
In this study, several types of zirconium-based alloys supplemented with 2, 3, and 4, in wt.% of yttrium for corrosion resistance enhancement were investigated. The specimens were prepared by a single arc welding furnace in an argon-controlled atmosphere. By optical and scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and electrochemical tests, the effect of different portions of yttrium on the surface morphology, phase structure, and corrosion resistance in the Zr alloys were analyzed. As of result of arc welding, the specimens were obtained and examined by optical microscope and then homogenous structures were observed. These structures are matrix (Zr-rich) and oxides. Furthermore, as of the characterization results by X-ray diffraction, the main compound of the alloys was Zr6Mo6AlTi, while others were AlZr3, MoO2, ZrO2, and Y2O3 oxides. Yttrium addition in the alloys prior to the corrosion test led to thickened grain boundaries but reduced grain size. The Y2O3 itself remained at the grain boundaries as clusters. The corrosion test was performed in Ringer's lactate solution by using anodic polarization. The effect of yttrium addition into Zr-based alloys was found to be beneficial by shifting the corrosion potential toward a positive value. Zr-6Mo-6Al-Ti-4Y had a higher open corrosion potential value than the other two alloys. The difference was approximately 200 mV. However, the passive region of Zr-6Mo-6Al-Ti-4Y was the shortest and broke down at an earlier stage. The formation of these kinds of oxides was the reason for the increase in corrosion potential of Zr-based alloys with 4% Y added.
Citation: Muhammad Awwaluddin, Sri Hastuty, Djoko Hadi Prajitno, Makmuri, Budi Prasetiyo, Yudi Irawadi, Jekki Hendrawan, Harry Purnama, Eko Agus Nugroho. Effect of Yttrium on corrosion resistance of Zr-based alloys in Ringer's lactate solution for biomaterial applications[J]. AIMS Materials Science, 2024, 11(3): 565-584. doi: 10.3934/matersci.2024028
[1] | Yang Pan, Jinhua Yang, Lei Zhu, Lina Yao, Bo Zhang . Aerial images object detection method based on cross-scale multi-feature fusion. Mathematical Biosciences and Engineering, 2023, 20(9): 16148-16168. doi: 10.3934/mbe.2023721 |
[2] | Xin Shu, Xin Cheng, Shubin Xu, Yunfang Chen, Tinghuai Ma, Wei Zhang . How to construct low-altitude aerial image datasets for deep learning. Mathematical Biosciences and Engineering, 2021, 18(2): 986-999. doi: 10.3934/mbe.2021053 |
[3] | Zhijing Xu, Jingjing Su, Kan Huang . A-RetinaNet: A novel RetinaNet with an asymmetric attention fusion mechanism for dim and small drone detection in infrared images. Mathematical Biosciences and Engineering, 2023, 20(4): 6630-6651. doi: 10.3934/mbe.2023285 |
[4] | Siyuan Shen, Xing Zhang, Wenjing Yan, Shuqian Xie, Bingjia Yu, Shizhi Wang . An improved UAV target detection algorithm based on ASFF-YOLOv5s. Mathematical Biosciences and Engineering, 2023, 20(6): 10773-10789. doi: 10.3934/mbe.2023478 |
[5] | Lei Yang, Guowu Yuan, Hao Wu, Wenhua Qian . An ultra-lightweight detector with high accuracy and speed for aerial images. Mathematical Biosciences and Engineering, 2023, 20(8): 13947-13973. doi: 10.3934/mbe.2023621 |
[6] | Qihan Feng, Xinzheng Xu, Zhixiao Wang . Deep learning-based small object detection: A survey. Mathematical Biosciences and Engineering, 2023, 20(4): 6551-6590. doi: 10.3934/mbe.2023282 |
[7] | Murtaza Ahmed Siddiqi, Celestine Iwendi, Kniezova Jaroslava, Noble Anumbe . Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations. Mathematical Biosciences and Engineering, 2022, 19(3): 2641-2670. doi: 10.3934/mbe.2022121 |
[8] | Dawei Li, Suzhen Lin, Xiaofei Lu, Xingwang Zhang, Chenhui Cui, Boran Yang . IMD-Net: Interpretable multi-scale detection network for infrared dim and small objects. Mathematical Biosciences and Engineering, 2024, 21(1): 1712-1737. doi: 10.3934/mbe.2024074 |
[9] | Hongxia Ni, Minzhen Wang, Liying Zhao . An improved Faster R-CNN for defect recognition of key components of transmission line. Mathematical Biosciences and Engineering, 2021, 18(4): 4679-4695. doi: 10.3934/mbe.2021237 |
[10] | Ruoqi Zhang, Xiaoming Huang, Qiang Zhu . Weakly supervised salient object detection via image category annotation. Mathematical Biosciences and Engineering, 2023, 20(12): 21359-21381. doi: 10.3934/mbe.2023945 |
In this study, several types of zirconium-based alloys supplemented with 2, 3, and 4, in wt.% of yttrium for corrosion resistance enhancement were investigated. The specimens were prepared by a single arc welding furnace in an argon-controlled atmosphere. By optical and scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and electrochemical tests, the effect of different portions of yttrium on the surface morphology, phase structure, and corrosion resistance in the Zr alloys were analyzed. As of result of arc welding, the specimens were obtained and examined by optical microscope and then homogenous structures were observed. These structures are matrix (Zr-rich) and oxides. Furthermore, as of the characterization results by X-ray diffraction, the main compound of the alloys was Zr6Mo6AlTi, while others were AlZr3, MoO2, ZrO2, and Y2O3 oxides. Yttrium addition in the alloys prior to the corrosion test led to thickened grain boundaries but reduced grain size. The Y2O3 itself remained at the grain boundaries as clusters. The corrosion test was performed in Ringer's lactate solution by using anodic polarization. The effect of yttrium addition into Zr-based alloys was found to be beneficial by shifting the corrosion potential toward a positive value. Zr-6Mo-6Al-Ti-4Y had a higher open corrosion potential value than the other two alloys. The difference was approximately 200 mV. However, the passive region of Zr-6Mo-6Al-Ti-4Y was the shortest and broke down at an earlier stage. The formation of these kinds of oxides was the reason for the increase in corrosion potential of Zr-based alloys with 4% Y added.
Type 1 diabetes is a chronic condition that is caused by the immune system mistakenly destroying insulin-producing pancreatic Langerhans islets. Treatment requires continuous monitoring and maintenance of insulin levels via external means such as injections or insulin pumps. Islet transplantation from deceased donors provides a new treatment to recover natural insulin production [1]. This is not a permanent solution, as a significant percentage of patients do not achieve insulin independence at 5 years [1]. Furthermore, such a treatment requires immunosuppressants. As there are only a few suitable donors, it is desirable to increase the durability of the transplanted cells. This could be achieved by protecting the transplanted cells with a physical barrier. Alginate is a promising candidate as it can selectively diffuse or block certain molecules [2]. In addition, alginates are relatively inert [3,4,5]. This novel treatment shows promising results in mammalian trials [6,7,8,9]. Human trials are still in the preliminary phase [10,11,12].
King et al. [13,14] proposed a model that describes the reaction–diffusion of oxygen through a protective shell encapsulating a core so that hypoxia can be avoided within the donor cells. The encapsulation and core of donor cells are approximately spherical [15]. Hence, in [13,14], a spherical core and shell with a common center are considered. In that paper the authors derived the governing ODE for stationary solutions and numerically computed these solutions with oxygen concentration above the hypoxia threshold. The existence of these stationary solutions is made rigorous in [16] using topological shooting [17,18,19]. The latter result considers parameters used in cell encapsulation experiments [15,20,21]. Stationary solutions of oxygen concentration in a core without a shell have been extensively studied [22,23,24,25].
The oxygen concentration in the core and shell will initially be away from the stationary state. Furthermore, the geometry of the cell is only approximately spherical. Hence, it is important for the validation of the model to determine the stability of stationary solutions for general core-shell geometry, which is the goal of this work. This first requires formulating the corresponding PDE and showing its well-posedness, which was not considered in [13,14]. The resulting PDE is of parabolic type. On the boundary of the outside shell, we assume the oxygen concentration to be constant. As the shell and the core have different diffusion coefficients, there is a discontinuity of this coefficient at the interface separating them. This discontinuity makes the corresponding stationary problem a diffraction problem [26]. We make the natural assumption that the concentration and the flux of oxygen are continuous at the interface. Oxygen is consumed only by the donor cells in the core but not by the protective shell. This leads to a nonlinear reaction–diffusion PDE in the core, where the non-linearity corresponds to Michaelis–Menten consumption and consequently is bounded and monotone. In the shell, however, the problem reduces to linear diffusion.
Our main results for our newly formulated PDE model are
- Well-posedness of the strong form,
- Uniqueness and asymptotic stability of stationary solutions.
The results are necessary theoretical steps in the validation of the biological model. Furthermore, we will see that all the results hold for more general kinetics described by Hill's equation. We note that similar results have been obtained in the one-dimensional setting for the internal transition layer, which arises by scaling the discontinuous diffusion coefficient by a small parameter [27].
The sum of the reaction term and the spatial differential term is a nonlinear monotone operator. Hence, for the well-posedness result we can apply classical monotone operator theory. We apply the well-known theorems of Komura and Browder–Minty [28]. We emphasize that the monotonicity of the nonlinear operator defining our evolution problem results from the underlying structure of the problem as a gradient flow with respect to a convex functional. This structure also enables us to show the uniqueness and asymptotic stability of the stationary solution.
In Section 2, we present the governing equations. The well-posedness result is proved in Section 3. The stability results are presented in Section 4. In Section 5, we formulate the PDE donor cell model, transform it to the setting considered in Section 2, and apply the theorems from Sections 3 and 4. Finally, in Section 6, we conclude with remarks and an outlook on further questions.
We start with a description of the geometry of the core and its protective shell. The domain is denoted by Ω⊂RN with ¯Ω compact and N≥2. For the application N=3, but the results hold for N≥2. Let Γ be an (N−1)-dim surface that divides Ω into two open domains Ω1,Ω2 such that ∂Ω1=Γ is a closed connected hypersurface and Ω2 has 2 boundary components, S:=∂Ω and Γ, see Figure 1. We take S,Γ of class C2. We refer to Ω1 as the core, Ω2 as the shell, and Ω as the core-shell.
We consider the following PDE:
dudt−bΔu=f(u)in(Ω∖Γ)×(0,T), | (2.1) |
u|S=0, | (2.2) |
[u]Γ=0, | (2.3) |
[b∇u⋅ν]Γ=0, | (2.4) |
u(⋅,0)=u0inΩ. | (2.5) |
In Eq (2.1), b:Ω→R is given by
b(x)={b1ifx∈¯Ω1,b2ifx∈Ω2, |
with b1,b2>0, the map f:L2(Ω)→L2(Ω) given by
[f(u)](x)={φ1(u(x))ifx∈¯Ω1,φ2(u(x))ifx∈Ω2, | (2.6) |
with φi:R→R, i=1,2.
The following assumptions are the requirements for well-posedness of the strong form as well as uniqueness and asymptotic stability of stationary solutions:
Assumption 2.1. Let φi satisfy
- 0≤φi≤1;
- φi is decreasing;
- φi(z)z≤c for all z∈R with c>0;
- φi is Lipschitz with constant L>0.
In Eqs (2.3) and (2.4), the square brackets [⋅]Γ are denoting the jump of the quantity in the brackets across Γ, i.e., the trace from Ω2 minus the trace of Ω1. In Eq (2.4), ν is the normal directed towards Ω2.
Define V:=H10(Ω),H:=L2(Ω). The inner product on V is defined by (u,v)V=(u,v)H+(∇u,∇v)H. Denote by ⟨⋅,⋅⟩ the pairing between V∗ and V. So we have the evolution triplet
V⊂⊂H=H∗⊂V∗, |
where H∗ and V∗ denote the dual space of H and V, respectively. Moreover, we write V⊂⊂H to emphasize the compactness of the embedding of V in H.
Define the nonlinear operator A:D(A)→H given by
A(u)=−bΔu−f(u), | (3.1) |
with
D(A):={u∈V:u|Ωi∈H2(Ωi),usatisfies(2.4)}. |
We consider the equation
dudt+A(u)=0, | (3.2) |
as an equality in L2(0,T;H). We denote by Cw(0,T;H) the space of weakly continuous functions from [0,T] to H.
Theorem 3.1. For u(0)=u0∈D(A), Eq (3.2) has a unique solution u∈C0(0,T;H) for any T>0 with
u∈Lip(0,T;D(A)),dudt∈Cw(0,T;H). |
Furthermore, u0↦u(t)∈C0(D(A),D(A)).
Proof. We will apply Theorem 31.A from [28]. Recall that A is called monotone if (A(u)−A(v),u−v)H≥0 for all u,v∈D(A). Let R denote the range of an operator and let I denote the identity operator. The assumptions to check are:
(H1): A is monotone,
(H2): R(I+A)=H.
Proof (H1): Since φ is decreasing - we obtain
(A(u)−A(v),u−v)H=∫Ωb∇(u−v)⋅∇(u−v)dx−∑i∫Ωi(φi(u)−φi(v))(u−v)⏟≤0dx≥0, | (3.3) |
for u,v∈D(A).
Proof (H2). We consider ˜A:V→V∗ given by
⟨˜A(u),w⟩:=∫Ω(uw+b∇u∇w)dx−∑i∫Ωiφi(u)wdxu,w∈V. |
Recall that ˜A is called hemicontinuous if the real function t↦⟨˜A(u+tv),w⟩ is continuous on [0,1] for all u,v,w∈V and that ˜A is called coercive if
⟨˜A(u),u⟩‖u‖V→+∞as‖u‖V→∞. | (3.4) |
We apply Theorem 26.A [28] to ˜A, which gives that for fixed g∈H, there exists a u∈V such that ˜Au=g. The assumptions to check are:
- ˜A monotone: Take u,v∈V, then similarly to Eq (3.3), we have that
⟨˜A(u)−˜A(v),u−v⟩≥∫Ωb∇(u−v)⋅∇(u−v)dx−∑i∫Ωi(φi(u)−φi(v))(u−v)dx≥0. |
- ˜A coercive: Recall from Assumptions 2.1 that φ(z)z≤c0 for all z∈R. Hence, we have that
⟨˜A(u),u⟩=∫Ω(u2+b|∇u|2)dx−∑i∫Ωiφi(u)udx≥c‖u‖2V−c0|Ω| |
and therefore, we have Eq (3.4).
- ˜A hemicontinuous: for t,s∈[0,1] u,v,w∈V, the Lipschitz continuity of φi by Assumption 2.1, we have
|⟨˜A(u+tv),w⟩−⟨˜A(u+sv),w⟩|≤C‖v‖V‖w‖V|t−s|+∑i|∫Ωi(φi(u+tv)−φi(u+sv))wdx|≤C‖v‖V‖w‖V|t−s|+L‖v‖H‖w‖H|t−s|. |
This implies the continuity of t↦⟨˜A(u+tv),w⟩.
Hence, for fixed g∈H, there exists a u∈V such that ˜Au=g, i.e.,
∫Ωb∇u∇wdx=∫Ω(−u+f(u)+g)wdx∀w∈V. | (3.5) |
It remains to show that u∈D(A), which can be done by adapting standard arguments on the regularity of weak solutions to elliptic boundary value problems to our two-phase setting [29]. More precisely, since −u+f(u)+a∈H and b is constant in Ωi, we can show, as in [30] Theorem 6.3.1, that Eq (3.5) implies u|Ωi∈H2loc(Ωi) and
−bΔu=−u+f(u)+ga.e. inΩi,i=1,2. |
To obtain H2-regularity up to the boundary, we modify the proof of [30] Theorem 6.3.4. (with partly changed notation) in the following way: We fix x0∈Γ and "flatten" Γ locally in a neighborhood Ux0 of x0 by an appropriate C2-diffeomorphism Φ:Ux0⟶B(0,1) so that we have
Φ(Ux0∩Ω1)=B(0,1)∩{y∈RN|yN>0},Φ(Ux0∩Ω2)=B(0,1)∩{y∈RN|yN<0}. |
For the transformed problem, the jump of b occurs along the plane yN=0. Therefore, the estimates for the difference quotients of the transformed solution in the first N−1 coordinate directions can be carried out in both half balls as in the proof of the cited theorem. Thus, we analogousy obtain u|Ωi∈H2(Ωi). Hence, applying integration by parts in the subdomains,
∫Ωb∇u∇wdx=∫Ω1b∇u∇wdx+∫Ω2b∇u∇wdx=−∫Ω1bΔuwdx−∫Ω2bΔuwdx−∫Γ[b∇u⋅ν]Γwds=∫Ω(−u+f(u)+g)wdx−∫Γ[b∇u⋅ν]Γwds∀w∈V, |
so by Eq (3.5), the boundary integral vanishes for all w∈V, which implies Eq (2.4), and u∈D(A) is proved.
Finally, applying Corollary 31.1 from [28] gives that u0↦u(t)∈C0(D(A),D(A)).
We define the functional E:V→R given by
E(u)=∫Ω12b|∇u|2dx−∑i∫ΩiFi(u)dx, | (4.1) |
where
Fi(s)=∫s0φi(σ)dσ. | (4.2) |
Lemma 4.1. E is Fréchet differentiable with derivative at u given by
E′(u)[h]=∫Ωb∇u∇hdx−∫Ωf(u)hdx. |
Proof. The first term in Eq (4.1) is a quadratic term in V. Fi has a bounded, integrable weak second derivative. Hence, for z,ζ∈R we have
|Fi(z+ζ)−Fi(z)−F′i(z)ζ|=|ζ2∫10(1−s)F″i(z+sζ)ds|≤12‖F″i‖∞ζ2. |
Thus, for u,h∈V
|∫ΩiFi(u+h)−Fi(u)−F′i(u)h|≤12‖F″i‖∞‖h‖2V, |
and ui↦∫ΩiFi(u)dx is Fréchet differentiable with derivative given by
h↦∫ΩiF′i(u)hdx=∫Ωiφi(u)hdx. |
Lemma 4.2. E′ is strongly monotone, i.e., for all u,v∈V, there exists γ>0 such that
(E′(u)−E′(v))[u−v]≥γ‖u−v‖2V. |
Proof. Take u,v∈V, then using φi decreasing and Poincaré's inequality we obtain
(E′(u)−E′(v))[u−v]=∫Ωb(∇u−∇v)⋅(∇u−∇v)dx−∑i∫Ωi(φi(u)−φi(v))(u−v)⏟≤0dx≥γ‖u−v‖2V. |
From Lemma 4.1, it follows that we can write Eq (3.2) as a gradient flow:
ut=−∇E(u), |
in the sense that
(ut,w)H=−E′(u)[w]. |
Recall that u∗∈V is called a critical point if E′(u∗)v=0. Hence, stationary solutions are critical points of E.
Theorem 4.3. There is precisely one stationary solution to Eq (3.2).
Proof. If E is a continuous, strictly convex, coercive functional then E has a unique critical point which is also a global minimum by Theorems 1.5.6 and 1.5.7 in [31]. E is continuous. Strict convexity of E follows from Lemma 4.2. So we only need to show coercivity. Observe that if s>0, then Fi(s)≤s, and if s≤0, then Fi(s)≤0. Hence, Fi(s)≤|s| for all s∈R. Therefore, using Poincaré's inequality, we have that
E(u)≥C‖u‖2V−C‖u‖V. |
Hence, E is coercive. The result follows from Lemma 4.1.
Denote the unique stationary solution by u∗∈V.
Theorem 4.4 (Global asymptotic stability in H). Let u be a solution of Eq (3.2), then t↦eγt‖u(t)−u∗‖H is bounded for t≥0.
Proof. Observe that E′(u∗)=0. From u∈L2(0,T;V), dudt∈L2(0,T;V∗) we have that
d‖u‖2Hdt=2(dudt,u)H, | (4.3) |
by Theorem 7.2 in [32]. Now let u be the solution of Eq (3.2). Then by Eq (4.3) and Lemma 4.2 we have that
12ddt(‖u−u∗‖2H)=(dudt,u−u∗)H=−E′(u)[u−u∗],≤(E′(u∗)−E′(u))[u−u∗]≤−γ‖u−u∗‖2V≤−γ‖u−u∗‖2H. |
Hence, we obtain that ‖u(t)−u∗‖2H≤e2γt‖u(0)−u∗‖2H.
Asymptotic stability in the V-norm does not follow from Theorem 4.4, but we can obtain a weak V-stability result:
Corollary 4.5. u(t)⇀u∗ in V as t→∞.
Proof. We first show that
t↦u(t)isboundedinV. | (4.4) |
We can bound ‖u‖V in terms of E(u) and ‖u‖H:
‖u‖2V≤C∫Ωb|∇u|2dx=2C(E(u)+∑i∫ΩiFi(u)dx)≤C′(E(u)+‖u‖H). |
Now Eq (4.4) follows because E(u) is decreasing and ‖u‖H is bounded by Theorem 4.4.
Now suppose the opposite of Corollary 4.5. Then, there exists ε>0 and ϕ∈V∗ and a sequence (tn),tn→∞ such that
|⟨ϕ,u(tn)−u∗⟩|≥ε, | (4.5) |
for all n. Write un:=u(tn). Since V is reflexive and (un) is bounded according to Eq (4.4), we obtain from Alaoglu's compactness theorem that there is a subsequence again denoted by (un) that converges weakly in V. As V⊂⊂H, the subsequence (un) converges strongly in H; therefore, the limit is u∗ which is in contradiction with Eq (4.5).
We will formulate a PDE for the model considered in [13]. We assume that the transplanted cells are injected in an oxygen-stable environment [1]. Hence, we consider on S a Dirichlet boundary condition. At Γ we require the concentration and flux to be continuous. Finally, on Ω1 there is a non-linear term corresponding to Michaelis–Menten consumption [13]. It is assumed that on Ω2 there is no oxygen consumption. We also assume that Michaelis–Menten consumption is zero when the oxygen concentration is zero. This condition ensures that the non-linear term is bounded and monotone. The equations for the non-dimensional oxygen concentration, v=v(x,t), are then given by
dvdt−bΔv=−g(v)in(Ω∖Γ)×(0,T),v|S=c0,[v]|Γ=0,[b∂v∂n]|Γ=0,v(x,0)=v0(x)inΩ, |
where g:L2(Ω)→L2(Ω) is defined by
[g(v)](x)={ϕ(v(x))ifx∈¯Ω1,0ifx∈Ω2, |
with ϕ:R→R given by
ϕ(z)={zz+ˆcifz≥0,0else, |
with ˆc>0. Let u=−v+c0 and we obtain Eqs (2.1)–(2.5). Setting c1:=c0+ˆc we have that
φ1(z)={c0−zc1−z ifz≤c0,0 ifz>c0, | (5.1) |
where 0<c0<c1, see Figure 2.
It is straightforward to see that φ1 satisfies the properties in Assumptions 2.1. More specifically, the Lipschitz constant is 1/(c1−c0), and zφ1(z)≤c0 for all z∈R. Consequently, we can apply Theorems 3.1, 4.3, and 4.4 to obtain well-posedness and global asymptotic stability of the unique stationary solution.
For the most general form of kinetics, Hill's equation, the theorems can also be applied. In the transformed variables we then obtain that
φi(z)={(c0−z)n(c0−z)n+ˆcifz≤c0,0ifz>c0, | (5.2) |
with n,ˆc>0 which satisfies Assumption 2.1. Note that for n=1, Eq (5.2) becomes Michaelis–Menten Eq (5.1).
In this work, we have shown the well-posedness of a nonlinear reaction–diffusion equation for general core-shell geometry. Furthermore, the corresponding stationary solutions are unique and asymptotically stable in a suitable topology. These results extend the model by [13], which only considers stationary solutions for spherical core-shell geometry.
The well-posedness theorem, Theorem 3.1, allows us to define a semi-dynamical system: (D(A),{S(t)}t≥0). This can be used to prove the existence of a global attractor following techniques in [32]. We expect that Theorem 10.13 from [32] can be applied and consequently that the global attractor is equal to the unique stationary solution. We note that the techniques from [32,33] can be used to prove well-posedness by only relying on an L2 bound on f and not on the monotonicity of f [34].
In view of general results on parabolic PDE systems, we expect our evolution problem to be well-posed in Hölder spaces as well, if Γ is smooth enough. However, the proof would be rather technical, and the improvement might not be essential from the point of view of the application. Consequently, it was not considered in this work.
In an experimental set-up, f might be unknown. Suppose that the following are known: b, Ω1,Ω2, and spatially dependent data for u when u has become stationary. The nonlinear f can be approximated using the Sparse Identification of Nonlinear Dynamics (SINDy) framework, which in short, is a regression-type fitting process, typically LASSO, over a set of library functions [35]. There are specialized SINDy frameworks for PDEs [36]. Observe that the data concerns stationary u in time so we can ignore the time derivative, which reduces the complexity of the fitting process. We note that the problem can be further reduced if we can control Ω1 and Ω2 in the experimental set-up. We would then select a spherical geometry such that Ω1 and Ω2 have a common center. Assuming that the obtained data for u also has spherical geometry, the problem reduces to applying the SINDy-framework to a first-order ODE, which is a vanilla-type SINDy.
It is tempting to make the connection between this work and bulk-surface PDEs [37,38,39,40]. In our setting bulk-surface geometry means that the outer shell is a surface. If we would consider our governing equations and then take the limit to zero for the thickness of the shell it appears to be necessary to assume that Neumann boundary conditions are imposed on the shell, to arrive at the Bulk-Surface PDE [41].
Besides oxygen transport, glucose transport is also needed to sustain encapsulated donor cells. In [42], a coupled glucose–oxygen transport model is proposed based on biological assumptions from [21,43]. As in [13], stationary solutions are considered, and a numerical study is performed to find solutions that have concentrations which are above the donor cell survival threshold. The well-posedness and stability of the corresponding PDE is a topic we would like to explore in future work.
Thomas de Jong: Conceptualization, Writing original draft. Georg Prokert: Review, Methodology. Alef Sterk: Review, Methodology.
The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.
During this research Thomas de Jong was also affiliated with Xiamen University and University of Groningen. This research was supported by JST CREST grant number JPMJCR2014.
The authors declare that there are no conflicts of interest.
[1] |
Saini M, Singh Y, Arora P, et al. (2015) Implant biomaterials: A comprehensive review. World J Clin Cases 3: 52–57. https://doi.org/10.12998/wjcc.v3.i1.52 doi: 10.12998/wjcc.v3.i1.52
![]() |
[2] | Guarino V, Iafisco M, Spriano S (2020) Introducing biomaterials for tissue repair and regeneration, In: Guarino V, Iafisco M, Spriano S, Nanostructured Biomaterials for Regenerative Medicine, Woodhead Publishing, 1–27. https://doi.org/10.1016/B978-0-08-102594-9.00001-2 |
[3] | Niinomi M, Hanawa T, Okazaki Y, et al. (2010) Contributor contact details, In: Niinomi M, Metals for Biomedical Devices, London: Woodhead Publishing, xi-xiii. https://doi.org/10.1016/B978-1-84569-434-0.50019-X |
[4] | Tanzi MC, Farè S, Candiani G (2019) Chapter 4-Biomaterials and applications, In: Tanzi MC, Farè S, Candiani G, Foundations of Biomaterials Engineering, New York: Academic Press, 199–287. https://doi.org/10.1016/B978-0-08-101034-1.00004-9 |
[5] |
Hua N, Chen W, Zhang L, et al. (2017) Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications. Mater Sci Eng C 76: 1154–1165. https://doi.org/10.1016/j.msec.2017.02.146 doi: 10.1016/j.msec.2017.02.146
![]() |
[6] | Ratner BD, Hoffman AS, Schoen FJ, et al. (2004) Biomaterials Science: An Introduction to Materials in Medicine, Amsterdam: Elsevier. |
[7] |
Nie L, Zhan Y, Liu H, et al. (2014) Novel β-type Zr–Mo–Ti alloys for biological hard tissue replacements. Mater Design 53: 8–12. https://doi.org/10.1016/j.matdes.2013.07.008 doi: 10.1016/j.matdes.2013.07.008
![]() |
[8] | Narushima T (2019) 19-New-generation metallic biomaterials, In: Niinomi M, Metals for Biomedical Devices, 2 Eds., London: Woodhead Publishing, 495–521. https://doi.org/10.1016/B978-0-08-102666-3.00019-5 |
[9] |
Kunčická L, Kocich R, Lowe TC (2017) Advances in metals and alloys for joint replacement. Prog Mater Sci 88: 232–280. https://doi.org/10.1016/j.pmatsci.2017.04.002 doi: 10.1016/j.pmatsci.2017.04.002
![]() |
[10] |
Juliano H, Gapsari F, Izzuddin H, et al. (2022) HA/ZrO2 coating on CoCr alloy using flame thermal spray. Evergreen 2: 254–261. https://doi.org/10.5109/4793632 doi: 10.5109/4793632
![]() |
[11] |
Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R Rep 87: 1–57. https://doi.org/10.1016/j.mser.2014.10.001 doi: 10.1016/j.mser.2014.10.001
![]() |
[12] | Moztarzadeh A (2017) Biocompatibility of implantable materialsfocused on titanium dental implants. http://hdl.handle.net/20.500.11956/93643. |
[13] |
Yin L, Nakanishi Y, Alao AR, et al. (2017) A review of engineered zirconia surfaces in biomedical applications. Procedia CIRP 65: 284–290. https://doi.org/10.1016/j.procir.2017.04.057 doi: 10.1016/j.procir.2017.04.057
![]() |
[14] |
Grech J, Antunes E (2019) Zirconia in dental prosthetics: A literature review. J Mater Res Technol 8: 4956–4964. https://doi.org/10.1016/j.jmrt.2019.06.043 doi: 10.1016/j.jmrt.2019.06.043
![]() |
[15] |
Zhou FY, Wang BL, Qiu KJ, et al. (2013) Microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr–Mo alloys. J Biomed Mater Res B 101: 237–246. https://doi.org/10.1002/jbm.b.32833 doi: 10.1002/jbm.b.32833
![]() |
[16] |
Kondo R, Nomura N, Suyalatu, et al. (2011) Microstructure and mechanical properties of as-cast Zr–Nb alloys. Acta Biomater 7: 4278–4284. https://doi.org/10.1016/j.actbio.2011.07.020 doi: 10.1016/j.actbio.2011.07.020
![]() |
[17] |
Cai S, Daymond MR, Khan AK, et al. (2009) Elastic and plastic properties of βZr at room temperature. J Nucl Mater 393: 67–76. https://doi.org/10.1016/j.jnucmat.2009.05.007 doi: 10.1016/j.jnucmat.2009.05.007
![]() |
[18] |
Eliaz N (2019) Corrosion of metallic biomaterials: A review. Materials 12: 407. https://doi.org/10.3390/ma12030407 doi: 10.3390/ma12030407
![]() |
[19] |
Sah AP, Ready JE (2007) Use of oxidized zirconium hemiarthroplasty in hip fractures: Clinical results and spectrum analysis. J Arthroplasty 22: 1174–1180. https://doi.org/10.1016/j.arth.2006.10.018 doi: 10.1016/j.arth.2006.10.018
![]() |
[20] |
Ries MD, Salehi A, Widding K, et al. (2002) Polyethylene wear performance of oxidized zirconium and cobalt-chromium knee components under abrasive conditions. J Bone Joint Surg 84: 129–135. https://doi.org/10.2106/00004623-200200002-00018 doi: 10.2106/00004623-200200002-00018
![]() |
[21] |
Li C, Zhan Y, Jiang W (2011) Zr–Si biomaterials with high strength and low elastic modulus. Mater Design 32: 4598–4602. https://doi.org/10.1016/j.matdes.2011.03.072 doi: 10.1016/j.matdes.2011.03.072
![]() |
[22] |
Nomura N, Tanaka Y, Kondo R, et al. (2009) Effects of phase constitution of Zr-Nb alloys on their magnetic susceptibilities. Mater Trans 50: 2466–2472. https://doi.org/10.2320/matertrans.M2009187 doi: 10.2320/matertrans.M2009187
![]() |
[23] | Batchelor AW, Chandrasekaran M (2004) Implantation and physiological responses to biomaterials, In: Batchelor AW, Chandrasekaran M, Service Characteristics of Biomedical Materials and Implants, Singapore: World Scientific Publishing, 23–60. https://doi.org/10.1142/9781860945366_0003 |
[24] |
Suyalatu, Nomura N, Oya K, et al. (2010) Microstructure and magnetic susceptibility of as-cast Zr–Mo alloys. Acta Biomater 6: 1033–1038. https://doi.org/10.1016/j.actbio.2009.09.013 doi: 10.1016/j.actbio.2009.09.013
![]() |
[25] |
Liang JS, Liu LB, Xu GL, et al. (2017) Compositional screening of Zr-Nb-Mo alloys with CALPHAD-type model for promising bio-medical implants. Calphad 56: 196–206. https://doi.org/10.1016/j.calphad.2017.01.001 doi: 10.1016/j.calphad.2017.01.001
![]() |
[26] |
Northwood DO (1978) Heat treatment, transformation reactions and mechanical properties of two high strength zirconium alloys. J Less Common Met 61: 199–212. https://doi.org/10.1016/0022-5088(78)90215-1 doi: 10.1016/0022-5088(78)90215-1
![]() |
[27] |
Zhou FY, Wang BL, Qiu KJ, et al. (2012) Microstructure, corrosion behavior and cytotoxicity of Zr–Nb alloys for biomedical application. Mater Sci Eng C 32: 851–857. https://doi.org/10.1016/j.msec.2012.02.002 doi: 10.1016/j.msec.2012.02.002
![]() |
[28] |
Tewari R, Srivastava D, Dey GK, et al. (2008) Microstructural evolution in zirconium based alloys. J Nucl Mater 383: 153–171. https://doi.org/10.1016/j.jnucmat.2008.08.041 doi: 10.1016/j.jnucmat.2008.08.041
![]() |
[29] |
Zhang X, Zhang B, Liu SG, et al. (2020) Microstructure and mechanical properties of novel Zr–Al–V alloys processed by hot rolling. Intermetallics 116: 106639. https://doi.org/10.1016/j.intermet.2019.106639 doi: 10.1016/j.intermet.2019.106639
![]() |
[30] |
Chelariu R, Trinca LC, Munteanu C, et al. (2017) Corrosion behavior of new quaternary ZrNbTiAl alloys in simulated physiological solution using electrochemical techniques and surface analysis methods. Electrochimica Acta 248: 368–375. https://doi.org/10.1016/j.electacta.2017.07.157 doi: 10.1016/j.electacta.2017.07.157
![]() |
[31] |
Xia J, Ren K, Wang Y (2019) Reversible joining of zirconia to titanium alloy. Ceram Int 45: 2509–2515. https://doi.org/10.1016/j.ceramint.2018.10.180 doi: 10.1016/j.ceramint.2018.10.180
![]() |
[32] |
Zhou K, Liu Y, Pang S, et al (2016) Formation and properties of centimeter-size Zr–Ti–Cu–Al–Y bulk metallic glasses as potential biomaterials. J Alloy Compd 656: 389–394. https://doi.org/10.1016/j.jallcom.2015.09.254 doi: 10.1016/j.jallcom.2015.09.254
![]() |
[33] |
Huang L, Qiao D, Green BA, et al. (2009) Bio-corrosion study on zirconium-based bulk-metallic glasses. Intermetallics 17: 195–199. https://doi.org/10.1016/j.intermet.2008.07.020 doi: 10.1016/j.intermet.2008.07.020
![]() |
[34] |
Zhao X, Niinomi M, Nakai M, et al. (2011) Development of high Zr-containing Ti-based alloys with low Young's modulus for use in removable implants. Mater Sci Eng C 31: 1436–1444. https://doi.org/10.1016/j.msec.2011.05.013 doi: 10.1016/j.msec.2011.05.013
![]() |
[35] |
Wang ZM, Ma YT, Zhang J, et al. (2008) Influence of yttrium as a minority alloying element on the corrosion behavior in Fe-based bulk metallic glasses. Electrochimica Acta 54: 261–269. https://doi.org/10.1016/j.electacta.2008.08.017 doi: 10.1016/j.electacta.2008.08.017
![]() |
[36] |
Toby BH, Von Dreele RB (2013) GSAS-Ⅱ: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46: 544–549. https://doi.org/10.1107/S0021889813003531 doi: 10.1107/S0021889813003531
![]() |
[37] |
Akimoto T, Ueno T, Tsutsumi Y, et al. (2018) Evaluation of corrosion resistance of implant-use Ti-Zr binary alloys with a range of compositions. J Biomed Mater Res B 106: 73–79. https://doi.org/10.1002/jbm.b.33811 doi: 10.1002/jbm.b.33811
![]() |
[38] |
Yu L, Tang J, Qiao J, et al. (2017) Effect of Yttrium addition on corrosion resistance of Zr-based bulk metallic glasses in NaCl solution. Int J Electrochem Sc 12: 6506–6519. https://doi.org/10.20964/2017.07.47 doi: 10.20964/2017.07.47
![]() |
1. | Amarendra Kumar Mishra, Mahipal Singh Choudhry, Manjeet Kumar, Underwater image enhancement using multiscale decomposition and gamma correction, 2022, 1380-7501, 10.1007/s11042-022-14008-2 | |
2. | Auwalu Saleh Mubarak, Zubaida Said Ameen, Fadi Al-Turjman, Effect of Gaussian filtered images on Mask RCNN in detection and segmentation of potholes in smart cities, 2022, 20, 1551-0018, 283, 10.3934/mbe.2023013 | |
3. | Xin Yang, Hengrui Li, Hanying Jian, Tao Li, FADLSR: A Lightweight Super-Resolution Network Based on Feature Asymmetric Distillation, 2022, 0278-081X, 10.1007/s00034-022-02194-1 | |
4. | Mian Pan, Weijie Xia, Haibin Yu, Xinzhi Hu, Wenyu Cai, Jianguang Shi, Vehicle Detection in UAV Images via Background Suppression Pyramid Network and Multi-Scale Task Adaptive Decoupled Head, 2023, 15, 2072-4292, 5698, 10.3390/rs15245698 | |
5. | Abhishek Bajpai, Vaibhav Srivastava, Shruti Yadav, Yash Sharma, 2023, Multiple Flying Object Detection using AlexNet Architecture for Aerial Surveillance Applications, 979-8-3503-3509-5, 1, 10.1109/ICCCNT56998.2023.10307613 | |
6. | Ahmad Abubakar Mustapha, Mohamed Sirajudeen Yoosuf, Exploring the efficacy and comparative analysis of one-stage object detectors for computer vision: a review, 2023, 83, 1573-7721, 59143, 10.1007/s11042-023-17751-2 | |
7. | Julian True, Naimul Khan, Motion Vector Extrapolation for Video Object Detection, 2023, 9, 2313-433X, 132, 10.3390/jimaging9070132 | |
8. | ChangMan Zou, Wang-Su Jeon, Sang-Yong Rhee, MingXing Cai, A Method for Detecting Lightweight Optical Remote Sensing Images Using Improved Yolov5n, 2023, 10, 2383-7632, 215, 10.33851/JMIS.2023.10.3.215 | |
9. | Betha Sai Sashank, Raghesh krishnan K, 2023, Segmentation and Detection of Urban Objects from UAV Images Using Hybrid Deep Learning Combinations, 979-8-3503-2518-8, 1, 10.1109/i-PACT58649.2023.10434584 |