In this paper, the concepts of deferred statistical convergence of order α and deferred strong Cesàro summability are generalized to general metric spaces and some relations between deferred strong Cesàro summability of order α and deferred statistical convergence of order α are given in general metric spaces.
Citation: Mikail Et, Muhammed Cinar, Hacer Sengul Kandemir. Deferred statistical convergence of order α in metric spaces[J]. AIMS Mathematics, 2020, 5(4): 3731-3740. doi: 10.3934/math.2020241
[1] | Lian-Ta Su, Kuldip Raj, Sonali Sharma, Qing-Bo Cai . Applications of relative statistical convergence and associated approximation theorem. AIMS Mathematics, 2022, 7(12): 20838-20849. doi: 10.3934/math.20221142 |
[2] | B. B. Jena, S. K. Paikray, S. A. Mohiuddine, Vishnu Narayan Mishra . Relatively equi-statistical convergence via deferred Nörlund mean based on difference operator of fractional-order and related approximation theorems. AIMS Mathematics, 2020, 5(1): 650-672. doi: 10.3934/math.2020044 |
[3] | Mikail Et, M. Çagri Yilmazer . On deferred statistical convergence of sequences of sets. AIMS Mathematics, 2020, 5(3): 2143-2152. doi: 10.3934/math.2020142 |
[4] | Aykut Or . Double sequences with ideal convergence in fuzzy metric spaces. AIMS Mathematics, 2023, 8(11): 28090-28104. doi: 10.3934/math.20231437 |
[5] | Jin-liang Wang, Chang-shou Deng, Jiang-feng Li . On moment convergence for some order statistics. AIMS Mathematics, 2022, 7(9): 17061-17079. doi: 10.3934/math.2022938 |
[6] | Reha Yapalı, Utku Gürdal . Pringsheim and statistical convergence for double sequences on $ L- $fuzzy normed space. AIMS Mathematics, 2021, 6(12): 13726-13733. doi: 10.3934/math.2021796 |
[7] | Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335 |
[8] | Abdulkadir Karakaş . Statistical convergence of new type difference sequences with Caputo fractional derivative. AIMS Mathematics, 2022, 7(9): 17091-17104. doi: 10.3934/math.2022940 |
[9] | Afrah. A. N. Abdou . Fixed points of Kannan maps in modular metric spaces. AIMS Mathematics, 2020, 5(6): 6395-6403. doi: 10.3934/math.2020411 |
[10] | Van Thien Nguyen, Samsul Ariffin Abdul Karim, Dinh Dat Truong . A note on the space of delta m-subharmonic functions. AIMS Mathematics, 2020, 5(3): 2369-2375. doi: 10.3934/math.2020156 |
In this paper, the concepts of deferred statistical convergence of order α and deferred strong Cesàro summability are generalized to general metric spaces and some relations between deferred strong Cesàro summability of order α and deferred statistical convergence of order α are given in general metric spaces.
The idea of statistical convergence was given by Zygmund [1] in the first edition of his monograph published in Warsaw in 1935. The concept of statistical convergence was introduced by Steinhaus [2] and Fast [3] and then reintroduced independently by Schoenberg [4]. Over the years and under different names, statistical convergence has been discussed in the Theory of Fourier Analysis, Ergodic Theory, Number Theory, Measure Theory, Trigonometric Series, Turnpike Theory and Banach Spaces. Later on it was further investigated from the sequence spaces point of view and linked with summability theory by Bilalov and Nazarova [5], Braha et al. [6], Cinar et al. [7], Colak [8], Connor [9], Et et al. ([10,11,12,13,14]), Fridy [15], Isik et al. ([16,17,18]), Kayan et al. [19], Kucukaslan et al. ([20,21]), Mohiuddine et al. [22], Nuray [23], Nuray and Aydın [24], Salat [25], Sengul et al. ([26,27,28,29]), Srivastava et al. ([30,31]) and many others.
The idea of statistical convergence depends upon the density of subsets of the set N of natural numbers. The density of a subset E of N is defined by
δ(E)=limn→∞1nn∑k=1χE(k), |
provided that the limit exists, where χE is the characteristic function of the set E. It is clear that any finite subset of N has zero natural density and that
δ(Ec)=1−δ(E). |
A sequence x=(xk)k∈N is said to be statistically convergent to L if, for every ε>0, we have
δ({k∈N:|xk−L|≥ε})=0. |
In this case, we write \newline
xkstat⟶Lask→∞orS−limk→∞xk=L. |
In 1932, Agnew [32] introduced the concept of deferred Cesaro mean of real (or complex) valued sequences x=(xk) defined by
(Dp,qx)n=1qn−pnqn∑k=pn+1xk,n=1,2,3,… |
where p=(pn) and q=(qn) are the sequences of non-negative integers satisfying
pn<qnandlimn→∞qn=∞. | (1) |
Let K be a subset of N and denote the set {k:k∈(pn,qn],k∈K} by Kp,q(n).
Deferred density of K is defined by
δp,q(K)=limn→∞1(qn−pn)|Kp,q(n)|, provided the limit exists |
where, vertical bars indicate the cardinality of the enclosed set Kp,q(n). If qn=n, pn=0, then the deferred density coincides with natural density of K.
A real valued sequence x=(xk) is said to be deferred statistically convergent to L, if for each ε>0
limn→∞1(qn−pn)|{k∈(pn,qn]:|xk−L|≥ε}|=0. |
In this case we write Sp,q-limxk=L. If qn=n, pn=0, for all n∈N, then deferred statistical convergence coincides with usual statistical convergence [20].
In this section, we give some inclusion relations between statistical convergence of order α, deferred strong Cesàro summability of order α and deferred statistical convergence of order α in general metric spaces.
Definition 1. Let (X,d) be a metric space, (pn) and (qn) be two sequences as above and 0<α≤1. A metric valued sequence x=(xk) is said to be Sd,αp,q-convergent (or deferred d-statistically convergent of order α) to x0 if there is x0∈X such that
limn→∞1(qn−pn)α|{k∈(pn,qn]:xk∉Bε(x0)}|=0, |
where Bε(x0)={x∈X:d(x,x0)<ε} is the open ball of radius ε and center x0. In this case we write Sd,αp,q-limxk=x0 or xk→x0(Sd,αp,q). The set of all Sd,αp,q-statistically convergent sequences will be denoted by Sd,αp,q. If qn=n and pn=0, then deferred d-statistical convergence of order α coincides d -statistical convergence of order α denoted by Sd,α. In the special cases qn=n,pn=0 and α=1 then deferred d -statistical convergence of order α coincides d-statistical convergence denoted by Sd.
Definition 2. Let (X,d) be a metric space, (pn) and (qn) be two sequences as above and 0<α≤1. A metric valued sequence x=(xk) is said to be strongly wd,αp,q-summable (or deferred strongly d-Ces àro summable of order α) to x0 if there is x0∈X such that
limn→∞1(qn−pn)αqn∑k=pn+1d(xk,x0)=0. |
In this case we write wd,αp,q-limxk=x0 or xk→x0(wd,αp,q). The set of all strongly wd,αp,q-summable sequences will be denoted by wd,αp,q. If qn=n and pn=0, for all n∈N, then deferred strong d-Cesàro summability of order α coincides strong d-Cesàro summability of order α denoted by wd,α. In the special cases qn=n,pn=0 and α=1 then deferred strong d-Cesàro summability of order α coincides strong d-Ces àro summability denoted by wd.
Theorem 1. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1), (X,d) be a linear metric space and x=(xk),y=(yk) be metric valued sequences, then
(i) If Sd,αp,q-limxk=x0 and Sd,αp,q-limyk=y0, then Sd,αp,q-lim(xk+yk)=x0+y0,
(ii)If Sd,αp,q-limxk=x0 and c∈C, then Sd,αp,q-lim(cxk)=cx0,
(iii) If Sd,αp,q-limxk=x0,Sd,αp,q-limyk=y0 and x,y∈ℓ∞(X), then Sd,αp,q-lim(xkyk)=x0y0.
Proof. Omitted.
Theorem 2. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α and β be two real numbers such that 0<α≤β≤1. If a sequence x=(xk) is deferred strongly d-Cesàro summable of order α to x0, then it is deferred d-statistically convergent of order β to x0, but the converse is not true.
Proof. First part of the proof is easy, so omitted. For the converse, take X=R and choose qn=n,pn=0 (for all n∈N),d(x,y)=|x−y| and define a sequence x=(xk) by
xk={3√n,k=n20,k≠n2. |
Then for every ε>0, we have
1(qn−pn)α|{k∈(pn,qn]:xk∉Bε(0)}|≤[√n]nα→0, as n→∞, |
where 12<α≤1, that is xk→0(Sd,αp,q). At the same time, we get
1(qn−pn)αqn∑k=pn+1d(xk,0)≤[√n][3√n]nα→1 |
for α=16 and
1(qn−pn)αqn∑k=pn+1d(xk,0)≤[√n][3√n]nα→∞ |
for 0<α<16, i.e., xk↛0(wd,αp,q) for 0<α≤16.
From Theorem 2 we have the following results.
Corollary 1. ⅰ) Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α be a real number such that 0<α≤1. If a sequence x=(xk) is deferred strongly d-Cesàro summable of order α to x0, then it is deferred d-statistically convergent of order α to x0, but the converse is not true.
ⅱ) Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α be a real number such that 0<α≤1. If a sequence x=(xk) is deferred strongly d-Cesàro summable of order α to x0, then it is deferred d-statistically convergent to x0, but the converse is not true.
ⅲ) Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1). If a sequence x=(xk) is deferred strongly d-Cesàro summable to x0, then it is deferred d-statistically convergent to x0, but the converse is not true.
Remark Even if x=(xk) is a bounded sequence in a metric space, the converse of Theorem 2 (So Corollary 1 i) and ii)) does not hold, in general. To show this we give the following example.
Example 1. Take X=R and choose qn=n,pn=0 (for all n∈N),d(x,y)=|x−y| and define a sequence x=(xk) by
xk={1√k,k≠n30,k=n3n=1,2,.... |
It is clear that x∈ℓ∞ and it can be shown that x∈Sd,α−wd,α for 13<α<12.
In the special case α=1, we can give the followig result.
Theorem 3. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and x=(xk) is a bounded sequence in a metric space. If a sequence x=(xk) is deferred d-statistically convergent to x0, then it is deferred strongly d-Cesàro summable to x0.
Proof. Let x=(xk) be deferred d-statistically convergent to x0 and ε>0 be given. Then there exists x0∈X such that
limn→∞1(qn−pn)|{k∈(pn,qn]:xk∉Bε(x0)}|=0, |
Since x=(xk) is a bounded sequence in a metric space X, there exists x0∈X and a positive real number M such that d(xk,x0)<M for all k∈N. So we have
1(qn−pn)qn∑k=pn+1d(xk,x0)=1(qn−pn)qn∑k=pn+1d(xk,x0)≥εd(xk,x0)+1(qn−pn)qn∑k=pn+1d(xk,x0)<εd(xk,x0)≤M(qn−pn)|{k∈(pn,qn]:xk∉Bε(x0)}|+ε |
Takin limit n→∞, we get wdp,q-limxk=x0.
Theorem 4. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α be a real number such that 0<α≤1. If liminfnqnpn>1, then Sd,α⊆Sd,αp,q.
Proof. Suppose that liminfnqnpn>1; then there exists a ν>0 such that qnpn≥1+ν for sufficiently large n, which implies that
(qn−pnqn)α≥(ν1+ν)α⟹1qαn≥να(1+ν)α1(qn−pn)α. |
If xk→x0(Sd,α), then for every ε>0 and for sufficiently large n, we have
1qαn|{k≤qn:xk∉Bε(x0)}|≥1qαn|{k∈(pn,qn]:xk∉Bε(x0)}|≥να(1+ν)α1(qn−pn)α|{k∈(pn,qn]:xk∉Bε(x0)}|. |
This proves the proof.
Theorem 5. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α and β be two real numbers such that 0<α≤β≤1. If limn→∞(qn−pn)αqβn=s>0, then Sd,α⊆Sd,βp,q.
Proof. Let limn→∞(qn−pn)αqβn=s>0. Notice that for each ε>0 the inclusion
{k≤qn:xk∉Bε(x0)}⊃{k∈(pn,qn]:xk∉Bε(x0)} |
is satisfied and so we have the following inequality
1qαn|{k≤qn:xk∉Bε(x0)}|≥1qαn|{k∈(pn,qn]:xk∉Bε(x0)}|≥1qβn|{k∈(pn,qn]:xk∉Bε(x0)}|=(qn−pn)αqβn1(qn−pn)α|{k∈(pn,qn]:xk∉Bε(x0)}|≥(qn−pn)αqβn1(qn−pn)β|{k∈(pn,qn]:xk∉Bε(x0)}|. |
Therefore Sd,α⊆Sd,βp,q.
Theorem 6. Let (pn),(qn),(p′n) and (q′n) be four sequences of non-negative real numbers such that
p′n<pn<qn<q′n for all n∈N, | (2) |
and α,β be fixed real numbers such that 0<α≤β≤1, then
(i) If
limn→∞(qn−pn)α(q′n−p′n)β=a>0 | (3) |
then Sd,βp′,q′⊆Sd,αp,q,
(ii) If
limn→∞q′n−p′n(qn−pn)β=1 | (4) |
then Sd,αp,q⊆Sd,βp′,q′.
Proof. (i) Let (3) be satisfied. For given ε>0 we have
{k∈(p′n,q′n]:xk∉Bε(x0)}⊇{k∈(pn,qn]:xk∉Bε(x0)}, |
and so
1(q′n−p′n)β|{k∈(p′n,q′n]:xk∉Bε(x0)}|≥(qn−pn)α(q′n−p′n)β1(qn−pn)α|{k∈(pn,qn]:xk∉Bε(x0)}|. |
Therefore Sd,βp′,q′⊆Sd,αp,q.
(ii) Let (4) be satisfied and x=(xk) be a deferred d-statistically convergent sequence of order α to x0. Then for given ε>0, we have
1(q′n−p′n)β|{k∈(p′n,q′n]:xk∉Bε(x0)}|≤1(q′n−p′n)β|{k∈(p′n,pn]:xk∉Bε(x0)}|+1(q′n−p′n)β|{k∈(qn,q′n]:xk∉Bε(x0)}|+1(q′n−p′n)β|{k∈(pn,qn]:xk∉Bε(x0)}|≤pn−p′n+q′n−qn(q′n−p′n)β+1(q′n−p′n)β|{k∈(pn,qn]:xk∉Bε(x0)}|=(q′n−p′n)−(qn−pn)(q′n−p′n)β+1(q′n−p′n)β|{k∈(pn,qn]:xk∉Bε(x0)}|≤(q′n−p′n)−(qn−pn)β(qn−pn)β+1(qn−pn)β|{k∈(pn,qn]:xk∉Bε(x0)}|≤(q′n−p′n(qn−pn)β−1)+1(qn−pn)α|{k∈(pn,qn]:xk∉Bε(x0)}| |
Therefore Sd,αp,q⊆Sd,βp′,q′.
Theorem 7. Let (pn),(qn),(p′n) and (q′n) be four sequences of non-negative integers defined as in (2) and α,β be fixed real numbers such that 0<α≤β≤1.
(i) If (3) holds then wd,βp′,q′⊂wd,αp,q,
(ii) If (4) holds and x=(xk) be a bounded sequence, then wd,αp,q⊂wd,βp′,q′.
Proof.
i) Omitted.
ii) Suppose that wd,αp,q-limxk=x0 and (xk)∈ℓ∞(X). Then there exists some M>0 such that d(xk,x0)<M for all k, then
1(q′n−p′n)βq′n∑k=p′n+1d(xk,x0)=1(q′n−p′n)β[pn∑k=p′n+1+qn∑k=pn+1+q′n∑k=qn+1]d(xk,x0)≤pn−p′n+q′n−qn(q′n−p′n)βM+1(q′n−p′n)βqn∑k=pn+1d(xk,x0)≤(q′n−p′n)−(qn−pn)β(qn−pn)βM+1(qn−pn)αqn∑k=pn+1d(xk,x0)=(q′n−p′n(qn−pn)β−1)M+1(qn−pn)αqn∑k=pn+1d(xk,x0) |
Theorem 8. Let (pn),(qn),(p′n) and (q′n) be four sequences of non-negative integers defined as in (2) and α,β be fixed real numbers such that 0<α≤β≤1. Then
(i) Let (3) holds, if a sequence is strongly wd,βp′,q′-summable to x0, then it is Sd,αp,q-convergent to x0,
(ii) Let (4) holds and x=(xk) be a bounded sequence in (X,d), if a sequence is Sd,αp,q-convergent to x0 then it is strongly wd,βp′,q′-summable to x0.
Proof. (i) Omitted.
(ii) Suppose that Sd,αp,q-limxk=x0 and (xk)∈ℓ∞. Then there exists some M>0 such that d(xk,x0)<M for all k, then for every ε>0 we may write
1(q′n−p′n)βq′n∑k=p′n+1d(xk,x0)=1(q′n−p′n)βq′n−p′n∑k=qn−pn+1d(xk,x0)+1(q′n−p′n)βqn∑k=pn+1d(xk,x0)≤(q′n−p′n)−(qn−pn)(q′n−p′n)βM+1(q′n−p′n)βqn∑k=pn+1d(xk,x0)≤(q′n−p′n)−(qn−pn)β(q′n−p′n)βM+1(q′n−p′n)βqn∑k=pn+1d(xk,x0)≤(q′n−p′n(qn−pn)β−1)M+1(qn−pn)βqn∑k=pn+1d(xk,x0)≥εd(xk,x0)+1(qn−pn)βqn∑k=pn+1d(xk,x0)<εd(xk,x0)≤(q′n−p′n(qn−pn)β−1)M+M(qn−pn)α|{k∈(pn,qn]:d(xk,x0)≥ε}|+q′n−p′n(qn−pn)βε. |
This completes the proof.
The authors declare that they have no conflict of interests.
[1] | A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge, London and New York, 1979. |
[2] | H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74. |
[3] |
H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. doi: 10.4064/cm-2-3-4-241-244
![]() |
[4] |
I. J. Schoenberg, The integrability of certain functions and related summability methods, Am. Math. Mon., 66 (1959), 361-375. doi: 10.1080/00029890.1959.11989303
![]() |
[5] | B. Bilalov, T. Nazarova, On statistical convergence in metric space, Journal of Mathematics Research, 7 (2015), 37-43. |
[6] | N. L. Braha, H. M. Srivastava, S. A. Mohiuddine, A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean, Appl. Math. Comput., 228 (2014), 162-169. |
[7] |
M. Cinar, M. Karakas, M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory A., 2013 (2013), 1-11. doi: 10.1186/1687-1812-2013-1
![]() |
[8] | R. Colak, Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010 (2010), 121-129. |
[9] |
J. S. Connor, The Statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988), 47-63. doi: 10.1524/anly.1988.8.12.95
![]() |
[10] | M. Et, H. Şengül, On pointwise lacunary statistical convergence of order α of sequences of function, P. Natl. A. Sci. India A., 85 (2015), 253-258. |
[11] |
M. Et, S. A. Mohiuddine, A. Alotaibi, On λ-statistical convergence and strongly λ-summable functions of order α, J. Inequal. Appl., 2013 (2013), 1-8. doi: 10.1186/1029-242X-2013-1
![]() |
[12] | M. Et, B. C. Tripathy, A. J. Dutta, On pointwise statistical convergence of order α of sequences of fuzzy mappings. Kuwait J. Sci., 41 (2014), 17-30. |
[13] | M. Et, R. Colak, Y. Altin, Strongly almost summable sequences of order α, Kuwait J. Sci., 41 (2014), 35-47. |
[14] | E. Savas, M. Et, On (Δλ.m,I)-statistical convergence of order α, Period. Math. Hung., 71 (2015), 135-145. |
[15] | J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313. |
[16] | M. Işık, K. E. Akbaş, On λ-statistical convergence of order α in probability, J. Inequal. Spec. Funct., 8 (2017), 57-64. |
[17] |
M. Işık, K. E. Et, On lacunary statistical convergence of order α in probability, AIP Conference Proceedings, 1676 (2015), 020045. doi: 10.1063/1.4930471
![]() |
[18] |
M. Işık, K. E. Akbaş, On asymptotically lacunary statistical equivalent sequences of order in probability, ITM Web of Conferences, 13 (2017), 01024. doi: 10.1051/itmconf/20171301024
![]() |
[19] | E. Kayan, R. Colak, Y. Altin, d-statistical convergence of order α and d-statistical boundedness of order α in metric spaces, U. P. B. Sci. Bull., Series A, 80 (2018), 229-238. |
[20] |
M. Küçükaslan, M. Yılmaztürk, On deferred statistical convergence of sequences, Kyungpook Math. J., 56 (2016), 357-366. doi: 10.5666/KMJ.2016.56.2.357
![]() |
[21] | M. Küçükaslan, U. Dğer, O. Dovgoshey, On the statistical convergence of metric-valued sequences, Ukrains'kyi Matematychnyi Zhurnal, 66 (2014), 712-720. |
[22] | S. A. Mohiuddine, A. Alotaibi, M. Mursaleen, Statistical convergence of double sequences in locally solid Riesz spaces, Abstr. Appl. Anal., 2012 (2012), 1-9. |
[23] | F. Nuray, λ-strongly summable and λ-statistically convergent functions, Iran. J. Sci. Technol. A., 34 (2010), 335-338. |
[24] | F. Nuray, B. Aydin, Strongly summable and statistically convergent functions, Inform. Technol. Valdymas, 1 (2004), 74-76. |
[25] | T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150. |
[26] |
H. Şengül, M. Et, On I-lacunary statistical convergence of order α of sequences of sets, Filomat 31 (2017), 2403-2412. doi: 10.2298/FIL1708403S
![]() |
[27] | H. Şengül, On Wijsman I-lacunary statistical equivalence of order (η, μ), J. Inequal. Spec. Funct., 9 (2018), 92-101. |
[28] | H. Şengül, On Sα.β(θ)-convergence and strong Nα.β(θ,p)-summability, J. Nonlinear Sci. Appl., 10 (2017), 5108-5115. |
[29] |
H. Şengül, M. Et, Lacunary statistical convergence of order (α, β) in topological groups, Creat. Math. Inform., 26 (2017), 339-344. doi: 10.37193/CMI.2017.03.11
![]() |
[30] |
H. M. Srivastava, M. Mursaleen, A. Khan, Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Model., 55 (2012), 2040-2051. doi: 10.1016/j.mcm.2011.12.011
![]() |
[31] |
H. M. Srivastava, M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order α, Filomat, 31 (2017), 1573-1582. doi: 10.2298/FIL1706573S
![]() |
[32] |
R. P. Agnew, On deferred Cesàro mean, Ann. Math., 33 (1932), 413-421. doi: 10.2307/1968524
![]() |
1. | Sefa Anıl Sezer, Zerrin Önder, İbrahim Çanak, Statistical Deferred Cesàro Summability and Its Applications to Tauberian Theory, 2023, 49, 1017-060X, 10.1007/s41980-023-00770-y | |
2. | Mikail Et, Hacer Şengül Kandemir, Nazlım Deniz Aral, 2024, Chapter 5, 978-981-99-9206-5, 71, 10.1007/978-981-99-9207-2_5 | |
3. | Ibrahim S. Ibrahim, María C. Listán-García, Rifat Colak, A new notion of convergence defined by weak Fibonacci lacunary statistical convergence in normed spaces, 2024, 1425-6908, 10.1515/jaa-2023-0166 | |
4. | Sibel Ersan, On ρ-statistical convergence in neutrosophic normed spaces, 2024, 31, 1072-947X, 253, 10.1515/gmj-2023-2076 | |
5. | Ömer Kişi, Mehmet Gürdal, Certain aspects of deferred statistical convergence of fuzzy variables in credibility space, 2024, 32, 0971-3611, 2057, 10.1007/s41478-023-00583-6 | |
6. | Chiranjib Choudhury, Shyamal Debnath, Ayhan Esi, Further results on I−deferred statistical convergence, 2024, 38, 0354-5180, 769, 10.2298/FIL2403769C | |
7. | Ibrahim S. Ibrahim, María C. Listán-García, The sets of $$\left( \alpha ,\beta \right) $$-statistically convergent and $$\left( \alpha ,\beta \right) $$-statistically bounded sequences of order $$\gamma $$ defined by modulus functions, 2024, 73, 0009-725X, 1507, 10.1007/s12215-024-00998-5 | |
8. | Mehmet Küçükaslan, Abdullah Aydın, Deferred statistical order convergence in Riesz spaces, 2024, 53, 2651-477X, 1368, 10.15672/hujms.1322652 | |
9. | Kubra Elif Akbas, Mahmut Isik, On asymptotically deferred statistical equivalent sequences of order $ { \alpha} $ in probability, 2024, 0, 2577-8838, 0, 10.3934/mfc.2024037 | |
10. | Hacer Şengül Kandemi̇r, Mi̇kai̇l Et, On harmonic summability of order α, 2023, 16, 1793-5571, 10.1142/S1793557123502017 | |
11. | Esra GÜLLE, Uğur ULUSU, Wijsman Deferred Invariant Statistical and Strong $p$-Deferred Invariant Equivalence of Order $\alpha$, 2023, 6, 2645-8845, 211, 10.33401/fujma.1364368 | |
12. | P. N. Agrawal, Behar Baxhaku, Characterization of Deferred Statistical Convergence of Order $$\alpha $$ for Positive Linear Operators and Application to Generalized Bernstein Polynomials, 2024, 48, 2731-8095, 453, 10.1007/s40995-024-01590-3 |