Review

A review of pore-forming agents on the structures, porosities, and mechanical properties of porous ceramics

  • This review article provided a thorough examination of porous ceramic materials, concentrating on production, characteristics, and the involvement of pore-forming agents. The primary objective of this research was to evaluate the effects of various ceramic materials and pore-forming agents on the structure, porosity, and mechanical characteristics of porous ceramics. The study's scope included a thorough investigation of key sources of literature, such as academic publications, review articles, and industry reports, to provide a comprehensive understanding of porous ceramic technology. According to the literature review, the selection of ceramic material and pore-forming agents has a significant influence on the pore size distribution, porosity, and mechanical strength of porous ceramics. Various manufacturing methods, including foaming, sintering, and sol-gel procedures, were explored in terms of their influence on porous ceramic microstructure and characteristics. Furthermore, the study emphasized the need to optimize processing settings and select pore-forming agents to obtain the necessary qualities in porous ceramic materials. Overall, this review is useful for researchers, engineers, and practitioners who desire to learn more about porous ceramic manufacturing, characteristics, and applications.

    Citation: Mohamed Lokman Jalaluddin, Umar Al-Amani Azlan, Mohd Warikh Abd Rashid, Norfauzi Tamin, Mohamad Najmi Masri. A review of pore-forming agents on the structures, porosities, and mechanical properties of porous ceramics[J]. AIMS Materials Science, 2024, 11(4): 634-665. doi: 10.3934/matersci.2024033

    Related Papers:

    [1] Mahmoud Abdallat, Abdallah Barjas Qaswal, Majed Eftaiha, Abdel Rahman Qamar, Qusai Alnajjar, Rawand Sallam, Lara Kollab, Mohammad Masa'deh, Anas Amayreh, Hiba Mihyar, Hesham Aboushakra, Bayan Alkelani, Rawan Owaimer, Mohannad Abd-Alhadi, Salwa Ireiqat, Fahed Turk, Ahmad Daoud, Bashar Darawsheh, Ahmad Hiasat, Majd Alhalaki, Shahem Abdallat, Salsabiela Bani Hamad, Rand Murshidi . A mathematical modeling of the mitochondrial proton leak via quantum tunneling. AIMS Biophysics, 2024, 11(2): 189-233. doi: 10.3934/biophy.2024012
    [2] Delores J. Grant, Leighcraft A. Shakes, Hope M. Wolf, Derek C. Norford, Pradeep K. Chatterjee . Exploring function of conserved non-coding DNA in its chromosomal context. AIMS Biophysics, 2015, 2(4): 773-793. doi: 10.3934/biophy.2015.4.773
    [3] Mario P. Carante, Francesca Ballarini . Modelling cell death for cancer hadrontherapy. AIMS Biophysics, 2017, 4(3): 465-490. doi: 10.3934/biophy.2017.3.465
    [4] Mohammed I. A. Ismail, Abdallah Barjas Qaswal, Mo'ath Bani Ali, Anas Hamdan, Ahmad Alghrabli, Mohamad Harb, Dina Ibrahim, Mohammad Nayel Al-Jbour, Ibrahim Almobaiden, Khadija Alrowwad, Esra'a Jaibat, Mira Alrousan, Mohammad Banifawaz, Mohammed A. M. Aldrini, Aya Daikh, Nour Aldarawish, Ahmad Alabedallat, Ismail M. I. Ismail, Lou'i Al-Husinat . Quantum mechanical aspects of cardiac arrhythmias: A mathematical model and pathophysiological implications. AIMS Biophysics, 2023, 10(3): 401-439. doi: 10.3934/biophy.2023024
    [5] E.N. Baranova, R.M. Sarimov, A.A. Gulevich . Stress induced «railway for pre-ribosome export» structure as a new model for studying eukaryote ribosome biogenesis. AIMS Biophysics, 2019, 6(2): 47-67. doi: 10.3934/biophy.2019.2.47
    [6] Andrea Bianchi, Chiara Lanzuolo . Into the chromatin world: Role of nuclear architecture in epigenome regulation. AIMS Biophysics, 2015, 2(4): 585-612. doi: 10.3934/biophy.2015.4.585
    [7] Michèle Siek, Berenice Marg, Chris M. Ehring, Derya Kirasi, Michael Liebthal, Thorsten Seidel . Interplay of vacuolar transporters for coupling primary and secondary active transport. AIMS Biophysics, 2016, 3(4): 479-500. doi: 10.3934/biophy.2016.4.479
    [8] Arjun Acharya, Madan Khanal, Rajesh Maharjan, Kalpana Gyawali, Bhoj Raj Luitel, Rameshwar Adhikari, Deependra Das Mulmi, Tika Ram Lamichhane, Hari Prasad Lamichhane . Quantum chemical calculations on calcium oxalate and dolichin A and their binding efficacy to lactoferrin: An in silico study using DFT, molecular docking, and molecular dynamics simulations. AIMS Biophysics, 2024, 11(2): 142-165. doi: 10.3934/biophy.2024010
    [9] Anuroop Venkateswaran Venkatasubramani, Katy McLaughlin, Giovanny Rodriguez Blanco, Vladimir Larionov, Alexander Kagansky . Pilot RNAi screening using mammalian cell-based system identifies novel putative silencing factors including Kat5/Tip60. AIMS Biophysics, 2015, 2(4): 570-584. doi: 10.3934/biophy.2015.4.570
    [10] Joshua Holcomb, Nicholas Spellmon, Yingxue Zhang, Maysaa Doughan, Chunying Li, Zhe Yang . Protein crystallization: Eluding the bottleneck of X-ray crystallography. AIMS Biophysics, 2017, 4(4): 557-575. doi: 10.3934/biophy.2017.4.557
  • This review article provided a thorough examination of porous ceramic materials, concentrating on production, characteristics, and the involvement of pore-forming agents. The primary objective of this research was to evaluate the effects of various ceramic materials and pore-forming agents on the structure, porosity, and mechanical characteristics of porous ceramics. The study's scope included a thorough investigation of key sources of literature, such as academic publications, review articles, and industry reports, to provide a comprehensive understanding of porous ceramic technology. According to the literature review, the selection of ceramic material and pore-forming agents has a significant influence on the pore size distribution, porosity, and mechanical strength of porous ceramics. Various manufacturing methods, including foaming, sintering, and sol-gel procedures, were explored in terms of their influence on porous ceramic microstructure and characteristics. Furthermore, the study emphasized the need to optimize processing settings and select pore-forming agents to obtain the necessary qualities in porous ceramic materials. Overall, this review is useful for researchers, engineers, and practitioners who desire to learn more about porous ceramic manufacturing, characteristics, and applications.



    Nonlinear problems are a hot topic in modern mathematics, attracting the attention of many researchers. Problems in fields such as economics, physics, chemistry, and fluid dynamics can be transformed into nonlinear equation systems. The solution of nonlinear equation systems is difficult to discover, and this problem can be solved using some numerical methods [1,2,3]. Chen et al. proposed the alternating direction implicit (ADI) compact differential scheme, which reduces the CPU time of two-dimensional problems [4]. Yang et al. proposed an efficient compact finite difference method [5,6,7] for solving nonlinear equations and an orthogonal Gauss collocation method (OGCM) [8] for solving systems of partial differential equations.

    Therefore, in-depth research on numerical methods for solving nonlinear systems has important practical significance [9]. In solving nonlinear systems, we can obtain approximate solutions with the help of various iterative methods. Multi-point iterative methods [10,11,12,13] are an effective class of methods for solving nonlinear equation systems.

    Wang et al. achieved research results in the study of multi-point iterative methods, such as local convergence analysis [14,15,16] and fractal theory-based investigations of iterative methods[17,18]. Cordero et al. studied the three-step iterative method [19,20] for solving nonlinear equations.

    Newton's iterative method [21] is one of the most famous iterative methods

    x(n+1)=x(n)S(x(n))1S(x(n)),n0,1,2,. (1.1)

    where S:DRnRn and the inverse of the Jacobian matrix S(xn) is S(xn)1.

    On the basis of Newton's method, Potra-Pták [22] proposed a third-order iterative method

    {yn=xns(xn)s(xn),xn+1=xns(xn)+s(yn)s(xn). (1.2)

    These methods (1.2) have the advantage of not needing to compute second-order derivatives.

    Cordero et al.[23] proposed an iterative method using division difference instead of the traditional Jacobi matrix

    Sn+1=Sn[mh=1AhJS(ηh(Sn))]1F(Sn), (1.3)

    where ηh(x)=xτhJ1S(x)S(x) and the parameters Ah satisfy mh=1Ah=1. Considering τ1=0, the following iterative method is obtained:

    Sn+1=Sn[14JS(xn)+34JS(xn23JS(xn)1S(xn))]1S(xn). (1.4)

    Kou et al. [24] proposed an iterative method for solving nonlinear equations with convergence of at least third order

    {yn=xns(xn)s(xn),xn+1=xnγs(xn)+s(yn)s(xn)(1γ)s(xn)2s(xn)(s(xn)s(yn)), (1.5)

    where γR. Let S[xn,yn]=S(yn)S(xn)ynxn and S(xn)2S(xn)(s(xn)S(yn)) can be represented asS(xn)S[xn,yn]. We obtain an iterative method (1.6) for solving nonlinear systems. The iterative method (1.5) can be represented as

    x(n+1)=x(n)γS(x(n))1(S(x(n))+S(y(n)))(1γ)S[x(n),y(n)]1S(x(n)), (1.6)

    where

    y(n)=x(n)S(x(n))1S(x(n)),

    γR is a real parameter.

    The contents of this paper are as follows: Section 2 analyzes the order of convergence of the extended iterative method (1.6). In Section 3, we adopt the Möbius conjugacy map to convert the iterative method (1.6) to a rational operator and examine the fixed points and critical points for this rational operator in depth. The parameter space is constructed and some specific parameters are chosen in the parameter space. Section 4 compares the iterative method (1.6) with other iterative methods through numerical experiments. Section 5 shows some fractal diagrams. We verify that the expanded method has optimal stability and convergence for the parameter γ=0.

    We prove the convergence order for the iterative method (1.6) with the following theorem.

    Theorem 1. Let S:DRnRn be a sufficiently differentiable function from an open convex set D and let xD denote the solution of S(x)=0 that makes S continuous and nonsingular at x. The error equation of the iterative method (1.6) is

    e(n+1)=c22(1+γ)(e(n))3+(3c32(1+2γ)+c2c3(3+4γ))(e(n))4+O((e(n))5). (2.1)

    When the parameter γ=1, the iterative method is fourth-order convergent and the error expression is

    e(n+1)=(3c32c2c3)(e(n))4+O((e(n))5). (2.2)

    Proof. Let C(n)=1n!S(x)1S(n)(x),i2 and e(n)=x(n)x. Expanding S in terms of the Taylor's series on x, we get

    S(x(n))=S(x)(e(n)+C2(e(n))2+C3(e(n))3+C4(e(n))4+C5(e(n))5)+O((e(n))6), (2.3)
    S(x(n))=S(x)(I+2C2e(n)+3C3(e(n))2+4C4(e(n))3+5C5(e(n))4)+O((e(n))5). (2.4)

    According to the equation S(x(n))1S(x(n))=I, we can calculate the inverse of S(x(n)) :

    S(x(n))1=S(x())1(I+A1e(n)+A2(e(n))2+A3(e(n))3+A4(e(n))4)+O((e(n))5)), (2.5)

    where

    A1=2C2,A2=4C223C3,A3=8C32+6C2C3+6C3C24C4,A4=16C42+9C23+8C2C4+8C4C212C22C312C2C3C212C3C225C5.

    Now, using(2.3)–(2.5), we get

    y(n)x=x(n)xS(x(n))1S(x(n))=e(n)+C2(e(n))2+(2C32C22)(e(n))3+(3C44C2C33C2C3+4C32)(e(n))4+O((e(n))5). (2.6)

    Taylor expansion of S(y(n)) at x gives

    S(y(n))=S(x)+S(x)(y(n)x)+S(x)2!(y(n)x)2++S(n)(x)n!(y(n)x)n, (2.7)

    and we have

    S(y(n))=S(x(n))(C2(e(n))22(C22C3)(e(n))3+(5C327C2C3+3C4)(e(n))4)+O((e(n))5). (2.8)

    In the iterative method (1.6), a first-order difference quotient operator is introduced, which can be regarded as a mapping relationship S[x,y]:D×DRn×RnL(Rn),

    S[x,y]=10S(x+ρd)dρ,(x,d)Rn×Rn.

    By performing Taylor expansion on S(x+ρd) at point x, we can obtain the following results:

    10S(x+ρd)dρ=S(x)+12S(x)d+16S(x)d2+O(d3). (2.9)

    According to

    x+d=y,d=yx=S(x(n))1S(x(n)), (2.10)

    the following conclusion can be reached:

    S[x(n),y(n)]=S(x)(I+U1e(n)+U2(e(n))2+U3(e(n))3+U4(e(n))4+O((e(n))5), (2.11)

    where

    U1=C2,U2=C22+C3,U3=2C23+3C2C3+C4,U4=4C248C22C3+2C32+4C2C4+C5. (2.12)

    Based on the equation S[x(n),y(n)]1S[x(n),y(n)]=I, the inverse of S[x(n),y(n)]1 is

    S[x(n),y(n)]1=S(x)1(IU1e(n)+(U21U2)(e(n))2+(U31+2U1U2U3)(e(n))3+O((e(n))4)). (2.13)

    Therefore, one has

    S[x(n),y(n)]1=S(x)1(IC2e(n)+(C22C3)(e(n))2+(2C23+2C2C3C4)(e(n))3+O((e(n))4)). (2.14)

    The error equations for the iterative method (1.6) give us

    e(n+1)=C22(1+γ)(e(n))3+(3C32(1+2γ)+C2C3(3+4γ))(e(n))4+O((e(n))5). (2.15)

    The equation above shows that the iterative method converges at least to the third order. In particular, when the parameter γ=1, the error equation is as follows:

    e(n+1)=(3C32C2C3)(e(n))4+O((e(n))5). (2.16)

    When the parameter γ=1, the method (1.6) is a fourth-order convergent method with the following iteration format:

    x(n+1)=x(n)+S(x(n))1(S(x(n))+S(y(n)))2S[x(n),y(n)]1S(x(n)), (2.17)

    where

    y(n)=x(n)S(x(n))1S(x(n)). (2.18)

    Fractal theory [25,26] can be used to study the stability and convergence of iterative methods. To visualize the convergence of the proposed iterative approach, fractal maps are constructed for a variety of nonlinear functions. Such methods have been employed in numerous research studies for practical applications. Lee et al.[27] studied a dynamic view of a class of single-parameter optimal eighth-order multi-root finders under Riemannian ball Möbius conjugate mappings using fractal knowledge. The complex dynamic behavior can be used for exploring the relevant properties of rational operators connected with iterative methods, which are the unique characteristics of rational operators closely connected with iterative methods, as demonstrated by the Möbius conjugate mappings on Riemann spheres. A thorough study of the behavior of the complex dynamics at fixed points allows us to perform a careful analysis of the stability of rational operators. A parameter space that was constructed by the critical point provides us with a reference to have a better idea of the stability in the iterative method, thus enabling us to pick more appropriate parameter values to make iterative methods more stable.

    An in-depth study of the method's (1.6) complex dynamic behavior is presented in this section. First, we need to construct rational operators related to the iterative method (1.6).

    Now, we will analyze the iterative method (1.5) in the context of quadratic polynomial dynamics. The rational operator can be constructed on an arbitrary nonlinear function by a principle based on Riemann ball dynamics [28] and the scalar theorem [29]. Therefore, a rational operator for quadratic polynomials is designed.

    Theorem 2. Let E(x)=(xm)(xa) be some arbitrary polynomial of quadratic form, where m and a are its roots. The corresponding rational operator De(x;γ) of the family in (1.5) applied to E(x) is

    De(x;γ)=x3(γ+(1+x)3)1+3x+3x2+(1+γ)x3. (3.1)

    Proof. Applying the iterative method (1.5) in E(x), we obtain a rational function Be associated only with m, a, and γ. Next, we construct a rational function Be by applying the Möbius transform in Be with the

    k(x)=xmxa. (3.2)

    The properties of the conjugate mappings are as follows (see[30]):

    k()=1,k(a)=,k(m)=0. (3.3)

    We can get

    Be=x+(1+γ)(m+a2x)(mx)(a+x)m2+a2+m(a3x)3ax+3x2+γ(mx)(ax)(m2+3ma+a25mx5ax+5x2)(m+a2x)3. (3.4)

    and

    De(x;γ)=(kBek1)(x)=x3(γ+(1+x)3)1+3x+3x2+(1+γ)x3. (3.5)

    According to the theorem above, we find that the expressive form of the rational operator De(x;γ) rests on the choice of the parameter value γ. Furthermore, it is known that Be(x) and De(x;γ) are conjugate to each other, and thus the expression for De(x;γ) contains only the parameter γ. The form of De(x,γ) is affected by the parameter γ, so it is only necessary to explore its relation to γ. When γ is 1 or 0, the expressions of De(x;γ) will be further simplified by factorizing De(x;γ) as follows:

    De(x;1)=x3((1+x)31)1+3x+3x2, (3.6)

    and

    De(x;0)=x3(1+x)31+3x+3x2+x3. (3.7)

    In this section, the fixed points and the stability of the rational operator De(x;γ) are analyzed. The particular value of the parameter γ will determine the number of fixed points and their stability.

    De(x)x=x(x1)λ(x)ϑ(x), (3.8)

    where

    λ(x)=1+4x(6+γ)x2+4x3+x4, (3.9)

    and

    ϑ(x)=1+3x+3x2+(1+γ)x3. (3.10)

    From solving the equation De(x)x=0, we know that the fixed points include x=0,x=,x=1, and the roots of the polynomial λ(x)=1+4x(6+γ)x2+4x3+x4.

    Here, x=0 and x= are the free points and fixed points of the parameter γ, respectively. Varying values of the parameter γ lead to different expressions for the iterative method (1.6). So, for the number of strange fixed points for different values of the parameter, we have Theorem 3.

    Theorem 3. For λ(x) and ϑ(x), we have

    If γ=0, (1+x)3 is the common factor of the polynomial λ(x) and ϑ(x). In this case, the operator De(x) exhibits one unique strong fixed point, namely x=1.

    If γ=9, the operator De(x) has four strange fixed points, namely x=4.79129,x=0.208712, the complex number x=0.5+0.866025i and x=0.50.866025i .

    If γ=1, in this case, the operator De(x) exhibits two strange fixed points namely x=2.61803,x=0.381966.

    If γ=16, in this case, the operator De(x) exhibits four strange fixed points namely x=5.82843,x=1 (with multiplicity 2) and x=0.171573.

    If γ satisfies (γ1)(γ+1)(γ(1)13)(γ(1)23)0, the operator De(x) has nine strange fixed points:  x=1 and the eight roots of the polynomial λ(x)=0. Then the operator De(x) will have five strange fixed points: in addition to x=1, there are four other roots of the polynomial λ(x)=0.

    Proof. ● With λ(x)=0 and ϑ(x)=0, we can get

    (1+x)(1+x+x2)=0. (3.11)

    Suppose that xC is some root such that λ(x)=0 and ϑ(x)=0. Linking these two multinomial equations, we are in a position to remove the parameter γ, giving us the equation (1+x)(1+x+x2)=0. From (1+x)=0 or (1+x+x2)=0, we get x=1 or (1)13 or x=(1)23. The common factorization of λ(x)=0 and ϑ(x)=0 is (1+x). As we substitute x=1 for λ(x;1) and ϑ(x;1), we get the parameter γ=0. So for the operator De(x;0), there is now one anomaly in the fixed points.

    ● The remainder of the proof is consistent with the approach outlined earlier.

    Theorem 3 allows us to conclude that the maximum number of fixed points is 5, while the minimum is 1. The stability of strange fixed points is discussed below. We first need to calculate the first-order derivatives of the iterative method's rational operator De(x;γ) with regard to the parameter γ. The first-order derivatives of De(x;γ) are computed as follows:

    De(x;γ)=3x2(1+x)2δ(x)ϱ(x)2, (3.12)

    where

    δ(x)=1+γ+4x+6x2+4x3+x4+γx4, (3.13)
    ϱ(x)=1+3x+3x2+(1+γ)x3. (3.14)

    The stability characteristics of the fixed points described above are discussed in detail next. With x=1, for the stability of any parameter value γ : δC{8}, the following conclusions are obtained:

    1) The point x is repulsive when |248+γ|>1;

    2) The point x is attractive when |248+γ|<1;

    3) The point x is parabolic when |248+γ|=1;

    4) The point x is a superattracting point when |248+γ|0.

    Proof. This follows from Eq (3.1):

    De(x;γ)=3x2(1+x)2δ(x)ϱ(x)2, (3.15)

    where

    δ(x)=1+γ+4x+6x2+4x3+x4+γx4, (3.16)

    and

    ϱ(x)=1+3x+3x2+(1+γ)x3. (3.17)

    Substituting x=1 into (3.15), we acquire De(1;γ)=248+γ. It is easy to obtain |248+γ|=1|24|=|8+γ|. Let γ=x+iy and (γC). Then the following equation holds: (x+8)2+y2=242. Therefore, |De(1;γ)|>1|γ+8|<24.

    The strange fixed point is the root of x=1 and the polynomial λ(x)= 1+4x(6+γ)x2+4x3+x4. The roots of λ(x) are denoted as λi(x), for any i ranging from 1 to 4. For γ satisfying x(x1)0, we have the following:

    ● If x=1, taking parameter values in the region [35,20]×[25,25], it is a point of attraction.

    λ1(x) is exclusive and independent of the value of the parameter γ.

    λ2(x), λ3(x), and λ4(x) act as attractors for the value of γ within the small region of the complex plane [10,12.5]×[0.96,0.98], [2.58,2.56]×[10.96,12.98], [1.58,1.56]×[2.06,1.98].

    Figure 1 displays the stability regions when x = 1. The repulsive region is depicted as a gray area, while the attractive region is shown as a gold area. When the selected parameter value is inside the disk, a behaves as a repelling point, while a becomes an attractor when the γ value is outside the disk. We are generally more attentive to values inside the disk. Figures 1 and 2 illustrate the stability characteristics of the strange fixed points for the operator De(x;γ).

    Figure 1.  The stable region at x = 1.
    Figure 2.  Stability region of λi(x),i=2,3,4.

    On the basis of the definition of critical point, the critical point of the operator De(x;γ) is found through solving the equation De(x;γ)=0. Clearly, the critical points of the operator are 0 and 1, and these are closely related to the roots of the quadratic polynomial E(x)=(xm)(xa). Apart from this, the other critical points are considered to be defined as free critical points. The following theorem shows what happens when number of free critical points changes with various values of the parameter γ.

    Theorem 4. If De(x;γ)=0, then x=1 and δ(x)=0 correspond to a free critical point.

    The parameter γ takes the value of 0 when x=1,δ(x)=(1+x)4, then the rational operator De(x;γ) has four free critical points, which are x=1  (with multiplicity 4).

    The value of parameter γ is -8 when x=1, ς(x)=(1+x)48(1+x4), then the rational operator De(x;γ) has two free critical points, which are x=0.7142860.699854i and x=0.714286+0.699854i.

    The value of the parameter γ is 1 when x=(1)23, ς(x)=(1+x)4+(1+x4), at which point, the rational operator De(x;γ) has four free critical points, which are x=1 (with multiplicity 2) and x=0 (with multiplicity 2).

    For any γ(γ+8)(γ9)(γ1) that is not equal to 0, we can learn that there are four free critical points.

    cr1=11+γτ12ΩξΔΓ;

    cr2=11+γτ+12ΩξΔΓ;

    cr3=11+γ+τ12ΩξΔ+Γ;

    cr4=11+γ+τ+12ΩξΔ+Γ;

    where τ=γ+γ221+2γ+γ2;ξ=61+γ;Δ=2+2γ1+γ;Γ=1+2γ+γ2(64(1+γ)3+96(1+γ)2321+γ)42γ+γ2;Ω=8(1+γ)2. In spite of the large number of free critical points, however, they are not completely independent of each other, but they are interconnected and together influence the dynamical behavior of the iterative method, as cr1=1cr2and cr3=1cr4.

    Proof. Under the assumption that xC indicates certain values of δ(x)=0 if we ϱ(x)=0, and combine these two equations, by eliminating the parameter γ, we get (1+x)3(1+x3)x3=0, which can be reduced to (1+x)3(1+x3)=0. It follows that (1+x)3 and (1+x3), which can be a common factorization of δ(x)=0 and ϱ(x)=0. As a result, substituting x=1 for δ(x)=0 and ϱ(x)=0 gives the parameter γ=0, at which point δ(x)ϱ(x)=2, and there are four critical points. The equation (1+x3)=0 is solved to solve for x=1,x=(1)13 and x=(1)23. The equation (1+x3)=0 is then solved to solve for γ=1 and γ=8. There are four critical points in De(x)=6x2(1+x)2(1+2x)2 when γ=1. When γ=8, De(x)=3x2(1+x)2(7+10x+7x2)(1+4x+7x2)2 has two critical points.

    The dynamic plane H and the parameter plane Q are plotted and used to visualize the dynamical behavior associated with the iterative method (1.6). In the process of plotting the parameter plane, each γ-value is located in the same connected region of the parameter space, resulting in a series of subsets of methods (1.6) with similar dynamic behavior. Thus, more stable regions can be identified in the parameter plane, allowing us to extract more members with stability from the family of iterative methods (1.6).

    Q={γC : the free critical point cr whose orbit converges to κq˜C under the influence of the operator De(x;γ)}.

    H={xC : for a given γQ, the orbital of x(γ) tends towards a certain number κh˜C under the action of De(x;γ)}.

    By Theorem 3, there are, at most, three free independent critical points that can be observed. Furthermore, we recognize that x=1 is actually the mapping point of the fixed point x=1, and this critical point does not show a distinctive feature on the parameter plane. Thus, we can distinguish two unique parameter planes that each carry complementary information.

    When analyzing the free critical point cr1 (or cr2) as the starting point for a series of iterative methods (1.6) associated with a particular complex value, we color the complex plane according to the convergence properties of the different methods. The corresponding point is labeled in red in the complex plane if the iterative method (1.6) converges to zero. If the convergence is to a non-zero value, then it will be marked in blue. For all other cases, points will be marked green. Figure 3 depicts the parameter plane for the iterative method with the initial point set to cr1. The figure is generated within the range of γ values [40,20]×[30,30] and [5,5]×[5,5], using a grid of 1000×1000 points and computed with 50 iterations for each point. Figure 3b provides a more detailed presentation of the situation in Figure 3(a). In Figures 3 and 4, it is observed that the red region represents the iterative method converging to 0, the blue region represents convergence to infinity, and the green region indicates convergence to 0. In this final parameter selection process, we should try to avoid using green parameter values and prioritize red or blue parameter values to ensure the stability of the iterative process.

    Figure 3.  Parameter plan Q1 for cr1,2.
    Figure 4.  Parameter plan Q2 for cr3,4.

    The iterative method (1.6) has a dynamic plane influenced by the parameter γ, and the regions are marked with different colors. The region where the initial point converges to 0 we color orange, and the region that converges to infinity is marked blue. The region is green if the initial point converges to the fixed point x=1. Black regions indicate no convergence to any root if the initial point converges to black. Additionally, the iteration track is set to red. The dynamic planes are built on a 400×400 point grid, with each point undergoing an iterative process of up to 20 iterations. In Figure 5, the parameter planes that correspond to some specific parameter values are shown. When γ=0, the blue and orange regions are the only ones, indicating that the initial points converge only to 0 and infinity. This parameter value is therefore considered to be a desirable value to take. For γ=8 and γ=1, some black regions appear in Figure 5, and the initial values of these black regions do not converge to any root, suggesting that these parameter values are not ideal choices.

    Figure 5.  Dynamic planes of particular values of γ.

    Figure 6: Dynamic planes for special parameter values γ. We have selected the parameter values that satisfy the condition |8+γ|>24 and divided these values into two subsets; a group of smaller values, specifically γ=20,30, and a larger group of values including γ=1300,1340,1500. A related graphical presentation can be found in Figure 6. We plot γ=7000,10,000; refer to Figure 7.

    Figure 6.  Dynamic planes of other values of γ.
    Figure 7.  Dynamical planes of unstable γ values.

    The dynamic plane shows only orange and blue as stable parameter regions. The larger the absolute value of the parameter, the more complex the structure on the dynamic plane tends to be. Putting these observations into context, it is possible to conclude that the corresponding iterative method shows better stability when γ=0.

    In this section, we conduct a series of numerical experiments aimed at verifying the theoretical convergence and stability predictions made in previous sections for the method (2.17)(XM). The iterative methods (2.17) (XM) are compared with Homeier's method (HM) [31] and Chun's method (CM)[32] for solving some nonlinear equations. Then two numerical experiments are carried out to solve the nonlinear systems.

    Homeier's method (HM) [31]:

    x(n+1)=x(n)S(x(n))2(S(x(n))1+S(y(n))1), (4.1)

    where y(n)=x(n)S(x(n))1S(x(n)).

    Chun's method [32]:

    x(n+1)=x(n)32S(x(n))1S(x(n))+12(S(x(n))2)1(S(x(n))S(y(n))), (4.2)

    where y(n)=x(n)S(x(n))1S(x(n)).

    Within Tables 1 and 2, the time column demonstrates the computing time, the x0 column labels the starting point in the iterative process, ACOC [33] denotes the approximate convergence order.

    Table 1.  Numerical results from different iteration methods.
    si(x) Method x0 |x1x0| |x2x1| |x3x2| |x4x3| ACOC Time
    s1(x) XM 1.4 3.476e-2 9.725e-6 2.2109e-16 2.5973e-48 2.9999996 0.390530
    HM 1.4 3.4769e-2 1.333e-6 7.8428e-20 1.4607e-59 3.000001 0.398433
    CM 1.4 3.475e-2 2.0184e-5 4.2017e-15 3.7902e-44 2.9999984 0.409339
    XM 1.3 6.5158e-2 2.0184e-5 4.2017e-15 3.7902e-44 2.9999984 0.409339
    HM 1.3 6.5223e-2 6.91e-6 9.9906e-18 3.0194e-53 2.9999994 0.406029
    CM 1.3 6.507e-2 1.6018e-4 2.1006e-12 4.7361e-36 3.000016 0.418919
    s2(z) XM 1.4 1.2322e-1 2.772e-3 2.3441e-8 1.4102e-23 3.0004456 0.378724
    HM 1.4 1.2576e-1 2.3771e-4 2.9752e-12 5.8369e-36 2.9999689 0.633551
    CM 1.4 1.1826e-1 7.7388e-3 1.1455e-6 3.6246e-18 3.0030309 0.473145
    XM 1.6 7.3619e-2 3.689e-4 6.3353e-11 2.7837e-31 2.9999538 0.364632
    HM 1.6 7.3904e-2 1.0183e-4 2.341e-13 2.8435e-39 3.0000122 0.487294
    CM 1.6 7.3235e-2 7.7125e-4 1.1033e-9 3.2379e-27 2.9998068 0.482667
    s3(z) XM 1.3 1.0363e-1 8.6367e-4 3.9673e-10 3.8196e-29 3.0001193 0.385904
    HM 1.3 1.0449e-1 6.1387e-6 1.0142e-17 4.5733e-53 2.9999987 0.889935
    CM 1.3 1.0241e-1 2.0802e-3 1.1527e-8 1.9478e-24 3.0005625 0.780309
    XM 1.5 9.5067e-2 4.414e-4 5.2757e-11 9.0156e-32 2.9999442 0.364020
    HM 1.5 9.5456e-2 5.2515e-5 6.3513e-15 1.1233e-44 3.0000132 0.815432
    CM 1.5 9.4686e-2 8.2275e-4 7.0641e-10 4.4833e-28 2.9998082 0.777321
    s4(z) XM 1.8 2.2924e-1 5.4852e-3 4.8052e-8 3.2011e-23 3.0007836 0.770896
    HM 1.8 2.3536e-1 6.3333e-4 1.0604e-12 5.0524e-39 2.9992499 0.919149
    CM 1.8 2.2038e-1 1.4339e-2 1.7532e-6 3.087e-18 3.0041621 0.869809
    XM 1.9 1.3384e-1 8.8166e-4 1.9802e-10 2.2404e-30 3.0000956 0.764242
    HM 1.9 1.3478e-1 5.852e-5 8.4809e-16 2.5851e-48 2.9999442 0.899065
    CM 1.9 13271e-1 2.0161e-3 4.7188e-9 6.0185e-26 3.0004016 0.958593
    s5(z) XM 0.7 1.0509e-1 1.0106e-4 7.3026e-14 2.755e-41 3.0000094 0.372409
    HM 0.7 1.0503e-1 1.5417e-4 4.4925e-13 1.1114e-38 3.0000055 0.387347
    CM 0.7 1.0484e-1 3.4457e-4 1.0807e-11 3.3333e-34 3.0000218 0.711144
    XM 0.9 3.0153e-1 3.6606e-3 3.4953e-9 3.0209e-27 3.0005195 0.363470
    HM 0.9 3.0066e-1 4.5271e-3 1.1409e-8 1.8204e-25 3.0002463 0.411865
    CM 0.9 2.9467e-1 1.0518e-2 3.1085e-7 7.9314e-21 3.0011099 0.726080
    s6(z) XM 0.2 9.8796e-2 2.0631e-4 1.9522e-12 1.6541e-36 2.999995 0.379134
    HM 0.2 9.8925e-2 7.689e-5 3.4635e-14 3.1654e-42 3.0000016 0.546499
    CM 0.2 9.8549e-2 4.5356e-4 4.8574e-11 5.9694e-32 2.9999684 0.509358
    XM 0.6 4.7715e-1 2.1853e-2 2.2984e-6 2.6993e-18 2.9989692 0.369832
    HM 0.6 4.8842e-1 1.0583e-2 9.0743e-8 5.6928e-23 3.0004065 0.509111
    CM 0.6 4.5978e-1 3.9191e-2 3.0088e-5 1.4186e-14 2.9942634 0.548055

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results of the iterative method (1.4) with stability parameter values.
    si(x) γ x0 |x1x0| |x2x1| |x3x2| |x4x3| ACOC Time
    s1(x) 0 0.9 4.2417e-1 4.1039e-2 1.7406e-5 1.2675e-15 3.0060079 0.395263
    1 0.9 3.2788e-1 1.3573e-1 1.6133e-3 2.0244e-9 3.0657447 0.411651
    9 0.9 4.4244e-1 54.806 5.2807 4.7567 nc 0.463676
    s2(x) 0 1.5 2.5974e-2 2.0187e-5 9.006e-15 7.9969e-43 3.0000018 0.365875
    1 1.5 2.5952e-2 4.1889e-5 1.6095e-13 9.1294e-39 3.000007 0.406378
    9 1.5 2.5778e-2 2.1550e-4 1.0967e-10 1.4441e-29 3.0000642 0.524439
    s3(x) 0 1.4 4.4916e-3 5.6144e-8 1.0866e-22 7.8771e-67 3.0 0.384539
    1 1.4 4.4915-3 1.1286e-7 1.7652e-21 6.7536e-63 3.0 0.413546
    9 1.4 4.4911e-3 5.6657e-7 1.1166e-18 8.5487e-54 3.0000001 0.703668
    s4(x) 0 2.0 3.4712e-2 1.2797e-5 6.0467e-16 6.3787e-47 3.0000009 0.796057
    1 2.0 3.4699e-2 2.6357e-5 1.0566e-14 6.8067e-43 3.000003 0.813411
    9 2.0 3.459e-2 1.3483e-4 7.0755e-12 1.022e-33 3.0000251 0.801792
    s5(x) 0 0.6 5.189e-3 9.9857e-9 7.044e-26 2.4725e-77 3.0 0.794878
    1 0.6 5.189e-3 1.9977e-8 1.1281e-24 2.0311e-73 3.0 1.063982
    9 0.6 5.1889e-3 9.9912e-8 7.0557e-22 1.022e-33 3.0000251 0.801792
    s6(x) 0 1.6 1.1355 3.5448e-1 9.0195e-3 1.6249e-7 2.975614 0.407156
    1 1.6 1.0323 4.3713e-1 2.9580e-2 1.119e-5 2.925868 0.542887
    9 1.6 0.20652 2.785e-1 3.5908e-1 3.8939e-1 nc 0.554967

     | Show Table
    DownLoad: CSV

    We use six nonlinear equations mentioned in references [34,35] for the in-depth study.

    s1(x)=x3+4x210,ε1.3652300134140968.s2(x)=x4log(x)5,ε1.5259939537536892.s3(x)=sin2(x)x2+1,ε1.4044916482153412.s4(x)=cos(πx2+x2π),ε0.594808888430873770.0000852783334727i.s5(x)=arcsin(x21)12x+1,ε0.59480888843087377.

    Additionally, we explore population growth patterns[36]: population dynamics are analyzed by means of a first-order linear ordinary differential equation as follows:

    P(x)=cP(x)+s, (4.3)

    where c stands for a constant birth rate and s stands for a constant migration rate. P(x) is used to represent the total population size at any random time point x. By solving the linear differential equation, we can get its generalized solution

    P(x)=P0ecx+sc(ecx1), (4.4)

    By P0, we denote the initial population size. Examining and exploring the multiple possible values of the parameters and combining them with the initial conditions provided in the literature [37], we can accurately calculate the birth rate by using the nonlinear equation below:

    s6(x)=15641000ex435x(ex1),ε0.1009979328831604.

    Here, c=k represents the ideal birth rate we wish to determine.

    Example 1. Take the nonlinear system

    {x1+ex1cos(x2)=0,3x1x2sin(x2)=0, (4.5)

    where x1 and x2 are the unknowns in the nonlinear system (4.5).

    Example 2. Take the nonlinear the system of equations for the Hammerstein equation, which plays a crucial role in nonlinear integral equations:

    s(x)=1+(15)10M(x,t)s(t)3dt, (4.6)

    where xC[0,1],x,t[0,1]. The kernel function M is

    M(x,t)={(1x)ttx,x(1t)xt. (4.7)

    A system of nonlinear equations is formed by discretization and solved (4.6) by approximating the integral in Eq (4.6) by the Gauss-Legendre product method.

    10x(t)dt7i=1wjx(tj), (4.8)

    Here, tj and wj are the nodes in the Gauss-Legende product method and the weights. Denote the approximation of s(tj) as xi,i=1,,7

    si1157j=1aijs3j=0,i=1,,7 (4.9)

    where

    ai,j={wjtj(1ti)ji,wjti(1tj)i<j. (4.10)

    According to Table 1, the iterative method (1.6) has high computational accuracy. Compared with other methods, the iterative method (1.6) takes less time for calculation. In Table 2, different values of stabilization parameters such as γ=0,γ=1 and γ=9, are chosen, and the iterative method (1.6) has better convergence. Tables 3 and 4 are numerical experiments for solving nonlinear systems.

    Table 3.  Numerical results for Example 1.
    γ iter x(k+1)x(k) S(x(k+1)) ACOC
    -1 6 7.188e-505 1.457e-2017 4.00000
    0 7 1.126e-440 5.584e-1321 3.00000
    1 7 8.525e-362 4.847e-1084 3.00000
    9 8 1.170e-450 6.260e-1350 3.00000

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical results for Example 2.
    γ iter x(k+1)x(k) S(x(k+1)) ACOC
    -1 5 2.815e-312 8.479e-1250 4.00017
    0 6 4.212e-367 2.286e-1102 3.00001
    1 6 6.901e-327 2.011e-981 3.00001
    9 6 1.800e-239 1.786e-718 3.00001

     | Show Table
    DownLoad: CSV

    This section draws fractal graphs for different iterative methods used to solve the nonlinear equation S1(x)=x21. The iterative methods we compare include AM (when parameter γ=0, iterative method (1.6) is defined as AM), K2 (when parameter γ=1, iterative method (1.6) is defined as K2), Solaiman's method (MH), and Kou's method (KW).

    Solaiman's method [38] (MH):

    x(n+1)=x(n)S(x(n))1S(x(n))+2(4(S(x(n)))44S(x(n))(S(x(n)))2S(x(n))+(S(x(n)))2(S(x(n)))2)1S(x(n))S(x(n))S(x(n)), (5.1)

    Kou's method [39] (KW) :

    x(n+1)=x(n)S(x(n))1(S(y(n))S(x(n))), (5.2)

    where y(n)=x(n)+S(x(n))1S(x(n)).

    We created a 500×500 point grid to generate images in the region D=[5,5]×[5,5]. The maximum number is 25 iterations. Blue, red, and yellow areas respectively, converge to the roots of the polynomials, whereas areas that do not converge within the maximum number of iterations are in black. The number of iterations is indicated by the brightness of the colors. For example, regions with fewer iterations show brighter colors. From the fractal maps, method AM showed better convergence than the other methods. Therefore, the iterative method (AM) has better convergence and stability than the other methods.

    Figure 8.  Fractal map of various iterative methods for x21.

    The paper investigates the complex dynamic behavior exhibited by Kou's extended iterative method, which is used to solve systems for nonlinear equations. Strange fixed points and critical points of the iterative method (1.6) are intensively studied. We found the relevant parameter plane and select some parameter values for further analysis. Some unique parameter planes with values such as γ=0,1 and 9 are observed. By observing the parameter plane and the dynamic plane, we discover the parameter γ=0 to have good stability. Numerical experiments and dynamic analyses both agree with each other, verifying the accuracy of the conclusion. We will study the iterative methods with higher convergence and their stability in the future.

    The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

    This research was supported by Educational Commission Foundation of Liaoning Province of China (No. LJ212410167008), the Key Project of Bohai University (No. 0522xn078), and the "14th Five-Year Plan" Project of Liaoning Province Education Science (No. JG24EB014).

    The authors declare there are no conflicts of interest.



    [1] Sudha PN, Sangeetha K, Vijayalakshmi K, et al. (2018) Nanomaterials history, classification, unique properties, production and market, In: Barhoum A, Makhlouf ASH, Emerging Applications of Nanoparticles and Architecture Nanostructures, Amsterdam: Elsevier, 341–384. https://doi.org/10.1016/B978-0-323-51254-1.00012-9
    [2] Al-Naib UMB (2018) Introductory chapter: A brief introduction to porous ceramic, In: Al-Naib UMB, Recent Advances in Porous Ceramics, Rijeka: IntechOpen. https://doi.org/10.5772/intechopen.74747
    [3] Yin D, Chen C, Saito M, et al. (2019) Ceramic phases with one-dimensional long-range order. Nature Mater 18: 19–23. https://doi.org/10.1038/s41563-018-0240-0 doi: 10.1038/s41563-018-0240-0
    [4] Mitchell AL, Perea DE, Wirth MG, et al. (2021) Nanoscale microstructure and chemistry of transparent gahnite glass-ceramics revealed by atom probe tomography. Scripta Mater 203: 114110. https://doi.org/10.1016/j.scriptamat.2021.114110 doi: 10.1016/j.scriptamat.2021.114110
    [5] Liu X, Wang H, Lu H, et al. (2023) Grain-interior planar defects induced by heteroatom monolayer. APM 2: 100130. https://doi.org/10.1016/j.apmate.2023.100130 doi: 10.1016/j.apmate.2023.100130
    [6] Xiong H, Shui A, Shan Q, et al. (2021) Fabrication of foamed ceramics with enhanced compressive strength and low thermal conductivity via a simple route. Mater Chem Phys 267: 124699. https://doi.org/10.1016/j.matchemphys.2021.124699 doi: 10.1016/j.matchemphys.2021.124699
    [7] Chen A, Li L, Wang C, et al. (2022) Novel porous ceramic with high strength and thermal performance using MA hollow spheres. Prog Nat Sci 32: 732–738. https://doi.org/10.1016/j.pnsc.2022.09.015 doi: 10.1016/j.pnsc.2022.09.015
    [8] Lou J, He C, Shui A, et al. (2023) Enhanced sound absorption performance of porous ceramics with closed-pore structure. Ceram Int 49: 38103–38114. https://doi.org/10.1016/j.ceramint.2023.09.140 doi: 10.1016/j.ceramint.2023.09.140
    [9] Zhou G, Gu Q, Sun H, et al. (2024) High-temperature self-healing behavior of reaction-bonded silicon carbide porous ceramic membrane supports. J Eur Ceram Soc 44: 1959–1971. https://doi.org/10.1016/j.jeurceramsoc.2023.11.065 doi: 10.1016/j.jeurceramsoc.2023.11.065
    [10] Liao M, De Guzman MR, Shen G, et al. (2024) Preparation of compact ZrC-SiC ceramic matrix from thermoset precursors for C/C-ZrC-SiC composites with high mechanical properties. J Eur Ceram Soc 44: 1983–1999. https://doi.org/10.1016/j.jeurceramsoc.2023.11.076 doi: 10.1016/j.jeurceramsoc.2023.11.076
    [11] Li B, Xu G, Wang B, et al. (2021) Fabrication and characterization of bioactive zirconia-based nanocrystalline glass-ceramics for dental abutment. Ceram Int 47: 26877–26890. https://doi.org/10.1016/j.ceramint.2021.06.097 doi: 10.1016/j.ceramint.2021.06.097
    [12] Sobczak-Kupiec A, Tomala AM, Domínguez López C, et al. (2022) Polymer–ceramic biocomposites based on PVP/histidine/hydroxyapatite for hard tissue engineering applications. Int J Polym Mater Polym Biomater 71: 1380–1392. http://dx.doi.org/10.1080/00914037.2021.1963725 doi: 10.1080/00914037.2021.1963725
    [13] Thanigachalam M, Muthusamy Subramanian AV (2022) Evaluation of PEEK-TiO2-SiO2 nanocomposite as biomedical implants with regard to in-vitro biocompatibility and material characterization. J Biomater Sci Polym Ed 33: 727–746. https://doi.org/10.1080/09205063.2021.2014028 doi: 10.1080/09205063.2021.2014028
    [14] Nasedkin A, Nassar ME (2022) Comprehensive numerical characterization of a piezoelectric composite with hollow metallic inclusions using an adaptable random representative volume. Comput Struct 267: 106799. https://doi.org/10.1016/j.compstruc.2022.106799 doi: 10.1016/j.compstruc.2022.106799
    [15] Nasedkin A, Nassar ME (2021) About anomalous properties of porous piezoceramic materials with metalized or rigid surfaces of pores. Mech Mater 162: 104040. https://doi.org/10.1016/j.mechmat.2021.104040 doi: 10.1016/j.mechmat.2021.104040
    [16] Shakirzyanov RI, Volodina NO, Kozlovskiy AL, et al. (2023) Study of the structural, electrical, and mechanical properties and morphological features of Y-doped CeO2 ceramics with porous structure. J Compos Sci 7: 411. https://doi.org/10.3390/jcs7100411 doi: 10.3390/jcs7100411
    [17] Michalak J (2021) Ceramic tile adhesives from the producer's perspective: A literature review. Ceramics 4: 378–390. https://doi.org/10.3390/ceramics4030027 doi: 10.3390/ceramics4030027
    [18] Sadineni SB, Madala S, Boehm RF (2011) Passive building energy savings: A review of building envelope components. Renew Sust Energ Rev 15: 3617–3631. https://doi.org/10.1016/j.rser.2011.07.014 doi: 10.1016/j.rser.2011.07.014
    [19] Pacheco R, Ordóñez J, Martínez G (2012) Energy efficient design of building: A review. Renew Sust Energ Rev 16: 3559–3573. https://doi.org/10.1016/j.rser.2012.03.045 doi: 10.1016/j.rser.2012.03.045
    [20] Mirrahimi S, Mohamed MF, Haw LC, et al. (2016) The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate. Renew Sust Energ Rev 53: 1508–1519. https://doi.org/10.1016/j.rser.2015.09.055 doi: 10.1016/j.rser.2015.09.055
    [21] Frankel GS, Vienna JD, Lian J, et al. (2018) A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. npj Mater Degrad 2: 15. https://doi.org/10.1038/s41529-018-0037-2 doi: 10.1038/s41529-018-0037-2
    [22] Liu Y, Ma H, Hsiao BS, et al. (2016) Improvement of meltdown temperature of lithium-ion battery separator using electrospun polyethersulfone membranes. Polymer 107: 163–169. https://doi.org/10.1016/j.polymer.2016.11.020 doi: 10.1016/j.polymer.2016.11.020
    [23] Wen Q, Yu Z, Riedel R (2020) The fate and role of in situ formed carbon in polymer-derived ceramics. Prog Mater Sci 109: 100623. https://doi.org/10.1016/j.pmatsci.2019.100623 doi: 10.1016/j.pmatsci.2019.100623
    [24] Chen Y, Wang N, Ola O, et al. (2021) Porous ceramics: Light in weight but heavy in energy and environment technologies. Mater Sci Eng R 143: 100589. https://doi.org/10.1016/j.mser.2020.100589 doi: 10.1016/j.mser.2020.100589
    [25] Al-Shaeli M, Orhun Teber O, Al-Juboori RA, et al. (2024) Inorganic layered polymeric membranes: Highly-ordered porous ceramics for surface engineering of polymeric membranes. Sep Purif Technol 350: 127925. https://doi.org/10.1016/j.seppur.2024.127925 doi: 10.1016/j.seppur.2024.127925
    [26] Fukushima M (2013) Microstructural control of macroporous silicon carbide. J Ceram Soc Jpn 121: 162–168. https://doi.org/10.2109/jcersj2.121.162 doi: 10.2109/jcersj2.121.162
    [27] Youness RA, Tag El-deen DM, Taha MA (2023) A review on calcium silicate ceramics: Properties, limitations, and solutions for their use in biomedical applications. Silicon 15: 2493–2505. https://doi.org/10.1007/s12633-022-02207-3 doi: 10.1007/s12633-022-02207-3
    [28] Tulyaganov DU, Dimitriadis K, Agathopoulos S, et al. (2023) Glasses and glass-ceramics in the CaO–MgO–SiO2 system: Diopside containing compositions—A brief review. J Non Cryst Solids 612: 122351. https://doi.org/10.1016/j.jnoncrysol.2023.122351 doi: 10.1016/j.jnoncrysol.2023.122351
    [29] Zhao X (2011) Bioactive materials in orthopaedics, In: Zhao X, Courtney JM, Qian H, Bioactive Materials in Medicine, Amsterdam: Elsevier, 124–154. https://doi.org/10.1533/9780857092939.2.124
    [30] Zahir A, Mahmood U, Nazir A, et al. (2022) Biomaterials for medical and healthcare products, In: Mondal MIH, Medical Textiles from Natural Resources, Amsterdam: Elsevier, 43–86. https://doi.org/10.1016/B978-0-323-90479-7.00013-0
    [31] Merlet RB, Pizzoccaro-Zilamy MA, Nijmeijer A, et al. (2020) Hybrid ceramic membranes for organic solvent nanofiltration: State-of-the-art and challenges. J Memb Sci 599: 117839. https://doi.org/10.1016/j.memsci.2020.117839 doi: 10.1016/j.memsci.2020.117839
    [32] Li C, Sun W, Lu Z, et al. (2020) Ceramic nanocomposite membranes and membrane fouling: A review. Water Res 175: 115674. https://doi.org/10.1016/j.watres.2020.115674 doi: 10.1016/j.watres.2020.115674
    [33] Alonso-De la Garza DA, Guzmán AM, Gómez-Rodríguez C, et al. (2022) Influence of Al2O3 and SiO2 nanoparticles addition on the microstructure and mechano-physical properties of ceramic tiles. Ceram Int 48: 12712–12720. https://doi.org/10.1016/j.ceramint.2022.01.140 doi: 10.1016/j.ceramint.2022.01.140
    [34] Maletsky AV, Belichko DR, Konstantinova TE, et al. (2021) Structure formation and properties of corundum ceramics based on metastable aluminium oxide doped with stabilized zirconium dioxide. Ceram Int 47: 19489–19495. https://doi.org/10.1016/j.ceramint.2021.03.286 doi: 10.1016/j.ceramint.2021.03.286
    [35] Besisa DHA, Ewais EMM, Ahmed YMZ (2021) A comparative study of thermal conductivity and thermal emissivity of high temperature solar absorber of ZrO2/Fe2O3 and Al2O3/CuO ceramics. Ceram Int 47: 28252–28259. https://doi.org/10.1016/j.ceramint.2021.06.240 doi: 10.1016/j.ceramint.2021.06.240
    [36] Zheng W, Li C, Yuan J, et al. (2022) The crystallization and fracture toughness of transparent glass-ceramics with various Al2O3 additions for mobile devices. J Wuhan Univ Technol Mater Sci Ed 37: 378–384. https://doi.org/10.1007/s11595-022-2542-y doi: 10.1007/s11595-022-2542-y
    [37] Jõgiaas T, Zabels R, Tarre A, et al. (2020) Hardness and modulus of elasticity of atomic layer deposited Al2O3-ZrO2 nanolaminates and mixtures. Mater Chem Phys 240: 122270. https://doi.org/10.1016/j.matchemphys.2019.122270 doi: 10.1016/j.matchemphys.2019.122270
    [38] Tang H, Rogov AB, Soutis C, et al. (2023) Fabrication, interfacial and flexural properties of a polymer composite reinforced by γ-Al2O3/Al fibres. Compos Part A Appl Sci Manuf 169: 107502. https://doi.org/10.1016/j.compositesa.2023.107502 doi: 10.1016/j.compositesa.2023.107502
    [39] Lin L, Wu H, Li Y, et al. (2024) Effect of particle size on rheology, curing kinetics, and corresponding mechanical and thermal properties of aluminum nitride (AlN) ceramic by digital light processing (DLP)-based vat photopolymerization. J Eur Ceram Soc 44: 184–192. https://doi.org/10.1016/j.jeurceramsoc.2023.08.048 doi: 10.1016/j.jeurceramsoc.2023.08.048
    [40] Yang X, Bi J, Liang G, et al. (2022) The effect of boron nitride nanosheets on the mechanical and thermal properties of aluminum nitride ceramics. Int J Appl Ceram Technol 19: 2817–2825. https://doi.org/10.1111/ijac.14069 doi: 10.1111/ijac.14069
    [41] Duan W, Li S, Wang G, et al. (2020) Thermal conductivities and mechanical properties of AlN ceramics fabricated by three dimensional printing. J Eur Ceram Soc 40: 3535–3540. https://doi.org/10.1016/j.jeurceramsoc.2020.04.004 doi: 10.1016/j.jeurceramsoc.2020.04.004
    [42] Yaşar ZA, Haber RA (2020) Effect of carbon addition and mixture method on the microstructure and mechanical properties of silicon carbide. Materials 13: 3768. https://doi.org/10.3390/ma13173768 doi: 10.3390/ma13173768
    [43] Li C, Li S, An D, et al. (2020) Microstructure and mechanical properties of spark plasma sintered SiC ceramics aided by B4C. Ceram Int 46: 10142–10146. https://doi.org/10.1016/j.ceramint.2020.01.005 doi: 10.1016/j.ceramint.2020.01.005
    [44] Kultayeva S, Kim Y (2023) Electrical, thermal, and mechanical properties of porous silicon carbide ceramics with a boron carbide additive. Int J Appl Ceram Technol 20: 1114–1128. https://doi.org/10.1111/ijac.14113 doi: 10.1111/ijac.14113
    [45] Kim GD, Kim YW, Song IH, et al. (2020) Effects of carbon and silicon on electrical, thermal, and mechanical properties of porous silicon carbide ceramics. Ceram Int 46: 15594–15603. https://doi.org/10.1016/j.ceramint.2020.03.106 doi: 10.1016/j.ceramint.2020.03.106
    [46] Vivekananthan M, Ahilan C, Sakthivelu S, et al. (2020) A primary study of density and compressive strength of the silicon nitride and titanium nitride ceramic composite. Mater Today Proc 33: 2741–2745. https://doi.org/10.1016/j.matpr.2020.01.570 doi: 10.1016/j.matpr.2020.01.570
    [47] Lv X, Huang J, Dong X, et al. (2023) Influence of α-Si3N4 coarse powder on densification, microstructure, mechanical properties, and thermal behavior of silicon nitride ceramics. Ceram Int 49: 21815–21824. https://doi.org/10.1016/j.ceramint.2023.04.003 doi: 10.1016/j.ceramint.2023.04.003
    [48] Ye CC, Ma K, Chen HM, et al. (2024) Effect of texture on the thermal conductivity and mechanical properties of silicon nitride ceramic. Ceram Int 50: 4014–4021. https://doi.org/10.1016/j.ceramint.2023.11.170 doi: 10.1016/j.ceramint.2023.11.170
    [49] Duan Y, Liu N, Zhang J, et al. (2020) Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties. J Eur Ceram Soc 40: 298–304. https://doi.org/10.1016/j.jeurceramsoc.2019.10.003 doi: 10.1016/j.jeurceramsoc.2019.10.003
    [50] Li S, Wei C, Wang P, et al. (2020) Fabrication of ZrO2 whisker modified ZrO2 ceramics by oscillatory pressure sintering. Ceram Int 46: 17684–17690. https://doi.org/10.1016/j.ceramint.2020.04.071 doi: 10.1016/j.ceramint.2020.04.071
    [51] Oguntuyi SD, Johnson OT, Shongwe MB, et al. (2021) The effects of sintering additives on the ceramic matrix composite of ZrO2: Microstructure, densification, and mechanical properties—A review. Adv Appl Ceram 120: 319–335. https://doi.org/10.1080/17436753.2021.1953845 doi: 10.1080/17436753.2021.1953845
    [52] Lian W, Liu Z, Zhu R, et al. (2021) Effects of zirconium source and content on zirconia crystal form, microstructure and mechanical properties of ZTM ceramics. Ceram Int 47: 19914–19922. https://doi.org/10.1016/j.ceramint.2021.03.327 doi: 10.1016/j.ceramint.2021.03.327
    [53] Chen G, Ling Y, Li Q, et al. (2020) Stability properties and structural characteristics of CaO-partially stabilized zirconia ceramics synthesized from fused ZrO2 by microwave sintering. Ceram Int 46: 16842–16848. https://doi.org/10.1016/j.ceramint.2020.03.261 doi: 10.1016/j.ceramint.2020.03.261
    [54] Mhadhbi M, Driss M (2020) Titanium carbide: Synthesis, properties and applications. BEN 2: 1–11. https://doi.org/10.36937/ben.2021.002.001 doi: 10.36937/ben.2021.002.001
    [55] Alonso-De la Garza DA, Guzmán AM, Gómez-Rodríguez C, et al. (2022) Influence of Al2O3 and SiO2 nanoparticles addition on the microstructure and mechano-physical properties of ceramic tiles. Ceram Int 48: 12712–12720. https://doi.org/10.1016/j.ceramint.2022.01.140 doi: 10.1016/j.ceramint.2022.01.140
    [56] Ye K, Li F, Zhang J, et al. (2021) Effect of SiO2 on microstructure and mechanical properties of composite ceramic coatings prepared by centrifugal-SHS process. Ceram Int 47: 12833–12842. https://doi.org/10.1016/j.ceramint.2021.01.144 doi: 10.1016/j.ceramint.2021.01.144
    [57] Rahimi S, SharifianJazi F, Esmaeilkhanian A, et al. (2020) Effect of SiO2 content on Y-TZP/Al2O3 ceramic-nanocomposite properties as potential dental applications. Ceram Int 46: 10910–10916. https://doi.org/10.1016/j.ceramint.2020.01.105 doi: 10.1016/j.ceramint.2020.01.105
    [58] Kang ES, Kim YW, Nam WH (2021) Multiple thermal resistance induced extremely low thermal conductivity in porous SiC-SiO2 ceramics with hierarchical porosity. J Eur Ceram Soc 41: 1171–1180. https://doi.org/10.1016/j.jeurceramsoc.2020.10.004 doi: 10.1016/j.jeurceramsoc.2020.10.004
    [59] Keziz A, Rasheed M, Heraiz M, et al. (2023) Structural, morphological, dielectric properties, impedance spectroscopy and electrical modulus of sintered Al6Si2O13–Mg2Al4Si5O18 composite for electronic applications. Ceram Int 49: 37423–37434. https://doi.org/10.1016/j.ceramint.2023.09.068 doi: 10.1016/j.ceramint.2023.09.068
    [60] Ren Y, Zhang B, Zhong Z, et al. (2024) A simple and efficient hydratable alumina gel‐casting method for the fabrication of high‐porosity mullite ceramics. J Am Ceram Soc 107: 2067–2080. https://doi.org/10.1111/jace.19550 doi: 10.1111/jace.19550
    [61] Huang J, Yao M, Lin J, et al. (2022) Enhanced mechanical properties and excellent electrical properties of PZT piezoelectric ceramics modified by YSZ. Mater Lett 307: 131006. https://doi.org/10.1016/j.matlet.2021.131006 doi: 10.1016/j.matlet.2021.131006
    [62] Coleman K, Ritter M, Bermejo R, et al. (2021) Mechanical failure dependence on the electrical history of lead zirconate titanate thin films. J Eur Ceram Soc 41: 2465–2471. https://doi.org/10.1016/j.jeurceramsoc.2020.11.002 doi: 10.1016/j.jeurceramsoc.2020.11.002
    [63] Tiwari B, Babu T, Choudhary RNP (2021) Piezoelectric lead zirconate titanate as an energy material: A review study. Mater Today Proc 43: 407–412. https://doi.org/10.1016/j.matpr.2020.11.692 doi: 10.1016/j.matpr.2020.11.692
    [64] Okayasu M, Okawa M (2021) Piezoelectric properties of lead zirconate titanate ceramics at low and high temperatures. Adv Appl Ceram 120: 127–133. https://doi.org/10.1080/17436753.2021.1904765 doi: 10.1080/17436753.2021.1904765
    [65] Thakur VN, Yadav S, Kumar A (2021) Effect of bismuth substitution on piezoelectric coefficients and temperature and pressure-dependent dielectric and impedance properties of lead zirconate titanate ceramics. Mater Today Commun 26: 101846. https://doi.org/10.1016/j.mtcomm.2020.101846 doi: 10.1016/j.mtcomm.2020.101846
    [66] Khorashadizade F, Abazari S, Rajabi M, et al. (2021) Overview of magnesium-ceramic composites: Mechanical, corrosion and biological properties. J Mater Res Technol 15: 6034–6066. https://doi.org/10.1016/j.jmrt.2021.10.141 doi: 10.1016/j.jmrt.2021.10.141
    [67] Ma B, Zan W, Liu K, et al. (2023) Preparation and properties of porous MgO based ceramics from magnesite tailings and fused magnesia. Ceram Int 49: 19072–19082. https://doi.org/10.1016/j.ceramint.2023.03.034 doi: 10.1016/j.ceramint.2023.03.034
    [68] Wei Y, Gu S, Fang H, et al. (2020) Properties of MgO transparent ceramics prepared at low temperature using high sintering activity MgO powders. J Am Ceram Soc 103: 5382–5391. https://doi.org/10.1111/jace.17267 doi: 10.1111/jace.17267
    [69] Xie YZ, Peng CQ, Wang XF, et al. (2017) Porous alumina ceramic prepared by HEMA-TBA gelcasting system. J Inorg Mater 32: 731. http://dx.doi.org/10.15541/jim20160550 doi: 10.15541/jim20160550
    [70] Yu J, Wang H, Zhang J, et al. (2010) Gelcasting preparation of porous silicon nitride ceramics by adjusting the content of monomers. J Solgel Sci Technol 53: 515–523. https://doi.org/10.1007/s10971-009-2125-9 doi: 10.1007/s10971-009-2125-9
    [71] Yang J, Yu J, Huang Y (2011) Recent developments in gelcasting of ceramics. J Eur Ceram Soc 31: 2569–2591. https://doi.org/10.1016/j.jeurceramsoc.2010.12.035 doi: 10.1016/j.jeurceramsoc.2010.12.035
    [72] Belrhiti Y, Kerth P, McGilvray M, et al. (2023) Gel-casting for manufacturing porous alumina ceramics with complex shapes for transpiration cooling. Adv Appl Ceram 122: 375–380. https://doi.org/10.1080/17436753.2023.2265204 doi: 10.1080/17436753.2023.2265204
    [73] Han L, Deng X, Li F, et al. (2018) Preparation of high strength porous mullite ceramics via combined foam-gelcasting and microwave heating. Ceram Int 44: 14728–14733. https://doi.org/10.1016/j.ceramint.2018.05.101 doi: 10.1016/j.ceramint.2018.05.101
    [74] Deng X, Ran S, Han L, et al. (2017) Foam-gelcasting preparation of high-strength self-reinforced porous mullite ceramics. J Eur Ceram Soc 37: 4059–4066. https://doi.org/10.1016/j.jeurceramsoc.2017.05.009 doi: 10.1016/j.jeurceramsoc.2017.05.009
    [75] Ge S, Lin L, Zhang H, et al. (2018) Synthesis of hierarchically porous mullite ceramics with improved thermal insulation via foam-gelcasting combined with pore former addition. Adv Appl Ceram 117: 493–499. https://doi.org/10.1080/17436753.2018.1502065 doi: 10.1080/17436753.2018.1502065
    [76] Saidi R, Fathi M, Salimijazi H, et al. (2017) Fabrication and characterization nanostructured forsterite foams with high compressive strength, desired porosity and suitable bioactivity for biomedical applications. J Solgel Sci Technol 81: 734–740. https://doi.org/10.1007/s10971-016-4240-8 doi: 10.1007/s10971-016-4240-8
    [77] Zhou W, Yan W, Li N, et al. (2019) Fabrication of mullite-corundum foamed ceramics for thermal insulation and effect of micro-pore-foaming agent on their properties. J Alloys Compd 785: 1030–1037. https://doi.org/10.1016/j.jallcom.2019.01.212 doi: 10.1016/j.jallcom.2019.01.212
    [78] Zhou M, Ge X, Wang H, et al. (2017) Effect of the CaO content and decomposition of calcium-containing minerals on properties and microstructure of ceramic foams from fly ash. Ceram Int 43: 9451–9457. https://doi.org/10.1016/j.ceramint.2017.04.122 doi: 10.1016/j.ceramint.2017.04.122
    [79] Liu T, Tang Y, Li Z, et al. (2016) Red mud and fly ash incorporation for lightweight foamed ceramics using lead-zinc mine tailings as foaming agent. Mater Lett 183: 362–364. https://doi.org/10.1016/j.matlet.2016.07.041 doi: 10.1016/j.matlet.2016.07.041
    [80] Li Z, Mao H, Korzhavyi PA, et al. (2016) Thermodynamic re-assessment of the Co–Cr system supported by first-principles calculations. Calphad 52: 1–7. https://doi.org/10.1016/j.calphad.2015.10.013 doi: 10.1016/j.calphad.2015.10.013
    [81] Scialla S, Carella F, Dapporto M, et al. (2020) Mussel shell-derived macroporous 3D scaffold: Characterization and optimization study of a bioceramic from the circular economy. Mar Drugs 18: 309. https://doi.org/10.3390/md18060309 doi: 10.3390/md18060309
    [82] Liu R, Xu T, Wang C (2016) A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceram Int 42: 2907–2925. https://doi.org/10.1016/j.ceramint.2015.10.148 doi: 10.1016/j.ceramint.2015.10.148
    [83] Mocciaro A, Lombardi MB, Scian AN (2017) Ceramic material porous structure prepared using pore-forming additives. Refract Ind Ceram 58: 65–68. https://doi.org/10.1007/s11148-017-0055-6 doi: 10.1007/s11148-017-0055-6
    [84] Yu J, Yang Z, Song Z, et al. (2018) Preparation of porous Al2O3 ceramics with in situ formed C-nanowires derived form silicone resin. Mater Lett 212: 271–274. https://doi.org/10.1016/j.matlet.2017.10.054 doi: 10.1016/j.matlet.2017.10.054
    [85] Zhang Y, Wu Y, Yang X, et al. (2020) High-strength thermal insulating mullite nanofibrous porous ceramics. J Eur Ceram Soc 40: 2090–2096. https://doi.org/10.1016/j.jeurceramsoc.2020.01.011 doi: 10.1016/j.jeurceramsoc.2020.01.011
    [86] Yang J, Xu L, Wu H, et al. (2021) Preparation and properties of porous ceramics from spodumene flotation tailings by low-temperature sintering. T Nonferr Metal Soc 31: 2797–2811. https://doi.org/10.1016/S1003-6326(21)65694-7 doi: 10.1016/S1003-6326(21)65694-7
    [87] Dang W, Wang W, Wu P, et al. (2022) Freeze-cast porous Al2O3 ceramics strengthened by up to 80% ceramics fibers. Ceram Int 48: 9835–9841. https://doi.org/10.1016/j.ceramint.2021.12.185 doi: 10.1016/j.ceramint.2021.12.185
    [88] Studart AR, Gonzenbach UT, Tervoort E, et al. (2006) Processing routes to macroporous ceramics: A review. J Am Ceram Soc 89: 1771–1789. https://doi.org/10.1111/j.1551-2916.2006.01044.x doi: 10.1111/j.1551-2916.2006.01044.x
    [89] Xu H, Liu J, Guo A, et al. (2012) Porous silica ceramics with relatively high strength and novel bi-modal pore structure prepared by a TBA-based gel-casting method. Ceram Int 38: 1725–1729. https://doi.org/10.1016/j.ceramint.2011.09.013 doi: 10.1016/j.ceramint.2011.09.013
    [90] Novais RM, Seabra MP, Labrincha JA (2014) Ceramic tiles with controlled porosity and low thermal conductivity by using pore-forming agents. Ceram Int 40: 11637–11648. https://doi.org/10.1016/j.ceramint.2014.03.163 doi: 10.1016/j.ceramint.2014.03.163
    [91] Kultayeva S, Kim YW, Song IH (2021) Effects of dopants on electrical, thermal, and mechanical properties of porous SiC ceramics. J Eur Ceram Soc 41: 4006–4015. https://doi.org/10.1016/j.jeurceramsoc.2021.01.049 doi: 10.1016/j.jeurceramsoc.2021.01.049
    [92] Wei Z, Li S, Li Y, et al. (2018) Porous alumina ceramics with enhanced mechanical and thermal insulation properties based on sol-treated rice husk. Ceram Int 44: 22616–22621. https://doi.org/10.1016/j.ceramint.2018.09.036 doi: 10.1016/j.ceramint.2018.09.036
    [93] Liu J, Ren B, Wang Y, et al. (2019) Hierarchical porous ceramics with 3D reticular architecture and efficient flow-through filtration towards high-temperature particulate matter capture. Chem Eng J 362: 504–512. https://doi.org/10.1016/j.cej.2019.01.065 doi: 10.1016/j.cej.2019.01.065
    [94] Guzman IY (2003) Certain principles of formation of porous ceramic structures. Properties and applications (a review). Glass Ceram 60: 280–283. https://doi.org/10.1023/B:GLAC.0000008227.85944.64 doi: 10.1023/B:GLAC.0000008227.85944.64
    [95] Vogt UF, Györfy L, Herzog A, et al. (2007) Macroporous silicon carbide foams for porous burner applications and catalyst supports. J Phys Chem Solids 68: 1234–1238. https://doi.org/10.1016/j.jpcs.2006.12.008 doi: 10.1016/j.jpcs.2006.12.008
    [96] Hammel EC, Ighodaro OLR, Okoli OI (2014) Processing and properties of advanced porous ceramics: An application based review. Ceram Int 40: 15351–15370. https://doi.org/10.1016/j.ceramint.2014.06.095 doi: 10.1016/j.ceramint.2014.06.095
    [97] Zuo KH, Zeng YP, Jiang D (2010) Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Mater Sci Eng C 30: 283–287. https://doi.org/10.1016/j.msec.2009.11.003 doi: 10.1016/j.msec.2009.11.003
    [98] Chen F, Ma L, Shen Q, et al. (2011) Pore structure control of starch processed silicon nitride porous ceramics with near-zero shrinkage. Mater Lett 65: 1410–1412. https://doi.org/10.1016/j.matlet.2011.02.016 doi: 10.1016/j.matlet.2011.02.016
    [99] Liu J, Ren B, Zhu T, et al. (2018) Enhanced mechanical properties and decreased thermal conductivity of porous alumina ceramics by optimizing pore structure. Ceram Int 44: 13240–13246. https://doi.org/10.1016/j.ceramint.2018.04.151 doi: 10.1016/j.ceramint.2018.04.151
    [100] DiReda N, D'Orazio G, Sobhani S (2024) Thermal and structural performance of additively manufactured ceramic porous media burners. J Eur Ceram Soc 44: 2271–2279. https://doi.org/10.1016/j.jeurceramsoc.2023.11.001 doi: 10.1016/j.jeurceramsoc.2023.11.001
    [101] Roy S (2024) Recent developments in processing techniques and morphologies of bulk macroporous ceramics for multifunctional applications. Mater Today Commun 38: 107752. https://doi.org/10.1016/j.mtcomm.2023.107752 doi: 10.1016/j.mtcomm.2023.107752
    [102] Rathee G, Bartwal G, Rathee J, et al. (2021) Emerging multimodel zirconia nanosystems for high‐performance biomedical applications. Adv NanoBiomed Res 1: 2100039. https://doi.org/10.1002/anbr.202100039 doi: 10.1002/anbr.202100039
    [103] Pandey V, Yadav MK, Gupta A, et al. (2022) Synthesis, morphological and thermomechanical characterization of light weight silica foam via reaction generated thermo-foaming process. J Eur Ceram Soc 42: 6671–6683. https://doi.org/10.1016/j.jeurceramsoc.2022.07.034 doi: 10.1016/j.jeurceramsoc.2022.07.034
    [104] Park HY, Lee HJ, Seo H, et al. (2023) Improvement of mechanical properties of ceramic green body and fired body by aging of inorganic binder in ceramic slurry for 3D printing. J Eur Ceram Soc 44: 3400–3409. https://doi.org/10.1016/j.jeurceramsoc.2023.12.066 doi: 10.1016/j.jeurceramsoc.2023.12.066
    [105] Adukadukkam AK, Pillai R, Puthiyathara Kanakamma M (2024) Offshore high‐grade limemud resources of west coast of India: Economic potential and industrial applications. Deep Undergr Sci Eng 3: 163–170. https://doi.org/10.1002/dug2.12064 doi: 10.1002/dug2.12064
    [106] Ma Y, He B, Wang J, et al. (2021) Porous/dense bilayer BaZr0.8Y0.2O3-δ electrolyte matrix fabricated by tape casting combined with solid-state reactive sintering for protonic ceramic fuel cells. Int J Hydrogen Energy 46: 9918–9926. https://doi.org/10.1016/j.ijhydene.2020.04.282 doi: 10.1016/j.ijhydene.2020.04.282
    [107] Long K, Zhong Y, Wang B, et al. (2023) A novel strategy in micomechanics modeling of silica fibrous ceramics considering morphology-related sintering effects. Compos Part A Appl Sci Manuf 175: 107751. https://doi.org/10.1016/j.compositesa.2023.107751 doi: 10.1016/j.compositesa.2023.107751
    [108] Chen Y, Tian X, Su K, et al. (2023) Preparation and properties of porous mullite-based ceramics fabricated by solid state reaction. Ceram Int 49: 31846–31854. https://doi.org/10.1016/j.ceramint.2023.07.144 doi: 10.1016/j.ceramint.2023.07.144
    [109] Nicoara AI, Alecu AE, Balaceanu GC, et al. (2023) Fabrication and characterization of porous diopside/akermanite ceramics with prospective tissue engineering applications. Materials 16: 5548. https://doi.org/10.3390/ma16165548 doi: 10.3390/ma16165548
    [110] Xiang R, Cheng LC, Qi HY, et al. (2023) Electromagnetic wave absorption properties of Ca1-xCexFe0.5Mn0.5O3–δ ceramics prepared by a sol–gel combustion method. Ceram Int 49: 8350–8360. https://doi.org/10.1016/j.ceramint.2022.10.367 doi: 10.1016/j.ceramint.2022.10.367
    [111] Fiume E, Massera J, D'Ambrosio D, et al. (2022) Robocasting of multicomponent sol-gel–derived silicate bioactive glass scaffolds for bone tissue engineering. Ceram Int 48: 35209–35216. https://doi.org/10.1016/j.ceramint.2022.08.121 doi: 10.1016/j.ceramint.2022.08.121
    [112] Li S, Cui H, Ma Q, et al. (2021) The one-step pyrolysis process of rattan-based silicon carbide multiphase ceramics prepared by sol–gel method. J Wood Sci 67: 58. https://doi.org/10.1186/s10086-021-01991-7 doi: 10.1186/s10086-021-01991-7
    [113] Xu X, Liu X, Wu J, et al. (2021) Fabrication and characterization of porous mullite ceramics with ultra-low shrinkage and high porosity via sol-gel and solid state reaction methods. Ceram Int 47: 20141–20150. https://doi.org/10.1016/j.ceramint.2021.04.020 doi: 10.1016/j.ceramint.2021.04.020
    [114] Lin L, Wang H, Xia C, et al. (2023) Low sintering shrinkage porous mullite ceramics with high strength and low thermal conductivity via foam‐gelcasting. J Am Ceram Soc 106: 3800–3811. https://doi.org/10.1111/jace.19035 doi: 10.1111/jace.19035
    [115] Zhong Z, Zhang B, Tian Z, et al. (2022) Highly porous LAS-SiC ceramic with near-zero thermal expansion prepared via aqueous gel-casting combined with adding pore-forming agents. Mater Charact 187: 111829. https://doi.org/10.1016/j.matchar.2022.111829 doi: 10.1016/j.matchar.2022.111829
    [116] Dong B, Wang L, Min Z, et al. (2022) Fabrication of novel porous Al2O3 substrates by combining emulsion templating and gel-tape-casting methods. Ceram Int 48: 7320–7324. https://doi.org/10.1016/j.ceramint.2021.11.205 doi: 10.1016/j.ceramint.2021.11.205
    [117] Yüzbasi NS, Graule T (2021) Colloid casting processes: slip casting, centrifugal casting, and gel casting, In: Pomeroy M, Encyclopedia of Materials: Technical Ceramics and Glasses, Amsterdam: Elsevier, 146–153. https://doi.org/10.1016/b978-0-12-803581-8.11767-9
    [118] Ricceri F, Malaguti M, Derossi C, et al. (2022) Microalgae biomass concentration and reuse of water as new cultivation medium using ceramic membrane filtration. Chemosphere 307: 135724. https://doi.org/10.1016/j.chemosphere.2022.135724 doi: 10.1016/j.chemosphere.2022.135724
    [119] Echakouri M, Salama A, Henni A (2022) Experimental investigation of the novel periodic feed pressure technique in minimizing fouling during the filtration of oily water systems using ceramic membranes. Membranes 12: 868. https://doi.org/10.3390/membranes12090868 doi: 10.3390/membranes12090868
    [120] Wu C, Wan B, Entezari A, et al. (2024) Machine learning-based design for additive manufacturing in biomedical engineering. Int J Mech Sci 266: 108828. https://doi.org/10.1016/j.ijmecsci.2023.108828 doi: 10.1016/j.ijmecsci.2023.108828
    [121] Youness RA, Al-Ashkar E, Taha MA (2023) Role of porosity in the strength, dielectric properties, and bioactivity of hardystonite ceramic material for use in bone tissue engineering applications. Ceram Int 49: 40520–40531. https://doi.org/10.1016/j.ceramint.2023.10.029 doi: 10.1016/j.ceramint.2023.10.029
    [122] Khan MUA, Aslam MA, Bin Abdullah MF, et al. (2023) Recent perspective of polymeric biomaterial in tissue engineering—A review. Mater Today Chem 34: 101818. https://doi.org/10.1016/j.mtchem.2023.101818 doi: 10.1016/j.mtchem.2023.101818
    [123] Dobriţa CI, Bădănoiu AI, Voicu G, et al. (2023) Porous bioceramic scaffolds based on akermanite obtained by 3D printing for bone tissue engineering. Ceram Int 49: 35898–35906. https://doi.org/10.1016/j.ceramint.2023.08.270 doi: 10.1016/j.ceramint.2023.08.270
    [124] Raymond Y, Johansson L, Thorel E, et al. (2022) Translation of three-dimensional printing of ceramics in bone tissue engineering and drug delivery. MRS Bull 47: 59–69. https://doi.org/10.1557/s43577-021-00259-1 doi: 10.1557/s43577-021-00259-1
    [125] Arai Y, Saito M, Samizo A, et al. (2024) Material design using calculation phase diagram for refractory high‐entropy ceramic matrix composites. Int J Appl Ceram Technol 21: 2702–2711. https://doi.org/10.1111/ijac.14688 doi: 10.1111/ijac.14688
    [126] Schönfeld K, Klemm H (2019) Interaction of fiber matrix bonding in SiC/SiC ceramic matrix composites. J Eur Ceram Soc 39: 3557–3565. https://doi.org/10.1016/j.jeurceramsoc.2019.05.025 doi: 10.1016/j.jeurceramsoc.2019.05.025
    [127] Kütemeyer M, Schomer L, Helmreich T, et al. (2016) Fabrication of ultra high temperature ceramic matrix composites using a reactive melt infiltration process. J Eur Ceram Soc 36: 3647–3655. https://doi.org/10.1016/j.jeurceramsoc.2016.04.039 doi: 10.1016/j.jeurceramsoc.2016.04.039
    [128] Dele-Afolabi T, Azmah Hanim M, Jung D, et al. (2022) Rice husk as a pore-forming agent: Impact of particle size on the porosity and diametral tensile strength of porous alumina ceramics. Coatings 12: 1259. https://doi.org/10.3390/coatings12091259 doi: 10.3390/coatings12091259
    [129] Wan Y, Li X, Ma J (2023) Mullite porous ceramics with high strength for high-temperature thermal insulation. J Mater Res Technol 27: 5692–5700. https://doi.org/10.1016/j.jmrt.2023.10.288 doi: 10.1016/j.jmrt.2023.10.288
    [130] Guo T, Liu Z, Yu C, et al. (2023) Effect of pore structure evolution on mechanical properties and thermal conductivity of porous SiC-Mullite ceramics. Ceram Int 49: 33618–33627. https://doi.org/10.1016/j.ceramint.2023.08.040 doi: 10.1016/j.ceramint.2023.08.040
    [131] Chen Y, Tian X, Su K, et al. (2023) Preparation and properties of porous mullite-based ceramics fabricated by solid state reaction. Ceram Int 49: 31846–31854. https://doi.org/10.1016/j.ceramint.2023.07.144 doi: 10.1016/j.ceramint.2023.07.144
    [132] Qin Z, Xu X, Xu T, et al. (2022) High-strength thermal insulating porous mullite fiber-based ceramics. J Eur Ceram Soc 42: 7209–7218. https://doi.org/10.1016/j.jeurceramsoc.2022.08.050 doi: 10.1016/j.jeurceramsoc.2022.08.050
    [133] Deng X, Zhang W, Yin J, et al. (2020) Microstructure and mechanical performance of porous mullite ceramics added with TiO2. Ceram Int 46: 8438–8443. https://doi.org/10.1016/j.ceramint.2019.12.078 doi: 10.1016/j.ceramint.2019.12.078
    [134] Choo TF, Mohd Salleh MA, Kok KY, et al. (2019) Modified cenospheres as non-sacrificial pore-forming agent for porous mullite ceramics. Ceram Int 45: 21827–21834. https://doi.org/10.1016/j.ceramint.2019.07.189 doi: 10.1016/j.ceramint.2019.07.189
    [135] Mohammadi M, Pascaud-Mathieu P, Allizond V, et al. (2020) Robocasting of single and multi-functional calcium phosphate scaffolds and its hybridization with conventional techniques: Design, fabrication and characterization. Appl Sci 10: 8677. https://doi.org/10.3390/app10238677 doi: 10.3390/app10238677
    [136] Das D, Lucio MDS, Kultayeva S, et al. (2024) Effect of pore size on the flexural strength of porous silicon carbide ceramics. Open Ceram 17: 100521. https://doi.org/10.1016/j.oceram.2023.100521 doi: 10.1016/j.oceram.2023.100521
    [137] Das D, Lucio MDS, Kultayeva S, et al. (2023) Effects of pore size on electrical and thermal properties of porous SiC ceramics. Int J Appl Ceram Technol 21: 2651–2662. https://doi.org/10.1111/ijac.14620 doi: 10.1111/ijac.14620
    [138] Chen G, Yang F, Zhao S, et al. (2022) Preparation of high-strength porous mullite ceramics and the effect of hollow sphere particle size on microstructure and properties. Ceram Int 48: 19367–19374. https://doi.org/10.1016/j.ceramint.2022.03.231 doi: 10.1016/j.ceramint.2022.03.231
    [139] Farid SBH (2019) Bioceramics: For Materials Science and Engineering, Amsterdam: Elsevier, 1–37. https://doi.org/10.1016/C2016-0-04604-1
    [140] Ohji T, Fukushima M (2012) Macro-porous ceramics: Processing and properties. Int Mater Rev 57: 115–131. https://doi.org/10.1179/1743280411Y.0000000006 doi: 10.1179/1743280411Y.0000000006
    [141] Schlumberger C, Thommes M (2021) Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry—A tutorial review. Adv Mater Interfaces 8: 2002181. https://doi.org/10.1002/admi.202002181 doi: 10.1002/admi.202002181
    [142] Colombo P (2006) Conventional and novel processing methods for cellular ceramics. Philos Trans R Soc A 364: 109–124. https://doi.org/10.1098/rsta.2005.1683 doi: 10.1098/rsta.2005.1683
    [143] Eom JH, Kim YW, Raju S (2013) Processing and properties of macroporous silicon carbide ceramics: A review. J Asian Ceram Soc 1: 220–242. https://doi.org/10.1016/j.jascer.2013.07.003 doi: 10.1016/j.jascer.2013.07.003
    [144] Khattab RM, Wahsh MMS, Khalil NM (2012) Preparation and characterization of porous alumina ceramics through starch consolidation casting technique. Ceram Int 38: 4723–4728. https://doi.org/10.1016/j.ceramint.2012.02.057 doi: 10.1016/j.ceramint.2012.02.057
    [145] He R, Qu Z, Cheng X (2016) Effects of starch addition amount on microstructure, mechanical properties and room temperature thermal conductivity of porous Y2SiO5 ceramics. Ceram Int 42: 2257–2262. https://doi.org/10.1016/j.ceramint.2015.10.019 doi: 10.1016/j.ceramint.2015.10.019
    [146] Li Y, Cao W, Gong L, et al. (2016) Effect of starch on sintering behavior for fabricating porous cordierite ceramic. High Temp Mater Processes 35: 955–961. https://doi.org/10.1515/htmp-2015-0074 doi: 10.1515/htmp-2015-0074
    [147] Khattab RM, EL-Rafei AM, Zawrah MF (2018) Fabrication of porous TiO2 ceramics using corn starch and graphite as pore forming agents. Interceram-Int Ceram Rev 67: 30–35. https://doi.org/10.1007/s42411-018-0024-1 doi: 10.1007/s42411-018-0024-1
    [148] Mastalska-Popławska J, Sikora M, Izak P, et al. (2019) Applications of starch and its derivatives in bioceramics. J Biomater Appl 34: 12–24. https://doi.org/10.1177/0885328219844972 doi: 10.1177/0885328219844972
    [149] Ishii K, Shimizu M, Sameshima H, et al. (2020) Fabrication of porous (Ba, Sr)(Co, Fe)O3-δ (BSCF) ceramics using gelatinization and retrogradation phenomena of starch as pore-forming agent. Ceram Int 46: 13047–13053. https://doi.org/10.1016/j.ceramint.2020.02.075 doi: 10.1016/j.ceramint.2020.02.075
    [150] Cui Z, Hao T, Yao S, et al. (2023) Preparation of porous mullite ceramic supports from high alumina fly ash. J Mater Cycles Waste Manag 25: 1120–1129. https://doi.org/10.1007/s10163-023-01598-8 doi: 10.1007/s10163-023-01598-8
    [151] Pinheiro ED, Thenmuhil D (2021) Effect of different pore formers on the performance of lead free piezoelectric ceramics. Ferroelectrics 583: 162–176. https://doi.org/10.1080/00150193.2021.1980343 doi: 10.1080/00150193.2021.1980343
    [152] Wang W, Chen W, Liu H (2019) Recycling of waste red mud for fabrication of SiC/mullite composite porous ceramics. Ceram Int 45: 9852–9857. https://doi.org/10.1016/j.ceramint.2019.02.024 doi: 10.1016/j.ceramint.2019.02.024
    [153] Wan P, Wang J (2018) Highly porous nano-SiC with very low thermal conductivity and excellent high temperature behavior. J Eur Ceram Soc 38: 463–467. https://doi.org/10.1016/j.jeurceramsoc.2017.09.037 doi: 10.1016/j.jeurceramsoc.2017.09.037
    [154] Sarikaya A, Dogan F (2013) Effect of various pore formers on the microstructural development of tape-cast porous ceramics. Ceram Int 39: 403–413. https://doi.org/10.1016/j.ceramint.2012.06.041 doi: 10.1016/j.ceramint.2012.06.041
    [155] Živcová Z, Gregorová E, Pabst W (2007) Porous alumina ceramics produced with lycopodium spores as pore-forming agents. J Mater Sci 42: 8760–8764. https://doi.org/10.1007/s10853-007-1852-y doi: 10.1007/s10853-007-1852-y
    [156] Abhinay S, Dixit P, Mazumder R (2020) Effect of pore former sucrose on microstructure and electrical properties of porous BZT-0.5BCT ceramics. Ferroelectrics 557: 18–27. https://doi.org/10.1080/00150193.2020.1713359 doi: 10.1080/00150193.2020.1713359
    [157] Mohanta K, Kumar A, Parkash O, et al. (2014) Processing and properties of low cost macroporous alumina ceramics with tailored porosity and pore size fabricated using rice husk and sucrose. J Eur Ceram Soc 34: 2401–2412. https://doi.org/10.1016/j.jeurceramsoc.2014.01.024 doi: 10.1016/j.jeurceramsoc.2014.01.024
    [158] Le Ray AM, Gautier H, Bouler JM, et al. (2010) A new technological procedure using sucrose as porogen compound to manufacture porous biphasic calcium phosphate ceramics of appropriate micro- and macrostructure. Ceram Int 36: 93–101. https://doi.org/10.1016/j.ceramint.2009.07.001 doi: 10.1016/j.ceramint.2009.07.001
    [159] Wu Q, Yang C, Zhang H, et al. (2013) Fabrication and characterization of reaction-bonded silicon carbide with poly(methyl methacrylate) as pore-forming agent. Ceram Int 39: 5295–5302. https://doi.org/10.1016/j.ceramint.2012.12.032 doi: 10.1016/j.ceramint.2012.12.032
    [160] Novais RM, Seabra MP, Labrincha JA (2014) Ceramic tiles with controlled porosity and low thermal conductivity by using pore-forming agents. Ceram Int 40: 11637–11648. https://doi.org/10.1016/j.ceramint.2014.03.163 doi: 10.1016/j.ceramint.2014.03.163
    [161] Mahnicka-Goremikina L, Svinka R, Svinka V, et al. (2023) Porous mullite ceramic modification with nano-WO3. Materials 16: 4631. https://doi.org/10.3390/ma1613463 doi: 10.3390/ma1613463
    [162] Obradović N, Filipović S, Marković S, et al. (2017) Influence of different pore-forming agents on wollastonite microstructures and adsorption capacities. Ceram Int 43: 7461–7468. https://doi.org/10.1016/j.ceramint.2017.03.021 doi: 10.1016/j.ceramint.2017.03.021
    [163] Yang H, Li Y, Li Q, et al. (2020) Preparation and properties of porous silicon nitride ceramics with polymethyl methacrylate as pore-forming agent. Ceram Int 46: 17122–17129. https://doi.org/10.1016/j.ceramint.2020.03.204 doi: 10.1016/j.ceramint.2020.03.204
    [164] Wang S, Yang Z, Luo X, et al. (2022) Preparation of calcium hexaluminate porous ceramics by gel-casting method with polymethyl methacrylate as pore-forming agent. Ceram Int 48: 30356–30366. https://doi.org/10.1016/j.ceramint.2022.06.309 doi: 10.1016/j.ceramint.2022.06.309
    [165] Pia G, Casnedi L, Sanna U (2015) Porous ceramic materials by pore-forming agent method: An intermingled fractal units analysis and procedure to predict thermal conductivity. Ceram Int 41: 6350–6357. https://doi.org/10.1016/j.ceramint.2015.01.069 doi: 10.1016/j.ceramint.2015.01.069
    [166] Fang L, Chen C, Wang Y (2022) Carbon fibers and graphite as pore-forming agents for the obtention of porous alumina: Correlating physical and fractal characteristics. Fractal Fract 6: 501. https://doi.org/10.3390/fractalfract6090501 doi: 10.3390/fractalfract6090501
    [167] Mercadelli E, Sanson A, Pinasco P, et al. (2011) Influence of carbon black on slurry compositions for tape cast porous piezoelectric ceramics. Ceram Int 37: 2143–2149. https://doi.org/10.1016/j.ceramint.2011.03.058 doi: 10.1016/j.ceramint.2011.03.058
    [168] Liu J, Li Y, Li Y, et al. (2016) Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent. Ceram Int 42: 8221–8228. https://doi.org/10.1016/j.ceramint.2016.02.032 doi: 10.1016/j.ceramint.2016.02.032
    [169] Çelik A, Çağlar G, Çelik Y (2022) Fabrication of porous Al2O3 ceramics using carbon black as a pore forming agent by spark plasma sintering. Ceram Int 48: 28181–28190. https://doi.org/10.1016/j.ceramint.2022.06.121 doi: 10.1016/j.ceramint.2022.06.121
    [170] Wang S, Liu M, Liu X, et al. (2022) Carbothermal reduction synthesis of high porosity and low thermal conductivity ZrC-SiC ceramics via an one-step sintering technique. J Eur Ceram Soc 42: 4465–4471. https://doi.org/10.1016/j.jeurceramsoc.2022.04.044 doi: 10.1016/j.jeurceramsoc.2022.04.044
    [171] Fu F, Hu N, Ye Y, et al. (2023) The foaming mechanism and properties of SiO2–Al2O3–CaO-based foamed ceramics with varied foaming agents. Ceram Int 49: 32448–32457. https://doi.org/10.1016/j.ceramint.2023.07.192 doi: 10.1016/j.ceramint.2023.07.192
    [172] Jalaluddin ML, Azlan UAA, Rashid MWA (2023) A preliminary study of porous ceramics with carbon black contents. AIMS Mater Sci 10: 741–754. https://doi.org/10.3934/matersci.2023041 doi: 10.3934/matersci.2023041
    [173] Wu C, Li Z, Li Y, et al. (2023) Effect of starch on pore structure and thermal conductivity of diatomite-based porous ceramics. Ceram Int 49: 383–391. https://doi.org/10.1016/j.ceramint.2022.08.352 doi: 10.1016/j.ceramint.2022.08.352
    [174] Parku GK, Collard FX, Görgens JF (2020) Pyrolysis of waste polypropylene plastics for energy recovery: Influence of heating rate and vacuum conditions on composition of fuel product. Fuel Process Technol 209: 106522. https://doi.org/10.1016/j.fuproc.2020.106522 doi: 10.1016/j.fuproc.2020.106522
    [175] Singh RK, Ruj B, Sadhukhan AK, et al. (2020) A TG-FTIR investigation on the co-pyrolysis of the waste HDPE, PP, PS and PET under high heating conditions. J Energy Inst 93: 1020–1035. https://doi.org/10.1016/j.joei.2019.09.003 doi: 10.1016/j.joei.2019.09.003
    [176] Harussani MM, Sapuan SM, Rashid U, et al. (2022) Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Sci Total Environ 803: 149911. https://doi.org/10.1016/j.scitotenv.2021.149911 doi: 10.1016/j.scitotenv.2021.149911
    [177] Lomonaco T, Manco E, Corti A, et al. (2020) Release of harmful volatile organic compounds (VOCs) from photo-degraded plastic debris: A neglected source of environmental pollution. J Hazard Mater 394: 122596. https://doi.org/10.1016/j.jhazmat.2020.122596 doi: 10.1016/j.jhazmat.2020.122596
    [178] Shen M, Song B, Zeng G, et al. (2020) Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ Pollut 263: 114469. https://doi.org/10.1016/j.envpol.2020.114469 doi: 10.1016/j.envpol.2020.114469
    [179] Evode N, Qamar SA, Bilal M, et al. (2021) Plastic waste and its management strategies for environmental sustainability. Case Stud Chem Environ Eng 4: 100142. https://doi.org/10.1016/j.cscee.2021.100142 doi: 10.1016/j.cscee.2021.100142
    [180] Hou Y, Qiu J, Wang W, et al. (2023) Controllable preparation and thermal properties of SiC spherical high temperature shape-stable composite phase change materials based on gel-casting. J Alloys Compd 960: 170966. https://doi.org/10.1016/j.jallcom.2023.170966 doi: 10.1016/j.jallcom.2023.170966
    [181] Moens E, De Smit K, Marien Y, et al. (2020) Progress in reaction mechanisms and reactor technologies for thermochemical recycling of poly(methyl methacrylate). Polymers 12: 1667. https://doi.org/10.3390/polym12081667 doi: 10.3390/polym12081667
    [182] Mohammed MI, Khafagy RM, Hussien MSA, et al. (2022) Enhancing the structural, optical, electrical, properties and photocatalytic applications of ZnO/PMMA nanocomposite membranes: Towards multifunctional membranes. J Mater Sci Mater Electron 33: 1977–2002. https://doi.org/10.1007/s10854-021-07402-3 doi: 10.1007/s10854-021-07402-3
    [183] Gao X, Zheng X, Liu J, et al. (2019) Effects of carbon black content on the microstructure and properties of carbon/ceramic conductive composites. Mater Tehnol 53: 245–250. http://dx.doi.org/10.17222/mit.2018.078 doi: 10.17222/mit.2018.078
    [184] Hu L, Benitez R, Basu S, et al. (2012) Processing and characterization of porous Ti2AlC with controlled porosity and pore size. Acta Mater 60: 6266–6277. https://doi.org/10.1016/j.actamat.2012.07.052 doi: 10.1016/j.actamat.2012.07.052
    [185] Huang K, Wang L, Li M, et al. (2023) Mechanism of porous ceramic fabrication using second aluminum dross assisted by corn stalk as pore-forming agent. Environ Technol Inno 31: 103195. https://doi.org/10.1016/j.eti.2023.103195 doi: 10.1016/j.eti.2023.103195
    [186] Nikolopoulos N, Parker LA, Wickramasinghe A, et al. (2023) Addition of pore-forming agents and their effect on the pore architecture and catalytic behavior of shaped zeolite-based catalyst bodies. Chem Biomed Imaging 1: 40–48. http://dx.doi.org/10.1021/cbmi.2c00009 doi: 10.1021/cbmi.2c00009
    [187] Ulusoy U (2023) A review of particle shape effects on material properties for various engineering applications: From macro to nanoscale. Minerals 13: 91. https://doi.org/10.3390/min13010091 doi: 10.3390/min13010091
    [188] Wu Y, Chen F, Han W, et al. (2020) Synthesis and pyrolysis of non-oxide precursors for ZrC/SiC and HfC/SiC composite ceramics. Ceram Int 46: 22102–22107. https://doi.org/10.1016/j.ceramint.2020.05.260 doi: 10.1016/j.ceramint.2020.05.260
    [189] Chen Y, Wang N, Ola O, et al. (2021) Porous ceramics: Light in weight but heavy in energy and environment technologies. Mater Sci Eng R 143: 100589. https://doi.org/10.1016/j.mser.2020.100589 doi: 10.1016/j.mser.2020.100589
    [190] Alqutaibi AY, Ghulam O, Krsoum M, et al. (2022) Revolution of current dental zirconia: A comprehensive review. Molecules 27: 1699. https://doi.org/10.3390/molecules27051699 doi: 10.3390/molecules27051699
    [191] Kim JY, Yoon SH, Kim YH, et al. (2011) Thermal shock behavior of porous nozzles with various pore sizes for continuous casting process. J Korean Ceram Soc 48: 617–620. http://dx.doi.org/10.4191/kcers.2011.48.6.617 doi: 10.4191/kcers.2011.48.6.617
    [192] Liu R, Wang C (2013) Effects of mono-dispersed PMMA micro-balls as pore-forming agent on the properties of porous YSZ ceramics. J Eur Ceram Soc 33: 1859–1865. https://doi.org/10.1016/j.jeurceramsoc.2013.01.036 doi: 10.1016/j.jeurceramsoc.2013.01.036
    [193] Chen A, Li L, Ren W, et al. (2023) Influence of MgO-Al2O3 hollow sphere content on the microstructure and mechanical properties of calcium hexaluminate porous ceramics. J Asian Ceram Soc 12: 59–70. https://doi.org/10.1080/21870764.2023.2292874 doi: 10.1080/21870764.2023.2292874
    [194] Novais RM, Ascensão G, Seabra MP, et al. (2015) Lightweight dense/porous PCM-ceramic tiles for indoor temperature control. Energies Buildings 108: 205–214. https://doi.org/10.1016/j.enbuild.2015.09.019 doi: 10.1016/j.enbuild.2015.09.019
    [195] Coulon A, Cohen M, Pillet G (2024) Light-weighing traditional ceramics by porosity control and consequences on mechanical strength. Ceram Int 50: 6001–6008. https://doi.org/10.1016/j.ceramint.2023.11.269 doi: 10.1016/j.ceramint.2023.11.269
    [196] Lou J, He C, Shui A, et al. (2023) Enhanced sound absorption performance of porous ceramics with closed-pore structure. Ceram Int 49: 38103–38114. https://doi.org/10.1016/j.ceramint.2023.09.140 doi: 10.1016/j.ceramint.2023.09.140
    [197] Ma B, Zan W, Liu K, et al. (2023) Preparation and properties of porous MgO based ceramics from magnesite tailings and fused magnesia. Ceram Int 49: 19072–19082. https://doi.org/10.1016/j.ceramint.2023.03.034 doi: 10.1016/j.ceramint.2023.03.034
    [198] Gu J, Zou J, Liu J, et al. (2020) Sintering highly dense ultra-high temperature ceramics with suppressed grain growth. J Eur Ceram Soc 40: 1086–1092. https://doi.org/10.1016/j.jeurceramsoc.2019.11.056 doi: 10.1016/j.jeurceramsoc.2019.11.056
    [199] Qin Z, Xu X, Xu T, et al. (2022) High-strength thermal insulating porous mullite fiber-based ceramics. J Eur Ceram Soc 42: 7209–7218. https://doi.org/10.1016/j.jeurceramsoc.2022.08.050 doi: 10.1016/j.jeurceramsoc.2022.08.050
    [200] Son S, Kang S, Kim K (2021) Thermal properties of porous ceramics manufactured by direct foaming using silicon sludge and silica fume. J Asian Ceram Soc 9: 1364–1375. https://doi.org/10.1080/21870764.2021.1978651 doi: 10.1080/21870764.2021.1978651
    [201] Živcová Z, Gregorová E, Pabst W, et al. (2009) Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent. J Eur Ceram Soc 29: 347–353. https://doi.org/10.1016/j.jeurceramsoc.2008.06.018 doi: 10.1016/j.jeurceramsoc.2008.06.018
    [202] Wu Z, Sun L, Pan J, et al. (2018) Fiber reinforced highly porous γ-Y2Si2O7 ceramic fabricated by foam-gelcasting-freeze drying method. Scripta Mater 146: 331–334. https://doi.org/10.1016/j.scriptamat.2017.12.017 doi: 10.1016/j.scriptamat.2017.12.017
    [203] Malik N, Bulasara VK, Basu S (2020) Preparation of novel porous ceramic microfiltration membranes from fly ash, kaolin and dolomite mixtures. Ceram Int 46: 6889–6898. https://doi.org/10.1016/j.ceramint.2019.11.184 doi: 10.1016/j.ceramint.2019.11.184
    [204] Chen A, Li L, Wang C, et al. (2022) Novel porous ceramic with high strength and thermal performance using MA hollow spheres. Prog Nat Sci: Mater Int 32: 732–738. https://doi.org/10.1016/j.pnsc.2022.09.015 doi: 10.1016/j.pnsc.2022.09.015
    [205] Wu C, Li Z, Li Y, et al. (2023) Effect of starch on pore structure and thermal conductivity of diatomite-based porous ceramics. Ceram Int 49: 383–391. https://doi.org/10.1016/j.ceramint.2022.08.352 doi: 10.1016/j.ceramint.2022.08.352
    [206] Li M, Tang H, Li J, et al. (2024) Preparation of ZrP2O7-CePO4 composite porous ceramics and their excellent thermal insulation and wave-transmission performance for supersonic aircraft. J Eur Ceram Soc 44: 4232–4242. https://doi.org/10.1016/j.jeurceramsoc.2024.01.008 doi: 10.1016/j.jeurceramsoc.2024.01.008
    [207] Das D, Lucio MDS, Oh Y, et al. (2024) Tuning the electrical, thermal, and mechanical properties of porous SiC ceramics using metal carbides. J Eur Ceram Soc 44: 3020–3030. https://doi.org/10.1016/j.jeurceramsoc.2023.12.017 doi: 10.1016/j.jeurceramsoc.2023.12.017
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2902) PDF downloads(317) Cited by(0)

Figures and Tables

Figures(9)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog