
In this work, the luminescent emission control from porous silicon (PS) decorated with graphene oxide quantum dots (GOQDs) was analyzed. The samples obtained showed a 95 nm range of variation in which the luminescent emission can be controlled. Based on the results obtained from the PS samples decorated with GOQDs, the emission can be selected in a range from blue to red. Fourier transform infrared (FTIR) spectroscopy showed evidence of bond formation between PS and GOQDs. These changes can be related to the changes in luminescent emission. Photoluminescence analysis showed that the main PS emission can be selected in a 90 nm range with the introduction of GOQDs. Scanning electron microscopy (SEM) images and energy dispersive spectroscopy (EDS) spectra demonstrated the introduction of GOQDs in the PS. X-ray diffraction patterns also confirmed the presence of GOQDs on the surface of PS. In this study, different methodologies to control the luminescent emission were applied, and the results show that PS samples decorated with GOQDs showing blue, orange, and red luminescence can be obtained. The samples obtained can be applied to the development of electroluminescence devices, photodetectors, and biosensors.
Citation: Francisco Severiano Carrillo, Orlando Zaca Moran, Fernando Díaz Monge, Alejandro Rodríguez Juárez. Luminescence modification of porous silicon decorated with GOQDs synthesized by green chemistry[J]. AIMS Materials Science, 2025, 12(1): 55-67. doi: 10.3934/matersci.2025005
[1] | Yang Pan, Jinhua Yang, Lei Zhu, Lina Yao, Bo Zhang . Aerial images object detection method based on cross-scale multi-feature fusion. Mathematical Biosciences and Engineering, 2023, 20(9): 16148-16168. doi: 10.3934/mbe.2023721 |
[2] | Xin Shu, Xin Cheng, Shubin Xu, Yunfang Chen, Tinghuai Ma, Wei Zhang . How to construct low-altitude aerial image datasets for deep learning. Mathematical Biosciences and Engineering, 2021, 18(2): 986-999. doi: 10.3934/mbe.2021053 |
[3] | Zhijing Xu, Jingjing Su, Kan Huang . A-RetinaNet: A novel RetinaNet with an asymmetric attention fusion mechanism for dim and small drone detection in infrared images. Mathematical Biosciences and Engineering, 2023, 20(4): 6630-6651. doi: 10.3934/mbe.2023285 |
[4] | Siyuan Shen, Xing Zhang, Wenjing Yan, Shuqian Xie, Bingjia Yu, Shizhi Wang . An improved UAV target detection algorithm based on ASFF-YOLOv5s. Mathematical Biosciences and Engineering, 2023, 20(6): 10773-10789. doi: 10.3934/mbe.2023478 |
[5] | Lei Yang, Guowu Yuan, Hao Wu, Wenhua Qian . An ultra-lightweight detector with high accuracy and speed for aerial images. Mathematical Biosciences and Engineering, 2023, 20(8): 13947-13973. doi: 10.3934/mbe.2023621 |
[6] | Qihan Feng, Xinzheng Xu, Zhixiao Wang . Deep learning-based small object detection: A survey. Mathematical Biosciences and Engineering, 2023, 20(4): 6551-6590. doi: 10.3934/mbe.2023282 |
[7] | Murtaza Ahmed Siddiqi, Celestine Iwendi, Kniezova Jaroslava, Noble Anumbe . Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations. Mathematical Biosciences and Engineering, 2022, 19(3): 2641-2670. doi: 10.3934/mbe.2022121 |
[8] | Dawei Li, Suzhen Lin, Xiaofei Lu, Xingwang Zhang, Chenhui Cui, Boran Yang . IMD-Net: Interpretable multi-scale detection network for infrared dim and small objects. Mathematical Biosciences and Engineering, 2024, 21(1): 1712-1737. doi: 10.3934/mbe.2024074 |
[9] | Hongxia Ni, Minzhen Wang, Liying Zhao . An improved Faster R-CNN for defect recognition of key components of transmission line. Mathematical Biosciences and Engineering, 2021, 18(4): 4679-4695. doi: 10.3934/mbe.2021237 |
[10] | Ruoqi Zhang, Xiaoming Huang, Qiang Zhu . Weakly supervised salient object detection via image category annotation. Mathematical Biosciences and Engineering, 2023, 20(12): 21359-21381. doi: 10.3934/mbe.2023945 |
In this work, the luminescent emission control from porous silicon (PS) decorated with graphene oxide quantum dots (GOQDs) was analyzed. The samples obtained showed a 95 nm range of variation in which the luminescent emission can be controlled. Based on the results obtained from the PS samples decorated with GOQDs, the emission can be selected in a range from blue to red. Fourier transform infrared (FTIR) spectroscopy showed evidence of bond formation between PS and GOQDs. These changes can be related to the changes in luminescent emission. Photoluminescence analysis showed that the main PS emission can be selected in a 90 nm range with the introduction of GOQDs. Scanning electron microscopy (SEM) images and energy dispersive spectroscopy (EDS) spectra demonstrated the introduction of GOQDs in the PS. X-ray diffraction patterns also confirmed the presence of GOQDs on the surface of PS. In this study, different methodologies to control the luminescent emission were applied, and the results show that PS samples decorated with GOQDs showing blue, orange, and red luminescence can be obtained. The samples obtained can be applied to the development of electroluminescence devices, photodetectors, and biosensors.
Type 1 diabetes is a chronic condition that is caused by the immune system mistakenly destroying insulin-producing pancreatic Langerhans islets. Treatment requires continuous monitoring and maintenance of insulin levels via external means such as injections or insulin pumps. Islet transplantation from deceased donors provides a new treatment to recover natural insulin production [1]. This is not a permanent solution, as a significant percentage of patients do not achieve insulin independence at 5 years [1]. Furthermore, such a treatment requires immunosuppressants. As there are only a few suitable donors, it is desirable to increase the durability of the transplanted cells. This could be achieved by protecting the transplanted cells with a physical barrier. Alginate is a promising candidate as it can selectively diffuse or block certain molecules [2]. In addition, alginates are relatively inert [3,4,5]. This novel treatment shows promising results in mammalian trials [6,7,8,9]. Human trials are still in the preliminary phase [10,11,12].
King et al. [13,14] proposed a model that describes the reaction–diffusion of oxygen through a protective shell encapsulating a core so that hypoxia can be avoided within the donor cells. The encapsulation and core of donor cells are approximately spherical [15]. Hence, in [13,14], a spherical core and shell with a common center are considered. In that paper the authors derived the governing ODE for stationary solutions and numerically computed these solutions with oxygen concentration above the hypoxia threshold. The existence of these stationary solutions is made rigorous in [16] using topological shooting [17,18,19]. The latter result considers parameters used in cell encapsulation experiments [15,20,21]. Stationary solutions of oxygen concentration in a core without a shell have been extensively studied [22,23,24,25].
The oxygen concentration in the core and shell will initially be away from the stationary state. Furthermore, the geometry of the cell is only approximately spherical. Hence, it is important for the validation of the model to determine the stability of stationary solutions for general core-shell geometry, which is the goal of this work. This first requires formulating the corresponding PDE and showing its well-posedness, which was not considered in [13,14]. The resulting PDE is of parabolic type. On the boundary of the outside shell, we assume the oxygen concentration to be constant. As the shell and the core have different diffusion coefficients, there is a discontinuity of this coefficient at the interface separating them. This discontinuity makes the corresponding stationary problem a diffraction problem [26]. We make the natural assumption that the concentration and the flux of oxygen are continuous at the interface. Oxygen is consumed only by the donor cells in the core but not by the protective shell. This leads to a nonlinear reaction–diffusion PDE in the core, where the non-linearity corresponds to Michaelis–Menten consumption and consequently is bounded and monotone. In the shell, however, the problem reduces to linear diffusion.
Our main results for our newly formulated PDE model are
- Well-posedness of the strong form,
- Uniqueness and asymptotic stability of stationary solutions.
The results are necessary theoretical steps in the validation of the biological model. Furthermore, we will see that all the results hold for more general kinetics described by Hill's equation. We note that similar results have been obtained in the one-dimensional setting for the internal transition layer, which arises by scaling the discontinuous diffusion coefficient by a small parameter [27].
The sum of the reaction term and the spatial differential term is a nonlinear monotone operator. Hence, for the well-posedness result we can apply classical monotone operator theory. We apply the well-known theorems of Komura and Browder–Minty [28]. We emphasize that the monotonicity of the nonlinear operator defining our evolution problem results from the underlying structure of the problem as a gradient flow with respect to a convex functional. This structure also enables us to show the uniqueness and asymptotic stability of the stationary solution.
In Section 2, we present the governing equations. The well-posedness result is proved in Section 3. The stability results are presented in Section 4. In Section 5, we formulate the PDE donor cell model, transform it to the setting considered in Section 2, and apply the theorems from Sections 3 and 4. Finally, in Section 6, we conclude with remarks and an outlook on further questions.
We start with a description of the geometry of the core and its protective shell. The domain is denoted by Ω⊂RN with ¯Ω compact and N≥2. For the application N=3, but the results hold for N≥2. Let Γ be an (N−1)-dim surface that divides Ω into two open domains Ω1,Ω2 such that ∂Ω1=Γ is a closed connected hypersurface and Ω2 has 2 boundary components, S:=∂Ω and Γ, see Figure 1. We take S,Γ of class C2. We refer to Ω1 as the core, Ω2 as the shell, and Ω as the core-shell.
We consider the following PDE:
dudt−bΔu=f(u)in(Ω∖Γ)×(0,T), | (2.1) |
u|S=0, | (2.2) |
[u]Γ=0, | (2.3) |
[b∇u⋅ν]Γ=0, | (2.4) |
u(⋅,0)=u0inΩ. | (2.5) |
In Eq (2.1), b:Ω→R is given by
b(x)={b1ifx∈¯Ω1,b2ifx∈Ω2, |
with b1,b2>0, the map f:L2(Ω)→L2(Ω) given by
[f(u)](x)={φ1(u(x))ifx∈¯Ω1,φ2(u(x))ifx∈Ω2, | (2.6) |
with φi:R→R, i=1,2.
The following assumptions are the requirements for well-posedness of the strong form as well as uniqueness and asymptotic stability of stationary solutions:
Assumption 2.1. Let φi satisfy
- 0≤φi≤1;
- φi is decreasing;
- φi(z)z≤c for all z∈R with c>0;
- φi is Lipschitz with constant L>0.
In Eqs (2.3) and (2.4), the square brackets [⋅]Γ are denoting the jump of the quantity in the brackets across Γ, i.e., the trace from Ω2 minus the trace of Ω1. In Eq (2.4), ν is the normal directed towards Ω2.
Define V:=H10(Ω),H:=L2(Ω). The inner product on V is defined by (u,v)V=(u,v)H+(∇u,∇v)H. Denote by ⟨⋅,⋅⟩ the pairing between V∗ and V. So we have the evolution triplet
V⊂⊂H=H∗⊂V∗, |
where H∗ and V∗ denote the dual space of H and V, respectively. Moreover, we write V⊂⊂H to emphasize the compactness of the embedding of V in H.
Define the nonlinear operator A:D(A)→H given by
A(u)=−bΔu−f(u), | (3.1) |
with
D(A):={u∈V:u|Ωi∈H2(Ωi),usatisfies(2.4)}. |
We consider the equation
dudt+A(u)=0, | (3.2) |
as an equality in L2(0,T;H). We denote by Cw(0,T;H) the space of weakly continuous functions from [0,T] to H.
Theorem 3.1. For u(0)=u0∈D(A), Eq (3.2) has a unique solution u∈C0(0,T;H) for any T>0 with
u∈Lip(0,T;D(A)),dudt∈Cw(0,T;H). |
Furthermore, u0↦u(t)∈C0(D(A),D(A)).
Proof. We will apply Theorem 31.A from [28]. Recall that A is called monotone if (A(u)−A(v),u−v)H≥0 for all u,v∈D(A). Let R denote the range of an operator and let I denote the identity operator. The assumptions to check are:
(H1): A is monotone,
(H2): R(I+A)=H.
Proof (H1): Since φ is decreasing - we obtain
(A(u)−A(v),u−v)H=∫Ωb∇(u−v)⋅∇(u−v)dx−∑i∫Ωi(φi(u)−φi(v))(u−v)⏟≤0dx≥0, | (3.3) |
for u,v∈D(A).
Proof (H2). We consider ˜A:V→V∗ given by
⟨˜A(u),w⟩:=∫Ω(uw+b∇u∇w)dx−∑i∫Ωiφi(u)wdxu,w∈V. |
Recall that ˜A is called hemicontinuous if the real function t↦⟨˜A(u+tv),w⟩ is continuous on [0,1] for all u,v,w∈V and that ˜A is called coercive if
⟨˜A(u),u⟩‖u‖V→+∞as‖u‖V→∞. | (3.4) |
We apply Theorem 26.A [28] to ˜A, which gives that for fixed g∈H, there exists a u∈V such that ˜Au=g. The assumptions to check are:
- ˜A monotone: Take u,v∈V, then similarly to Eq (3.3), we have that
⟨˜A(u)−˜A(v),u−v⟩≥∫Ωb∇(u−v)⋅∇(u−v)dx−∑i∫Ωi(φi(u)−φi(v))(u−v)dx≥0. |
- ˜A coercive: Recall from Assumptions 2.1 that φ(z)z≤c0 for all z∈R. Hence, we have that
⟨˜A(u),u⟩=∫Ω(u2+b|∇u|2)dx−∑i∫Ωiφi(u)udx≥c‖u‖2V−c0|Ω| |
and therefore, we have Eq (3.4).
- ˜A hemicontinuous: for t,s∈[0,1] u,v,w∈V, the Lipschitz continuity of φi by Assumption 2.1, we have
|⟨˜A(u+tv),w⟩−⟨˜A(u+sv),w⟩|≤C‖v‖V‖w‖V|t−s|+∑i|∫Ωi(φi(u+tv)−φi(u+sv))wdx|≤C‖v‖V‖w‖V|t−s|+L‖v‖H‖w‖H|t−s|. |
This implies the continuity of t↦⟨˜A(u+tv),w⟩.
Hence, for fixed g∈H, there exists a u∈V such that ˜Au=g, i.e.,
∫Ωb∇u∇wdx=∫Ω(−u+f(u)+g)wdx∀w∈V. | (3.5) |
It remains to show that u∈D(A), which can be done by adapting standard arguments on the regularity of weak solutions to elliptic boundary value problems to our two-phase setting [29]. More precisely, since −u+f(u)+a∈H and b is constant in Ωi, we can show, as in [30] Theorem 6.3.1, that Eq (3.5) implies u|Ωi∈H2loc(Ωi) and
−bΔu=−u+f(u)+ga.e. inΩi,i=1,2. |
To obtain H2-regularity up to the boundary, we modify the proof of [30] Theorem 6.3.4. (with partly changed notation) in the following way: We fix x0∈Γ and "flatten" Γ locally in a neighborhood Ux0 of x0 by an appropriate C2-diffeomorphism Φ:Ux0⟶B(0,1) so that we have
Φ(Ux0∩Ω1)=B(0,1)∩{y∈RN|yN>0},Φ(Ux0∩Ω2)=B(0,1)∩{y∈RN|yN<0}. |
For the transformed problem, the jump of b occurs along the plane yN=0. Therefore, the estimates for the difference quotients of the transformed solution in the first N−1 coordinate directions can be carried out in both half balls as in the proof of the cited theorem. Thus, we analogousy obtain u|Ωi∈H2(Ωi). Hence, applying integration by parts in the subdomains,
∫Ωb∇u∇wdx=∫Ω1b∇u∇wdx+∫Ω2b∇u∇wdx=−∫Ω1bΔuwdx−∫Ω2bΔuwdx−∫Γ[b∇u⋅ν]Γwds=∫Ω(−u+f(u)+g)wdx−∫Γ[b∇u⋅ν]Γwds∀w∈V, |
so by Eq (3.5), the boundary integral vanishes for all w∈V, which implies Eq (2.4), and u∈D(A) is proved.
Finally, applying Corollary 31.1 from [28] gives that u0↦u(t)∈C0(D(A),D(A)).
We define the functional E:V→R given by
E(u)=∫Ω12b|∇u|2dx−∑i∫ΩiFi(u)dx, | (4.1) |
where
Fi(s)=∫s0φi(σ)dσ. | (4.2) |
Lemma 4.1. E is Fréchet differentiable with derivative at u given by
E′(u)[h]=∫Ωb∇u∇hdx−∫Ωf(u)hdx. |
Proof. The first term in Eq (4.1) is a quadratic term in V. Fi has a bounded, integrable weak second derivative. Hence, for z,ζ∈R we have
|Fi(z+ζ)−Fi(z)−F′i(z)ζ|=|ζ2∫10(1−s)F″i(z+sζ)ds|≤12‖F″i‖∞ζ2. |
Thus, for u,h∈V
|∫ΩiFi(u+h)−Fi(u)−F′i(u)h|≤12‖F″i‖∞‖h‖2V, |
and ui↦∫ΩiFi(u)dx is Fréchet differentiable with derivative given by
h↦∫ΩiF′i(u)hdx=∫Ωiφi(u)hdx. |
Lemma 4.2. E′ is strongly monotone, i.e., for all u,v∈V, there exists γ>0 such that
(E′(u)−E′(v))[u−v]≥γ‖u−v‖2V. |
Proof. Take u,v∈V, then using φi decreasing and Poincaré's inequality we obtain
(E′(u)−E′(v))[u−v]=∫Ωb(∇u−∇v)⋅(∇u−∇v)dx−∑i∫Ωi(φi(u)−φi(v))(u−v)⏟≤0dx≥γ‖u−v‖2V. |
From Lemma 4.1, it follows that we can write Eq (3.2) as a gradient flow:
ut=−∇E(u), |
in the sense that
(ut,w)H=−E′(u)[w]. |
Recall that u∗∈V is called a critical point if E′(u∗)v=0. Hence, stationary solutions are critical points of E.
Theorem 4.3. There is precisely one stationary solution to Eq (3.2).
Proof. If E is a continuous, strictly convex, coercive functional then E has a unique critical point which is also a global minimum by Theorems 1.5.6 and 1.5.7 in [31]. E is continuous. Strict convexity of E follows from Lemma 4.2. So we only need to show coercivity. Observe that if s>0, then Fi(s)≤s, and if s≤0, then Fi(s)≤0. Hence, Fi(s)≤|s| for all s∈R. Therefore, using Poincaré's inequality, we have that
E(u)≥C‖u‖2V−C‖u‖V. |
Hence, E is coercive. The result follows from Lemma 4.1.
Denote the unique stationary solution by u∗∈V.
Theorem 4.4 (Global asymptotic stability in H). Let u be a solution of Eq (3.2), then t↦eγt‖u(t)−u∗‖H is bounded for t≥0.
Proof. Observe that E′(u∗)=0. From u∈L2(0,T;V), dudt∈L2(0,T;V∗) we have that
d‖u‖2Hdt=2(dudt,u)H, | (4.3) |
by Theorem 7.2 in [32]. Now let u be the solution of Eq (3.2). Then by Eq (4.3) and Lemma 4.2 we have that
12ddt(‖u−u∗‖2H)=(dudt,u−u∗)H=−E′(u)[u−u∗],≤(E′(u∗)−E′(u))[u−u∗]≤−γ‖u−u∗‖2V≤−γ‖u−u∗‖2H. |
Hence, we obtain that ‖u(t)−u∗‖2H≤e2γt‖u(0)−u∗‖2H.
Asymptotic stability in the V-norm does not follow from Theorem 4.4, but we can obtain a weak V-stability result:
Corollary 4.5. u(t)⇀u∗ in V as t→∞.
Proof. We first show that
t↦u(t)isboundedinV. | (4.4) |
We can bound ‖u‖V in terms of E(u) and ‖u‖H:
‖u‖2V≤C∫Ωb|∇u|2dx=2C(E(u)+∑i∫ΩiFi(u)dx)≤C′(E(u)+‖u‖H). |
Now Eq (4.4) follows because E(u) is decreasing and ‖u‖H is bounded by Theorem 4.4.
Now suppose the opposite of Corollary 4.5. Then, there exists ε>0 and ϕ∈V∗ and a sequence (tn),tn→∞ such that
|⟨ϕ,u(tn)−u∗⟩|≥ε, | (4.5) |
for all n. Write un:=u(tn). Since V is reflexive and (un) is bounded according to Eq (4.4), we obtain from Alaoglu's compactness theorem that there is a subsequence again denoted by (un) that converges weakly in V. As V⊂⊂H, the subsequence (un) converges strongly in H; therefore, the limit is u∗ which is in contradiction with Eq (4.5).
We will formulate a PDE for the model considered in [13]. We assume that the transplanted cells are injected in an oxygen-stable environment [1]. Hence, we consider on S a Dirichlet boundary condition. At Γ we require the concentration and flux to be continuous. Finally, on Ω1 there is a non-linear term corresponding to Michaelis–Menten consumption [13]. It is assumed that on Ω2 there is no oxygen consumption. We also assume that Michaelis–Menten consumption is zero when the oxygen concentration is zero. This condition ensures that the non-linear term is bounded and monotone. The equations for the non-dimensional oxygen concentration, v=v(x,t), are then given by
dvdt−bΔv=−g(v)in(Ω∖Γ)×(0,T),v|S=c0,[v]|Γ=0,[b∂v∂n]|Γ=0,v(x,0)=v0(x)inΩ, |
where g:L2(Ω)→L2(Ω) is defined by
[g(v)](x)={ϕ(v(x))ifx∈¯Ω1,0ifx∈Ω2, |
with ϕ:R→R given by
ϕ(z)={zz+ˆcifz≥0,0else, |
with ˆc>0. Let u=−v+c0 and we obtain Eqs (2.1)–(2.5). Setting c1:=c0+ˆc we have that
φ1(z)={c0−zc1−z ifz≤c0,0 ifz>c0, | (5.1) |
where 0<c0<c1, see Figure 2.
It is straightforward to see that φ1 satisfies the properties in Assumptions 2.1. More specifically, the Lipschitz constant is 1/(c1−c0), and zφ1(z)≤c0 for all z∈R. Consequently, we can apply Theorems 3.1, 4.3, and 4.4 to obtain well-posedness and global asymptotic stability of the unique stationary solution.
For the most general form of kinetics, Hill's equation, the theorems can also be applied. In the transformed variables we then obtain that
φi(z)={(c0−z)n(c0−z)n+ˆcifz≤c0,0ifz>c0, | (5.2) |
with n,ˆc>0 which satisfies Assumption 2.1. Note that for n=1, Eq (5.2) becomes Michaelis–Menten Eq (5.1).
In this work, we have shown the well-posedness of a nonlinear reaction–diffusion equation for general core-shell geometry. Furthermore, the corresponding stationary solutions are unique and asymptotically stable in a suitable topology. These results extend the model by [13], which only considers stationary solutions for spherical core-shell geometry.
The well-posedness theorem, Theorem 3.1, allows us to define a semi-dynamical system: (D(A),{S(t)}t≥0). This can be used to prove the existence of a global attractor following techniques in [32]. We expect that Theorem 10.13 from [32] can be applied and consequently that the global attractor is equal to the unique stationary solution. We note that the techniques from [32,33] can be used to prove well-posedness by only relying on an L2 bound on f and not on the monotonicity of f [34].
In view of general results on parabolic PDE systems, we expect our evolution problem to be well-posed in Hölder spaces as well, if Γ is smooth enough. However, the proof would be rather technical, and the improvement might not be essential from the point of view of the application. Consequently, it was not considered in this work.
In an experimental set-up, f might be unknown. Suppose that the following are known: b, Ω1,Ω2, and spatially dependent data for u when u has become stationary. The nonlinear f can be approximated using the Sparse Identification of Nonlinear Dynamics (SINDy) framework, which in short, is a regression-type fitting process, typically LASSO, over a set of library functions [35]. There are specialized SINDy frameworks for PDEs [36]. Observe that the data concerns stationary u in time so we can ignore the time derivative, which reduces the complexity of the fitting process. We note that the problem can be further reduced if we can control Ω1 and Ω2 in the experimental set-up. We would then select a spherical geometry such that Ω1 and Ω2 have a common center. Assuming that the obtained data for u also has spherical geometry, the problem reduces to applying the SINDy-framework to a first-order ODE, which is a vanilla-type SINDy.
It is tempting to make the connection between this work and bulk-surface PDEs [37,38,39,40]. In our setting bulk-surface geometry means that the outer shell is a surface. If we would consider our governing equations and then take the limit to zero for the thickness of the shell it appears to be necessary to assume that Neumann boundary conditions are imposed on the shell, to arrive at the Bulk-Surface PDE [41].
Besides oxygen transport, glucose transport is also needed to sustain encapsulated donor cells. In [42], a coupled glucose–oxygen transport model is proposed based on biological assumptions from [21,43]. As in [13], stationary solutions are considered, and a numerical study is performed to find solutions that have concentrations which are above the donor cell survival threshold. The well-posedness and stability of the corresponding PDE is a topic we would like to explore in future work.
Thomas de Jong: Conceptualization, Writing original draft. Georg Prokert: Review, Methodology. Alef Sterk: Review, Methodology.
The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.
During this research Thomas de Jong was also affiliated with Xiamen University and University of Groningen. This research was supported by JST CREST grant number JPMJCR2014.
The authors declare that there are no conflicts of interest.
[1] |
Vercauteren R, Leprince A, Mahillon J, et al. (2021) Porous silicon biosensor for the detection of bacteria through their lysate. Biosensors 11: 27. https://doi.org/10.3390/bios11020027 doi: 10.3390/bios11020027
![]() |
[2] |
Gör Bölen M, Karacali T (2020) A novel proton-exchange porous silicon membrane production method for μDMFCs. Turk J Chem 44: 1216–1226. https://doi.org/10.3906/kim-2002-32 doi: 10.3906/kim-2002-32
![]() |
[3] |
Fauchet PM (1998) The integration of nanoscale porous silicon light emitters: materials science, properties, and integration with electronic circuitry. J Lumin 80: 53–64. https://doi.org/10.1016/S0022-2313(98)00070-2 doi: 10.1016/S0022-2313(98)00070-2
![]() |
[4] |
Robbiano V, Paternò GM, La Mattina AA, et al. (2018) Room-temperature low-threshold lasing from monolithically integrated nanostructured porous silicon hybrid microcavities. ACS Nano 12: 4536–4544. https://doi.org/10.1021/acsnano.8b00875 doi: 10.1021/acsnano.8b00875
![]() |
[5] |
Riikonen J, Salomäki M, van Wonderen J, et al. (2012) Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods. Langmuir 28: 10573–10583. https://doi.org/10.1021/la301642w doi: 10.1021/la301642w
![]() |
[6] |
Chen Z, Wang M, Fadhil AA, et al. (2021) Preparation, characterization, and corrosion inhibition performance of graphene oxide quantum dots for Q235 steel in 1 M hydrochloric acid solution. Colloids Surf A Physicochem Eng 627: 127209. https://doi.org/10.1016/j.colsurfa.2021.127209 doi: 10.1016/j.colsurfa.2021.127209
![]() |
[7] |
Xiao X, Zhang Y, Zho L, et al. (2022) Photoluminescence and fluorescence quenching of graphene oxide: A review. Nanomaterials 12: 2444. https://doi.org/10.3390/nano12142444 doi: 10.3390/nano12142444
![]() |
[8] |
Zhang J, Zhang X, Bi S (2022) Two-dimensional quantum dot-based electrochemical biosensors. Biosensors 12: 254. https://doi.org/10.3390/bios12040254 doi: 10.3390/bios12040254
![]() |
[9] |
Hossain MA, Islam S (2013) Synthesis of carbon nanoparticles from kerosene and their characterization by SEM/EDX, XRD and FTIR. J Nanosci Nanotechnol 1: 52–56. https://doi.org/10.11648/j.nano.20130102.12 doi: 10.11648/j.nano.20130102.12
![]() |
[10] |
Huang S, Yang E, Liu Y, et al. (2018) Low-temperature rapid synthesis of nitrogen and phosphorusdual-doped carbon dots for multicolor cellular imaging and hemoglobin probing in human blood. Sens Actuators B Chem 265: 326–334. https://doi.org/10.1016/j.snb.2018.03.056 doi: 10.1016/j.snb.2018.03.056
![]() |
[11] |
Kurniawan D, Chen YY, Sharma N, et al. (2022) Graphene quantum dot-enabled nanocomposites as luminescence and surface-enhanced Raman scattering biosensors. Chemosensors 2022: 10. https://doi.org/10.3390/chemosensors10120498 doi: 10.3390/chemosensors10120498
![]() |
[12] |
Xu Q, Gong Y, Zhang Z, et al. (2019) Preparation of graphene oxide quantum dots from waste toner, and their application to a fluorometric DNA hybridization assay. Mikrochim Acta 186: 483. https://doi.org/10.1007/s00604-019-3539-x doi: 10.1007/s00604-019-3539-x
![]() |
[13] |
Zaca-Moran O, Sánchez-Ramírez JF, Herrera-Pérez JL, et al. (2021) Electrospun polyacrylonitrile nanofibers as graphene oxide quantum dot precursors with improved photoluminescent properties. Mater Sci Semicond Process 127: 105729. https://doi.org/10.1016/j.mssp.2021.105729 doi: 10.1016/j.mssp.2021.105729
![]() |
[14] |
Sengottuvelu D, Shaik AK, Mishra S, et al. (2022) Multicolor nitrogen-doped carbon quantum dots for environment dependent emission tuning. ACS Omega 7: 27742−27754. https://doi.org/10.1021/acsomega.2c03912 doi: 10.1021/acsomega.2c03912
![]() |
[15] |
Kayahan E (2011) The role of surface oxidation on luminescence degradation of porous silicon. Appl Surf Sci 257: 4311−4316. https://doi.org/10.1016/j.apsusc.2010.12.045 doi: 10.1016/j.apsusc.2010.12.045
![]() |
[16] |
Carrillo FS, Arcila-Lozano L, Salazar-Villanueva M, et al. (2023) Porous silicon used for the determination of bacteria concentration based on its metabolic activity. Silicon 15: 6113–6119. https://doi.org/10.1007/s12633-023-02502-7 doi: 10.1007/s12633-023-02502-7
![]() |
[17] |
Sun Z, Li X, Wu Y, et al. (2018) Origin of green luminescence in carbon quantum dots: specific emission bands originate from oxidized carbon groups. New J Chem 42: 4603. https://doi.org/10.1039/c7nj04562j doi: 10.1039/c7nj04562j
![]() |
[18] |
Correcher V, Garcia-Guinea J, Delgado A (2000) Influence of preheating treatment on the luminescence properties of adularia feldspar (KAlSi3O8). Radiat Meas 32: 709–715. https://doi.org/10.1016/S1350-4487(00)00121-9 doi: 10.1016/S1350-4487(00)00121-9
![]() |
[19] |
Jiang W, Wang S, Li Z, et al. (2021) Luminescence spectra of reduced graphene oxide obtained by different initial heat treatments under microwave irradiation. Diam Relat Mater 116: 108388. https://doi.org/10.1016/j.diamond.2021.108388 doi: 10.1016/j.diamond.2021.108388
![]() |
[20] |
Lou Z, Huang H, Li M, et al. (2014) Controlled synthesis of carbon nanoparticles in a supercritical carbon disulfide system. Materials 7: 97–105. https://doi.org/10.3390/ma7010097 doi: 10.3390/ma7010097
![]() |
[21] |
Huang Y, Luo J, Peng J, et al. (2020) Porous silicon-graphene-carbon composite as high performance anode material for lithium ion batteries. J Energy Storage 27: 101075. https://doi.org/10.1016/j.est.2019.101075 doi: 10.1016/j.est.2019.101075
![]() |
[22] |
Nayfeh M, Rigakis N, Yamani Z (1997) Photoexcitation of Si-Si surface states in nanocrystallites. Phys Rev B Condens Matter 56: 2079–2084. https://doi.org/10.1103/PhysRevB.56.2079 doi: 10.1103/PhysRevB.56.2079
![]() |
[23] |
Basak FK, Kayahan E (2022) White, blue and cyan luminescence from thermally oxidized porous silicon coated by green synthesized carbon nanostructures. Opt Mater 124: 111990. https://doi.org/10.1016/j.optmat.2022.111990 doi: 10.1016/j.optmat.2022.111990
![]() |
[24] |
Gupta P, Dillon A, Bracker AS, et al. (1991) FTIR studies of H2O and D2O decomposition on porous silicon surfaces. Surf Sci 245: 360–372. https://doi.org/10.1016/0039-6028(91)90038-T doi: 10.1016/0039-6028(91)90038-T
![]() |
[25] |
Ogata Y, Niki H, Sakka T (1995) Oxidation of porous silicon under water-vapor environment. J Electrochem Soc 142: 1595–1601. https://doi.org/10.1149/1.2048619 doi: 10.1149/1.2048619
![]() |
1. | Amarendra Kumar Mishra, Mahipal Singh Choudhry, Manjeet Kumar, Underwater image enhancement using multiscale decomposition and gamma correction, 2022, 1380-7501, 10.1007/s11042-022-14008-2 | |
2. | Auwalu Saleh Mubarak, Zubaida Said Ameen, Fadi Al-Turjman, Effect of Gaussian filtered images on Mask RCNN in detection and segmentation of potholes in smart cities, 2022, 20, 1551-0018, 283, 10.3934/mbe.2023013 | |
3. | Xin Yang, Hengrui Li, Hanying Jian, Tao Li, FADLSR: A Lightweight Super-Resolution Network Based on Feature Asymmetric Distillation, 2022, 0278-081X, 10.1007/s00034-022-02194-1 | |
4. | Mian Pan, Weijie Xia, Haibin Yu, Xinzhi Hu, Wenyu Cai, Jianguang Shi, Vehicle Detection in UAV Images via Background Suppression Pyramid Network and Multi-Scale Task Adaptive Decoupled Head, 2023, 15, 2072-4292, 5698, 10.3390/rs15245698 | |
5. | Abhishek Bajpai, Vaibhav Srivastava, Shruti Yadav, Yash Sharma, 2023, Multiple Flying Object Detection using AlexNet Architecture for Aerial Surveillance Applications, 979-8-3503-3509-5, 1, 10.1109/ICCCNT56998.2023.10307613 | |
6. | Ahmad Abubakar Mustapha, Mohamed Sirajudeen Yoosuf, Exploring the efficacy and comparative analysis of one-stage object detectors for computer vision: a review, 2023, 83, 1573-7721, 59143, 10.1007/s11042-023-17751-2 | |
7. | Julian True, Naimul Khan, Motion Vector Extrapolation for Video Object Detection, 2023, 9, 2313-433X, 132, 10.3390/jimaging9070132 | |
8. | ChangMan Zou, Wang-Su Jeon, Sang-Yong Rhee, MingXing Cai, A Method for Detecting Lightweight Optical Remote Sensing Images Using Improved Yolov5n, 2023, 10, 2383-7632, 215, 10.33851/JMIS.2023.10.3.215 | |
9. | Betha Sai Sashank, Raghesh krishnan K, 2023, Segmentation and Detection of Urban Objects from UAV Images Using Hybrid Deep Learning Combinations, 979-8-3503-2518-8, 1, 10.1109/i-PACT58649.2023.10434584 |