Optimal power flow using Teaching-learning-based optimization technique, Electr. Power Syst. Res., 114 (2014), 49-59. doi: 10.1016/j.epsr.2014.03.032
![]() |
[32] | G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A. Prince, H. E. Stanley, Lévy flight search patterns of wandering albatrosses, Nature, 381 (1996), 413-415. |
[33] | J. D. Filmalter, L. Dagorn, P. D. Cowley, M. Taquet, First descriptions of the behavior of silky sharks, Carcharhinus falciformis, around drifting fish aggregating devices in the Indian Ocean, Bull. Mar. Sci., 87 (2011), 325-337. |
[34] | E. Clark, Instrumental conditioning of lemon sharks, Science (New York, N.Y.), 130 (1959), 217-218. |
[35] | L. A. Dugatkin, D. S. Wilson, The prerequisites for strategic behaviour in bluegill sunfish, Lepomis macrochirus, Anim. Behav., 44 (1992), 223-230. |
[36] | V. Schluessel, H. Bleckmann, Spatial learning and memory retention in the grey bamboo shark (Chiloscyllium griseum), Zoology, 115 (2012), 346-353. |
[37] | D. W. Zimmerman, B. D. Zumbo, Relative power of the Wil-coxon test, the Friedman test, and repeated-measures ANOVA on ranks, J. Exp. Educ., 62 (1993), 75-86. |
[38] | S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software, 114 (2017), 163-191. |
[39] |
C. A. C. Coello, E. M. Montes, Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Adv. Eng. Inf., 16 (2002), 193-203. doi: 10.1016/S1474-0346(02)00011-3
![]() |
[40] |
E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A gravitational search algorithm, Inf. Sci., 179 (2009), 2232-2248. doi: 10.1016/j.ins.2009.03.004
![]() |
[41] | H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems, Comput. Struct., 110 (2012), 151-166. |
[42] | R. A. Krohling, L. dos Santos Coelho, Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems, IEEE Trans. Syst., Man, Cybern., Part B (Cybernetics), 36 (2006), 1407-1416. |
[43] |
K. M. Ragsdell, D. T. Phillips, Optimal design of a class of welded structures using geometric programming, J. Eng. Ind., 98 (1976), 1021-1025. doi: 10.1115/1.3438995
![]() |
[44] |
P. Savsani, V. Savsani, Passing vehicle search (PVS): A novel metaheuristic algorithm, Appl. Math. Model., 40 (2016), 3951-3978. doi: 10.1016/j.apm.2015.10.040
![]() |
[45] | M. Dorigo, T. Stützle, Ant colony optimization: Overview and recent advances, 2Eds., Cham, Switzerland: Springer International Publishing, 2019. |
[46] | S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51-67. |
[47] |
S. Mirjalili, SCA: A sine cosine algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120-133. doi: 10.1016/j.knosys.2015.12.022
![]() |
[48] |
H. Beyer, H. Schwefel, Evolution strategies-A comprehensive introduction, Nat. Comput., 1 (2002), 3-52. doi: 10.1023/A:1015059928466
![]() |
[49] |
R. Moghdani, K. Salimifard, Volleyball premier league algorithm, Appl. Soft Comput., 64 (2018), 161-185. doi: 10.1016/j.asoc.2017.11.043
![]() |
[50] |
H. Liu, Z. Cai, Y. Wang, Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization, Appl. Soft Comput., 10 (2010), 629-640. doi: 10.1016/j.asoc.2009.08.031
![]() |
[51] |
K. Thirugnanasambandam, S. Prakash, V. Subramanian, S. Pothula, V. Thirumal, Reinforced cuckoo search algorithm-based multimodal optimization, Appl. Intell., 49 (2019), 2059-2083. doi: 10.1007/s10489-018-1355-3
![]() |
[52] | K. Deb, GeneAS: A robust optimal design technique for mechanical component design, 2Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. |
[53] | M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput., 188 (2007), 1567-1579. |
[54] | E. Mezura-Montes, C. A. C. Coello, R. Landa-Becerra, Engineering optimization using simple evolutionary algorithm, Sacramento, CA, USA: Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence, 2003. |
[55] |
T. Ray, P. Saini, Engineering design optimization using swarm with an intelligent information sharing among individuals, Eng. Optim., 33 (2001), 735-748. doi: 10.1080/03052150108940941
![]() |
[56] |
A. D. Belegundu, J. S. Arora, A study of mathematical programming methods for structural optimization. Part I: Theory, Int. J. Numer. Methods Eng., 21 (1985), 1583-1599. doi: 10.1002/nme.1620210904
![]() |
[57] |
T. Ray, K. M. Liew, Society and civilization: An optimization algorithm based on the simulation of social behavior, IEEE Trans. Evol. Comput., 7 (2003), 386-396. doi: 10.1109/TEVC.2003.814902
![]() |
[58] | Q. Zhang, H. Chen, A. A. Heidari, X. Zhao, Y. Xu, P. Wang, et al., Chaos-induced and mutationdriven schemes boosting salp chains-inspired optimizers, IEEE Access, 7 (2019), 31243-31261. |
[59] | A. Kaveh, M. Khayatazad, A new meta-heuristic method: Ray optimization, Comput. Struct., 112 (2012), 283-294. |
[60] | F. Huang, L. Wang, Q. He, An effective co-evolutionary differential evolution for constrained optimization, Appl. Math. Comput., 186 (2007), 340-356. |
[61] |
E. M. Montes, C. A. C. Coello, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, Int. J. Gen. Syst., 37 (2008), 443-473. doi: 10.1080/03081070701303470
![]() |
[62] |
S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89 (2015), 228-249. doi: 10.1016/j.knosys.2015.07.006
![]() |
[63] | J. S. Arora, Introduction to optimum design, New York: McGraw-Hill Book Co., 1989. |
[64] |
A. A. Heidari, R. A. Abbaspour, A. R. Jordehi, An efficient chaotic water cycle algorithm for optimization tasks, Neural Comput. Appl., 28 (2017), 57-85. doi: 10.1007/s00521-015-2037-2
![]() |
[65] |
A. H. Gandomi, X. S. Yang, A. H. Alavi, S. Talatahari, Bat algorithm for constrained optimization tasks, Neural Comput. Appl., 22 (2013), 1239-1255. doi: 10.1007/s00521-012-1028-9
![]() |
[66] |
H. Rosenbrock, An automatic method for finding the greatest or least value of a function, Comput. J., 3 (1960), 175-184. doi: 10.1093/comjnl/3.3.175
![]() |
[67] | L. dos Santos Coelho, Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems, Expert Syst. Appl., 37 (2010), 1676-1683. |
[68] |
E. Mezura-Montes, C. A. C. Coello, A simple multimembered evolution strategy to solve constrained optimization problems, IEEE Trans. Evol. Comput., 9 (2005), 1-17. doi: 10.1109/TEVC.2004.836819
![]() |
[69] | F. Huang, L. Wang, Q. He, An effective co-evolutionary differential evolution for constrained optimization, Appl. Math. Comput., 186 (2007), 340-356. |
[70] |
M. Montemurro, A. Vincenti, P. Vannucci, The automatic dynamic penalisation method (ADP) for handling constraints with genetic algorithms, Comput. Methods Appl. Mech. Eng., 256 (2013), 70-87. doi: 10.1016/j.cma.2012.12.009
![]() |
[71] |
K. Deb, Optimal design of a welded beam via genetic algorithms, AIAA J., 29 (1991), 2013-2015. doi: 10.2514/3.10834
![]() |
[72] |
A. Kaveh, S. Talatahari, A novel heuristic optimization method: Charged system search, Acta Mech., 213 (2010), 267-289. doi: 10.1007/s00707-009-0270-4
![]() |
[73] |
B. K. Kannan, S. N. Kramer, An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, J. Mech. Des., 116 (1994), 405-411. doi: 10.1115/1.2919393
![]() |
[74] |
C. Ozturk, E. Hancer, D. Karaboga, Dynamic clustering with improved binary artificial bee colony algorithm, Appl. Soft Comput., 28 (2015), 69-80. doi: 10.1016/j.asoc.2014.11.040
![]() |
[75] |
X. Kong, L. Gao, H. Ouyang, S. Li, A simplified binary harmony search algorithm for large scale 0-1 knapsack problems, Expert Syst. Appl., 42 (2015), 5337-5355. doi: 10.1016/j.eswa.2015.02.015
![]() |
[76] |
M. Abdel-Basset, D. El-Shahat, H. Faris, S. Mirjalili, A binary multi-verse optimizer for 0-1 multidimensional knapsack problems with application in interactive multimedia systems, Comput. Ind. Eng., 132 (2019), 187-206. doi: 10.1016/j.cie.2019.04.025
![]() |
[77] |
P. Brucker, R. Qu, E. K. Burke, Personnel scheduling: Models and complexity, Eur. J. Oper. Res., 210 (2011), 467-473. doi: 10.1016/j.ejor.2010.11.017
![]() |
[78] |
M. M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints, Oper. Res., 35 (1987), 254-265. doi: 10.1287/opre.35.2.254
![]() |
[79] |
P. V. Laarhoven, E. Aarts, J. K. Lenstra, Job shop scheduling by simulated annealing, Oper. Res., 40 (1992), 113-125. doi: 10.1287/opre.40.1.113
![]() |
[80] | J. Zhang, J. Zhang, T. Lok, M. R. Lyu, A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training, Appl. Math. Comput., 185 (2007), 1026-1037. |
[81] |
K. Socha, C. Blum, An ant colony optimization algorithm for continuous optimization: Application to feed-forward neural network training, Neural Comput. Appl., 16 (2007), 235-247. doi: 10.1007/s00521-007-0084-z
![]() |
[82] | K. Y. Leong, A. Sitiol, K. S. M. Anbananthen, Enhance neural networks training using GA with chaos theory, 3Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. |
[83] |
X. Wang, J. Yang, X. Teng, W. Xia, R. Jensen, Feature selection based on rough sets and particle swarm optimization, Pattern Recognit. Lett., 28 (2007), 459-471. doi: 10.1016/j.patrec.2006.09.003
![]() |
[84] | M. Ghaemi, M. R. Feizi-Derakhshi, Feature selection using forest optimization algorithm, Pattern Recognit., 60 (2016), 121-129. |
[85] |
P. R. Varma, V. V. Kumari, S. S. Kumar, Feature selection using relative fuzzy entropy and ant colony optimization applied to real-time intrusion detection system, Procedia Comput. Sci., 85 (2016), 503-510. doi: 10.1016/j.procs.2016.05.203
![]() |
1. | Aimin Xu, Some identities connecting Stirling numbers, central factorial numbers and higher-order Bernoulli polynomials, 2025, 10, 2473-6988, 3197, 10.3934/math.2025148 |