Research article

The generalized conjugate direction method for solving quadratic inverse eigenvalue problems over generalized skew Hamiltonian matrices with a submatrix constraint

  • Received: 09 January 2020 Accepted: 07 April 2020 Published: 20 April 2020
  • MSC : 15A57, 15A24

  • In this paper, we consider a class of constrained quadratic inverse eigenvalue Problem 1.1. Then, a generalized conjugate direction method is proposed to obtain the generalized skew Hamiltonian matrix solutions with a submatrix constraint. In addition, by choosing a special kind of initial matrices, it is shown that the unique least Frobenius norm solutions can be obtained consequently. Some numerical results are reported to demonstrate the efficiency of our algorithm.

    Citation: Jia Tang, Yajun Xie. The generalized conjugate direction method for solving quadratic inverse eigenvalue problems over generalized skew Hamiltonian matrices with a submatrix constraint[J]. AIMS Mathematics, 2020, 5(4): 3664-3681. doi: 10.3934/math.2020237

    Related Papers:

    [1] Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193
    [2] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [3] Weichun Bu, Tianqing An, Guoju Ye, Yating Guo . Nonlocal fractional p()-Kirchhoff systems with variable-order: Two and three solutions. AIMS Mathematics, 2021, 6(12): 13797-13823. doi: 10.3934/math.2021801
    [4] Rabah Khaldi, Assia Guezane-Lakoud . On a generalized Lyapunov inequality for a mixed fractional boundary value problem. AIMS Mathematics, 2019, 4(3): 506-515. doi: 10.3934/math.2019.3.506
    [5] Zhoujin Cui . Primary resonance and feedback control of the fractional Duffing-van der Pol oscillator with quintic nonlinear-restoring force. AIMS Mathematics, 2023, 8(10): 24929-24946. doi: 10.3934/math.20231271
    [6] Fátima Cruz, Ricardo Almeida, Natália Martins . A Pontryagin maximum principle for optimal control problems involving generalized distributional-order derivatives. AIMS Mathematics, 2025, 10(5): 11939-11956. doi: 10.3934/math.2025539
    [7] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [8] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [9] Teng-Fei Shen, Jian-Gen Liu, Xiao-Hui Shen . Existence of solutions for Hadamard fractional nonlocal boundary value problems with mean curvature operator at resonance. AIMS Mathematics, 2024, 9(10): 28895-28905. doi: 10.3934/math.20241402
    [10] Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450
  • In this paper, we consider a class of constrained quadratic inverse eigenvalue Problem 1.1. Then, a generalized conjugate direction method is proposed to obtain the generalized skew Hamiltonian matrix solutions with a submatrix constraint. In addition, by choosing a special kind of initial matrices, it is shown that the unique least Frobenius norm solutions can be obtained consequently. Some numerical results are reported to demonstrate the efficiency of our algorithm.


    The linear complexity and the k-error linear complexity are important cryptographic characteristics of stream cipher sequences. The linear complexity of an N-periodic sequence s={su}u=0, denoted by LC(s), is defined as the length of the shortest linear feedback shift register (LFSR) that generates it [1]. With the Berlekamp-Massey (B-M) algorithm [2], if LC(s)N/2, then s is regarded as a good sequence with respect to its linear complexity. For an integer k0, the k-error linear complexity LCk(s) is the smallest linear complexity that can be obtained by changing at most k terms of s in the first period and periodically continued [3]. The cryptographic background of the k-error linear complexity is that some key streams with large linear complexity can be approximated by some sequences with much lower linear complexity [2]. For a sequence to be cryptographically strong, its linear complexity should be large enough, and its k-error linear complexity should be close to the linear complexity.

    The relationship between the linear complexity and the DFT of the sequence was given by Blahut in [4]. Let m be the order of 2 modulo an odd number N. For a primitive N-th root βF2m of unity, the DFT of s is defined by

    ρi=N1u=0suβiu0iN1. (1.1)

    Then

    LC(s)=WH(ρ0,ρ1,,ρN1), (1.2)

    where WH(A) is the hamming weight of the sequence A. The polynomial

    G(X)=N1i=0ρiXiF2m[X] (1.3)

    is called the Mattson-Solomon polynomial (M-S polynomial) of s [5]. It can be deduced from Eqs (1.2)and (1.3) that the linear complexity of s is equal to the number of the nonzero terms of G(X), namely

    LC(s)=|G(X)|. (1.4)

    By the inverse DFT,

    su=N1i=0ρiβiu=G(βu)0uN1. (1.5)

    There are many studies about two-prime generators. In 1997–1998, Ding calculated the linear complexity and the autocorrelation values of binary Whiteman generalized cyclotomic sequences of order two [6,7]. In 2013, Li defined a new generalized cyclotomic sequence of order two of length pq, which is based on Whiteman generalized cyclotomic classes, and calculated its linear complexity [8]. In 2015, Wei determined the k-error linear complexity of Legendre sequences for k=1,2 [9]. In 2018, Hofer and Winterhof studied the 2-adic complexity of the two-prime generator of period pq [10]. Alecu and Sălăgean transformed the optimisation problem of finding the k-error linear complexity of a sequence into an optimisation problem in the DFT domain, by using Blahut's theorem in the same year [11]. In 2019, in terms of the DFT, Chen and Wu discussed the k-error linear complexity for Legendre, Ding-Helleseth-Lam, and Hall's sextic residue sequences of odd prime period p [12]. In 2020, Zhou and Liu presented a type of binary sequences based on a general two-prime generalized cyclotomy, and derived their minimal polynomial and linear complexity [13]. In 2021, the autocorrelation distribution and the 2-adic complexity of generalized cyclotomic binary sequences of order 2 with period pq were determined by Jing [14].

    This paper is organized as follows. Firstly, we present some preliminaries about Whiteman generalized cyclotomic classes and the linear complexity in Section 2. In Section 3, we give main results about the linear complexity of Whiteman generalized cyclotomic sequences of order two. In Section 4, we give the 1-error linear complexity of these sequences. At last, we conclude this paper in Section 5.

    Let p and q be two distinct odd primes with gcd(p1,q1)=2, and N=pq, e=(p1)(q1)/2. By the Chinese Remainder Theorem, there is a fixed common primitive root g of both p and q such that ordN(g)=e. Let x be an integer satisfying

    x=g(modp)x=1(modq).

    Then the set

    Di={gsximodN:s=0,1,,e1}

    for i=0,1 is called a Whiteman generalized cyclotomic class of order two [15].

    As pointed out in [14], the unit group of the ring ZN is

    ZN={a(mod N):gcd(a,N)=1}={ip+jq(mod N):1iq11jp1}.

    Let P={p,2p,,(q1)p}, Q={q,2q,,(p1)q} and R={0}. Then ZN=ZNPQR. The sequence s(a,b,c)={su}u=0 over F2 is defined by

    su={c,if u=0,a,if uP,b,if uQ,12(1(up)(uq)),if uZN,

    where () denotes the Legendre symbol and a,b,cF2 [14].

    Lemma 2.1. [7] 1D1, if |pq|/2 is odd; and 1D0, if |pq|/2 is even.

    Lemma 2.2. [6]

    (1)Ifp±1(mod8),q±1(mod8)orp±3(mod8),q±3(mod8),then2D0.(2)Ifp±1(mod8),q±3(mod8)orp±3(mod8),q±1(mod8),then2D1.

    Lemma 2.3. [6] (1) If aP, then aP=P and aQ=R.

    (2) If aQ, then aP=R and aQ=Q.

    (3) If aDi, then aP=P, aQ=Q, and aDj=D(i+j)mod2, where i,j=0,1.

    It was shown in [6] that, for a primitive N-th root βF2m of unity, we have

    iPβi=1,iQβi=1,

    and

    iD0βi+iD1βi+iPβi+iQβi=1. (2.1)

    Lemma 2.4. [6]

    uDjβiu={p12(mod2),ifiP,q12(mod2),ifiQ.

    Actually, if p1(mod8) or p3(mod8), then (p1)/2=1; if p1(mod8) or p3(mod8), then (p1)/2=0. By symmetry, if q1(mod8) or q3(mod8), then (q1)/2=1; if q1(mod8) or q3(mod8), then (q1)/2=0.

    Lemma 2.5. Define

    Di(X)=uDiXuF2[X],i=0,1.

    Then for β, we have D0(β)=0 and D1(β)=1 if 2D0; D0(β)=ω and D1(β)=1+ω if 2D1, where ωF4F2.

    Proof. (1) If 2D0, by Lemma 2.3 we have

    [Di(β)]2=Di(β2)=2uDiβ2u=Di(β)F2.

    (2) If 2D1, by Lemma 2.3 we have

    [Di(β)]2=Di(β2)=2uDi+1β2u=Di+1(β),[Di(β)]4=[Di(β)2]2=[Di+1(β)]2=Di+1(β2)=2uDiβ2u=Di(β).

    Hence Di(β)F4F2.

    And by Eq (2.1), we have D0(β)D1(β) and D0(β)+D1(β)=1. Assume that D0(β)=0, D1(β)=1 for 2D0, and D0(β)=ω, D1(β)=1+ω for 2D1, where ωF4F2.

    Let LC(s(a,b,c)) be the linear complexity of s(a,b,c), and the other symbols be the same as before.

    Theorem 3.1. Let pv(mod8) and qw(mod8), where v,w=±1,±3. Then the linear complexity of s(a,b,c) respect to different values of p and q is as shown as Table 1.

    Table 1.  The linear complexity of s(a,b,c).
    s(0,0,0) s(0,0,1) s(0,1,0) s(0,1,1) s(1,0,0) s(1,0,1) s(1,1,0)) s(1,1,1)
    (1,3) or (3,1) pqp pqq+1 pq1 pqpq+2 pqpq+1 pq pqq pqp+1
    (1,3) or (3,1) pq1 pqpq+2 pqp pqq+1 pqq pqp+1 pqpq+1 pq
    (1,1) or (3,3) pqp+q12 pq+pq+12 pq+p+q32 pqpq+32 pqpq+12 pq+p+q12 pq+pq12 pqp+q+12
    (1,1) or (3,3) pq+p+q32 pqpq+32 pqp+q12 pq+pq+12 pq+pq12 pqp+q+12 pqpq+12 pq+p+q12
    (3,1) or (1,3) pqq pqp+1 pqpq+1 pq pq1 pqpq+2 pqp pqq+1
    (1,1) or (3,3) pq+pq12 pqp+q+12 pqpq+12 pq+p+q12 pq+p+q32 pqpq+32 pqp+q12 pq+pq+12

     | Show Table
    DownLoad: CSV

    Proof. We provide the process of calculating LC(s(0,0,0)) when v=1 and w=3, and can prove other cases in a similar way.

    By Lemmas 2.1–2.3 and Eq (1.1), we have 1D1, 2D1, then

    ρi=N1u=0suβiu=uD1βiu=uD0βiu,

    and ρ0=0. By Eq (1.3), we have

    G(X)=N1i=0ρiXi=iD0ρiXi+iD1ρiXi+iPρiXi+iQρiXi+ρ0=iD0uD0βiuXi+iD1uD0βiuXi+iPuD0βiuXi+iQuD0βiuXi.

    Let t=iu. Then by Lemmas 2.3–2.5, we have

    G(X)=iD0tD0βtXi+iD1tD1βtXi+iPp12Xi+iQq12Xi=D0(β)D0(X)+D1(β)D1(X)+iPXi=ωD0(X)+(1+ω)D1(X)+iPXi.

    By Eq (1.4) we can get the linear complexity of s(0,0,0) as

    LC(s(0,0,0))=|G(X)|=pqp.

    Actually, the linear complexity of s(1,0,0) was studied by Ding in [6] with its minimal polynomial.

    Let LCk(s(a,b,c)) be the k-error linear complexity of s(a,b,c), ˜s={˜su}u=0 be the new sequence obtained by changing at most k terms of s, that ˜s=s+e, where e={eu}u=0 is an error sequence of period N. Ding has provided in [2] that, the k-error linear complexity of a sequence can be expressed as

    LCk(s)=minWH(e)k{LC(s+e)}. (4.1)

    It is clearly that LC0(s)=LC(s) and

    NLC0(s)LC1(s)LCl(s)=0,

    where l=WH(s).

    Let G(X), Gk(X) and ˜G(X) be the M-S polynomials of s, e and ˜s respectively. Note that

    G(X)=N1i=0ρiXi, Gk(X)=N1i=0ηiXi, ˜G(X)=N1i=0ξiXi, (4.2)

    where ρi, ηi and ξi are the DFTs of s, e and ˜s respectively. By Eqs (1.5), (4.1) and (4.2), we have ˜G(X)=G(X)+Gk(X), then

    ξi=ρi+ηi. (4.3)

    Assume that eu0=1 for 0u0N1 and eu=0 for uu0 in the first period of e. Then the DFT of e is

    ηi=N1u=0euβiu=βiu00iN1.

    Specially, if u0=0, then ηi=1 for all 0iN1; otherwise, η0=1 and the order of ηi is N for 1iN1.

    Theorem 4.1. Let pv(mod8) and qw(mod8), where v,w=±1,±3, and the other symbols be the same as before. Then the 1-error linear complexity of s(a,b,c) is as shown as Table 2.

    Table 2.  The 1-error linear complexity of s(a,b,c).
    s(0,0,0) and s(0,0,1) s(0,1,0) and s(0,1,1) s(1,0,0) and s(1,0,1) s(1,1,0)) and s(1,1,1)
    (1,3) or (3,1) (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    pqpq+2 pqpq+1 (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    (1,3) or (3,1) pqpq+2 (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    pqpq+1
    (1,1) or (3,3) (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.
    pqpq+32 pqpq+12 (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    (1,1) or (3,3) pqpq+32 (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.
    (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    pqpq+12
    (3,1) or (1,3) (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    pqpq+1 pqpq+2 (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    (1,1) or (3,3) (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    pqpq+12 pqpq+32 (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.

     | Show Table
    DownLoad: CSV

    Proof. We consider the case v=1,w=3 for LC1(s(0,0,0)). By Lemmas 2.1–2.5 and Eq (1.1), we have 1D1, 2D1 and

    ξi=ρi+ηi=uD0βiu+βiu0={ω+βiu0,if iD0,1+ω+βiu0,if iD1,1+βiu0,if iP,βiu0,if iQ,1,if i=0.

    Then by Eq (4.2), we can get

    ˜G(X)=N1i=0ξiXi=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iP(1+βiu0)Xi+iQβiu0Xi+1.

    According to Lemma 2.3, we can get the following results.

    (1) If u0=0, then

    ˜G(X)=iD0(ω+1)Xi+iD1ωXi+iQXi+1,|˜G(X)|=pqq+1.

    (2) If u0Q, then

    ˜G(X)=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iQβiu0Xi+1,|˜G(X)|=pqq+1.

    (3) If u0D0 or u0D1 or u0P, then

    ˜G(X)=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iP(1+βiu0)Xi+iQβiu0Xi+1,|˜G(X)|=pq.

    Compare the results of Cases (1)–(3) with LC(s(0,0,0))=pqp. If p>q, then pqp<pqq+1<pq; if p<q, then pqq+1<pqp<pq. Hence

    LC1(s(0,0,0))={pqp,if p>q,pqq+1,if p<q.

    Similarly we can prove the other cases for LC1(s(a,b,c)).

    All results of LC(s(a,b,c)) and LC1(s(a,b,c)) in Sections 3 and 4 have been tested by MAGMA program.

    The purpose of this paper is to determine the linear complexity and the 1-error linear complexity of s(a,b,c). In most of the cases, s(a,b,c) possesses high linear complexity, namely LC(s(a,b,c))>N/2, consequently has decent stability against 1-bit error. Notice that the linear complexity of some of the sequences above is close to N/2. Then the sequences can be selected to construct cyclic codes by their minimal generating polynomials with the method introduced by Ding [16].

    This work was supported by Fundamental Research Funds for the Central Universities (No. 20CX05012A), the Major Scientific and Technological Projects of CNPC under Grant (No. ZD2019-183-008), the National Natural Science Foundation of China (Nos. 61902429, 11775306) and Shandong Provincial Natural Science Foundation of China (ZR2019MF070).

    The authors declare that they have no conflicts of interest.



    [1] Y. Yang, J. Han, H. Bi, et al. Mixed methods for the elastic transmission eigenvalue problem, Appl. Math. Comput., 374 (2020), 125081. doi: 10.1016/j.cam.2020.112769
    [2] J. Han, Nonconforming elements of class L2 for Helmholtz transmission eigenvalue problems, Discrete Cont. Dyn-B., 23 (2018), 3195-3212.
    [3] H. Dai, Z. Z. Bai, Y. Wei, On the solvability condition and numerical algorithm for the parameterized generalized inverse eigenvalue problem, Siam J. Matrix Anal. A., 36 (2015), 707-726. doi: 10.1137/140972494
    [4] K. Ghanbari, A survey on inverse and generalized inverse eigenvalue problems of jacobi matrices, Appl. Math. Comput., 195 (2008), 355-363.
    [5] Y. X. Yuan, H. Dai, A generalized inverse eigenvalue problem in structural dynamic model updating, J. Comput. Appl. Math., 226 (2009), 42-49. doi: 10.1016/j.cam.2008.05.015
    [6] K. W. E. Chu, M. Li, Designing the Hopfield neural network via pole assignment, Int. J. Syst. Sci., 25 (1994), 669-681. doi: 10.1080/00207729408928988
    [7] Z. J. Bai, The inverse eigenproblem of centrosymmetric matrices with a submatrix constraint and its approximation, Siam J. Matrix Anal. A., 26 (2005), 1100-1114. doi: 10.1137/S0895479803434185
    [8] Z. J. Bai, The solvability conditions for the inverse eigenvalue problem of Hermitian and generalized skew-Hamiltonian matrices and its approximation, Inverse Probl., 19 (2003), 1185-1194. doi: 10.1088/0266-5611/19/5/310
    [9] L. F. Dai, M. L. Liang, Generalized inverse eigenvalue problem for (P, Q)-conjugate matrices and the associated approximation problem, Wuhan Univ. J. Nat. Sci., 21 (2016), 93-98. doi: 10.1007/s11859-016-1143-z
    [10] Y. Q. Gao, P. Wei, Z. Z. Zhang, et al. Generalized inverse eigenvalue problem for reflexive and antireflexive matrices, Numer. Math. J. Chin. Univ., 34 (2012), 214-222.
    [11] P. Wei, Z. Z. Zhang, D. X. Xie, Generalized inverse eigenvalue problem for Hermitian generalized Hamiltonian matrices, Chin. J. Eng. Math., 27 (2010), 820-826.
    [12] R. H. Mo, W. Li, The inverse eigenvalue problem of hermitian and generalized skew-Hamiltonian matrices with a submatrix constraint and its approximation, Acta Math. Sci., 31 (2011), 691-701.
    [13] J. Cai, J. Chen, Iterative solutions of generalized inverse eigenvalue problem for partially bisymmetric matrices, Linear Multilinear A., 65 (2017), 1643-1654. doi: 10.1080/03081087.2016.1250864
    [14] J. Cai, J. Chen, Least-squares solutions of generalized inverse eigenvalue problem over HermitianHamiltonian matrices with a submatrix constraint, Comput. Appl. Math., 37 (2018), 593-603. doi: 10.1007/s40314-016-0363-3
    [15] H. C. Chen, Generalized reflexive matrices: Special properties and applications, Siam J. Matrix Anal. A., 19 (1997), 140-153. doi: 10.1137/S0895479895288759
    [16] J. Qian, R. C. E. Tan, On some inverse eigenvalue problems for Hermitian and generalized Hamiltonian/skew-Hamiltonian matrices, J. Comput. Appl. Math., 10 (2013), 28-38. doi: 10.1016/j.cam.2013.02.023
    [17] D. Xie, N. Huang, Q. Zhang, An inverse eigenvalue problem and a matrix approximation problem for symmetric skew-hamiltonian matrices, Numer. Algorithms, 46 (2007), 23-34. doi: 10.1007/s11075-007-9124-0
    [18] R. H. Mo, W. Li, An inverse eigenvalue problem for Hermitian and generalized skew-Hamiltonian matrices with a submatrix constraint and its approximation, Acta Math. Sci., 31 (2011), 691-701.
    [19] W. R. Xu, G. L. Chen, X. P. Sheng, Analytical best approximate Hermitian and generalized skewHamiltonian solution of matrix equation AXAH + CYCH = F, Comput. Math. Appl., 75 (2018), 3702-3718. doi: 10.1016/j.camwa.2018.02.026
    [20] Y. Liu, Y. Tian, Y. Takane, Ranks of Hermitian and skew-Hermitian solutions to the matrix equation AXA=B, Linear Algebra Appl., 431 (2009), 2359-2372. doi: 10.1016/j.laa.2009.03.011
    [21] M. Wei, Q. Wang, On rank-constrained Hermitian nonnegative-definite least squares solutions to the matrix equation AXAH = B, Int. J. Comput. Math., 84 (2007), 945-952. doi: 10.1080/00207160701458344
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3923) PDF downloads(245) Cited by(1)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog